Exception Processing in Computer Systems

Bv
Bruce Gilbert Lindsay

A.B. (University of California) 1966
M.A. (University of California) 1971

DISSERTATION

Submitted in partial satisfaction of the requirements for the deegree of
DOCTOR OF PHILOSOPHY
in

Computer Science

in the
GRADUATE DIVISION
of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Arproved:

A

Committee in CHarge

--

Exception Processing in Computer Systems

Bruce Gilbert Lindsay

Abstract

An exception is the reported failure of an operation to produce its
specified results. An exception processing facility operating in an en-
vironment of cooperating, but mutually suspicious subsystems is
developed. The exception facility is driven by exception gignals from
the failed operation and is responsible for selecting and activating a
handler for the exception. It also manages the resumption of normal

processing when the handler terminates.

The means used to specify exception handlers and the rule used to
select one of the handler specifications are of critical importance in
the design of the exception processing facility. In order to protect
the subsystems of the computation and to avoid introducing dependencies
between otherwise independent subsystems, the response to an exception
should be controlled by handler specifications which are associated with
the jipvoker of the failed operation. It is shown that other schemes for
selecting the handler tend to break down the logical and physical isola-

tion of the protected subsystems.

The exception facility supports programmer supplied 1@¢al handler
specifications, system supplied default handlers, and system jimposed ex-
ception handlers. Default handlers supply a "standard" response when no
other handler specifications are given. Imposed handlers allow the sys-
tem to supply the response to system sensitive exceptions. It is shown

how handler specifications can be associated with the subsystem during

the program preparation process. Installing handlers during program
preparation and selecting a handler using only the invoker's handler
specifications simplify program verification and comprehension because
the response to an exception does not depend on other subsystems or on

the dynamic state.

An implementation of the exception processing facility is present-
ed. The implementation is partitioned into a set of low level opera-
tions for initiating and terminating exception episodes, and a subsystenm
which manages the selection and activation of the handler. An interest-
ing aspect of the implementation is the ability of the exception pro-
cessing subsystem to process its own exceptions using the same handler
specification and selection protocols which are used for normal excep-

tions.

I would like to thank my thesis advisor, Professor R.S. Fabry, for
providing advise and‘support during the preparation of this thesis. I
am also indebted to the other members of my committee, Dr. James H.
Morris and Professor Charles Prenner, for their critical reading and

comments on the thesis.

Most of all I would like to thank Paul McJones who provided early
interaction, valuable advice, and careful reading of early drafts of
this thesis. I have also profited from discussions with Dave Redell,

Bill O'Connell, Jim Gray, and John Barlycorn.

I would also like to thank the National Science Foundation for
their support under Grant MCS75-23739 and IBM Corporation for its sup-

port during the final preparation of this thesis.

Acknowledgementsiviieneennieasctecoscanssoanocensccasanans

Table o0f Content s ...ttt ierreeeeeeeeeeeoenacosnsansannnonns

List of
Chapter

1.1

1.2

Chapter
2.1

2.2

Filgures ..i.iciinniiiiiiieniieieneeasosossaancnannannnns
1: Introduction to Exception Processing
Introductioncivveenenn teeseanrcasscassan cesaane
1.1.1 Abstraction and Modularitycccieieeeenennes
1.1.2 Introduction to Exceptions cecetesesenans
1.1.3 Thesis Plan t.iiiiiieereieeesansecennosnonannans
Anatomy of an Exceptionieiiiirireinenccennnnns
1.2.1 Abstractions and Subsystemscccecevocoeons
1.2.2 Exception CauSeS .veeeecesososcncasoncncnsonons
1.2.3 An Exception Episodeiiiiiiiniiiiiinnnnns
1.2.4 Failure Detection ...ciiiereevscenncsenssnnsons
1.2.5 Exception Reportingcceeeeecvasccscsocnns
1.2.6 Exception Handlingceeeeeeeccecceenosncnnas
1.2.7 Episode Termination ...cieeieecessrcssconnsenns
1.2.8 Anatomy SUMMAr'Y «veveeeecacscecacceosanasoaceaes
2: Issues and ANSWErS ...eveeessesncnsas cecoarseseeas
Introductioniiiieiiiiiiieiierierenssenentncnanasns
Exception Episode ISSues ...cicviieresnescsccasansanns
2.2.1 Language vs System Level Exception Processing
2.2.2 Policy/Mechanism Separationcciveeceveeaaes
2.2.3 Uniform Exception Reportingcvievecenenocns
2.2.4 Disposition of the Signallerc.ecceeeesen
2.2.5 Exception Processing Overhead teeecane

2.2.6 Exception Namingeeeeeeeecccccacncconnns

2.3

2.4

2.5

2.6
Chapter
3.1
3.2

Table of Contents

2.2.7 Exception Parameters e rteeeaeean. 41
2.2.8 Handler Environmenteceveveeeceoceanas 43
Handler Specifications Ceeraieneasan cvee.. UB
2.3.1 Dynamic Handler Specifications ceeeean 4g
2.3.2 Static Handler Specifications 52
2.3.3 Local, Default, and Imposed Handlers 55
Handler Choice Policiesc.e.. ceetenenen teeseaes 59
2.4.1 Object Oriented Handler Choice Policies 60
2.4.2 Global Handler Choice Policies ceeas 63
2.4.3 Inherited Handler Choice Policies 67

2.4.4 Invoker Controlled Handler Choice Policies 71

Handler Terminationscccciiiieercnccccnnnsnanans 78
2.5.1 Continue Terminationcccvevnenvncnncnnnnns 79
2.5.2 Retry Terminationieeveneeecescnnnoeonennns 81
2.5.3 Exit Terminationc.ccceonen ceesecenes eers 83
2.5.4 Abort Terminationcicieiencincircnaannnn 84
2.5.5 Unwind Termination 87
2.5.6 Reclassify Terminationceeeeveeecneannnns 89
2.5.7T Reject Terminationci00v0nanss cresecsnans 91
Summary et e st eearene st s et ectt et nataconsosonee 92
3: An Implementation Model trreeseseens 94
Introduction ..ceeeiiirieiiitciiiriaetccenaserccnnoonn 94
The Basic Process Model e 95
3.2.1 Basic Addressingc.ccececovooncncs ceveseenn 96
3.2.2 External References Cetsesreseersaaaas 100
3.2.3 The Process BaSecesssccssccssssscacssnns 103
3.2.4 Subsystem Callviveereneenncovncaneananas 104

iii

3.3

Chapter
4.1

4.2

4.3

4.y

4.5

Chapter

Table of Contents

3.2.5 Subsystem Returnciieieeenenann
3.2.6 Allocating Activation Storage
3.2.7 Non-Local Address Space References
The Augmented Process Modelccicevee.
3.3.1 The Basic Fault Mechanism
3.3.2 The Signal Operationcivevevvnnces
3.3.3 Episode Termination Operations
3.3.4 The Augmented Activation Stack
4: Exception Processor Implementation
Introductionc.cicieieiiirniennennnrsnennnns
Exception Processor Entry Sequences
4.2.1 The Fault Entry Sequencecoeeee
4,2.2 Signal and Direct Call Entry Sequences

Handler Selection and Activation
4.3.1 Representation of Handler Specifications
4,3.2 Handler Selection ...veeernceoccccosons
4.3.3 The Handler Callcevvvevescnnncens
Handler Terminationscccciiiiciienns
4. 4.1 Continue INVOKeErevcvcvececcncncs
4. 4.2 Retry Failed Operationcicveeeeeves
U.4,3 Exit To INVOKEr ...i.ivvvescevccnsoannans
4.4, 4 Abort the INVOKEr ...cccvesscesscnsssns
4. 4.5 Unwind Termination ...seeeeveecsececass
4. 4.6 Reclassify Exceptionciivivvennns e
4.4.7 Reject Terminationccceveevcooneas
Conclusions Ceeresesasvesensanenas ..

5: Summary and Conclusionsccieeevesnsns

iv

Table of Contents

5.1 Thesis Summary Ceeeesesereraasneseesanseane 200
5.2 Some Directions for Further Research 205
5.3 Concluding RemarksS ...uveeeeeeeeocereceenecnnsoaneens 206
Re eI eNCeS it iiiiiieerineeenessansoesssssnsecsasssnasscssssssns 210

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure

List of Figures

2-1: Invocations and Activation Pointsceveveeenn u8
2-2: Dynamic Handler Specifications seeesene 50
2-3: Static Handler Declarationsc.ccieveeenn. 54
2-4: Nested Static Handlersceeeeeeenncnccancnns 57
2-5: Global Dynamic Handlers Ceeneas Ceeaeas 66
2-6: Inherited Handlerseceeecencconnscnsncensas 69
3-1: The Basic Address SPACE ..iveverrececrsoceasovnoas 99
3-2: Basic Addressing ...ccieicinciceccorcnssnsancnne 101
3-3: The Basic Process BasSe ...civieersrncsncsncanoen 105
3-U4: Subsystem Call ~- Parameter Passingc... 109
3-5: Subsystem Call -- Activation Stack 109
3-6: Subsystem Call —- Algorithmccveeveencans 110
3-7: Subsystem Return -- Result Passingcicc0000e 112
3-8: Subsystem Return -- Activation Stack 112
3~9: Subsystem Return -- Algorithm ceeevass 114
3-10: Allocate Activation Frame ceseenes 17
3-11: Allocate Algorithm et ceceacasenetnanens 118
3-12: The Process Base (Augmented) ceenee. 122
3-13: Basic Fault -- Activation Framec... . 124
3-1l4: Basic Fault -- Activation Stackieeveiennns 124
3-15: Basic Fault ~- Algorithmc.cievenennncsns 125
3-16: Signal -- Exception Parametersccceeeeeee 128
3-17: Signal -- Activation Stackciveevenanns ce.. 128
3-18: Signal -- Algorithm et eessterenantanenn 130

vi

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

List of Figures

3-19: Retry -- Restore Invoker's Frame 131
3-20: Retry —- Algorithmciiieiinieeinneeeeenanes 132
3-21: Abnormal Return —-- Algorithmceveeeveesas 134
3-22: Abort —— Parameter CODYeeeeescoocnnosennen 136
3-23: Abort -- Activation Stack e evs 136
3-24: Abort -- Algorithm St cecaceeanns ... 137
3-25: Activation Stack Bufferceeev0ees cecenns 139
3-26: Activation Stack Full Test ceasacaes 141
3-27: Pop Activation Stackcc.... Ceteseenesnne 142
4-1: Exception Processor Organizationeeeee.. 146
4-2: Fault Entry Sequence (first attempt) 150
4-3: Fault Entry -- Virtual Memory Fault 152
U-l: Fault Entry (modified)cceveveverennonccnnns 153
4-5: Fault Entry -- Worst Case Fault Sequence 155
4-6: Signal Entry Sequenceeeceecees Ceeesseaans 158
4-7: Direct Call Entry SeQUENCEeeceaceonssaces 160
4-8: Handler Hash Tables teeeessnen ceeesnaan 164
4-9: Imposed and Default Handler Listscecen.. 164
4-10: Local Handler Treeccvuvese ceeesranes ceee. 166
4-11: Handler Selection ..iieieeeonreeceocsananennnns 169
4-12: Handler Selection Exceptions secanaa eee 170
4-13: Handler Call Ceeessseseseressactensas .. 176
4-14: Handler Terminationsceeeveeees ceerseeans 181
4-15: Continue Terminationcecvveeee ceeecienns 183
4-16: Retry Termination et eisectasrnarans 183
U-17: Exit Terminationceeeee cereceananas c... 186
4.18: Cleanup Routine et eceetcnanectanans 188

vii

Figure
Figure
Figure
Figure

Figure

List of Figures

4-19: Abort Terminationveiveeennee ceessesses 190
§-20: Unwind Propagationceciecevennccscnaananns 190
4-21: Unwind Initiation ...eeeeeeeseneeneneans P 193
§.22: Reclassify Termination / Change Exception 195
4-23: Reject Terminationcccivececeessvecensoans 198

viii

Ch. 1 page 1

Chapter One

Introduction to Exception Processing

1.1 Introduction

The organization and construction of large programmed systems has
been one of the continuing challenges faced by the computing community.
Over the years, the availability of increasingly powerful processors,
equipped with ever larger on-line stores, has been accompanied by
demands for increasingly complex programmed systems to control and ex-
ploit these information processing resources. Considerable experience
has been accrued in the construction of large programs such as operating
systems, data-base management systems, and telecommunications applica-
tions. But, as Randell points out, we are willing "to design and imple-
ment systems of a level of complexity which challenges, and often de-
feats, our ability to comprehend them" [Randell 71]. Despite the enor-
mous efforts which have been expended, large programs continue to be
very difficult to produce and, once produced, they are unreliable and
difficult to maintain or understand. The purpose of this thesis is to
investigate and develop system level facilities for responding to and

recovering from the detected failure of program or system components.

The "programming problem™ has been attacked on many fronts. High
level programming languages allow the specification of a computation to
be encoded using a notation which has been adapted to the application

area of the computation. The notation produces useful redundancy while

Ch. 1.1 Introduction to Exception Processing page 2

suppressing irrelevant details of the computation. Recently, so called
"structured programming" techniques [Dijkstra 76] have been advanced as
aids to understanding the program and the computation which it evokes.
One structured programming technique is to restrict the mechanisms
available for expressing the sequencing of the computation so as to make
the lexical structure of the program reflect the sequencing structure of
the corresponding computation. The structured programming discipline
tends to reduce the complexity of the sequencing structure of a program
by restricting the repertoire of sequencing constructs which can be used

in the program.

Programming languages and structured programming techniques are
concerned with the notation for expressing the computation. Other ap-~
proaches to the programming problem endeavor to characterize the meaning
of the notation. In conjunction with research into the formal semantics
of programming languages [Hoare 73], program verification methods are
being developed [Wulf 76, Ambler 77, Euclid 77]. The goal of these ap-
proaches is to prove formally that the program evokes the desired compu-
tation. The techniques and programming habits necessary to produce cer-
tifiably correct programs are not fully developed. The possibility of
knowing that a program is correct is the chimera that motivates this

line of research.

Instead of considering issues of representation and meaning in pro-
grams, one can study production management techniques. These techniques
attack the traditional program production cycle of specify, code, debug,
and maintain at one or more of the production stages. Design specifica-

tion and documentation procedures range from the 3ad hoc [Boehm 751 to

Ch. 1.1 Introduction to Exception Processing page 3

more rigorous specification techniques [Parnas 72, Robinson 75]. The
programming team has been studied [Baker 72, Brooks 75], and even the
special psychological needs of programmers have been analysed [Miller
73, Weinberg 71]. Program testing methodologies continue to be advanced
[Goodenough 75b, Panzl 76], despite the fact that "program testing can
... show the presence of bugs, but it is hopelessly inadequate for show-

ing their absence." [Dijkstra 72]

1.1.1 Abstraction and Modularity

Another avenue of attack on the programming problem, and the one
that we shall be following, is the pursuit of modularity in the program
specification and implementation. Modularity is manifested through the
use of procedural and data abstraction mechanisms. Procedural abstrac-
tion is implemented by providing a primitive operation which evokes a
separately specified computation sequence. The "call™ operation in con-
Junction with the "return" operation permits the specification of compo-
site operations which can be invoked as if they were primitive opera-
tions.

"We should recognize the closed subroutine as one of the greatest

software inventions ... because it caters for the implementation of

one of our basic patterns of abstraction." [Dijkstra 72]

Procedural abstraction mechanisms permit the description of a composite
operation to be separated from the description of how it is employed.
This organization allows us, in principle, to separate reasoning about

the implementation of a procedure from reasoning about the use of the

procedure.

Cch. 1.1.1 Introduction to Exception Processing page 4

If the atomic operations within one procedure interact freely with
operations in another procedure, we can no longer separate the reasoning
about the two procedures. The most common form of interaction is thru
the use of shared data. If access to particular data structures is lim-
ited to a few procedures, then reasoning about the state and the well-
formedness of these data structures can be restricted to reasoning about
the procedures which directly manipulate the data structures. In order
to achieve modularity, one must not only partition the program specifi-
cation (into procedures), but also restrict the interactions among dif-

ferent procedures by partitioning direct access to data structures.

Data abstraction is achieved by grouping together the procedures
which maintain the data structures representing the states of abstract
objects. The procedures and data structures defining a data abstraction
are combined to form what is called a subsystem, cluster [CLU 75] or
class [Dahl 70]. In order to restrict interactions among subsystems,
the execution environment of a subsystem must be isolated from other ex-
ecution environments. 1In order to control the passage from one environ-
ment to another, a guaranteed interface between subsystems is necessary.
The guaranteed interface enforces changes to the data accessing environ-
ment in response to the transfer of control from a procedure in one sub-
system to the beginning of procedure in another subsystem and in
response to the return of control to the calling procedure. Enforced
isolation permits us to reason about local program issues without con-
sidering the actions of programs in other subsystems. The guaranteed
subsystem interface defines the limits within which we must reason about

the actions of programs in other subsystems.

Ch. 1.1.1 Introduction to Exception Processing page 5

The partitioning of large computations into interacting subsystems
is not a new idea. However, the enforcement of isolation and the provi-
sion of a guaranteed interface between subsystems has received attention
only relatively recently [Schroeder 72, Redell 74, Jones 73, Walker 73].
Efforts on this front lie in programming language developments (e.g.
CLU, Alphard, and Euclid) and in operating system and machine architec-

ture studies (e.g. CAL, HYDRA, CAP, and Plessey).

Programming language advances, such as Simula [Dahl 70], CLU [CLU
75)}, and Euclid [Euclid 77] have illuminated isolation and interface is-
sues at the programming language level. Operating systems and machine
architecture studies approach the partition of large programs at a lower
level of system organization. At the system level, the interactions
among arbitrary machine language programs must be controlled. Enforcing
the isolation of programs belonging to different subsystems while, at
the same time, permitting controlled interactions between subsystems is
a protection and architectural problem. It is at the architectural lev-

el that we shall be discussing isolation and interactions among subsys-

tems.

1.1.2 Introduction to Exceptions

With suitable isolation and interface mechanisms, the distinction
between primitive and non-primitive operations (or subsystem calls) can
be minimized. 1In either case, the invoking program selects the opera-
tion, designates the parameters, and accepts the results produced by the
operation. The computation specified by a program is elaborated by exe-

cuting a sequence of primitive and non-primitive operations which update

Ch. 1.1.2 Introduction to Exception Processing page 6

the state of the system. As long as each operation performs as adver-
tised, the computation can proceed smoothly towards completion. Occa-
sionally, an operation may fail or be unable to produce its specified
results and effects. If some operation fails té/perform as advertised,
the execution sequence must reflect the operation failure. The reported
occurrence of an operation failure is called an exception. The reaction
of the computation to the occurrence of an exception is called the han-
dling of the exception. The failure of an operation to compute its
specified result should not necessarily ruin the larger computation

which called for the failed operation to be executed. Many exceptions

can occur quite legitimately and ought to be handled gracefully.

Exception handling has long been one of the gray areas of program-
ming in which ad ho¢ and special case techniques have been applied to
deal with specific run time failures. Recently there have been efforts
to design uniform exception handling mechanisms at the programming
language level [Goodenough 75, CLU 75]. At the system level, however,
there have been few seriocus efforts to design mechanisms and policies
for controlling the response to run time exceptions and for recovering

from the effects of operation failures.

In practice, the subsystem implementor must specify the response to
run time exceptions. The programmer should assume that every operation
may fail. Such a defensive programming style can be encouraged by sup-
plying convenient language and system level facilities for specifying
the response to an exception. By assuming that every operation may
fail, one is forced to consider how to proceed in case of the failure.

Typical responses to reported failures include attempting alternate com-

Ch. 1.1.2 Introduction to Exception Processing page 7

putations, proceeding to the next task, or reporting failure to the cal-
ling level of the system. A uniform, system level exception processing
facility can help the programmer to think about exceptions and provides
a framework within which it is fairly easy to specify the response to an

exception.

The variety of exceptional events which may occur in sophisticated
systems composed of interdependent and interacting subsystems requires
flexibility in the response to operation failures. Typical exceptions
range from such primitive operation failures as page faults (an address-
ing failure) or arithmetic overflow to subsystem operation failures
caused by improper parameters or resource limitations. A uniform excep-
tion reporting mechanism, coupled with sophisticated exception process-
ing policies, can be used to initiate and control the response to the

various kinds of run time failures.

In an environment composed of interacting subsystems, the exception
processing mechanisms and policies must protect the integrity of the in-
dividual subsystem. Since subsystem boundaries may be crossed in deal-
ing with an exception, exception processing will interact with the
guaranteed isolation between subsystems. Protection problems involving
the relationships between the subsystems which cause, detect, and pro-
cess an exception must be resolved in the design of exception processing

mechanisms and policies.

The failure of an operation, whether it is a primitive, machine
level operation or a composite operation initiated by a subsystem call,
can often be overcome by appropriate recovery and retry sequences. A

uniform exception processing mechanism permits the treatment of hardware

Ch. 1.1.2 Introduction to Exception Processing page 8

and software detected exceptions to be placed on the same footing.
Various exception processing policies can be exploited to tailor the
response to the requirements of the program which invoked the failed
operation. Often the invoking program can specify alternative actions
which can be taken to recover from or minimize the deleterious effects
of the failure. For example, the failure of an attempted write at the
beginning of a non-existent file might be resolved by creating the file

and then retrying the failed write operation.

Examples of exception processing applications include a number of
facilities traditionally integrated into the system kernel. Many of the
supervisory functions provided by the operating system are initiated by
the failure of an attempted operation. Virtual memory systems are
driven primarily by addressing failures (page and segment faults), as
are dynamic linking facilities. Virtual machine monitors [Popek 74,
Goldberg 73] respond to the failure of "sensitive" instructions in order

to simulate their effect on the state of the virtual machine.

The overall control of a computation composed of a society of in-
teracting subsystems is another supervisory function which can make use
of exception processing facilities to obtain control and enforce compli-
ance with "high level" user and system decisions. Controlling a set of
mutually suspicious subsystems presents interesting and difficult prob-
lems in which the interests of individual subsystems must be protected
at the same time as the subsystem is being forced to comply with global

decisions made by the system or by the owner of the computation [Needham

71].

Ch. 1.1.2 Introduction to Exception Processing page 9

Exception processing protocols can also be exploited to implement
extensions to low level system facilities. This application is charac-
terized by situations in which the lower level supports a restricted
domain of operands or does not provide recovery procedures for unusual
situations {Parnas 76]. When the lower level fails, exception process-
ing at higher levels may be able to correct the cause of the failure or
to simulate the effects of the failed operation. In this way, higher
levels can effectively extend the domain or the functionality of a lower
level. The occurrence of low level failures and the recovery by the
higher level can be made transparent to the user thru the use of ap-

propriate exception handling policies.

1.1.3 Ihesis Plan

The goal of this research is to investigate exception processing
policies and mechanisms. We develop a uniform exception processing
mechanism for controlling the response to exceptions at all levels of
the system. The primitive exception processing mechanisms are extended
by exception processing policies which can deal with a variety of excep-
tional situations. 1In particular, policies for dealing with exceptions
in a process composed of cooperating but mutually suspicious subsystems

are developed and discussed.

In this chapter, we present an introduction to the topic of excep-
tion processing. A discussion of the causes of exceptions is followed
by a walk thru of an exception episode. An exception episode includes
exception detection, reporting, processing, and returning to the main

line computation.

Ch. 1.1.3 Introduction to Exception Processing page 10

In the second chapter we discuss a broad range of issues related to
exception processing. General issues associated with the organization
of the exception episode, naming of exceptions, exception processing
overhead, and the relationships among the subsystems participating in
the exception episode are disposed of first. The issues associated with
specifying the response to particular exceptions are handled before the
interesting questions surrounding the design of the handler selection
policy. The choice of a handler selection policy is the most critical
issue addressed in Chapter Two. Chapter Two also deals with the prob-
lems of how to terminate an exception episode so as to reflect the out-

come of the handler's recovery attempts.

In Chapter Three, a processor model supporting exception processing
operations in an environment of protected, mutually suspicious subsys-
tems is presented. The processor model illustrates how the base system
can implement protected subsystem interfaces and how the basic exception
processing actions can be decoupled from the policy decisions which

select handlers and control the resumption of normal processing.

Chapter Four continues the implementation of an exception process-
ing facility by describing how the policy module responsible for select-
ing and activating handlers and controlling the evolution of an excep-
tion episode can be implemented as an ordinary subsystem. An interest-
ing aspect of the implementation of the exception processing policy
module is that the programs of the exception processing subsystem are
themselves subject to exceptions. Exceptions which occur while process-
ing an exception can; for the most part, be taken in stride without get-

ting involved with special protocols or unusual processing. -The last

Ch. 1.1.3 Introduction to Exception Processing page 11

chapter of the thesis summarizes the key points discussed in the body

and states the conclusions of the research.

1.2 Anatomy of an Exception

In this section we first discuss the relationship between pro-
grammed abstractions and 1isolated or protected subsystems. The
remainder of this section is a discussion of the several phases of an
exception episode. Exception causes as well as exception detection and
reporting are discussed briefly. After introducing exception reporting

and handling, we discuss the termination of an exception episode.

1.2.1 Abstractions and Subsystems

Recent developments in the art of system design have emphasized
that complex systems should be designed and implemented as an interact-
ing set of abstractions [Parnas 72, Wulf 76, Lampson 76, Dijkstra 68].
Each abstraction defines an object type (or types) in terms of a set of
operations which may be performed on instances of objects of the ap-
propriate type. Starting with a set of primitive abstractions, it is
possible to construct a hierarchy of abstractions in which complex
abstract objects are implemented in terms of previously defined objects.
Among the advantages of this approach is the fact that the functionality
at each level of abstraction can be described in such a way that the
design can be understood and evaluated without considering the internal

details of other levels of abstraction.

Ch. 1.2.1 Introduction to Exception Processing page 12

The use of abstractions permits the development of complex systems
using a "building block" approach. Operating systems are a prime exam-
ple of complex systems which can profit from a systematic decomposition
and hierarchical implementation. When composing abstractions, it is as-
sumed that the programs which make use of an abstraction do not need to
take into account the internal mechanisms used to implement the opera-
tions of the abstraction. The complementary criterion, that the imple-
mentor of an abstraction need not make assumptions about the programs
which may call upon his/her abstraction, implies that the correctness of
the implementation (program text, data structures, etc.) will not depend
on how the abstraction is used [Wulf 76, Lampson 69]. An organization
in which implementation details are concealed from the user of an
abstraction [Liskov 74, Parnas 72] facilitates the composition of in-
dependently implemented modules and conforms with the principles of pro-

gramming generality [Dennis 68].

The specification of an abstraction describes what the abstract
level does without detailing how it is accomplished {Parnas 72, Robinson
75]. The implementation of an abstraction will include programs and
data structures designed to simulate the specified effects of each of
the operations of the abstraction. The implementation of an abstraction
is known, for our purposes, as a subsystem. Each of the operations of
the abstraction is associated with a gate or entry point to the subsys-
tem. We will often refer to subsystem gates as "operations of the sub-
system" to emphasize their relationship to the abstract operations they
simulate. The programs implementing an abstract operation may discover,
during execution, that they cannot produce the specified effects of the

operation being simulated. The reported failure of an operation

Ch. 1.2.1 Introduction to Exception Processing page 13

invocation to produce the specified effects of the operation is called
an exception * . An important part of the specification of an abstrac-
tion is the list of the exceptions which might be reported by each of

its abstract operations.

1.2.2 Exception Causes

Operation exceptions can occur for various reasons. One source of
exceptions is the existence of partially defined operations. If the ef-
fect of an operation is undefined for some values of the input parame-
ters or for some states of the data base associated with the subsystem
or for some combinations of parameter values and data base states, inap-
propriate use of the operation would cause an exception. These excep-

tions are sometimes called domain failures [Goodenough 75].

Resource limitations can also lead to exceptions if the implementa-
tion does not have, or is unable to obtain, sufficient resources
(memory, 1/0 devices, etc.) to achieve the effects of an operation. For
example, arithmetic overflow can be thought of as occurring because the
adder and accumulator are not big enough to perform the operation.
Resource exceptions are particularly difficult to circumvent. Attempts
to guarantee sufficient resource availability at all times for all sub-
systems leads to unwanted dependencies between otherwise unrelated parts

of the system. Insufficient resources can effectively prevent the suc-

* While other terms, such as error, condition, or undesirable event

[Parnas 76], have been used to describe run time failures, we prefer
the more neutral term which reflects the, hopefully, infrequent oc-
currence of failures and the fact that failures can be anticipated and
may eventually lead to desirable results.

Ch. 1.2.2 Introduction to Exception Processing page 14

cessful completion of many operations.

The implementation of an abstraction will normally make use of
primitive and non-primitive operations provided by the base level
(hardware) and by other subsystems. The failure of an operation used by
a subsystem implementation may prevent the invoking subsystem from pro-
ducing its specified effects. While the failure of an invoked operation
does not necessarily imply that the invoking subsystem must fail, it is
often the case that there is no reasonable recovery action which would
enable the calling subsystem to produce its specified effects and
results. The propagation of failures from lower levels of the hierarchy
of subsystems/abstractions is a frequent cause of failures at higher
levels of the system. Of course, if the system is to be reliable, the

buck must stop somewhere.

Several authors [Zilles 74, Parnas 76, CLU 75] have distinguished
between exceptions caused by anticipated anomalies and exceptions
resulting from unforeseen developments. The latter form of exception is
sometimes termed a "failure of mechanism" and usually manifests itself
by causing the system to enter an inconsistent or "impossible™ state.
Programming mistakes (bugs), hardware failures, or corrupted data can
cause failures of mechanism. Like other exceptions, failures of mechan-

ism can be detected and, sometimes, corrected.

1.2.3 An Exception Episode

Regardless of its cause, an exception episode can be broken into

several phases. Exception processing begins with the detection of a

Ch. 1.2.3 Introduction to Exception Processing page 15

condition which orevents the successful completion of an operation invo-
cation. Once the operation failure has been discovered, its occurrence
must be reported to the rest of the system. Only after the exception
has been announced to the exception processing facility can the proper
response be initiated. The exception facility selects and initiates a
handler for the exception. The handler initiated by the exception pro-
cessing facility supplies the response to the exception. The exception
handler will attempt to recover from the operation failure. When
recovery actions have been completed, the exception episode must be ter-
minated. Depending on the outcome of the recovery actions of the
handler, different continuations of the suspended main line computation
will be in order. Exception detection, reporting, handling, and the
termination of the exception episode comprise the standard exception
processing scenario. Of course, further exceptions may be reported dur-
ing an exception episode. An exception during exception processing
causes a new exception episode to be initiated. When the second level
exception episode terminates, the first exception episode can be contin-

ued.

Three subsystems are involved in an exception episode. The subsys-
tem invoking the operation which detects and reports the exception is
known as the jinvoker. The invoker and the invoker's environment will
determine how the exception is to be processed. The subsystem which
detects and reports the exception is called the signaller. For primi-
tive operations, the signaller is the hardware or the kernel. The sub-
system which is called to deal with the exception is the handler of the
exception. In general the invoker and the signaller will be different

subsystems. The handler may or may not be part of the invoking

Ch. 1.2.3 Introduction to Exception Processing page 16

subsystem. The relationships between these three subsystems play impor-

tant roles in the processing of an exception.

1.2.4 Failure Detection

The timely detection of operation failures is extremely important.
"We know that the only way to avoid error is to detect it, that the only
way to detect it is to ... inquire." * Also, "the aim should be that
all components have a reliable mechanism for error detection, if not for
error recovery."” * The discovery of exceptions during execution implies
that the failure detection algorithms must be invoked at the appropriate
moments. Many failures are easily detected by c¢hecks embedded in the
subsystem program. Range and consistency checks on the parameters of a
subsystem invocation can be used to detect improper use of the subsys-
tem. The compatibility between a contemplated action and the current

state of the subsystem's data base can also be checked dynamically.

One of the most generally applicable mechanisms for detecting ex-
ceptions is the use of redundancy. Error detection can be based on
redundancy and consistency checks within the data structures maintained
by the subsystem. Internal check sums, "checkable" pointers, and range
checks are among the techniques which use redundant information to veri-
fy the correctness of stored data. Data structures designed to make use
of consistency controls which can detect and recover from "impossible"

states are called robust data structures [Lampson TU4]. Dynamic

* J. Robert Oppenhimer, quoted in Cities in Flizht by J. Blish.

* Randell 71, p. 107.

Ch. 1.2.4 Introduction to Exception Processing page 17

verification of data consistency can not only detect errors, but also

limit their propagation once they have occured.

Another failure detection technique is based on the independent ve-
rification of the results of the subsystem operation {Fabry 73, Horning
74]. Instead of integrating the checking code into the subsystem, the
operation results are checked by independent algorithms (a form of algo-
rithmic redundancy). These verification algorithms can recalculate the
results using different methods or by checking that the results meet
certain specifications (e.g. SQRT(x) ¥# SQRT(x) = x + epsilon). One
problem with relying solely on this approach is that many valuable con-
sistency checks are closely related to the function being performed.
They are often heuristic tests which are intimately associated with the
logical and physical structure of the data and algorithms used to imple-
ment the operation. OQutside of the execution environment of the subsys-
tem activation, information about the initial and intermediate states of
the subsystem and its data structures is not available to the error

detection algorithms.

Execution time parameter checking can be deferred under certain
circumstances. If a parameter to one subsystem is to be used by that
subsystem as a parameter to another subsystem, the parameter checking
can often be left to the second subsystem. Of course, the first subsys-
tem must be prepared to field the exception signalled by the second sub-
system if the parameter is rejected by the second subsystem. The trade
of f between redundant parameter checking and the added complexity in-
volved in recovering from the parameter exception signalled by the

second subsystem must be considered in the design of the exception

Ch. 1.2.4 Introduction to Exception Processing page 18

detection algorithms of the subsystem.

The importance of timely and effective failure detection mechanisms
stems from the fact that no response to the exception can be undertaken
before it is discovered. £Early detection prevents the propagation of
the failure to other parts of the system and pinpoints the cause of the
exception. The subsystem designer should take into account the means by
which satisfactory subsystem operation can be verified and unsatisfacto-

ry behavior detected.

1.2.5 Exception Reporting

Once it has been discovered that a subsystem operation cannot be
completed, the failure of the operation must be communicated to the ex-
ception processing facility. Note that if the problem can be corrected
by the subsystem which detects the anomaly, the subsystem operation has
not failed and there is no need to signal an exception. Sometimes an
impending failure can be circumvented lccally by forcing parameters to
acceptable values, by repairing "robust" data structures, or by applying
alternate algorithms to achieve the effects of the operation. If, on
the other hand, a locally uncorrectable error has been detected, the at-
tempted operation must be abandoned. Before relinquishing control to
the exception processing facility, the signaller should return its data

structures to a consistent state.

Ideally, a failed operation should have no (observable) effects
(Parnas 72]. Conceptually, one can imagine an infallible oracle which

is consulted before the operation is undertaken to find out whether the

Ch. 1.2.5 Introduction to Exception Processing page 19

operation would fail for any reason * . If the operation would not
fail, execution commences and completes successfully (of course). Oth-
erwise, the operation is not attempted and the faiiure is signalled to
the exception processing facility. It appears to the invoker of the

failed operation that the operation was not invoked.

In order to eliminate the side effects of failed operations, the
data structures maintained by the subsystem should be restored to their
state before the invocation of the subsystem. Restoring the state may
be difficult if the exception is detected after the subsystem's data
structures have been updated. Not only must local data structures be
restored, but changes made by sub-operations called before the exception
was detected must also be undone. For example, files opened by the
failed operation should be closed before the exception is signalled to

the exception processing facility.

In complex situations a recovery log can be maintained to record
the sequence of actions to be undone in order to reverse the effects of
subsystem execution. A checkpointing facility, such as the recursive
cache associated with the recovery block scheme [Horning 74], can be em-
ployed to restore the state of the subsystem following the detection of
an exception. If messages to the ocutside world have been sent or ac-
cepted (e.g. fire the rocket), some form of "compensation® [Bjork 72]

should be undertaken to nullify or mitigate their effect.

* This model for explaining the detection and reporting of exceptions is
due to Paul McJones who also implemented a micro coded APL interpreter
which conformed to the model [McJones 731].

Ch. 1.2.5 Introduction to Exception Processing page 20

Although it is less desirable than undoing all the effects of a
failed operation, it will be necessary, on occasion, to retreat from the
no effects policy. It is sometimes possible to define intermediate
states of an operation which may be retained after a failure is detect-
ed. If the failed subsystem has reached a state which could legitimate-
ly occur in response to operations of the subsystem, the subsystem can
be said to be in an interface consistent state. An interface consistent
state is one which could be observed, under normal circumstances, at the

subsystem interface.

If an operation is left partially completed, the invoker of the
operation should be provided with information which indicates how much
of the operation has been completed [Parnas 76]. This can be achieved
either by providing operations which return the necessary information or
by updating one of the operation parameters which serves as a progress
indicator. The Move Character Long (MVCL) instruction of the IBM 370
system [IBM 370] is an example of how partially executed operations can
be terminated and continued. A partially executed MVCL instruction can-
not be undone because of the destruction of the target string or re-
executed because of possible overwriting of the source string. However,
the parameters to the MVCL (length, and string pointers) are updated by
the operation to indicate how many characters have been copied. This
permits the invoker to continue the operation after it has been inter-

rupted by, say, a page fault.

After restoring the subsystem state following the detection of an
exception, the exception is signalled to the exception processing facil-

ity. The signal operation terminates the activation of the signaller

Ch. 1.2.5 Introduction to Exception Processing page 21

and transfers control to the exception processor. The exception proces-
sor must select and invoke a handler to respond to the signalled excep-
tion. The selection of a handler for the exception can be based on the
nature of the exception. To assist in the selection of a handler, the
signaller should supply an exception name to identify the exception be-

ing signalled.

1.2.6 Exception Handlins

Once the signaller has notified the exception processing facility,
its participation in the exception episode is over. The subsystem
operation selected by the exception processing facility to handle the
exception is invoked by the exception processor. The rules used to
choose the handler comprise the handler selection policy. Various poli-
cies will be discussed in Chapter Two. The handler may be part of the

invoking subsystem, or it may be in a different subsystem.

The handler may be able to recover from the exception by simulating
the effects of the failed operation using alternate algorithms designed
to circumvent the problems encountered by the signalling subsystem., For
example, the failure of an in-core sorting operation might be overcome
by resorting to a sort-merge which uses secondary storage. Returning
the largest representable number might be an acceptable simulation of an
arithmetic operation which has signalled overflow. The Newcastle group
{Horning 74, Anderson 76] is investigating this form of recovery in con-

nection with their Recovery Block approach to exception processing.

Ch. 1.2.6 Introduction to Exception Processing page 22

Instead of simulating the effects of the failed operation, the
handler may be able to correct the cause of the exception. There are
many applications for this kind of recovery. Fetching the missing page
into main memory will alleviate the cause of a page fault. The failure
of an attempted write to the beginning of a non-existent file can be
overcome by creating the file. Segment activation and initiation 1in
Multics [Bensoussan 72] correct the cause of segment faults in that sys-
tem. The copy-on-write rule in TENEX {Bobrow 72] is implemented by mak-
ing a private copy of a shared page in response to the exception gen-

erated by an attempted update to the shared page.

It may be that the handler is unable to recover from the exception
either by simulating the failed operation or by correcting the cause of
the failure. This may mean that the invoker will be unable to produce
the specified effects of the operation it was in the process of perform-
ing. If the handler determines that the invoker cannot complete its
mission, an exception at the level of the invoker has been detected.
The invoker's state must be restored and the exception signalled to the
invoker's invoker. From the point of view of the invoker's invoker, it
is the invoker which has failed. As the exception propagates from cal-
lee to caller, each level is given a chance to recover or to cleanup and
signal the exception to its caller. Eventually, some subsystem will ei-
ther be able to recover from the exception or, more likely, abandon the
current task and proceed to some other task. For example, the highest
level of a payroll program, when confronted with an exception caused by
inconsistent data for one employee, could print an error report and then

continue with the pay computation for the next employee.

Ch. 1.2.7 Introduction to Exception Processing page 23
1.2.7 Episode Termination

If the exception handler succeeds in recovering frqg the exception,
either by simulating the effects of the failed operation or by correct-
ing the cause of the failure, the invoker can be resumed. If the failed
operation was simulated by the handler, the invoker can be continued as
though nothing had happened. If the cause of the exception has been

corrected, then the invoker can re-execute the failed operation.

The resumption of the invoker terminates the exception processing
episode. The exception handler should return control to the exception
facility with an indication of whether the instruction which led to the
exception should be retried or should be considered completed. 1If the
instruction in the invoker which led to the exception has been simulated
by the handler, the handler may need to return the results of the opera-

tion to the invoker.

The handler may also report that it has not recovered from the ex-
ception. The handler may indicate that it was unable to recover but,
the exception processor should to try to find other handlers for the
same exception or for a different exception. 1In this case, the excep-
tion episode can continue with the activation of a new handler. The
handler may also report that the exception has led to the failure of the
invoker. In this case, the invoker will become the signaller of a new
exception and a new exception processing episode will be initiated after
the invoker has been terminated. Chapter Three discusses the mechanisms
for terminating exception episodes while Chapters Two and Four discuss a
variety of handler terminations and the exception handling policies they

support.

Ch. 1.2.8 Introduction to Exception Processing page 24

1.2.8 Anatomy Summary

The processing of an exception proceeds in several phases and in-
volves the subsystem which detects and reports the exception (the sig-
naller), the subsystem which called the signaller (the invoker), and the
subsystem which responds to the exception (the handler). Exception pro-
cessing begins with the detection of the failure by the signaller.
After restoring its state, the signaller reports the exception to the
exception facility which selects and calls a handler for the exception.
The choice of the handler is conditioned partially by the exception name
provided by the signaller. Depending upon the outcome of the handler's
recovery actions, the invoker can be continued or the exception can be
propagated to the invoker's invoker. The overall control of exception
processing is provided by the exception processor which selects handlers
and manages the transfer of control to the handlers as well as the ter-

mination of the exception episode.

Ch. 2 page 25

Chapter Two

Issues and Angwers

2.1 Introduction

This chapter discusses a wide variety of issues related to excep-
tion processing. We begin with several general issues relating to the
organization of the exception episode. These issues are concerned pri-
marily with the beginning of an exception episode. The reporting and
classification of exceptions, the relationships among the subsystems in-
volved in an exception episode, and the the issues surrounding activa-

tion and communication with the handler are all discussed.

Section 2.3 isolates the issues surrounding the association of
handlers with the programs on whose behalf they operate. Handler
specificaticons must meet a variety of requirements in order to reflect
and protect the interests of the programs to which they apply. Given a
facility for specifying handlers, there must be a rule for selecting a
particular handler specification from the set of applicable specifica-
tions. The handler choice rule which selects the handler to respond to
an exception is of c¢ritical importance. In an environment supporting
protected subsystems, the handler choice rule must not compromise the

integrity of the subsystems involved in the exception episode.

Finally, this chapter discusses the various ways in whieh the

handler should be able to control the continuation of the computation

which encountered the exception. Different ways of terminating an

Ch. 2.1 Issues and Answers page 26

exception episode are needed to reflect the outcome of the handler's ef-
forts to recover from the exception. Facilities for continuing or ter-
minating the computation, along with ways of passing the buck to other

handlers, allow the handler to indicate what should happen next.

2.2 Exception Episode Issues

This section discusses some of the differences and similarities
between language level and system level exception processing and the
separation of exception policy and mechanism. touched upon briefly.
The issues surrounding exception reporting and the disposition of the
signaller are examined along with the problems of exception processing
overhead and efficiency. The classification of exceptions and communi-

cation with the handler are examined at the end of this section.

2.2.1 Language vs System Level Exception Processing

Exception processing can be discussed either in terms of linguistic
constructs embedded in a programming language or in the context of the
extended interface provided by the operating system kernel. While most
of the issues raised when considering exception processing at the pro-
gramming language level also apply to the processing of exceptions at
the operating system level, the systematic treatment of exceptions at
the system level imposes additional constraints on the design of the ex-
ception processing mechanisms and policies. These constraints stem from
the fact that a general purpose operating system is charged with su-

pervising the harmonious execution of independently generated machine

Ch. 2.2.1 Issues and Answers page 27

language representations of programs written by different people and

translated by different compilers.

Protection is one important issue in system level exception han-
dling which cannot be accomplished totally at the language level.
Language level, compile time checking of the compatibility between pro-
gram components is a useful tool for discovering inconsistencies in the
program text. However, when programs which have been prepared by dif-
ferent language processors are to interact at run time, it is not always
possible to verify that the interfaces between them are understood in
the same way by all parties. This is especially the case in environ-
ments which support independent programming language systems and the
dynamic binding of subsystem invocations to subsystem instances. If ar-
bitrary machine level programs can be executed along with compiled high
level language programs, interface compatibility cannot usually be veri-

fied prior to execution.

With respect to exception processing, the compatibility between ex-
ception signals in one subsystem and handler specifications in the in-
voking subsystem can be checked at compile time or dealt with during ex-
ecution after a signal hés been raised. Some modern programming
language systems [CLU 75, Wulf 76] assume that the program modules to be
combined are written in the same language and that the compiler can
check the compatibility between different modules. Goodenough's propo-
sals for exception processing [Goodenough 75] also require that the com-
piler be able to check that there is always a handler for a signalled
exception. This sort of compile time checking is simjilar to checking

the type compatibility of procedure parameters during compilation.

Ch. 2.2.1 Issues and Answers page 28

One problem with language level control of the compatibility
between exception signals and handler specifications is that exception
processing facilities outside the scope of the language cannot be in-
cluded. Particularly, system supplied default handlers and handlers im-
posed by the system fall outside of the purview of the language proces-
sor, If programs prepared by uncertified translators are allowed, it
may be impossible to tell which exceptions are signalled by these pro-
grams. The lack of global knowledge about which exceptions are possible
makes it impossible to assure that signals and handlers are well

matched.

At execution time, a system level exception facility should be able
to find some way to continue. The ability of the system to do this in
every case is required if the system is to allow reliable programs to be
written. The show must go on because some subsystems may be in a state
which requires their resumption to release resources and restore their
data bases to a consistent state. Finding a reasonable continuation in
the face of unanticipated exceptions, without compromising the integrity
of the subsystems involved, is one of the problems which should be

solved by the system exception processing facility.

At the level of the language processor, on the other hand, good
design principles impose constraints on exception processing that would
be unacceptable at the system level, It is common for the run time en-
vironment to deal with exceptions for page faults, hardware errors, vir-
tual machine traps, resource exhaustion, and so on, and to shield the
user from the complications of processing the exceptions. The result is

typically a simplified set of exception processing facilities at the

Ch. 2.2.1 Issues and Answers page 29

language level which are designed for ease of correct use but which rule
out certain techniques required for dealing with the more bizarre types
of exceptions. While recognizing the importance of usable exception fa-
cilities at the language level, we focus instead on a more general fa-
cility which would form an appropriate base for implementing the simpler

language level exception mechanisms.

Separately compiled, mutually suspicious subsystems require an ex-
ception processing facility which enforces orderly gransfers of control
in response to exceptions discovered by one subsystem, but handled by a
different subsystem. The ability to combine mutually suspicious subsys-
tems written in different programming languages implies that the manage-
ment of subsystem interactions, including exception signals, must be im-
plemented and enforced by operating system facilities which are indepen-
dent of the language processors which help to prepare the executable

machine level programs.

2.2.2 Policvy/Mechanism Separation

In a hierarchically structured system, facilities implemented at
lower levels of the system are used by higher levels. Intervening lev-
els of the system may restrict or extend the ways in which the low level
facilities are used by the higher levels. The intervening level is said
to establish and enforce a policy restricting the manner in which the
low level mechanisms are exercised. Of course, programs which use the
policy controlled mechanism see the policy/mechanism combination as a
facility or mechanism which can be further regulated. In a multi-level

system, this organization can lead to a hierarchy of policies in which

Ch. 2.2.2 Issues and Answers page 30

one level's policy becomes the next level's mechanism. The multi-level
design of the rescurce allocator in IBM's 0S/VS2 [Lynch 74] is an exam-
ple of a policy hierarchy, as is the memory management organization sug-

gested by Dijkstra [Dijkstra T74].

The separation of the policy aspects of a facility from the use of
the basic facility permits high level, decision making programs to be
removed from the lower level. In the policy driven scheduling facility
described by Bernstein and Sharp [Bernstein 71], the choice of a
scheduling strategy for a given process is a policy decision made out-
side of the portion of the system responsible for short term processor
scheduling. The dispatcher bases 1its scheduling decisions on a
parameterized priority rule for each process. The policy level in that
system is able to set the parameters which will cause the lower level to
supply the appropriate class of service to each process. The thrashing
control poliey described by Shils [Shils 68] is another example of a

policy which regulates an underlying mechanism.

Another reason for separating policy from mechanism is so that dif-
ferent policies can be defined in order to cater to different patterns
of usage of the underlying facility or to tailor the facility to the
needs of the user. Multiple linker policies described by Janson [Janson
741 permit the dynamic linking facility to be controlled differently in
each domain of a Multics process. In HYDRA it is possible to define

different scheduling policies for different classes of processes [Levin

751.

The means by which a policy program is able to enforce its deci-

sions are usually related to the access control mechanisms of the

Ch. 2.2.2 Issues and Answers page 31

system. Privileges extended to the policy level permit it to exercise
the lower level in ways denied to the user of the policy/mechanism com-
bination. If some other subsystem could also exercise the policy prero-
gatives, it would be difficult to assure a consistent interface to the
controlled mechanism., In order to support multiple policies controlling
the same facility, the policy prerogatives must apply, not to the facil-
ity being controlled, but to instances of the objects supported by the
facility. In HYDRA, for example, a scheduling policy module must have

particular rights for the processes it schedules. {Levin 75].

The behavior of a policy controlled mechanism will depend on the
policy currently being enforced. In many cases, the user of a
policy/mechanism combination is not given any choice as to which policy
is imposed upon the use of the underlying mechanism. For example, the
system must often be able to select the policies which control the use
of its resources and facilities. However, the user of a policy con-
trolled mechanism may depend upon the behavior associated with a partie-
ular policy. If the choice of a policy is imposed on the user, the user
must at least be able to inquire as to which policy is being imposed.
If the imposed policy is not appropriate to the task at hand, the user's
program can, at least, refuse run under that poliecy. Note that the
mechanism by which the user learns the identity of the current policy
must be implemented outside of the policy module. It must not be possi-
ble to lie to the user about which policy is in force as is the case for

the JSYS trap mechanism in TENEX [Thomas 75].

Exception processing lends itself to a policy/mechanism decomposi-

tion. The mechanisms used to signal an exception, activate a handler,

Ch. 2.2.2 Issues and Answers page 32

and resume the main line can be separated from the policy which deter-
mines which handler is to respond to the exception. Signalling, ac-
tivating the handler, and returning to the main line are subsystem
transfer operations. The handler choice is a policy decision which can
be implemented by a policy module. The policy module in this case is a
distinguished subsystem -- the exception processor. The exception pro-
cessor can be activated by the signal operation and will enjoy certain
privileges with respect to the resumption of the main line and access to
other environments. Different exception processors can control the pro-
cessing of exceptions in different processes. Chapter Three discusses
the implementation of the mechanisms for signalling exceptions and
resuming the main computation. Chapter Four is concerned with the im-

plementation of a particular exception processing policy.

Not only can the exception processing facility be given a
policy/mechanism decomposition, but exception processing can also be ex-
ploited to help implement mechanism/policy separation for other system
and user facilities. 1In order to implement a policy/mechanism separa-
tion, the policy module must receive control at the appropriate moments
in order to enforce its control over the use of the mechanism. The ex-
ception processing facility can be exploited to transfer control to the
appropriate policy module in response to exceptions signalled by the
controlled mechanism. The exception processor and its handler selection
rule can be relied upon to activate the appropriate policy module at de=-
cision points signalled by the mechanism level. For example, the selec-
tion of the name binding algorithm to be invoked in response to sig-
nalled linkage faults can be enforced by the exception processor [Janson

T4].

Ch. 2.2.3 Issues and Ansvers page 33

2.2.3 Uniform Exception Reporting

In order to initiate exception processing following the detection
of an exception, the signaller must somehow inform the rest of the sys-
tem that it cannot complete the operation it was called upon to perform.
In some systems the signaller may, depending on its own classification
of the exception, initiate different sorts of exception processing. 1In
CAL (Lampson 69, CAL 69, Sturgis 73], the signaller would execute a
'failure-return' if it thought that the operation could possibly be sal-
vaged. If an error of usage was detected, the signaller performed a
'return-with-error.' In Multics, exceptions can be communicated by re-
turning status codes to the caller or by using the Multies condition
mechanism [MPM 75, Organick 72]. Similarly, in 0S/VS2 exceptions are
signalled either by returned status codes or by performing an ABEND

[ossvs2 75].

The problem with supporting multiple exception reporting modes is
that the signaller must decide which mode is appropriate for the excep-~
tion in hand. In general, the meaning of and response to the exception
are defined by programs residing in different environments. The sig-
naller is incompetent to make the decision as to which signalling mode
is appropriate because the response to the exception depends upon why
and for whom the failed operation was invoked. For example, the dis-
tinction between failures-of-mechanism or unanticipated failures, and
specified or anticipated exceptions is not always clear cut [Melliar-
Smith 77]. A uniform exception reporting facility permits the response
to any reported failure to be handled without requiring the signaller to

select one or another exception reporting protocol.

Ch. 2.2.3 Issues and Answers page 34

Uniform signalling or exception reporting should extend to hardware
as well as software detected exceptions. Hardware detected exceptions
should be processed in the same ways as software reported exceptions.
This is especially true in systems in which the hardware/scoftware boun-
dary migrates on different models of the equipment (e.g. PDP 11 systems
with or without floating point hardware and the IBM S/370 with or
without VM assist). Many systems treat some or all hardware detected
exceptions differently from software reported failures. The Multics
[Organick 72] and IBM [0S/VS2 75] systems treat some hardware level ex-
ceptions specially. Some exceptions are processed using the system ex-
ception protocols, while others are given special treatment. The Cam-
bridge system [CAP 76c] seems to provide a uniform exception reporting
mechanism. The ability to turn hardware exceptions into exception pro=-

cessor calls is also available in Burroughs systems [Organick 71].

Decisions as to how an éxception is to be processed should not be
made by the signaller. A uniform exception signalling mechanism decou-
ples exception reporting from exception processing. If all exceptions
are reported in the same way, the response to any exception can be con-

trolled by uniform mechanisms and policies.

2.2.% Disposition of the Signaller

Following the detection of an exception, the signaller must report
it to the system exception facility. What should happen to the subsys-
tem activation of the signaller? The system response to the failure of

an operation usually requires that the system backup to a consistent

state from which alternative computations can be initiated to circumvent

Ch. 2.2.4 Issues and Answers page 35

the reported exception. If the signaller has determined that it cannot
complete successfully, it should give up cleanly and raise the excep-
tion. A subsystem transfer primitive which raises an exception and ter-
minates the signaller activation permits exception processing to proceed

from a clean state.

The subsystem most directly affected by the failure of the signall-
er to perform as advertised is the signaller's caller. If the signaller
cannot complete normally, it is the signaller's caller who must respond
to the exception. Maintaining the activation of the signaller compli-
cates the environment in which the invoker's handler must operate. To
leave things in a clean state, the signaller should fold its tent neatly
and leave the field. If the signaller could circumvent its own failure,

then it should do so instead of reporting an exception.

If the signaller restores its state before reporting the exception,
the handler can pretend that the failure was detected before the failed
operation was initiated. This allows the handler to operate strictly on
behalf of the invoker of the failed operation. If the signaller activa-
tion is not terminated in a clean state, the handler cannot ignore the
signaller while it attempts to recover on behalf of the invoker. If the
handler must be responsible to both the invoker and the signaller, pro-
tection problems are introduced and the recovery task becomes more com-

plex.

Existing and proposed exception facilities dispose of the signaller
in different ways. The recovery block scheme [Horning TU4] is very care-
ful to restore and terminate the signaller cleanly. PL/I, on the other

hand, folds the signaller when the signaller is the system (e.g.

Ch. 2.2.4 Issues and Answers page 36

conversion, overflow, end-of-file), while maintaining the signaller and
its state for software reported exceptions. Lampson's and Goodenough's
proposals [Lampson T4b, Goodenough 75] opt for holding the signaller ac-
tivatgon with controls on whether the signaller can be continued or must

\
\
be folded later by a sort of multi-level exit from the handler.

One case in which the activation of the signaller might be
preserved occurs when the signaller wishes to notify or seek advice from
its caller. This application, discussed extensively by Goodenough
[{Goodenough 75], processes the exception on behalf of the signaller's
caller (the invoker) so that the caller's handler can respond to the
condition reported by the signaller. This use of the exception facility
to provide a communication channel between a subsystem and its caller is
orthogonal to the main purpose of the exception facility which is to
provide notification of, and initiate recovery from failures of a system

component to perform its specified task.

2.2.5 Exception Processing Overhead

An important consideration in the design of exception processing
strategies is the main line overhead involved in preparing for eventual
exceptions. One expects that many possible exceptions will seldom oc-
cur. The expected ratio of calls to exceptions is a good yardstick to
apply to the design of the exception profile of subsystem operations.
Simon's principle of complexity states that adjacent levels of a hierar-
chy should differ by an order of magnitude in the frequency of their ac-
tivation [Simon 68]. If an operation exception occurs frequently, rela-

tive to the number of operation invocations, it should perhaps be recast

Ch. 2.2.5 Issues and Answers page 37

as a result or a returned status of the operation.

Exception processing overhead can be distributed between program
preparation time (e.g. compilation and subsystem creation), run time
(normal main line executioni, and exception time. If exceptions are in-
frequent, any continuing run time overhead may be unacceptable. It is
possible to exchange extra processing at program preparation time and at
exception time for less run time overhead preparing for possible, but
improbable exceptions. In most cases, the main line should not have to
execute any extra instructions solely to test for, or prepare for excep-

tions which have not yet occurred [Lampson Tib].

Some exception processing strategies are ruled out by this cverhead
principle. The use of returned status codes in Multies {[Organick 72,
MPM 75] and IBM 0S/VS2 [0S/VS2 75] produces main line overhead whether
or not exceptions occur. The less expensive the operation, the greater
becomes the relative cost of the status code checking. Returned status
variables must be passed across all subsystem boundaries and must be
checked on every call. Systems which rely on status variables to signal
exceptions are filled with status variable manipulations and tests which
are executed whether or not an exception occurs. The situation is not
unlike the case for interrupts in the CPU; constant testing for some
change of status can be replaced by facilities to automatically transfer

control when the status changes.

Passing extra parameters to control exception processing [Parnas
72] also adds overhead in the normal case. To maintain uniform excep-
tion reporting, every operation would require the extra parameter(s).

Setup calls, such as the PL/I ON statements [Nobel 68] and the 0S/VS2

Ch. 2.2.5 Issues and Answers page 38

ESTAE and SPIE facilities [0S/VS2 75], add overhead by requiring the ex~-
ecution of run time code and calls to maintain and control the exception
processing environment. If setup calls must be executed by every sub-
system activation to control itc exception processing environment, con-
siderable overhead will be involved if subsystem calls are frequent.
The condition mechanism in Multics requires that the procedure entry
prologue update and thread "condition blocks" in the stack frame if the
procedure is to enjoy its own exception processing environmen: * [Organ-
ick 72]. The CAL system [Sturgis 73, CAL 69] did not suffer from main
line exception processing overhead. Lampson's and Goodenough's propo-
sals [Lampson 74b, Goodenough 75] avoid main line overhead by compiling

information to control the handler choice at run time.

2.2.6 Exception Naming

Once an exception has been reported, the exception processing fa-
cility must select a handler for the exception. Unless the exception is
classified in some way, it is impossible for the exception facility to
provide an exception specific response. The exception name identifies
the exception so that the exception facility can select an appropriate
handler. Several issues are raised when we consider how an exception

ought to be identified.

To begin with, it must be possible to add new exceptions to the
system. An expandable exception set permits the definition of new ex-

ceptions to <characterize the failure modes of newly implemented

* This may be a case in which the sins of the system programming

language have been visited on the operating system.

Ch. 2.2.6 Issues and Answers page 39

subsystems. Many systems severely limit the number of distinguishable
exceptions. 1In IBM's 0S/V32, the SPIE exception handling facility per-
mits only fifteen different exceptions to be recognized while the ESTAE
form of exception handling supplies a uniform response to all, or almost
all, ABENDs [0S/VS2 75]. The CAL system [CAL 69, Gray 72] grouped ex-
ceptions into thirty-two error classes to control the selection of an
exception handler. UNIX [Thompson 74] recognizes only twelve different
exceptions. The CAP system allocates and controls the use of 256 dif-
ferent error names [CAP 76a, CAP 76b, CAP 76c]. 1If new exception names
are not available, exceptions signalled by newly implemented subsystems

may interfere with existing exception handling protocols and procedures.

Besides, providing for an extendible set of exception names, it
must be possible to avoid ambiguities in the exception identification.
If the name which identifies an exception is freely assigned by the sig-
naller, conflicts will occur when two signallers choose the same name to
identify otherwise unrelated exceptions. The exception processing fa-
cility and exception handling procedures require an unambiguous indica-
tion of what happened in order to provide a precise response. PL/I
[PL/I 74] and Multies [Organick 72, MPM 75] do not distinguish between

identical condition names chosen independently by different procedures.

Finally, some controls on the use of the exception names is neces-
sary to prevent conflicts between independent subsystems. It should not
be possible for a subsystem to signal an exception which is associated
with the operations of another subsystem. If the signaller can fake an
exception, the handler may need to validate the occurrence of the excep-

tion before proceeding. Misleading a handler which has special

Ch. 2.2.6 Issues and Answers page 40

privileges may cause the handler to misuse its privileges.

To avoid ambiguities and to validate the source of the signal, ex-
ception names can be centrally allocated, as in CAP, or the identity of
the signaller (signaller-id) can be combined with an exception code sup-
plied by the signaller to form the exception name. Of course, the
signaller-id which disambiguates and validates the exception must be
unique and unforgeable. Using the signaller-id avoids the implementa-
tion of a global exception name allocation mechanism and also adds use-
ful structure to the exception name. The difference between centralized
exception naming, with controls on the use of different exception names,
and the use of the identity of the signaller to avoid ambiguity is
analogous to the difference between the seals and trademarks as dis-
cussed by Morris [Morris 73]. Sealing authenticates the contents of the
sealed object (the exception name), while trademarks authenticate the

source of the object (the signaller).

Either the centralized or the structured exception naming scheme
will provide adequate identification and validation while avoiding ambi-
guities. The centralized naming scheme permits a subsystem to signal
any exception for which it can obtain authorization. In a capability
based system, authorization to signal an exception can be validated thru
the use of capabilities. In such a system, authorization to signal an
exception might be passed from one subsystem to another. This generali-

ty makes it difficult to verify the source of an exception signal.

The structured naming scheme automatically associates an exception
with the subsystem which reports it. This means that it is not possible

to signal an arbitrary exception. Occasionally it is necessary to force

Ch. 2.2.6 Issues and Answers page 41

the occurrence of a particular exception in order to test new handler
procedures. If the desired exception is difficult to produce (e.g. I/0
transfer errors), it becomes difficult to test the handler. The handler
must be recoded (temporarily) to respond to a different exception used
only for testing the handler. When the handler is ready to be in-

stalled, it can be modified to catch the correct exception. it handles.

2.2.7 Exception Parameters

The eventual handler of an exception should be given some informa-
tion about the error. The exception name, as discussed in the preceding
section, classifies the exception and participates in the selection of a
handler. The exception name is certainly the starting point for infor-
mation to be passed to the exception handler. Identifying the exception
to the handler allows a single handler to respond accurately to several

different exceptions.

Besides supplying an exception code, the signaller will usually be
able to supply details about the particular exception being signalled.
For example, the signaller of an attempted reference to a nonexistent
file can pass along the name of the file. This extra information,
called the exception message, is useful to the handler of the exception.
Different signallers will be able to provide different amounts of infor-
mation about the exceptions they signal. Therefore, the exception mes-
sage should be a variable format parameter to the signal operation. At
the language level, the type of the exception message can be associated
with the exception name to which it corresponds. The signal operation,

like other subsystem transfer operations, must be able to take

Ch. 2.2.7 Issues and Answers page 42

parameters of arbitrary type. The exception message, along with the ex-
ception name should be passed, as parameters, to the eventual handler of
the exception. Note that the exception name is used by to the exception
facility to implement exception specific handler selection, while the

exception message is solely for the benefit of the exception handler.

In addition to information identifying and describing the excep-
tion, the handler may need to know the circumstances under which the ex-
ception occurred. In particular, the handler may need to know the iden-
tities of the signaller and the invoker. If the signaller-id is incor-
porated into the exception name, only the name of the invoker needs to
be added to the parameters passed tc the handler. The invoker-id tells
the handler on whose behalf it is operating. If subsystems could in-
quire about the contents of the subsystem call stack, the invoker-id
would not have to be passed to the handler. Other information about the
environment, such as episode termination restrictions (discussed later)
and authorization to access the invoker's state, could also be passed as
parameters to the handler. Access to the invoker's state would be
passed only if the handler was authorized, by the handler specification,

to access the invoker.

Most discussions of and proposals for exception processing facili-
ties do not provide for parameters to the exception handler. PL/I, Mul-
ties [Organick 72], CLU [CLU 75], and Goodenough's proposals [Goodenough
75] do not support parameters from the signaller to the handler.
Lampson's MPL proposal {[Lampson Ti4b] does provide for an exception mes-
sage of arbitrary length from the signaller to the handler. The lack of

an information passing facility from the signaller to the handler can

Ch. 2.2.7 Issues and Answers page 43

lead to unstructured zd hoe protocols for passing this information. For
example, in order to make information about the exception available to
the handler, PL/I provides built-in functions which return information
about the current condition [Nobel 68, PL/I T4]. The ONCODE built-in
function returns a condition code which further classifies the condition
represented by the condition name. Other special built-in functions,
such as ONFILE which returns the name of the file involved in an
input/output or conversion condition, provide information about particu-

lar conditions.

2.2.8 Handler Environment

Once a handler for a given exception has been selected, control is
passed to the entry point of the handler code. The choice of an en-
vironment in which to execute the handler code raises several issues.
In order to facilitate restarting the invoker after recovering from the
exception, the state of the invoker should be preserved. If the failed
operation is to be retried, the original parameters of the operation

should be preserved.

Some exception handlers need to exercise privileges not accorded to
the other subsystems involved in the exception episode. For example,
exception driven virtual memory systems need to access the page and seg-
ment tables in order to perform their functions. When an exception
handler extends a failed lower level, when it must report or log the ex-
ception, or when heavy handed recovery procedures must be initiated, the
handler may need to make use of privileges logically associated with the

handler and not available in the environment of either the signaller or

Ch. 2.2.8 Issues and Answers page 44

the invoker.

One privilege which may be needed in the handler environment is the
right to access the invoker's environment. For example, the Multics
linker must read and update the invoker's linkage section.” . Exception
triggered debugging facilities and supervisor services also need to ac-
cess the invoker's environment. Although it must be possible to confer
the privileges of the invoker on the handler, it is not always appropri-
ate to do so. If the handler does not need to make use of the invoker's
privileges, it should not be able to do so. Restricting the privileges
of the handler conforms to the principle of least privilege [Dennis 66,
Saltzer 75, Denning 76], which states that a program should not be able

to exercise privileges that it does not actually need.

While most systems provide some mechanism for giving some handlers
extra privileges, few systems protect the main line computation from the
actions of the handler. In most programming languages and operating
systems, the handler execution environment is the same as or includes
the environment in which the association is made between the handler and
the exception which it handles. It is not possible in these systems to
divorce the handler execution environment from the environment is which
it is specified (enabled) as the handler of a particular exception. In
CLU [CLU 75] and Goodenough [Goodenough 75], the handler's scope con-
tains the invoker's scope, while in PL/I the handler executes as an
inner block of the scope which enables it. User defined exit routines

in 0S/VS2 execute in the environment of the task which declares them

* Actually the linker runs in the same environment or ring as the fault-
ed procedure, but conceptually the linker is only interested in the

linkage section of the faulted procedure [Daley 68, Janson T4].

Ch. 2.2.8 Issues and Answers page 45

(0S/VS2 75]. Supervisor service traps and privileged instruction simu-
lations in CP/CMS [VM 74] run in environments containing the invoker's
environment. In CAL, the exception handler ran either in an independent
environment or in an environment enclosing the invoker's environment

[CAL 69]. In Multics, some handlers run in the hardcore (e.g. page
fault, segment fault), while others run in whichever ring is selected by

the procedure call executed to initiate the handler [MPM 75].

It should be possible to separate the definition of the handler ex-
ecution environment from the environment in which it is nominated
(specified) as a handler. The requirements for special handler
privileges and handler privilege restrictions suggest that the exception
handler should executé in its own environment. As privileges are nor-
mally associated with subsystems and made available in the execution en-
vironment of subsystem activations, the existing subsystem transfer
mechanisms can be used to control the privileges conferred upon excep-
tion handlers. By creating a new environment for the exception handler
through the use of an ordinary subsystem call, the invoker's state is
preserved and the privileges of the exception handler are controlled by
the subsystem transfer mechanisms. If subsystem activation environments
are system objects, access by the handler to the invoker's environment
can be conferred by authorizing handler access to the environment object

corresponding to the invoker's activation.

* The distinction was conditioned by the form of the signal: "f-return"
or "return-with-error". Actually, the only case in which the indepen-
dent environment or "f-return" form was used was one in which the

handler had access to the invoker anyway.

Ch. 2.3 Issues and Answers page U6

2.3 Handler Specifications

In order to control the response to an exception, there must be
some way to indicate which handler should be called under various cir-
cumstances. Handler selection is based on the handler specifications
which the user and the system make to control the response to an excep-
tion. A handler specification associates a handler entry point or gate
with a particular exception. By associating handler entry points with
particular exceptions, the response to different exceptions can be
specified independently. This permits independently developed subsys-
tems to be designated as handlers for different exceptions without risk
of interference between exception handlers. Programming generality con-
siderations [Dennis 68] suggest that it should be possible to process
unrelated exceptions with unrelated handlers. Several existing systems
send control to a single handler for all exceptions. Among the excep-
tion processing facilities which do not support exception specifie
handlers is the IBM SPIE facility [0S/VS2 75] and the fault procedure in

CAP [CAP 76b].

To specify the handler, a subsystem gate must be designated. The
handler gate may be from any subsystem. The form of the handler refer-
ence depends on the external reference mechanism is the system. The
handler reference does not need to be bound until after the exception
causes the handler to be selected. Dynamic binding of handler gate

references allows unused handlers to remain unbound until needed.

The exception name in the exception specification must be bound be-
fore the exception occurs. Handler selection must be able to determine

which specifications correspond to the current exception. If the

Ch. 2.3 Issues and Answers page 47

exception name includes the signaller-id, it would seem difficult to
postpone binding to the signaller. However, since the exception cannot
occur before the signaller is called, we can let the name portion of the
specification reference the linkage variable used by the call. This
means that the signaller-id will be bound by the call and before the ex-
ception specification is needed. When searching for a handler, specifi-
cations which reference unbound signallers can be skipped since an ex-

ception from that signaller cannot have occured.

Besides containing an exception name and handler gate reference,
the handler specification may be tied to one or more activation points.
The activation point of an operation is the place in a program where the
invocation of the operation is specified. The execution of an activa-
tion point jinvokes the associated operation. A single operation can be
invoked from several different activation points or a single activation
point can give rise to multiple invocations of the same operation. In
figure 2-1 , the operation 'bat' has two different activation points and
'bat' will be invoked several times from the second activation point.
Also, the multiplication operation has two activation points, but it

will be invoked twenty times whenever 'frog' is called.

Handler specifications can be statically or dynamically associated
with the activation points which may give rise to the indicated excep-
tions. Static handler specifications associate handlers for particular
exceptions with particular activation points which might cause the ex-
ception. Dynamic handler specifications associate handlers with partic-
ular exceptions regardless of the activation point involved. Static as-

sociation allows different handlers to be associated with different ac~

Ch. 2.3

Issues and Answers

procedure frcg;

begin
yar I : integer;
call bat(5);

for I := 1 to 10 do call bat(I¥I*I);
end frog;

figure 2-1: Invocations and Activation Points

page 48

Ch. 2.3 Issues and Answers page 49

tivation points while dynamic policies allow different handlers to be

used on different occasions at the same activation point.

2.3.1 Dynamic Handler Specifications

Dynamic handler specifications are communicated to the exception
facility by executing handler enabling operations. The ON statements in
PL/I [Nobel 68] are dynamic handler enabling operations. Dynamic asso-
ciation of handlers with exceptions means that the handler for an excep-
tion at a particular activation point will depend upon the enable opera-
tions executed on the path leading to the activation point. The excep-
tion processing environment reflects the most recently executed handler
declarations. Dynamic control over the current exception-to-handler as-
sociations facilitates precise control over the exception processing en-
vironment as a different handler can be supplied on different invoca-

tions from a single activation point.

Figure 2-2 introduces notation to represent the execution of dynam-
ic handler specification statements. The 'enable' operation associates
a handler with an exception. The 'enable' operation takes two parame-
ters. The first parameter is an exception name, represented here as a
string literal containing the signaller-id and the exception code. The
second parameter specifies a handler. The handler can be a procedure
identifier or a block of code. If a code block is specified, it is
treated as the body of a nameless, parameterless procedure. If excep-
tion parameters are referenced by the handler, the procedure identifier
form of the handler declaration must be used. The parameters to excep-

tion handlers are assumed to be in a standard format for all exceptions.

Ch. 2.3.1 Issues and Answers page 50

brocedure toad;
begin
Yar flag boolean;

{ local handler procedure declaration }
procedure hand1(invId, sigld, exCode, exMess);
begin
< body of local handler >

end hand1;

call enable("gnat:gone", hand1);
A: call gnat;

if (flag = Lrue)
then call enable("fly:missed",

begin
<handler body A>

end handler;);

else call enable("fly:missed",

begin
<handler body B>

end handler;);
B: ecall fly;

end toad;

figure 2-2: Dynamic Handler Specifications

Ch. 2.3.1 Issues and Answers page 51

The handler procedure can be either a local or non-local procedure.
This notation is presented only to facilitate the presentation of exam-

ples.

In the figure, the 'gone' failure of the call to 'gnat' will cause
the locally declared procedure 'hand1' to be entered. The 'missed'
failure of the invocation of 'fly' on line 'B' will cause either handler
body A or handler body B to be executed depending on the value of 'flag'
which selects one or the other of the 'enable' statements. Note that
different handlers may apply on different invocations from the single

activation point of 'fly'.

Maintaining dynamic handler specifications causes exception pro-
cessing overhead in the absence of signalled exceptions. The maipte-
nance of the association hetween handlers and the exceptions they ser-
vice generates main line exception processing overhead to set up for ex-
ceptions which have not, and may never, occur. If changes to the excep-
tion processing environment are frequent, the overhead may become signi-
ficant. The continuing main line overhead associated with dynamic
handler specifications legislates against their use if the exception

processing environment must be updated often.

Executable handler specifications lead to another problem: it is
not possible to simultaneously change the exception processing environ-
ment and transfer control from one subsystem to another. The simultane-
ous updating of the exception processing environment and transfer of
control to a different subsystém is important when we consider asynchro-
nous exceptions or interrupts. Also, if the exception processing facil-

ity is used to control the definition of the virtual machine interface,

Ch. 2.3.1 Issues and Answers page 52

the transfer of control from one subsystem to another should cause the
virtual machine interface to immediately reflect the new execution en-

vironment.

2.3.2 Static Handler Specifications

Static handler specifications always associate the same handler
with a given activation peint. Since the handler choice strategy in
force 1s always the same at any particular point in the program, the

representation of the handler specifications can be ceonstructed once and

for all when the program or subsystem is constructed. Because statie

[t}

handler specifications are zasscociated with secticns ¢f the program, th
exception processing environment can be defined as part of the progran
representation. The flow of control 2t run time does not need to be
analysed to determine which nandler specifications are in force at a
particular point in the program. When using statiec handler specifica-
tions, there is no continuing exception processing overhead Dbecause the
information representing the handler =zpecifications does not need to be
updated at execution time. Of course, the elimination ¢f main line ex-
ception processing overnead may result in increased exception time pro-
cessing to decode the static mapping from exception names and activation

points to handler gates.

Static handler specifications, by assoclating handlers with activa-
tion points, reflect the point of control at the mcment of the excep=-
tion. This means that the exception processing environment automzstical-~
ly reflects the passage of control from one subsystem to another or from

one statement to the next. As mentioned above, static specificaticns

Ch. 2.3.2 Issues and Answers page 53

allow the exception facility to be used to control scme aspects of the
virtual machine interface. Static handler specifications are necessary
When some subsystems are responsible for implementing the virtual
machine facilities used by other subsystems. The implementing subsystem
will execute in a different virtual machine environment from the one
which it supports. Exceptions caused by the implementing subsystem
must, in general, be handled differently at the lower level. For exam-
ple, a page fault in the program responsible for handling page faults is

usually an altogether different problem than a normal page fault.

The automatic and immediate updating of the exception processing
anvironment 2lso permits sxception processing facilities to be used to
deal with asynchroncus exceptions such 2s the conscle attention key.
When asynchroncus events are involved, there is no time to esxecute 'en-
able! statements on entry to, or on exit from, the rcutines which ser-
vice or are affected by such events. The special purpose return-from-
interrupt instruction found on many machines illustrates the importance
cf cohbining a transfer of control with a change in the exception pro-

cessing environment.

Static handler specifications can be represented at the programming
language level by appending the handler declarations to the syntactic
unit to which they apply. Notations for static handler specifications
have been suggested by Goodenough [Goodenough 75], Lampson [Lampson
74b], and Liskov [Liskov 76]. Figure 2-3 specifies the same exception
nandling strategy as figure 2-2. In this case, however, the handlers
are statically associated with the statements which might lead to the

indicated exception. The bracketed static handler specification con-

Ch. 2.3.2 Issues and Answers page 54U

procedure toad;
Degin
yar flag boolean;

{ local handler procedure declaration }
procedure handi(invId, sigld, exCode, exMess);
Regin
< body of local handler >

end handl;

1.
e

A: gcall grat ["gnat:gcne" : hand!l

B: call fly ["fly:missed"
Regzin
if (flag = truye)
<handler body A>
end;

else begin

<handler body B>

end;
end handler; 1;

end toad;

figure 2-3: 3Jtatic Handler Declarations

Ch. 2.3.2 Issues and Answers page 55

sists of the exception name, as before, followed by the handler body or
the name of the handler procedure. Again, the notaticn used here is not
intended to be taken as a proposal for the syntax tc bhe used to
represent exception processing operations at the pregramming language
level. Note that the effect of dynamic handler specifications for the
invocation of 'fly' is achieved by testing 'flag' in the body of the

handler.

2.3.3 Local, Refault, and Imposed Handlers

Given the idea of a static or dynamic handler specifications, we
can consider how the handler specifications might beccme associated with
a subsystem. The implementor (cr precgrammer) of a 3ubsystem should be
aliowed to supply handler specificztions to control the response to =x-
ceptions encountered at run time. Implementor supplied handler specifi-
cations are called lgocal specifications. Local handler specifications
are supplied by the implementor as part of the language level represen-
tation of the program. Using local handler specificaticns, the imple-
mentor can provide handlers for exceptions of interest. The bulk c¢f the
effort in exception handling research has been directed towards design-
ing mechanisms by which the implementer can control exception handling

at the level of the program representation.

Local handler specifications can be either static or dynamic. For
the reasons suggested above, static handler specifications are pre-
ferred. When handlers are statically specified, the specifications can
apply to a single activation point, or a single handler specification

may apply to several activation points. At the programming language

Ch. 2.3.3 Issues and Answers page 56

level, it is convenient to associate handlers with the major syntactic
units of the language. Thus, handlers might bde associated with opera-
tors, statements, blocks, procedures/functicns, classes/clusters, or

compilation units.

Nested handler specifications can lead to overlapping specifica-
tions which specify different handlers for the same activation point.
Only one handler at a time can be called to respond to the exception.
¥hen local handler specificaticns overlap the innermost handler specifi-
cation usually overrides the handler spécifications associated with en-
closing syntactic units. In figure 2-4 |, the failure of the invocation
of 'cat' at statement 'A' causes 'handlerl' tc e executed, while the
failure of the call at statement '2' causes 'handler2', the handler as-

scciated with the block, to be called.

Local handler specifications allow the imrlementor to specify and
supply handlers for exceptions of interest. However, it is too much to
expect the implementor to specify handlers for all the possible excep-
tions which might befall the executing subsystem. It should be possible
to supply local handler specifications for exceptions of interest while,
at the same time, relying on system supplied Jefault handlers to manage

the response tc other exceptions.

Default exception handlers can provide the response to exceptions
not caught by local handler specifications. Implementor supplied local
handler specifications, which override default handler specifications,
permit the implementor to chocse the handler whenever the default is
inappropriate. By relying on default handler specifications, the Imple~

mentor is relieved from the burden of specifying local handlers for

Ch., 2.3.3 Issues and Answers page 57

Regin

A: ¢all cat ["ecat:faill": handlertl;

B: cgall cat;

end ["cat:fail1": handler2];

figure 2-4: Nested Static Handlers

Ch. 2.3.3 Issues and Answers page 58

exceptions which are not expected and/or for which the default handler
actions are acceptable. However, the subsystem implementor should be
able to find out which default handlers are supplied by the system.
Without the ability to determine which default specifications are in
force at run time, the subsystem implementor cannct give a precise
description of what will happen when the subsystem is faced with an ex-

ception for which there is no local handler specification.

The system can supply default specifications in several ways. The
most direct way is for the system programs which prepare the user's sub-
system for execution (e.g. ccmpiler, linker, loader) to add static
handler specifications to the lccal specificaticns provided by the im-
plementor. The default specifications are like lccal specifications
which apply to 2ll the activaticon points in the subsystem. Since the
defaults apply to the ocutermost block of the subsystem, local handlers

will naturally override the default handler specifications.

It is not necessary to make the assumption that the subsystem im-
plementor always has the privilege of overriding the system supplied
handler specifications. If cne or more levels of supervisory interface
are imposed on a subsystea bHefore it is allowed tc execute in a user
process, the required supervisors may need to have the first chance to
supply the response to certain exceptions. For example, the virtual
memory manager normally needs to intercept all exceptions caused by page
and segment faults. The system command interface should be éctivated to
orchestrate the response to 'time limit' and the consocle 'kill' button
in order to terminate things in an orderly manner [Neecdham 71]. Overall

process and system control may depend c¢n the prcper, system level,

Ch. 2.3.3 Issues and Answers page 59

response to selected conditicns such as resource or accounting excep-

tions.

In order to reflect supervisory prerogatives and privileges, it
must be possible to impgse nandlers for selected exceptions on user sub-
systems. Imposed handlers cannot be overridden by implementor supplied
lccal handler specifications. The imposition of supervisory handler
specifications reflects the hierarchic relationship between a subsystem
and its supervisor(s). Imposed handlers can be thought of as enforecing
parts of the virtual machine interface supplied to the user subsystem.
The role of excepticn processing in the definition and maintenance cf
the virtual machine environment has traditionally been separated frem
the =2xception processing facilities zavailable to the user. Imposed su-
pervisory exception handlers can be integrated into the handler specifi-
cation and selection facilities of the system. As in the case of de-
fault handlers, the user should be able to find out what handlers are
imposed in order to understand the computation evoked by the exceptions

cauged by the user's subsysten.

2.4 Hapdler Choice Policies

Once the exception processor has been activated by an exception
signal, it must select and activate a handler for the reported excep-
tion. The criteria used by the exception processor to select a handler
define the handler cheoice policy. The handler choice policy extends the
subsystem interface by controlling the flow of control following a re-
ported exception. In the environment of a ccmputation composed of in-

teracting, independently developed, mutually 3uspiciocus subsystems, the

Ch. 2.4 Issues and Answers page 60

handler choice policy must reflect and protect the interests of “he sube

systems affected by the exception.

Selecting the proper handler for a gziven exception is somewhat
analogous to the choice involved in evaluating generic procedure calls
in PL/I [PL/I 74] or generic forms in EL1 [ECL 72, Wegbreit 74]. 1In
these languages the choice of the procedure body to be executed can be
conditioned by the number and attributes of the actual parameters. In
our case, the exception processor has the exception name and must choose
an exception handler. Besides taking into account the excepticn name,
the handler choice policy should also be sensitive to the requirements

of the subsystem which caused the =xception (the invoker).

In this section several handler choice policies are discussed. The
chortecemings of object oriented, global, and inherited handler policies
are exposed and then a policy which reflects and protects the interests
of the invoker of the failed operaticn is presented. The invoker con-
trolled handler choice policy overcomes the problems associated with the
other handler choice policies without restricting the exception process-
ing protocols available to the user. Invoker ccntrolled handler selec-
tion localizes the response to an exception by considering only handler

specifications associated with the the invoker of the failed operation.

2.4.1 Qbject QOriepted Handler Choice Policies

Instead of associating exception handlers with the activation
points of cperations which might lead to the indicated exception, the

exception handler can be associated with the operand of the operaticn.

Ch. 2.4.1 Issues and Answers page 61

By associating the exception handler with the gbject being operated
upon, the response to a failure zan be controlled on thé csasis of which
object is involved. The handler invoked following the failure of an
operation reflects, not the static or dynamic :ssociation of handlers
with the activation point, but the identity of the object on which the

operation was attempted.

An example of an object oriented handler choice policy is the poli-
cy of the AED Free Storage Package [Ross 67]. The AED system associates
handlers with "zones™ of storage. Whenever an attempt to allccate space
from a zone fails, the handler associated with that zone is activated.
PL/I also provides object oriented handler asscciaticon for some of the

excepticns which it recognizes [2L/I 74], All input/output conditicns
can be enabled for particular files. When the condition occurs, the
cn-unit asscciated with the file will be entered. Object oriented ex-
ception processing has also been proposed recently by Levin [Levin 77].

Levin suggests that program units be allowed to associate handlers with

any object instance which they can reference.

Associating exception handlers with individual cbjects permits ex-
ception processing actions to be associated with the particular objects
to which they are intended to apply. Because the handler is associated
with the object, any such object passed as a parameter to a subsystem
will carry its handler associations with it. A subsystem which operates
on parameter objects will inherit the handler associations of the ob-
Jject. The behavior associated with operations on the object is affected
by the handlers which run in response to reported exceptions. This

means that the subsystem which operates on an object received as a

Ch. 2.4.1 Issues and Answers page 62

parameter cannot be sure of the effect of the operation unless it con=-
trols the handler associations of the object. A similar oroblem occurs

with the inherited nandler policy discussed in section 2.4.3.

Not all exceptions can be attributed to a particular object. Er-
rors of usage, for example, cannot always be associated with a particu-
lar object. Exceptions caused by failures-of-mechanism or by attempts
to operate on nonexistent objects cannot be dealt with under an object
oriented handler choice policy. The association of handlers with ob-
jeets implies that the exception processor must have some way to deduce
the current handler given the object involved. If the handler choice
information is embedded in the object representation, the exception pro-
cessor must be able to access that information. User defined, extanded
objects must 2lso carry handler choice information if object oriented
handler selection is to apply uniformly to all objects. This requires
either a standardized object representation, as in HYDRA, or the addi-
tion of operations for declaring and determining the handler associa~

tions for each object type.

An alternative to embedding the handler choice information in the
object representation is to maintain process local associations between
objects and handlers. The PL/I approach to input/output exceptions im=-
plements an inherited, object oriented handler choice policy on a per=-
process basis. In PL/I, a file may enjoy different handler associations
in different processes and is subject to inherited handler asscciations
in each process. Cbject oriented handler selection can pbe simulated by
other selection policies Dy using handler specifications assocciated with

the activation points which might cause exceptions associated with the

Ch. 2.4.1 Issues and Answers page 63

objects of interest. The selected handler can locate and call the ap-
propriate cobject associated handler using iccal tables or information
contained in the object. Because object oriented handler chcice poli-
cies associate handlers with objects, they cannot be applied uniformly
to all exceptions. Moreover, they can be locally implemented as an ex-
tension to handler choice policies which use handler specifications as-

sociated with the appropriate activation points.

2.4.2 Glcbal Hapdler Choice Policies

The simplest handler choice policy chooses the handler froem a pro-
cess or system wide set of handler specifications. The handler specifi-
cations define 2 zlobal exception-to-nandler mapping. The current state
of the exception-to-handler map controls the choice of a handler for any

signalled exception.

Handler specifications under a global handler choice policy apply
to all the activaticn points which could cause the indicated exception.
By maintaining a representation of the exception-to-handler map, the ex-
ception processor can determine which handler to activate in response to
an exception signal. The handler choice map can be maintained either on
a per-process basis or a single system wide map can control the handler
choice. Also, the exception-to-handler map can be static and unchanging
or the exception facility can support enable operations which dynamical-

ly update the handler specifications controlling the handler choice.

A static global handler choice policy provides uniform exception

processing respenses for all subsystems in a process. The response

Ch. 2.4.2 Issues and Answers page 64

depends only on which exception has been signalled. In general, a stat-
ic zlobal mapping is too inflexible. A static mapping does not permit
the response to a2 given excepticn to reflect the current state of the
cemputation, Different subsystems may require different responses to

the same exception.

Instead of a static exception-to-handler map, the exception facili-
ty could allow the map to be updated. This would permit the handler
choice policy to reflect the current exception processing strategy of
the process. Such a dynamic handler specification facility requires the
execution, at run time, of enable operations to maintain the state of
the global map. The UNIX system [Ritchie 74, Thompson 74] supports a
dynamic glcbal handler cheice policy. In that system, a per-process
table contrels the handling of twelve different exceptions, each of
which can be ignored, defaulted, or handled individually by the process.
The initial state of the global map of a process is inherited from the
creating process. The equivalent of a subsystem call in UNIX resets the
handler choice map to the default handlers. There is no equivalent of a
subsystem return in UNIX. The JSYS traps in TENEX [Thomas 75] provide a
per-process global trap vector which contrecls the handling of operating

system calls. The meaning of the variocus system calls is controlled by

the state of the JSYS trap vector.

Under a dynamic global handler choice policy, each subsystem can
enable handler specifications to reflect its own exception handling
needs. Unless a subsystem executes its own =nable operaticns, the sub-
system will inherit the exception handling strategy of its caller. Ey

updating the global map, a subsystem can enable handlers for the excep-

Ch. 2.4.2 Issues and Answers page 65

tions which it wishes to process specially, while existing handler
specifications provide default processing for other exceptions. If the
rignt to enable handler specifications for particular excepticns 2an bde
controlled, handlers can be imposed on subsystems lacking the necessary
privilege. This facilitates high level control over the set of subsys-
tems executing in a process since handlers for exceptions such as con-

sole interrupts and resource problems can be imposed on all but the most

privileged subsystems.

Figure 2-5 illustrates the effects of handler specifications in

different procedures/subsystems under a dynamic global policy. The
failure of the 'dog! éall at 'A' causez 'handl' to be selected. At
statement 'C', the handler is inherited from the caller of 'cat', If
‘cat' is called from 'ant', ‘'hand!' will be chosen <tc handle a

"dog:bite™. Finally, the response to the failure of the 'dog' call at

'B' in 'ant' is controlled by the handler specification in ‘cat’'.

Under a dynamic global handler choice policy, not only are the
handler specifications in force for a subsystem inherited by the subsys-
tems it calls, but also, handler =specifications enabled by a subsystem
remain in force when the subsystem returns to its caller. This is a
serious problem since the exception processing environment of a subsys-
tem may be modified as the side effect of a call to any other subsystem.
This makes it difficult for the subsystem implementor to control what
will happen in response to exceptions encountered at run time. The up-
datable global exception-to-handler map is a global variable and, as
such, it increases the'complexity of the computation by producing new

dependencies between otherwise unrelated programs in different subsys-

Ch. 2.4.2 Issues and Answers page 66

progedyre ant;
begin

call enable("dog:bite™, hand1);

A: gall dog; {"dog:bite" enters 'hand1'}
call cat;
B: gall dog: {"dog:bite" enters 'hand2'}

{because of =nable in 'cat'}
end ant;

2recedure cat;
begin

C: g3ll dog; {"dog:bite" enters 'handl' if}

{'cat' called from 'ant' }

¢3all enable("dog:bite", hand2);

D: call dog; {"dog:bite™" enters 'hand2'}

end cat;

figure 2-5: Global Dynamic Handlers

Ch. 2.4.2 Issues and Answers page 67

tems [Wulf 731].

2'1.‘.3 Tnngn'ﬁ‘;pd :jang ar S\H.Qﬁgo DQ igigs

The global handler choice policy leads to side effects in the ex-
ception processing environment which make it difficult to maintain con-
trol over the response to signalled exceptions. The side effects of a
subsystem call on the excepticn processing environment can be eliminated
by (logically) undoing the handler specifications of a subsystem when
the subsystem activation is terminated. \Under an jipherited handler
choice policy, the effects of handler specifications supplied by a
called subsystem are reversed wWhen the subsystem activation is terminat-
ed. Zxceptions for which there iz no local nandler specification will
be processed according to the most recent applicable handler specifica-

tion which was supplied by some active subsysten.

Instead of maintaining a single set of handler specifiications, the
exception facility implementing an inherited handler policy can associ-
ate handler specifications with each subsystem or with each subsystem
activation. To select a handler for a given excepticn, the specifica-
tions of the invecker are checked first. If the invcker has not sreci-
fied a handler for the exception, the handler search traces back thru
the dynamic sequence of subsystem activations. The handler specifica-
tions associated with each subsystem activation are checked until a

handler for the exception is found.

The inherited handler policy is exemplified by the condition facil-

ity in PL/I [Nobel 68], the signal mechanism in MPL {Lampson 74b], and

Ch. 2.4.3 Issues and Answers page 68

the BLISS [BLISS] enable statement. In PL/I, ON statements are executed
to enable handlers for specific excepticns. Cnce 2nabled, 3 handler
specification remains in force until either 1) the 2nabling subsystem is
terminated, or 2) the handler specification is temporarily overridden by
enabling operations in the same or another subsystem, or 3) the handler
specification is explicitly removed (reverted) by the enabling subsys-

tem.

Figure 2-6 , containing the same precgram as figure 2-5, illustrates

the effects of an inherited handler choice poliecy. At 'A' and 'B',
/

'hand1' will be chosen, while 'hand2' is selected at 'D'. The handler

choice at 'C' depends on the caller of 'cat'. If 'cat' is called from

'ant', 'hand?' will be chosen.

The inherited nandler policy allows any subsystem to override the
nandler specifications inherited from its caller. However, a subsystem
can be sure of how a particular exception is handled only if it enables
its own handler specification. Exceptions not covered by the invoker's
handler specifications may be handled differently cn different calls %o
the invoker due to different handler specifications in force at the mo-
ment of the exception. This makes it difficult to specify the effects
of a call to the invoker without discussing the dynamic state at the mo-

ment of the call.

In a procedure or operation based system, each procedure activation
executes on behalf of and in response to the needs of the caller. Every
procedure activation returns control to the most recently activated, but
not yet terminated, procedure activation. Cne major difficulty with the

inherited handler policy in a procedure based system is that the handler

Ch. 2.4.3 Issues and Answers

procedyre ant;
begin

¢all enable("dog:bite™, hand1);

A: call dog; {"dog:bite™ enters 'hand1'}
gall cat;
B: ¢all dog; {"dog:bite™ enters 'hand1'}
end ant;
procedure cat;

Regin

C: call dog; {"dog:bite" enters 'hand1' if}
{tcat' called from 'ant' }

call enable("dog:bite”, hand2);

D: call dog; {"dog:bite" enters 'hand2'}

2nd cat;

figure 2-6: Inherited Hapdlers

page 69

Ch. 2.4.3 Issues and Answers page 70

is designated by, and presumably operates on behalf of, the subsystem
which supplies the selected handler specification. ‘When the selected
handler specification does nct come frem the inveoking subsystem, we find
that the activated handler must serve two masters: the invoker which
caused the exception, and the subsystem which supplied the handler

specification.

We believe that a carefully written subsystem could probably pro-
tect itself against interference from inherited exception handlers.
However, the suspicious subsystem implementor cannot depend on the
goodwill of exception handlers inherited from the caller. The inherited
nandler may adversly affect the invoker by returning incorrect results,
by directly manipulating the invoker's state, or by not returning at
3ll. Consider, for example, the "linkage fault" exception in Multics.
Permitting a handler supplied by a hostile subsystem to direct the name
search and to "patch" the link in the linkage segment of the invoker
would violate the security of the invoking subsystem. An improperly
"patched™ link c¢an cause trouble when the invoker passes sensitive
parameters to the masquerading procedure referenced by the improper

link.

Under an inherited handler policy it is difficult to establish con-
trol over the special privileges which might be granted to the handler.
In particular, access to the state of the invoker and control over per-
mitted handler terminations (see section 2.5) should be specifically au-
thorized by the invoker. The natural place for the termirnation and ac-

cess authorizations is the nandler specification. ‘when the invoker sup=-

plies the handler specification, the degree of trust between invoker and

Ch. 2.4.3 Issues and Answers page 71

handler can be reflected in the authorizations with the handler specifi-
cation. ‘When handler specifications are inherited, they cannot bSe used
Lo control the handler privileges which affect the security of the in=-
veker'. On the other hand, inherited handler specificaticns can be used

to control the selection of unwind targets (see secticn 2.5.5).

The inherited handler policy introduces a channel for interaction
and interference among subsystems. Passing exceptions not covered by
the invoker's handler specifications to the invcker's caller violates
the principles of programming generality [Dennis 58]. The invoker's
caller should not need to be aware of exceptions signalled by subsystems
called by the invoker. The computatiocn evcked by a subsystem call may
depend on which handlers are called in responsze tc excepticns czused by
the subsystem. If handler specifications are inherited from the caller,
the effects of a subsystem call cannot, in general, be specified without
considering the handler specifications of outstanding subsystem activa-

tions at the moment of the call.

2.4.% Ipvoker Controlied Handler Choice Policies

The global and the inherited handler policies seem to produce
unwanted dependencies between independently developed subsystems. Can
the individual excepticn processing needs of different subsystems be met
without violating programming generality principles and creating dynamic
program dependencies? The context most immediately affacted by an ex-
ception is the subsystem activation which called for the execution cof
the failed operation. The environment containing the most information

about the circumstances which led to the call of the failed operation is

Ch. 2.4.4 Issues and Answers page 72

the invoking subsystem. Because of the intimate relationship between
the failed call and the program containing the call, the invoker is an

appropriate socurce for the information to control the response to a sig-

nalled exception. Handler choice policies which depend only upon
handler specifications associated with the invoker are called jipvoker
policies.

Under an invoker policy, the response to a signalled exception is
under the complete control of the handler specifications associated with
the invoker of the failed operation. As in the case of the inherited
handler policy, the subsystem implementor can specify local handlers for
exceptions of interest. Local handler specificaticns can be either
static or dynamiec. Larguage level constructs similar to those proposed
by Gocdencugh {[Gocdenough 75] or the "except" facility in CLU [CLU 75]

can be used to express local handler specifications.

However, as suggested in section 2.3.3, it is burdensome to require
the implementor to supply handler specifications for every exception
which might be signalled tc the subsystem. The inherited handler policy
relies on the dynamic execution environment to supply handler specifica-
tions whenever the invoking subsystem has not specified a handler. The
ability of the inherited poliey to provide default handler specifica-
tions from the dynamic environment is both a strength and a weakness of

that policy.

£1

Instead of relying on handler specifications inherited at run time
from the calling subsystem, default handlers can be specified cnce and
for all during program preparation. Default handlers can be supplied by

the system facilities which participate in the subsystem definiticn

Ch. 2.4.4 Issues and Answers page 73

process which prepares the subsystem for execution. Before a program
2an be executed, one or more levels of superviscry interface are usually
imposed on the program. Supervisory interfaces define and enforce the

virtual machine environment in which the program executes.

The preparation of a program for execution involves a sequence of
transformations of the program representation and the binding of program
variables and references to system objects and resources. These
transformations and bindings are performed by various system facilities.
The process begins with the translation of the language level represen-
tation of the program toc a machine level representation. Link editing
operations bind free variables of the program. Finally, the instantia=-
ticn of the subsystem in a process requires the assistance of kernel
level facilities which perform allocation and bind the program and its

data structures to virtual memory locaticns [Daley 68, Jones 73, Sturgis

73].

Subsystem preparation involves a sequence of steps during which the
current program'representation is submitted to various system supplied
operations which modify and transform the representation. Each opera-
tion which works con the program/subsystem representation can be thought
of as a supervisor because each has access to the current representation
of the (not yet executable) program/subsystem. Each supervisor which is
given access to the program representation can impose run time inter-
faces by suitably modifying the representation. For example, the com-

piler can generate calls to its run time component and the link editor

can insert overlay management ccde.

Ch. 2.4.4 Issues and Answers page T4

The order in which supervisors operate on a program can be used to
define a nierarchy ameong the supervisors. 'When several levels of super=-
visory interface are required, the less privileged levels are usually
applied to the program before the more privileged supervisors are called
to do their part of program preparation. Thus, the language translator
is wusually the first system operation to manipulate the program
representation. Then link editors are called to combine independently
translated subsystem fragments. Eventually the user virtual machine su-
pervisor must be asked to accept the subsystem text and to make it into
an executable (callable) subsystem. If several virtual machine levels
are needed to define the user virtual machine, there is a lowest level,
kernel interface, which must be invoked regardless of which virtual
machine 1is poreparing the subsystem. Because oprogram preparation
proceeds from high level superviscrs (language processors, link editors)
to more privileged virtual machine supervisors, the temporal sequence in
which supervisors operate on the program/subsystem reflects the hierar-
chy of virtual machine interfaces in the system [Sturgis 73, Lampson 71,

Lauer 74].

If handler specifications can be statically represented as part of
the subsystem text, the sequence of system supervisors which help
prepare the subsystem can add handler specifications to the subsystem
representation when they are called to work on the not yet executable
subsystem. Instead of relying on the dynamic environment to supply de-
fault handler specifications, the system facilities which prepare the
nrogram for execution can introduce static handler specifications into
the representation. The supervisor supplied default handlers can pro-

vide standard responses to exceptions not caught by implementor supplied

Ch. 2.4.4 Issues and Answers page 75

local handler specifications. For example, link edit for testing can
supply the debugger as a default handler; while 2 production link edit
would supply a default nandler which initiates recovery and restarts the

system after dumping relevant debugging information.

The time sequence in wnich the supervisors operate on the program
representation can be exploited to extend the nesting of local handler
specifications and to define a priority for default handler specifica-
tions. Just as inner block local handlers override the handlers associ-
ated with enclosing blocks, early (less privileged) supervisor defaults
can override the default handler specifications supplied by superviscrs
which participate in subsequent stages of progrzm preparaticn. A de-
fault handler specification applies only if there is no earlier handler
specification for the same excepticn. Unlike local handler specifica=-
tions which may apply to a subset of the activation points of the pro-
gram, default specifications apply to 2ll the activation points which

might give rise to the indicated exception.

By supplying default handler specifications during the program
preparation process, the default exception handler environment of the
subsystem will not depend ¢on the dynamic environment at the moment of
the exception. Supervisor supplied default handlers, like inherited
handlers, will be executed only if there are no overriding local
handlers. Unlike inherited handlers, supervisor defaults do not lead to
dynamic dependencies between separately developed subsystems because
they are defined once and for all during subsystem definition and crea-

tion.

Ch. 2.4.4 Issues and Answers page 76

Supervisory subsystems shculd also be able to impose handlers on
the subsystems under their ccntrol. By imposing handlers cn programs as
they are transformed at each stage of program preparation, supervisory
prercgatives can be stated and enforced. The imposition of exception
handlers reflects the hierarchic relationship between a subsystem and

its supervisor(s).

The priority of supervisor imposed handler specifications, like de-
fault specifications, can be controlled by the order in which superviso-
ry subsystems are called during program preparation. As mentioned ear-
lier, whenever several levels of supervisicn are required, the order in
which the supervisors participate in the preparation of a executable
subsystem usually reflects the hierarchic relationships among the super=-
visers. Like default specifications, imposed handler specifications ap-
ply to all the activation points in the subsystem. However, the ﬁfiori-
ty of imposed handlers should be the reverse of the priority for default

handlers. Imposed handler specifications override all preceding handler

specifications.

A crucial point here is that once a supervisor adds its imposed
handler specifications to the subsystem representation, it must not be
possible for less privileged supervisors or the user to remove or over-
ride those specifications. One way to enforce this requirement is to
have each supervisor call the next (more privileged) supervisor after
adding its default and imposed handlers but before returning to its
caller. The most privileged (kernel) supervisor, after installing its
own handler aspecifications, can freeze the subsystem representation.

The frozen subsystem representation cannct be modified without recreat-

Ch. 2.4.4 Issues and Answers page 77

ing it from scratch. The representation of an object can be frozen by
changing (copying) it to a different type of cbiect which is inaccessi-
ble to 3ll, or by providing for a new state of the storage cbjsct con-
taining the representation. For example, the HYDRA system [HYDRA 74]
allows most objects to be frozen, making it impossible to modify their

3tate.

If a supervisor does not return until it has called the next super-
visor, and if the kernel supervisor freezes the representation, the user
and other supervisors will be unable to update the representation con-
taining the imposed handler specifications. In practice, the first few
stages of subsystem preparation (compile and link) may be unprotected
put, once the user virtual machine supervisor is called, it will com-
nlete the subsystem preparation by calling the next supervisor before it
returns to the user. Once a supervisor calls its supervisor, the
representation will be frozen by the kernel before the supervisor re-

gains control.

In summary, the invoker controlled handler choice policy, because
it depends only upon handler specifications associated with the invoker,
does not lead to run time dependencies between independent subsystems.
Because the handler specifications are statically associated with the
activation points which might cause the exception, the response at run
time to any exception can be determined without considering the dynamic
activation environment. The implementor, if (s)he cares to, can examine
the subsystem representation and the published specifications ¢f the su-
pervisors to exactly determine the exceptiocn processing environment of

the subsystem.

Ch. 2.4.4 Issues and Answers page 78

Three sets of handler specifications control the choice of an ex-
ception handler at run time. The handler choice rule searches first for
an imposed handler, then for a lccal handler, and finally for a default
handler. Conflicting handler specifications are resolved by priority
rules within each set of handler specifications and between the three
sets of specifications. The last imposed handler, corresponding to the
more privileged supervisor, overrides earlier imposed handlers. The
lexical nesting of statically specified local handlers gives priority to
the innermost local handler specification. If no imposed or local

handler applies, the earliest default handler specification is chosen.

Invoker policies statically associate handlér specifications with
activation points in the program of 3 subsystem. Static handler specif-
ications do not consume main line overhead and by always providing the
same handler for a given zactivation point and excepticn, they z2void un-
certainty about the exception processing environment under which the
program will execute. Extending the nesting of local handlers to the
supervisory programs which prepare and oversee the execution of the sub-
system facilitates supervisory control over exception processing and al-
lows supervisory programs to impose handlers and to supply handlers for
exceptions which are not caught by local handler specificaticns. The
exception processor developed in Chapter Four implements an invoker con-

trolled handler choice policy.

2.5 Hapndler Terminations

Once an exception handler has been called and has ccmpleted execu-

tion, control must be returned to the interrupted main line computation.

Ch. 2.5 Issues and Answers page 79

Existing and preoposed exception facilities do not provide very much
flexibility in the terminaticn of exception episodes. A variety of
handler termination mcdes i3 needed %to reflect the varicus outccmes of
the handler's attempts to recover from the exception. The nandler may
indicate that the exception episcde is over or it may indicate that ex=-
ception processing should continue. Because the possible handler termi-
nations may affect the invcker in different ways, the handler specifica-
tions must be extended to control which termination modes will be al-
lowed for each handler. The terminations permitted a handler reflect
the expected outcomes of handler execution and the degree of trust

between the handler and the invoker.

In this section, a number of handler termination modes 2re dis-
cussed. Scme of the handler terminations lead to the terminaticn of the
exception episode while others cause the episcde to continue. The
handler terminations which end the current exception episode include: 1)
continue the invoker following the failed operation, 2) restart the in-
vcker 20 as to retry the failed operaticn, 3) exit to a non-standard
continuation of the invoker, 4) abort the invoker and signal a new ex-
ception to the invoker's invoker, and 5) upwind the computation to an
earlier subsystem activation. The handler terminations which do not
terminate the exception episode are: 6) reclassify the exception, and 7)

reject responsibility for the current exception.

2.5.1 Centipue Terminatiop

The handler can sometimes reccver from zn exception by simulating

the effects of the failed operation. Whenever the handler is able to

Ch. 2.5.1 Issues and Answers page 80

produce the results and side effects which were expected from the failed
operation, the execution of the handler can replace the call of the
failed operation. The reccvery block architecture [Herning 74] is hased
on the idea that an alternate computation may be able to produce correct
or acceptable results after the primary computation has failed. For ex-
ample, a handler for arithmetic underflow exceptions can return zero as

the result of a failed floating point operation.

If the handler has simulated the failed operation, the exception
facility can g¢eptinue the execution of the invoker by returning from the
exception processor to the invoker. Not only can the invoker be contin-
uved by an ordinary subsystem return from the exception processor, but
also, results supplied by the handler can be returned to the invoker.
The results generated by the handler are returned toc the invoker in the
place of the results which should have been returned by the failed
operation. When results are returned from the handler to the invpker
using continue termination, the entire episode may be transparent to the
inveoker. If there are no unusual side effects ¢f the failed operation
or the handler execution, continuing the invoker with the handler sup-
plied results can conceal the occurrence c¢f the exception from the in-
voker. Transparent recovery minimizes the interaction between the in-

voker and the handler.

Instead of simulating the failed operation, the handler can modify
the invoker's state as a side effect of its execution and then order the
continuation of the invoker. Handler side effects can be tested for by
the' invoker's program. One thing the nandler can do is to cenvert an

exception signal to 2 change in the value of 3 status variable accessi-

Ch. 2.5.1 Issues and Answers page 81

ble to the invoker. The invoker can then test the status variable after
being continued by the nhandler. Ncte that such a mechanism for convert-
ing signals to status variables is inefficient in cases where the excep-
ticn cccurs, but is more efficient than status code exception reporting
whenever the sxception does not occur. The status variable can bde ini-
tialized once by the invoker and does not need to be passed to or re-
turned from called operations. Whenever the exception does not occur,

status variable manipulations do not generate any overhead.

Continue termination can be used to return control to the invoker
following successful recovery or when the handler has modified the
inveker's state so that the invoker's program can respond %o the excep-
tion. In the first case, the simulation of the failed ogeration by the

-

handler makes the exception transparent to the invoking subsystem. In-
teractions between the handler and the invoker are minimized., Continue
termination can also be used to return control to the invoker after the
handler has posted side effects on the invcker's state. The side ef-
fects of the handler execution can be used to trigger the invoker's pro-
grammed response to the reported exception. Cemmunicating the oc¢-

currence of an exception by posting side effects on the state cf the in-

voker leads to close interaction between the invoker and the handler.

2.5.2 Retry Termination

Instead of simulating the failed operation, the handler may be able
to correct the cause of the exception. If the cause of the excepticn is
removed, the failed operation can be retried. Like continue termina-

tion, retry makes the exception episocde transparent to the invcker.

Ch. 2.5.2 Issues and Answers page 82

When the handler returns to the exception processor requesting retry
fLermination, the exception processor must use a2 privileged subsystem
transfer operation to return control to the invcker without incrementing

the inveoker's instruction pointer.

Recovery acticns which can correct the cause of the exception in-
clude repairing the parameters to the failed operaticn and handler ac-
tions which drive the signalling subsystem into a state from which the
failed operation can succeed. For example, the failure of an attempt to
open a non-existent scratch file for output can be circumvented by
creating the file and re-executing the open operation. Linkage faults
in Multics are handled by repairing the =missing link and then retrying
the instruction which caused the fault. Page faults are handled by
causing the missing page to de brought into real memcry and then retry-

ing the failed memory access.

Retrying a failed operation is also sometimes appropriate when the
failed operation was partially completed before the exception was sig-
nalled. If the failed operation has updated some xind of progress indi-
cator which can be used to control the continuvation of the cperation,
retrying will caused the failed operation to continue from where it left
off. The MVCL (string copy) instruction of the IBM 370 system is an ex-
ample of an operation which may fail after being partially executed.
The MVCL instruction updates its parameters as it executes to reflect
the progress made. Re-executing the MVCL after correcting the cause of
the failure {(e.g. page fault) will cause the remainder of the string to
be copied. The 2allocate operation described in section 3.2.6 can also

be retried after failing cn a virtual memory fault.

Ch. 2.5.2 Issues and Answers page 83

Retry termination should not be used if the original parameters of
the ailed operation have teen lcst, or if side effects of %he failure
make re-execution of the operaticn inappropriate. Ancther problem with
retry termination is the possibility that the handler did not really
correct the cause of the exception. If the same exception occcurs when
the failed operation is retried, the same handler would normally be
called. The handler would call for the failed operation to be retried
again, leading to an endless loop of exceptions and retries. The excep-~
tion processor can make some checks to detect the simpler forms of such
loops. In the general case, however, it is difficult to distinguish

between legitimate repeated =xceptions and unsuccessful retries.

2.5.2 Exic Terminaticn

If the handler is closely associated with the invoker, it may be
allowed to force the invoker to continue execution at scme point other
than the current execution point. Not infrequently, the exception
should cause the invoker to exit a loop or to transfer to scme execution
path which reflects the occurrence of the exception. A return from the
handler to the exception processor with results calling feor gxit termi-
nation causes control to be returned to the invoker at the address indi-
cated by the handler. The effect of exit termination is to cause a

non-local goto from the handler to the indicated address in the invoker.

As Liskov points out [Liskov 76], the association of handlers with
the activation points which cause the exception should be specified
separately from the continuation peoints to which %“he handlers exit.

Syntactic constructs at the programming language level can be employed

Ch. 2.5.3 Issues and Answers page 84

to give structure to the exit transfer. When the handler body is local-
ly specified as part of the inveking subsystem, exit termination can be

used to return ccntrol at an arbitrary point in the invoker. ‘When the

[0

nandler is not part of the invoking subsystem, exif termination should
not normally be allowed. One exception to the above rule is the debug-
ging supervisor. The debugger should be able to return control to the

debuggee (invoker) at any point in its program.

2.5.4 Abort Termipation

It is not unusual for a reported exception to lead to the failure
of the invoker of the failed operation. If the cause of the exception
cannot be circumvented zand alternative calculations to achieve the
specified effescts of the call to the invoker are unsuccessful, there is
no alternative but to signal the failure of the invecker to the invoker's
invoker. If the invoker's handler determines that the exception will
prevent the invoker from satisfying its output specifications, the
handler should be able to force the failure of the invocker and propagate

the exception to the environment of the invcker's invoker.

Signalling the failure of the invoker without returning control tc
the invoker 1is called zborting the invoker. Abort terminates the
current exception episode and initiates exception processing on behalf
of the invoker's invoker after the invoker has been terminated. Abort
termination permits exceptions to propagate from callee to caller until

a subsystem activaticn which can handle the exception is found.

Ch. 2.5.4 Issues and Answers page 85

At each stage during the propagation of an exception, the current
invoker's handlers are free <o continue the prcpagation, using abort, or
to 2nd the =xception spiscde by returning control to the current invoke
er. For example, consider a payroll system composed c¢f interacting sub-
systems. If the check writing subsystem is asked to prepare a check for
negative dollars, it should signal an exception. The exception may
cause the employee pay calculation subsystem to be aborted by its
handler. When the exception reaches the payday subsystem which controls
the computation, the control program can print an error report and
proceed to the next employee. Abort is alsc useful in debugging situa-
tions. If the debugging supervisor gains control zs a handler of the
debuggee, it can abort the subsystem under test so¢ that the system czan
be returned to a clean state frcm which the programmer can modify the

subsystem and then test the new version.

The handler which requests abort termination should be trusted by
or imposed upon the invoker. A handler must be authorized by the invok-
er supplied handler specification tc be allowed to cause an abort. In
order to implement abort termination, the excepkion processor must make
use of yet another privileged subsystem transfer operation. The abort
operaticon, described in Chapter Three, terminates both the excepticn
processor activation which executes the abort and the activation of the
inveker. Abort then reactivates the exception processor to process the
new excepticn in the environment of the new invoker. The new activation
of the exception processor can process the exception as if it had been
directly signalled by the old invoker instead of by way c¢f the zbort

operation.

Ch. 2.5.4 Issues and Answers page 86

When an exception is propagated from the invoker to the invoker's
invoker, the exception ccde z2nd message czan de supplied by the handler
wnich calls for the z2bort. It would be inapprcpriate, however, <o use
the handler 2s the signaller of the new exception. The invoker's invok-
er can not be expected to be aware of the identity of the invoker's
handlers. If the signaller-id of the new exception was the handler
which ordered the abort, the invoker's invoker would be confronted with
an exception from a subsystem which it never called. Similar arguments
suggest the new exception should not be the same as the original excep-
tion. The original exception was signalled by an operaticn called by

the invoker and not by the invcker's invoker.

In almost 2ll cases, it is zapproprizte to make “he invoker the siz-
nalier of the propagated oxception. In some cases, however, it is use=-
ful to let the exception processcr be the signaller of the new excep-
tion. Sometimes the exception processor must initiate the abort because
of improper usage of the exception facility. Cne example is when the
exception processor is unable to find a handler for the current excep-

tion.

When 3 subsystem activation is to be aborted, it is often necessary
to restore the subsystem to a consistent state before the subsystem ac-
tivation is abandoned. If the handler calling for the abort is closely
associated with the invoker, it c¢an perform the actions necessary to
bring the invoker to a consistent state. Instead of directly restoring
the invoker's state, the handler can call a 'cleanup' routine belonging
to the inveker. The 'cleanup' rocutine can te called directly Dby the

handler or the handler can reclassify (see Section 2.5.8) the excepticn

Ch. 2.5.4 Issues and Answers page 87

to cause a 'cleanup' handler belonging to the invoker to be located and
called. The 'cleanup' nandler can then issue the abort after restoring

the state of the invoker.

2.5.5 Upwind Termipation

The exception processor can provide an ypwinding facility designed
te terminate un-needed subsystem activations in order to return control
to an earlier subsystem activation. Unwinding is wuseful when the
results of several subsystem activations are no longer needed because
the larger computation in which they are participating is being aban-
doned for one reason or ancther. Each of the subsystem activations
which is to b%e terminated shculd be given 2 chance to restore its data
structures to a consistent state before it is forced to permanently re-

linquish control.

The handler calling for the unwind must indicate how far the pro-
cess should be unwound. The handler which initiates the unwinding can
also supply an exception message to inform the unwind target of the rez-
son for the unwind. When the indicated subsystem activaticn is reached,
it cannot be continued normally. The excepticn processer can signal an
'unwound' exception to the target subsystem after the superflucus sub-

system activations have been terminated.

The selection of the unwind target raises some protection issues.
It should not be possible for an arbitrary handler to order an arbitrary
unwind. One way in which the urwind target can be validated is to re-

quire that the handler present 2z ncn-local reference to the target sub-

Ch. 2.5.5 Issues and Answers page 88

system activation. The 2bility of the handler to produce a validated
reference Lo the unwind target indicates, at least, that the handler is

scmehow related to the target.

To unwind the process, the zxception processor must force the ter-
minaticn of the intervening subsystem activations without compromising
their integrity. Before terminating a subsystem activation, the excep-
tion processor should search for and activate 'cleanup! handlers belong-
ing to be subsystem about to be terminated. The signaller of the
'cleanup' should be the exception processor. The 'cleanup' handlers can
restore the state of the subsystem activation about to be terminated.
Subsystems which den't have ‘cleanup' handlers will be terminated

without having a2 zhance to restore their data structures.

Tc implement the unwinding facility, the exception processor uses
the privileged abort operation to force the termination of subsystem ac-
tivations. In order to continue the unwinding following each abort, the
terminated exception processor activaticn must communicate to the new
exception processor activation the fact that unwinding is in prcgress.
Making the exception processor the signaller of the abort permits the
new exception processor activation to detect that unwinding is under way
by examining the signaller-id zand exception code of the propagated ex-

ception.

At each step, the exception processor checks to see whether the
target subsystem activation has been reached. If so, an 'unwound' ex-
ception from the exception processor communicates to the target the fact

that an unwind has occurred. The excepticn message from the handler

wnich initiated the unwind is also passed to the target. If the unwind

Ch. 2.5.5 Issues and Answers page 89

target has not been reached, the exception processor searches for and
calls the 'cleanup'! handler associated with the current invoker. The
only termination permitted the 'cleanup' handler is reiect terminaticn
(see Section 2.5.7). All other nandler termination requests from the
'cleanup' handler are ignored and the exception processor propagates the

unwinding to the next level by aborting the current invcker.

A number of thorny implementation problems are raised by unwind
termination. One problem is that a 'cleanup' handler may fail to return
control to the exception processor. Another problem stems from the fact
that a second unwind may be initiated by the handler of an exception
caused by the 'cleanup' handler. The first prcblem requires the imple-
mentation of watch dog timers to wrest centrol frem handlers which re-
fuse to terminate. The second problem requires extra code in the excep-
ticn processor to sort out overlapping unwinds and to choose the most
distant target. The implementation of unwind is discussed, along with

the other handler terminations, in Chapter Four.

2.5.6 Reclassify Termination

The handler termination modes discussed up to this point end the
current exception episode. Instead of ending the exception episcde, the
current exception name can be changed to reflect the handler's decision
that the exception should be reclassified. For example, a page fault
caused by referencing beyond the logical end of a segment can be reclas-
sified from 'page-fault' tc !'ncn-existent-page' by the page fault
handler. Reclassifying an exception allows the handler to recharacter-

ize the exception based on its own analysis of the situation.

Ch. 2.5.6 Issues and Answers page 90

To reclassify the exception, the handler can return the new excep-
tion code and message to the =xception processor along with the indica-
tion that reclassificaticn is desired. Since the hnandlesr is presumably
not a stranger to the invoker, the signaller of the reclassified excep=
tion can be the handler. The handler's decision to reclassify an excep-
tion causes the exception processor to search for and call handler(s)

for the new exception.

Reclassify termination is esquivalent to a signal from the handler.
Indeed, there is nothing to prevent the handler from signalling instead
of reclassifying. The exception facility should be prepared to convert
signals from a handler to reclassifications. Also, the excepticn pro-
cessor should make sure that the reclassified =xception is different
from the current exception. If it is not, the exception processor
should convert the reclassify to a reject termination {see next subsec-

tion).

As in the case of retry, careless or malicious handlers can cause
the exception facility to loop. By reclassifying the exception to be
the same as it was earlier in the same exception episode, the handler
can cause the exception processer to call a previcusly called handler.
That handler, behaving as before, can again reclassify the exception
leading to an endless sequence of reclassifications. The exception pro-
cessor can detect such loops by keeping track of which exceptions have

been encountered during an exception episode.

Ch. 2.5.7 Issues and Answers page 91
2.5.7 Reject Termination

Yet another nandler termination action permits the handlar to re-
Ject responsibility for the exception. In this case, the handler has
done whatever it could to recover from the exception, but cannot itself
handle the exception. Reject termination allows the handler to give up
on the exception in the hope that some other handler can deal with the
problem. By rejecting responsibility for the exception, the handler
directs the exception processor to search for and call ancther handler

for the same exception.

Under the invoker controlled handler choice policy of Section
2.4.4, the handler specifications for 2 given excepticn are ranked by
their type {impcsed, lccal, or default) and crder of specification. The
nandler specification priority ordering yields a sequence of handler
specifications for each exception. If the first handler rejects respon-
sibility for the exception, the next handler specification in the se-

quence can select the next handler for the exception.

If the handler specification sequence 1s exausted, reject termina-
tion by the last handler cannot cause znother handler for the same 2x-
cepticn to be called. In this case, the exception processor can reclas-
sify the exception to the ‘'noHandler' exception to indicate that no
handler can be found for the current exception. If the current excep-
tion is 'noHandler', more drastic measures must be taken (see Section

b.u.7).

Ch. 2.6 Issues ana Answers page 92
2.6 ummar

This chapter has discussed a number of exception processing issues.
The requirements for uniform exception reperting, unambizuous excepticn
naming, low main line overhead, and isolaticn of the nandler environment
were analysed at the beginning of the chapter. The issues surrounding
handler specifications were discussed in section 2.3. The advantages of
static asscciations between handlers, exceptions, and activation points
were pointed out. Also the distinctions between local, default, and im=-

posed handlers were discussed in Section 2.3.32.

Given the requirements for exceptiocn <episode initiation and the
mechanisms for specifying exception handlers, the problem of selecting =z
nandler without ccmpromising the intagrity of the invoker was exanined.
The traditional global and inherited handler choice rules were shown to
lead to undesirable interacticons between different subsystems. The in-
voker controlled handler choice policy was then presented. This policy,
with it's default, local, and imposed handlers was shown Lo protect the
interests of the invcker while providing flexibility in the selection of
a handler. The notion of a sequence of supervisors which participate in
the preparation of the subsystem for executicn was exploited to control
the priorities of default and imposed handlers. The invoker policy, by
considering only handler specifications associated with the invoker,
provides for the isolation of protected subsystems, reflects system su-
pervisory privileges, and permits flexibility in the control of excep-

tion processing.

The final section of this chapter discussed the handler termination

mcdes which should be supported by the exception facility. A variety of

Ch. 2.6 Issues and Answers page 93

handler terminations is necessary to reflect the peossible outcomes of
the handler's attempts to recover from the =2xcepticon. Handler termina-
tions which return %o the invoker, =erminate the invoker, zand which
cause additional handlers to be selected were shown to respond to the
various ways in which handlers might wisn to terminate their attempts at

recovery.

Ch. 3 page 94

Chapter Three

An Implementat] Model

3.1 Introduction

The implementation of a system level exception processing facility
requires that some exception processing operaticns be integrated into
the base level of the system. In this chapter we develop a process
model supporting protected, mutually suspicious subsystems and imple-
menting éxception reporting and termination mechanisms. The implementa-
tion of protected subsystems requires defining the environment in which
pregrams execute and specifying how that environment changes when con-
trol passes tc a2 program in a different subsystem. The term domain has
been used to denote the protection environment associated with a running
or runnable program. Although the term has been employed in various
contexts [Lampson 71, Schrceder 72, Spier 72], we use the term "domain®
to refer to the protection environment within which a subsystem activa-
tion executes. Different activations of a subsystem should execute in
different domains to reflect the differing parameter privileges of the

several activations.

In order to demonstrate an implementation of the excepticn process-
ing facility developed in this thesis, one must assume some sort of
starting point. The relevant features of 2 number of systems which sup-
port the ability tc create arbitrary protected subsystems have been

abstracted and combined into what we call the basic process medel. Sec-

Ch. 3.1 An Implementation Mcdel page 95

tion 3.2 defines the basic prccess model with an emphasis on its ad-
dressing mechanism and the cperations for creating domains and “ransfer-
ring control frcm one domain to 2nother. Section 2.3 augments “he hasic
processor model to suppert exception processing. The exception process-
ing primitives for initiating and terminating exception episodes must be
added to the basic process model because they require domain switching
protocols not available in the basic process model. Finally, Section
3.3 elaborates the basic processor implementation of the subsystem ac-
tivation stack so as to permit a small portion of the stack to be

resident in real memory while the rest of the subsystem activation

records which comprise the stack are stored in virtual memory.

2.2 The Bagic Process Model

The basic process model implements an executicn environment which
supports protected, mutually suspicious subsystems. A subsystem exe-
cutes in a domain which is defined by the contents of its gzuprrent ade
dress space. The current address space is a mapping from cemputable in-
teger addresses to storage locations. The current address space binding
is changed by the subsystem transfer operations. The basic process
model includes operations for calling and returning from subsystems and
operations for allocating and freeing temporary storage. The process
model does not include facilities for switching physical processors from
one process to another. We ignore the issues involved with multipro-
cessing because the exception processing facility we wish to develop

does not require {or support) concurrent processing.

Ch. 3.2.1 An Implementation Model page 36

.21 Basic Addressing

Basic 2addresses are the integer addresses which a program can

present to the execution engine. The mapping from computed addresses to
stored data 1is defined by the basic addressing mechanism ;hich is
designed to reflect the allcecation and binding strategies needed to im-
plement shared protected subsystems. Basic address spaces are created
when a subsystem is activated and destroyed when the activation ter-
minates. An execution point is also associated with each address space.
Basic addressing in the process model distinguishes between storage al-
located and initialized during subsystem creaticn, on the first call to

the subsystem by a particular process, and on each call to the subsys-

tem.

Basic addresses reference locations in one of three storage seg-
ments: 1) the per-subs?!tem root segment, 2) the per-subsystem, per-
process jipncarnation segment, or 2) the per-call zctivation frame. The
per-subsystem root segment is allocated and initialized during subsystem
creaticn. It ccntains, among other things, the code for the cperations
of the subsystem and the variables which are shared by all activations
of the subsystem in all processes. A subsystem can be identified with
its root segment because the procedures and private data structures of

the subsystem are kept in the root segment.

Subsystems typically can be executed concurrently by many indepen-
dent processes. Subsystem implementors should be able to allow multiple
simultanecus activations without having %o explicitly handle the muliti-
plexing of their per-user variables. In order to facilitate the use of

per-user or per-process variables, the addressing mechanism of the

Ch. 3.2.1 An Implementation Model page 97

process model binds references to such variables to the subsystem's in-
carnaticn segment. The incarnation segment can be 2lloca“ed and ini-

tialized when 2 subsystem is first used in a process.

Per-process, per-subsystem incarnation storage is also known as Qwn
storage [Spier 73, ALGOL 60], static storage [PL/I 74], and linkage
storage [Daley 68]. Incarnation storage is used to maintain per-user
subsystem state information between subsystem activations. An incarna-
tion segment is necessary only if the operations of the subsystem need
to save per-process infecrmation frcm one activation of the subsystenm to
the next. A compiler, for example, does not usually need to save any
information from one activation to the next. A terminal interface sub-
system, cn the other hand, might need t¢ remember terminal characteris-
ties 2and burffer characters on 3 per-process basis. A dynamice linking
facility [Daley 63] makes extensive use of incarnation storage to store

linkage variables.

The operation of allocating and initializing the incarnation seg-
ment, if it is needed, is called instantiating or making the subsysten
kncwn to the process. In order to initialize the incarnation segment
when a subsystem is made known, a2 template of the incarnation segment
can be stored in the root segment of the subsystem. The template can be
copied into the new incarnation segment when the subsystem 1s made
known. This approcach to subsystem instantiation is similar to the

management of the linkage section in Multies [Organick 72, Daley 68].

In additicn to per-subsystem and per-process storage, we must make
some provision for accessing the arguments of a subsystem call, zllcocat-

ing lccal variables and temporaries, and accessing the results returned

Ch. 3.2.1 An Implementation Model page 98

by subsystem calls. Argument binding, local variable zallocation, and
result passing mechanisms can te implemented using a3 3secticned stack.
The secticned stack zallocates all activation frames from 2 single seg-
ment. The management of such a stack segment can be fandled by mechan-
isms similar to those used in the Burroughs BS500 and B6500 processors
[(Organick 71] or using the schemes described by Rotenberg in his thesis
(Rotenberg 74]. An activation frame is created on each subsystem call
and destroyed when the subsystem activation terminates. Parameters are
passed and results returned through the activation frame. The activa-
tion frame 1s alsc used by the subsystem to store its temporary vari-
abies. Much of this chapter is concerned with how the activation frame
is formed and how it changes in response to the various subsysten

transfer operaticns.

The basic addresses of the process model select locations in cne of
the three slots of the address space. Local addresses are mapped to lo-
cations in the activation frame. Stgtic addresses are mapped to loca-
tions in the incarnation segment, while gshared addresses are mapped to
locations in the root segment. All addresses are checked to =see that
they lie within appropriate limits in the segments they reference. The
root segment is partitioned, at a2 point which we denote as rgot RC, into
a read/execute region and a read/write region. An instruction pointer
which references the current instruction in tne root segment is also as~
sociated with every subsystem activation. Figure 3-1 depicts the basic
address space of a subsystem activation. The utilization of the three

address space zegments is a2lso represented in the figure.

LRA}
(S A)

m

(]
o
(8]

Sy
—iie

o AP 1

0

~(o
oy

O Y

O -

) [§]
0

[») p

act

7
"

[y
oy
)

Y n
2) B]
“wy -
Ty
[LRI
(R IALe]
™
R
P "
e N
D

e
2 on mm. "n
A - L1
" D e g .1.“ 2
a L9 B o] — — 0
- E n oo o ©
o D o - -y LD
- A s N n o
= < O -
A
-~ |¢_’ NS S
U} .M.! “lo =
A PO Btatd
o Mo LA |
-1 - .,.v) [P —
Iz Ol wnw!] @ o
w (@] < (@] (@]
L - — L. —

Q-
O
«
Oy
7y

L
X
A

R

o
.y i
)
%
"y

Ch. 3.2.1 An Implementation Model page 100

Figure 2-2 is a flowchart of the basic 2ddressing algeorithm. The
pasic address consists of 2 fag and an integer ipcdex. The tag sortion
of the 3ddress selects one of the slots of the z2ddress space zand the in-
dex specifies a location relative to the beginning of the indicated seg-
ment. The storage for the contents of the address space is assumed to
be implemented as virtual storage at a higher level of the system. This
means that, in general, any reference to a location in the basic address
space may fail because of a virtual memory fault. RBesides virtual
memory faults, faults caused by addresses larger than the indicated seg-

ment will cause the basic addressing mechanism to fail.

Addressing and other faults causing basic processor operations to
fail are called hasigc faults. The basic processor sinpiy halts when

.3, the basic process model

(W8)

basic fzults are encountered. In Secticn
is augmented to include exception rerorting facilities which respond to

basic faults and signalled exceptions.

3.2.2 External References

The addresses generated by basic machine operations are normally
interpreted in the current address space. The basic addressing model
does not provide for referencing objects outside of the three segments
bound to the current address space. In order to reference one subsystem
from another or to share objects between subsystems, some facility for
referencing external objects must be defined. The external reference
mecnanism must protect the interests of subsystems by being able to con=-

trol accesses to external objects.

« e
-

[}
ue
of

[@X

o

)
«
o)

1
(&

Py

(ER)

Lo A
€

'
-1
Ly
»
(o]

~.

\.

()
-
T
.\\\
(G
VAN
<
P
r
c

bad
9)

vy

i

MM
LS

1)
"y

Y
Y

o

&

nt
1y

Ch. 3.2.2 An Implementation Model page 102

Capability based addressing, in which protected or sealed pointers

ddress space, preovides a2 zuitable external

are stored in the Dbasic

W

reference mechanism. Capability systems have been discussed at length
by many authors [Dennis 66, Fabry 74, Lampson 771, Redell 74, Jones 73,
Walker 73]. Various extension mechanisms, based on capabilities, permit
protected subsystems to define and control access to new types of ob-
jects [Redell 74, Morris 73, Lindsay 73, Jones 73, Ferrie 74, Gligor

761.

There are other methods for referencing and controlling access to
external objects. For example, access control lists can be used to
validate unprotected external references [Schroeder
Access list schemes check that the zaccessor is zamong the authorized
users of the external obiect. The process model assumes the existence
of an external reference nmechanism, but leaves unspecified how external
references are represented and validated. Either a capability or an ac-
cess list system would be satisfactory. However, the process model is

biased towards a capability based external reference system.

Given an external reference mechanism which permits objects outside
of the current address space to be referenced and accessed, we can con-
sider references to address spaces other than the current address space.
Operations for creating external references to address spaces and for
accessing the ccntents of other address spaces are supplied by the basic
proces=zor. The creation and manipulation of address space references
must be clesely controlled for several reasonz. It must net be possible
to make use of references to address 3paces wWhich no longer exist Be-

cause access tc the address space cf a subsystem activation licenses the

Ch. 3.2.2 An Implementation Model page 103

accessor to read and update the private variables of the subsystem, it

ct

aust not be possible for user programs to creats references to arbitrary
address spaces. 3Zasic processor operations for creating external refer-
ences to address spaces are limited tc an operation for creating a
reference to the current address space. Address space references, like
other external references, can be passed a2s parameters from one subsys-
tem activation to another. The operations available on non-local ad-
dress spaces include: 1) referencing the storage segments of the address

space, 2) reading the instruction pointer, and 3) reading the subsystem

name (root segment-id).

}’

(WY
N
(W)
-3
Y
]
U
3
D
n
3]
[$H]
\D

When a process is net being executed by a processor, the informa-
tion defining the process and its current state is stored in the progess
base. The process base must be present in real memory before a proces-
sor can be assigned to the process. The basic process base contains a
processor state block and a stack of suspended subsystem activations
known as the subgvstem zctivation stack. The activation stack contains
the bindings for the address spaces c¢f suspended subsystem 2ctivations.
The current address space is maintained in a separate set of registers
and not on the top of the activation stack. The process state also in-
cludes some general purpose accumulators and the registers which define

the current address space.

Since we are not ccncerned in this thesis with processor multiplex-
ing, we assume that changes to the process state are reflzscted directly

in the proccess base instead of the registers of the processor currently

Ch. 3.2.3 An Implementation Model page 104

bound to the process base. Note that since the entire process base is
agsumed to be in real memory, the basic processer wWill not encountar
virtual memory faults when accessing the process D>dase.
icts the contents of the basic process base. The finite size c¢f the ac-
tivation stack implies that subsystem calls, which suspend the current
address space and create a new current address space, may fail because
the activation stack is full. The augmented process model introduces
mechanisms which allow the top region of the activation stack to be in
the process base while the rest of the stack is stored in non-fixed vir-

tual memory segments.

3.2.4 Sy stem Call
The subsystem ¢all operaticn initiates an operation of the called

subsystem. The parameters of the subsystem call operation are 1) the
subsystem to be activated, 2) the gate of the called subsystem to re-
ceive centrol, and 3) the index in the current activation frame of the
beginning of the actual parameters for the called subsystem. We assume
that the invoking subsystem prepares the actual parameter vector for the
called subsystem at the nizh end of its activation frzme. The parame-
ters to the called subsystem are passed by value or by means of external
references passed by value. The subsystem c¢all operation saves a
description of the current address space, including the instruction
pointer, on the activaticn stack and then creates a new current address
space for the called subsystem activation. The instruction pointer of

the calling address space is left pointing %o the call instruction.

s
«?

m

«
3

©

«)

(]

(@]

~
R R

1
_
_
«) —
_
_
_

l o
L am
| @

o
. 1%
« m o
m L.
Loy ﬁ.v
~ Low }
IS N
> T N
- EEai e PEECES

o

a

-

L

O

L
<y

e

[}
w

e e

T en
LS S

0 o
e
“y «n

Ch. 3.2.4 An Implementation Model page 106

The call operation creates a new current address space for the
called subsystem. The new rcot, incarnation, and activation segments,
3s well as the new instruction pointer, must be determined ard Sound to
the current address space. If subsystem gates are clustered 2t the be-
ginning of the subsystem's roct segment, the instruction pointer for the
new current address space can be set to the gate index specified by the
second parameter of the call operation. For simplicity, we will assume
that all subsystems have the same number of gates. This limitation can

be circumvented in a variety of ways which will not concern us here,

The activation frame for the called subsystem is derived from the
caller's activation frame. The new activation frame should contain just
“he parameters of the call. If the parzmeters are preparsd by the
caller at tne tcp of its activation frame, that porfticn of the caller's
activation frame can beccme the initial =zctivaticn frame of the new
current address space. The called subsystem will begin execution with
an activation frame containing just the parameters of the call. An ini-
tial workspace for the called subsystem could be zllocated zand initial-
ized by the call cperation. However, extra work at call time as well as
the extra complexity to determine the workspace size make it unattrac-
tive to allocate the callee's workspace during the call. Instead of
mapping the parameters into the callee's address space, the subsystem
call operation could copy the parameter vector. This solution, attempt-
ed in CAL [CAL 69b] and HYDRA [HYDRA T4, Wulf 76] greatly increases the

overhead of the subsystem call operation.

The root and incarnaticn segments for the new address space are

derived from the the "subsystem" parameter of the call cperation. The

Ch. 3.2.4 An Implementation Mcdel page 107

"subsystem" parameter is an external reference which specifies either
the roct segment or the incarnaticon segment or beth depending of the
specific implementaticn. We explers the varicus 2ases in the following

paragraphs.

A subsystem can be identified with its root segment where the -code
for the subsystem, the shared data, and the shared external references
are stored. If the subsystem reference provides conly a reference to the
subsystem's root segment, the process-local incarnation segment must be
located by searching a process-local "known-subsystem table". Systems
which select the called subsystem by specifying only the root segment
include the Chicago Magic Number Computer [Fabry €8], the Plessey System

250 [England 74}, the HYDRA system [Wulf 741, and CAL [Lampson 757. 2f

r—

these systems, only CAL supports incarnaticn storage.

Instead of specifying the rcct segment, the subsystem reference of
the call operation can specify the incarnation segment of the target
subsystem. The incarnation segment, having been initialized when the
subsystem was made known, can contain an external reference to the root
segment. In Multics, the call operation specifies the incarnation seg-
ment (linkage section) of the callee. The linkage secticn contains a
reference to the root segment of the subsystem [Daley 68]. Cne conse-
quence of this approach is that every subsystem must have an inearnation
segment to store the process-local references to the incarnation seg-
ments of the subsystems it calls and through which it can receive ccn-
trol. In the CAP system [CAP 76b, Needham 72], the external references
used to identify the called subsystem specify both the rcot and incarna-

tion segments. Subsystems which den't need incarnation storage do not

Ch. 2.2.4 An Implementation Model page 108

have incarnation segments in CAP.

ct
oy
D

Likxe the mechanism feor iImplementing 2ax%ternal references,
mechanism by which the "subsystem" parameter =pecifies the rcot znd in-
carnation segments is left unspecified in the process mnodel. It is as-
sumed however that the mechanism for identifying the root and incarna-
tion segments may fail to produce results if the subsystem is not known

to the process.

A subsystem call pushes a description of the current address space
onto the activation stack and then constructs a new current address
space. The root and incarnation segments, as specified by the "subsys-

ddress

4]

tem" parameter of the call cperaticn, are bound to the current
space. The new activation frame is defined to =xtend from the beginning
of the parameters to the top of the caller's activation frame. Figure
3=4 illustrates how the activation frame for the new current address
space 1s derived from the caller's frame and the parameter index of the
call. Figure 3-5 depicts the effect of a call on the activation stack.
Note that in the figure, the current address space is represented as be-
ing at the top of the activation stack instead of in a special set of
registers. Figure 3-6 is a flowchart of the algzorithm of the call
operation. Manipulations of the activation stack are represented by
qualified cccurrences of the module factStk' which implements and main-
tains the representation of the subsystem activation stack. (Note: the
notation used in the flowcharts is drawn partially from the Euclid syn-
tax [Euelid 771.) ‘'ActStk.full' tests for overflow of the activation
stack while 'ActStk.push' adds the description of zn 2ddress space cnto

stack. The current address space is referenced by the structured vari-

LAY

[}

af
0,

B

I S ——— s o 310, AP 2f

oy T o T T
S o
s i o
e b~ o
13 .
|&] s
N (@) sy
M‘ . ™ [}
’
- N
o
i
hod
e e
~ s
PN B x.3 0 i
ax m [wn\w _ . Mw —
Lt oy “ ay 1 _ .
I e T cTohs
o 2l oln 9 {
o L [Raen SIS
—_— S l —
0N
(o 3 e
l.: . Py ')
» e | 2 1
ar .
R & | .- i B
.... g 'S} © -1
Mu. - o ())
1 I
1.3 v I ~1.D oy
w E 1w 21w E
a O] a“oo ‘ a0
= = oy b e
s O Le]
| & B L L]
o« _ O T | o O
|. 1
1
—Aiv A
RN . s
N)
= - S m
o 1§
pespui o } R N —
- o (&) o) [§)
L) oo w

ar s

1y gy

L I

SIS
—
:M
ay
(e}
[
—
Liw]
(&)

-

43

o

I3

tr)

Ly

foa

o
60
o
0,

O
« [
[oy
TN
A e
-

P . VAR
Vi le e g
ar a | R P
- P > 3

o © o~ .N .
o W T oo
AVA R < Q. a\v.
o = VI <

- e - e W mm an oy o

)
o
Lo }
W
<f
(@)

73]
ar

[{ad

N
<t
Y1,
SO
A
w
s3]
o~

[2a)
o Uy
S G By
LU she _.,.
[S)
S I

o
0.~
Y v e
[i 8
R & B 20 o

S oy <t

L el L
.
R ¢
— O
n &
- Xz
<) w
g 3
Qo

"

L

!

v

L)

Cy

3 ..

- T}
> €

(6.5 I

e —
w

Lo 2GS
- Phac

) m

e KD
Xy

) o;m
L

i

m

P)
[I
(&) [1a}

oy N

< -

O Q

A,A.v
w3

w

(&)

ar

%)

tr -ﬂ-—-g(

[8

CAS.inst

O

ratur

Ch. 3.2.4 An Implementation Model page 111

able 'CAS'. Note that the return at the end of the flowchart causes
control to pass to the called subsystem. It should not be confused with

the subsystem return operation which is discussed next.

3.2.5 Subsystem Return

The subsystem returp operation terminates the executing subsystem
activation and continues the topmost suspended subsystem activation.
Result values can be transmitted to the calling subsystem by adjusting
the activation frame of the caller to include the results. The return
operation does not take any parameters. Before returning, a subsystem
shrinks its activation frame to include only the results (plus the ori-
ginal parameters). The results to be returned to the caller are assumed
to occupy the entire activation frame. The return thus restores the ac-
tivation frame of the caller to its state before the call, except for
any results which may have pushed into the top of the frame. Figure 3-7
illustrates the adjustments to the saved activation frame which pass

results from the callee to the caller.

The subsystem return operation remcves the top address space from
the activation stack and binds it to the current address space. Figure
3-8 shows how subsystem return affects the activation stack. The in-
struction pointer in the caller's address space is advanced to reflect
the completion of the operation which was under way when the address
space was suspended. To keep things simple, we assume that all instruc-
tions are the same length. Normally the operation under way will have
been a call operation. In the augmented process model, however, basic

faults may leave the instructicn pointer of a suspended address space at

o
(13}

o

o1
12
.
a;

W

] |
}
KR _u.a L) l v n ”
4 o = - T 2 _ [N =
k¢ A | _ a1 LU 1 aqy 2 -
Y et A S By
owlo 2, 00 B2
© e _ G ol o . _
— e i,) .
\ -
TR
Q. %3 _
() 3
R o
. -— —
[w B
e m 3
o - |
0
o
—l‘
o Lt
% o 1
- [i
IERE:) o ©
©E b= m
w .- s
w T O ©
a -] 3
e
L0, T S S R
vy
Y N |
e T T e r..-
o “y o w ~ [72 BT
- W _n - - w |-
ar (48] Py [N, — m
W _ 145 B o) » O @Mt .
= o= < o2 o =«)
o o o Ul o o | © ©
PR O ol G o— O QL
[-
a1 _\f.i [
& m
(o) -
- —
ot w %)
o 0

0

[y

caller

"y

-

0
oy

s

raturn

caller

.

Ch. 3.2.5 An Implementation Model page 113
any operation which might cause a.fault.

Return adjusts the activation frame of the caller to include the
results returned from the terminating callee. The activation frame of
the reactivated subsystem has the same base as before the call but the
top of the frame is set to include the returned results. If the activa=-
tion stack is empty, the return operation fails without terminating the
subsystem executing the return operation. Figure 3-9 gives the algo-

rithm of the subsystem return operation.

3.2.6 A