
Exception P~ocessing in Computer Systems

R:v

Bruce Gilbert Lindsay

A.B. (University of California) 1966
M.A. (University of California) 1971

DISSERTATION

Submitted in nartial satisfaction of the re~uirements for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY 0F CALIFORNIA, BERKELEY

Annroverl: _-_,----)

 .

Committee in Char~e

1

Exception Processing .in Computer Systems

Bruce Gilbert Lindsay

Abstract

An exception is the reported failure of an operation to produce its

specified results. An exception processing facility operating in an en-

vironment of cooperating, but mutually suspicious subsystems is

developed. The exception facility is driven by exception signals from

the failed operation and is responsible for selecting and activating a

handler for the exception. It also manages the resumption of normal

processing when the handler terminates.

The means used to specify exception handlers and the rule used to

select one of the handler specifications are of critical importance in

the design of the exception processing facility. In order to protect

the subsystems of the computation and to avoid introducing dependencies

between otherwise independent subsystems, the response to an exception

should be controlled by handler specifications which are associated with

the invoker of the failed operation. It is shown that other schemes for

selecting the handler tend to break down the logical and physical isola-

tion of the protected subsystems.

The exception facility supports programmer supplied local handler

specifications, system supplied default handlers, and system imposed ex-

ception handlers. Default handlers supply a "standard" response when no

other handler specifications are given. Imposed handlers allow the sys-

tem to supply the response to system sensitive exceptions. It is shown

how handler specifications can be associated with the subsystem during

2

the program preparation process. Installing handlers during program

preparation and selecting a handler using only the invoker's handler

specifications simplify program verification and comprehension because

the response to an exception does not depend on other subsystems or on

the dynamic state.

An implementation of the exception processing facility is present­

ed. The implementation is partitioned into a set of low level opera­

tions for initiating and terminating exception episodes, and a subsystem

which manages the selection and activation of the handler. An interest­

ing aspect of the implementation is the ability of the exception pro­

cessing subsystem to process its own exceptions using the same handler

specification and selection protocols which are used for normal excep­

tions.

Acknowledgements

I would like to thank my thesis advisor, Professor R.S. Fabry, for

providing advise and support during the preparation of this thesis. I

am also indebted to the other members of my committee, Dr. James H.

Morris and Professor Charles Prenner, for their critical reading and

comments on the thesis.

Most of all I would like to thank Paul McJones who provided early

interaction, valuable advice, and careful reading of early drafts of

this thesis. I have also profited from discussions with Dave Redell,

Bill O'Connell, Jim Gray, and John Barlycorn.

I would also like to thank the National Science Foundation for

their support under Grant MCS75-23739 and IBM Corporation for its sup­

port during the final preparation of this thesis.

i

Table .Qf Contents

Acknowledgements . i

Table of Contents • . ii

List of Figures . vi

Chapter 1: Introduction to Exception Processing

1.1 Introduction ...
1.1.1 Abstraction and Modularity ••••.•••••.••••.••.•• 3

1.1.2 Introduction to Exceptions •••••••••••.••••..... 5

1 . 1 . 3 Thesis Plan . 9

1 .2 Anatomy of an Exception • . . . • . . • . • • . • • • • . • • • . • • . • • • . . 11

1.2.1 Abstractions and Subsystems•...•...•...... 11

1.2.2 Exception Causes .•.•.•.•••.•..•••.••...•.•.... 13

1.2.3 An Exception Episode•.......•...•..••..•• 14

1.2.4 Failure Detection ••••.•••.•••••••••••.•••••••• 16

1.2.5 Exception Reporting •••••.••••••••..•••••.•..•• 18

1.2.6 Exception Handling •..••••••••••••.•••..••••••• 21

1.2. 7 Episode Termination ..••.••.••.•.••••.•••..•••• 23

1 • 2. 8 Anatomy Summary • • • • . • . • • • • • . . . • • • • • 24

Chapter 2: Issues and Answers . • • • • . • • • • . • • . . . • • • . • • . • • • . • • • • 25

2. 1 Introduction . 25

2.2 Exception Episode Issues ••••••••••••••••••.••••••••• 26

2.2.1 Language vs System Level Exception Processing • 26

2.2.2 Policy/Mechanism Separation 29

2.2.3 Uniform Exception Reporting 33

2.2.4 Disposition of the Signaller 34

2.2.5 Exception Processing Overhead 36

2.2.6 Exception Naming ..•.•.•••••.•.••...•....•••••• 38

ii

Table of Contents

2. 2. 7 Exception Parameters . • • . . . • • • • . • . . • • • • • • • • • • • • 41

2.2.8 Handler Environment .•..•...•..•.•..•..•••..... 43

2.3 Handler Specifications •.••••.•.••••••.•....••.•••••• 46

2.3.1 Dynamic Handler Specifications •••••.•.••.••••• 49

2.3.2 Static Handler Specifications ••.••.••••..••••• 52

2,3,3 Local, Default, and Imposed Handlers •...•.•••• 55

2.4 Handler Choice Policies ••••..•••.••••.•••••.•••••••• 59

2.4.1 Object Oriented Handler Choice Policies •.•..•• 60

2.4.2 Global Handler Choice Policies •••.•••••••••... 63

2.4.3 Inherited Handler Choice Policies ••••••••••••. 67

2.4.4 Invoker Controlled Handler Choice Policies 71

2.5 Handler Terminations••.•••..•...••.•.......... 78

2.5.1 Continue Termination 79

2.5.2 Retry Termination ••.••••..•.•...••••.•.•.•••.. 81

2,5,3 Exit Termination ..•.•.•••••.•••••••••.••••••.• 83

2. 5. 4 Abort Termination • . . . • • • • • • . • . . • . . • • • • • • • • . • . . 84

2.5.5 Unwind Termination •.•••.•...••••.•.•..•.•....• 87

2.5.6 Reclassify Termination .•••••••.••...•..••.•••. 89

2.5,7 Reject Termination .••••.•.••.••••••••.••••••.• 91

2. 6 Summary • . • . 92

Chapter 3: An Implementation Model •••••••.•••..•••.••.•••••• 94

3,1 Introduction •••••••••••••.••.••..••••••••••••••••••• 94

3. 2 The Basic Process Model • • • • . • • • • • . • . • • • • • • • • • • • • • • • • 95

3,2.1 Basic Addressing •••••••.••.••••••••••••••.•••• 96

3.2.2 External References 100

3,2.3 The Process Base 103

3.2.4 Subsystem Call 104

iii

Table of Contents

3,2.5 Subsystem Return

3.2.6 Allocating Activation Storage

3,2,7 Non-Local Address Space References

3,3 The Augmented Process Model

3,3,1 The Basic Fault Mechanism

3,3,2 The Signal Operation

3,3,3 Episode Termination Operations

3,3,4 The Augmented Activation Stack

111

113

116

119

121

126

129

135

Chapter 4: Exception Processor Implementation .•.....••.•.•. 143

4.1 Introduction 143

4.2 Exception Processor Entry Sequences .•.•.•••••••.••• 147

4.2.1 The Fault Entry Sequence •....••.••••.••..•.•• 148

4.2.2 Signal and Direct Call Entry Sequences

4.3 Handler Selection and Activation

4.3.1 Representation of Handler Specifications

4,3,2 Handler Selection

4,3,3 The Handler Call

4.4 Handler Terminations

4.4.1 Continue Invoker

4.4.2 Retry Failed Operation

4.4,3 Exit To Invoker

4.4.4 Abort the Invoker

4.4.5 Unwind Termination

4.4.6 Reclassify Exception

4.4.7 Reject Termination

4.5 Conclusions

Chapter 5: Summary and Conclusions

iv

156

159

162

167

174

179

182

182

185

185

191

194

196

197

200

Table of Contents

5.1 Thesis Summary

5.2 Some Directions for Further Research

5.3 Concluding Remarks

References

v

200

205

206

210

llii Q! Figures

Figure 2-1: Invocations and Activation Points .•••••..•••••.. 48

Figure 2-2: Dynamic Handler Specifications .•......•.••.••..• 50

Figure 2-3: Static Handler Declarations ••••••..•.......•.••• 54

Figure 2-4: Nested Static Handlers •••••..•.....•.•....•.•••• 57

Figure 2-5: Global Dynamic Handlers ••.••.•••.••••••.••..•••• 66

Figure 2-6: Inherited Handlers . . • • . • • . . • • • • • • • • • • • • • • . . . • • . . 69

Figure 3-1: The Basic Address Space .•••.•..••....•...•..••.• 99

Figure 3-2: Basic Addressing•.•.••...............•.•. 101

Figure 3-3: The Basic Process Base .••..•.•••.•••••.•..••••• 105

Figure 3-4: Subsystem Call

Figure 3-5: Subsystem Call

Figure 3-6: Subsystem Call

Parameter Passing • • . . • • • . . • • . 109

Activation Stack ..••.••...••• 109

Algorithm •.••..•••.••••••••.• 110

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

3-7: Subsystem Return

3-8: Subsystem Return

3-9: Subsystem Return

Result Passing •..••.•••••.. 112

Activation Stack ••..•.••••• 112

Algorithm • • • • • . • • • • • • . • . . • • 114

3-10: Allocate Activation Frame ..••••••.•••.•••••••• 117

3-11: Allocate Algorithm •.•.••••.•••.•••••••••.•.••• 118

3-12: The Process Base (Augmented) •.••••••••.••.•••• 122

3-13: Basic Fault Activation Frame .•••••••••••.•• 124

3-14: Basic Fault

3-15: Basic Fault

Activation Stack

Algorithm

124

125

Figure 3-16: Signal

Figure 3-17: Signal

Figure 3-18: Signal

Exception Parameters ••••.••.•••••.•• 128

Activation Stack 128

Algorithm . 130

vi

List of Figures

Figure 3-19: Retry Restore Invoker's Frame •.••••.••••••• 131

Figure 3-20: Retry Algorithm 132

Figure 3-21: Abnormal Return -- Algorithm .••...•.••.••..... 134

Figure 3-22: Abort Parameter Copy . . . • • • • • . . • . • . . . • . . • . . . 136
I

Figure 3-23: Abort Activation Stack ••••••..••••••••.•••• 136

Figure 3-24: Abort Algorithm 137

Figure 3-25: Activation Stack Buffer •••.••••••••••••••••••. 139

Figure 3-26: Activation Stack Full Test •••..•••••.•.••••••• 141

Figure 3-27: Pop Activation Stack•••.••••••••••••..•• 142

Figure 4-1: Exception Processor Organization ••••.••••••.•.. 146

Figure 4-2: Fault Entry Sequence (first attempt) .•.••.•...• 150

Figure 4-3: Fault Entry -- Virtual Memory Fault ..•••.....•. 152

Figure 4-4: Fault Entry (modified) 153

Figure 4-5: Fault Entry -- Worst Case Fault Sequence .•.•..• 155

Figure 4-6: Signal Entry Sequence •••.••••••.•••••••••••.•.• 158

Figure 4-7: Direct Call Entry Sequence ••••••••.•••••••.•••• 160

Figure 4-8: Handler Hash Tables 164

Figure 4-9: Imposed and Default Handler Lists •..•••••.••..• 164

Figure 4-10: Local Handler Tree 166

Figure 4-11: Handler Selection 169

Figure 4-12: Handler Selection Exceptions •................. 170

Figure 4-13: Handler Call •••••••••••••••••••••••••••••••••• 176

Figure 4-14: Handler Terminations 181

Figure 4-15: Continue Termination 183

Figure 4-16: Retry Termination •••..••••.•••••..•••.•...•••• 183

Figure 4-17: Exit Termination • • • • • . • . • • • • • • • . • • • . • . • • • • • • • . 186

Figure 4-18: Cleanup Routine •••••••••••••••.••••••.•••.••.• 188

vii

List of Figures

Figure 4-19: Abort Termination • • • • . . • • • • • • • • • • • • • • • • . • • • • • • 190

Figure 4-20: Unwind Propagation 190

Figure 4-21: Unwind Initiation 193

Figure 4-22: Reclassify Termination I Change Exception 195

Figure 4-23: Reject Termination 198

viii

Ch. 1

1.1 Introduction

Chapter One

Introduction J;;& Exception Processing

page 1

The organization and construction of large programmed systems has

been one of the continuing challenges faced by the computing community.

Over the years, the availability of increasingly powerful processors,

equipped with ever larger on-line stores, has been accompanied by

demands for increasingly complex programmed systems to control and ex­

ploit these information processing resources. Considerable experience

has been accrued in the construction of large programs such as operating

systems, data-base management systems, and telecommunications applica­

tions. But, as Randell points out, we are willing "to design and imple­

ment systems of a level of complexity which challenges, and often de­

feats, our ability to comprehend them" [Randell 71]. Despite the enor­

mous efforts which have been expended, large programs continue to be

very difficult to produce and, once produced, they are unreliable and

difficult to maintain or understand. The purpose of this thesis is to

investigate and develop system level facilities for responding to and

recovering from the detected failure of program or system components.

The "programming problem" has been attacked on many fronts. High

level programming languages allow the specification of a computation to

be encoded using a notation which has been adapted to the application

area of the computation. The notation produces useful redundancy while

Ch. 1. 1 Introduction to Exception Processing page 2

suppressing irrelevant details of the computation. Recently, so called

"structured programming" techniques [Dijkstra 76] have been advanced as

aids to understanding the program and the computation which it evokes.

One structured programming technique is to restrict the mechanisms

available for expressing the sequencing of the computation so as to make

the lexical structure of the program reflect the sequencing structure of

the corresponding computation. The structured programming discipline

tends to reduce the complexity of the sequencing structure of a program

by restricting the repertoire of sequencing constructs which can be used

in the program.

Programming languages and structured programming techniques are

concerned with the notation for expressing the computation. Other ap­

proaches to the programming problem endeavor to characterize the meaning

of the notation. In conjunction with research into the formal semantics

of programming languages [Hoare 73], program verification methods are

being developed [Wulf 76, Ambler 77, Euclid 77]. The goal of these ap­

proaches is to prove formally that the program evokes the desired compu­

tation. The techniques and programming habits necessary to produce cer­

tifiably correct programs are not fully developed. The possibility of

knowing that a program is correct is the chimera that motivates this

line of research.

Instead of considering issues of representation and meaning in pro­

grams, one can study production management techniques. These techniques

attack the traditional program production cycle of specify, code, debug,

and maintain at one or more of the production stages. Design specifica­

tion and documentation procedures range from the .a.a.~ [Boehm 75] to

Ch. 1. 1 Introduction to Exception Processing page 3

more rigorous specification techniques [Parnas 72, Robinson 75]. The

programming team has been studied [Baker 72, Brooks 75] , and even the

special psychological needs of programmers have been analysed [Miller

73, Weinberg 71]. Program testing methodologies continue to be advanced

[Goodenough 75b, Panzl 76], despite the fact that "program testing can

show the presence of bugs, but it is hopelessly inadequate for show-

ing their absence." [Dijkstra 72]

1 • 1. 1 Abstraction .filli1 Modularity

Another avenue of attack on the programming problem, and the one

that we shall be following, is the pursuit of modularity in the program

specification and implementation. Modularity is manifested through the

use of procedural and data abstraction mechanisms. Procedural abstrac-

tion is implemented by providing a primitive operation which evokes a

separately specified computation sequence. The "call" operation in con-

junction with the "return" operation permits the specification of compo-

site operations which can be invoked as if they were primitive opera-

tions.

"We should recognize the closed subroutine as one of the greatest
software inventions ••. because it caters for the implementation of
one of our basic patterns of abstraction." [Dijkstra 72]

Procedural abstraction mechanisms permit the description of a composite

operation to be separated from the description of how it is employed.

This organization allows us, in principle, to separate reasoning about

the implementation of a procedure from reasoning about the use of the

procedure.

Ch. 1 • 1 • 1 Introduction to Exception Processing page 4

If the atomic operations within one procedure interact freely with

operations in another procedure, we can no longer separate the reasoning

about the two procedures. The most common form of interaction is thru

the use of shared data. If access to particular data structures is lim­

ited to a few procedures, then reasoning about the state and the well­

formedness of these data structures can be restricted to reasoning about

the procedures which directly manipulate the data structures. In order

to achieve modularity, one must not only partition the program specifi­

cation (into procedures), but also restrict the interactions among dif­

ferent procedures by partitioning direct access to data structures.

Data abstraction is achieved by grouping together the procedures

which maintain the data structures representing the states of abstract

objects. The procedures and data structures defining a data abstraction

are combined to form what is called a subsystem, cluster [CLU 75] or

class [Dahl 70]. In order to restrict interactions among subsystems,

the execution environment of a subsystem must be isolated from other ex­

ecution environments. In order to control the passage from one environ­

ment to another, a guaranteed interface between subsystems is necessary.

The guaranteed interface enforces changes to the data accessing environ­

ment in response to the transfer of control from a procedure in one sub­

system to the beginning of procedure in another subsystem and in

response to the return of control to the calling procedure. Enforced

isolation permits us to reason about local program issues without con­

sidering the actions of programs in other subsystems. The guaranteed

subsystem interface defines the limits within which we must reason about

the actions of programs in other subsystems.

Ch. 1 • 1 • 1 Introduction to Exception Processing page 5

The partitioning of large computations into interacting subsystems

is not a new idea. However, the enforcement of isolation and the provi­

sion of a guaranteed interface between subsystems has received attention

only relatively recently [Schroeder 72, Redell 74, Jones 73, Walker 73].

Efforts on this front lie in programming language developments {e.g.

CLU, Alphard, and Euclid) and in operating system and machine architec­

ture studies (e.g. CAL, HYDRA, CAP, and Plessey).

Programming language advances, such as Simula [Dahl 70], CLU [CLU

75], and Euclid [Euclid 77] have illuminated isolation and interface is­

sues at the programming language level. Operating systems and machine

architecture studies approach the partition of large programs at a lower

level of system organization. At the system level, the interactions

among arbitrary machine language programs must be controlled. Enforcing

the isolation of programs belonging to different subsystems while, at

the same time, permitting controlled interactions between subsystems is

a protection and architectural problem. It is at the architectural lev­

el that we shall be discussing isolation and interactions among subsys­

tems.

1. 1. 2 Introduction 19. Exceptions

With suitable isolation and interface mechanisms, the distinction

between primitive and non-primitive operations (or subsystem calls) can

be minimized. In either case, the invoking program selects the opera­

tion, designates the parameters, and accepts the results produced by the

operation. The computation specified by a program is elaborated by exe­

cuting a sequence of primitive and non-primitive operations which update

Ch. 1 • 1 • 2 Introduction to Exception Processing page 6

the state of the system. As long as each operation performs as adver­

tised, the computation can proceed smoothly towards completion. Occa­

sionally, an operation may fail or be unable to produce its specified

results and effects. If some operation fails to perform as advertised,

the execution sequence must reflect the operation failure. The reported

occurrence of an operation failure is called an exception. The reaction

of the computation to the occurrence of an exception is called the .han::.

dling of the exception. The failure of an operation to compute its

specified result should not necessarily ruin the larger computation

which called for the failed operation to be executed. Many exceptions

can occur quite legitimately and ought to be handled gracefully,

Exception handling has long been one of the gray areas of program­

ming in which .ru1. ~ and special case techniques have been applied to

deal with specific run time failures. Recently there have been efforts

to design uniform exception handling mechanisms at the' programming

language level [Goodenough 75, CLU 75]. At the system level, however,

there have been few serious efforts to design mechanisms and policies

for controlling the response to run time exceptions and for recovering

from the effects of operation failures.

In practice, the subsystem implementor must specify the response to

run time exceptions. The programmer should assume that every operation

may fail. Such a defensive programming style can be encouraged by sup­

plying convenient language and system level facilities for specifying

the response to an exception. By assuming that every operation may

fail, one is forced to consider how to proceed in case of the failure.

Typical responses to reported failures include attempting alternate com-

Ch. 1 • 1 • 2 Introduction to Exception Processing page 7

putations, proceeding to the next task, or reporting failure to the cal­

ling level of the system. A uniform, system level exception processing

facility can help the programmer to think about exceptions and provides

a framework within which it is fairly easy to specify the response to an

exception.

The variety of exceptional events which may occur in sophisticated

systems composed of interdependent and interacting subsystems requires

flexibility in the response to operation failures. Typical exceptions

range from such primitive operation failures as page faults (an address­

ing failure) or arithmetic overflow to subsystem operation failures

caused by improper parameters or resource limitations. A uniform excep­

tion reporting mechanism, coupled with sophisticated exception process­

ing policies, can be used to initiate and control the response to the

various kinds of run time failures.

In an environment composed of interacting subsystems, the exception

processing mechanisms and policies must protect the integrity of the in­

dividual subsystem. Since subsystem boundaries may be crossed in deal­

ing with an exception, exception processing will interact with the

guaranteed isolation between subsystems. Protection problems involving

the relationships between the subsystems which cause, detect, and pro­

cess an exception must be resolved in the design of exception processing

mechanisms and policies.

The failure of an operation, whether it is a primitive, machine

level operation or a composite operation initiated by a subsystem call,

can often be overcome by appropriate recovery and retry sequences. A

uniform exception processing mechanism permits the treatment of hardware

Ch. 1 • 1 . 2 Introduction to Exception Processing page 8

and software detected exceptions to be placed on the same footing.

Various exception processing policies can be exploited to tailor the

response to the requirements of the program which invoked the failed

operation. Often the invoking program can specify alternative actions

which can be taken to recover from or minimize the deleterious effects

of the failure. For example, the failure of an attempted write at the

beginning of a non-existent file might be resolved by creating the file

and then retrying the failed write operation.

Examples of exception processing applications include a number of

facilities traditionally integrated into the system kernel. Many of the

supervisory functions provided by the operating system are initiated by

the failure of an attempted operation. Virtual memory systems are

driven primarily by addressing failures (page and segment faults), as

are dynamic linking facilities. Virtual machine monitors [Popek 7 4,

Goldberg 73] respond to the failure of "sensitive" instructions in order

to simulate their effect on the state of the virtual machine.

The overall control of a computation composed of a society of in­

teracting subsystems is another supervisory function which can make use

of exception processing facilities to obtain control and enforce compli­

ance with "high level" user and system decisions. Controlling a set of

mutually suspicious subsystems presents interesting and difficult prob­

lems in which the interests of individual subsystems must be protected

at the same time as the subsystem is being forced to comply with global

decisions made by the system or by the owner of the computation [Needham

71].

Ch. 1.1.2 Introduction to Exception Processing page 9

Exception processing protocols can also be exploited to implement

extensions to low level system facilities. This application is charac­

terized by situations in which the lower level supports a restricted

domain of operands or does not provide recovery procedures for unusual

situations [Parnas 76]. When the lower level fails, exception process­

ing at higher levels may be able to correct the cause of the failure or

to simulate the effects of the failed operation. In this way, higher

levels can effectively extend the domain or the functionality of a lower

level. The occurrence of low level failures and the recovery by the

higher level can be made transparent to the user thru the use of ap­

propriate exception handling policies.

1.1.3 Thesis flan

The goal of this research is to investigate exception processing

policies and mechanisms. We develop a uniform exception processing

mechanism for controlling the response to exceptions at all levels of

the system. The primitive exception processing mechanisms are extended

by exception processing policies which can deal with a variety of excep­

tional situations. In particular, policies for dealing with exceptions

in a process composed of cooperating but mutually suspicious subsystems

are developed and discussed.

In this chapter, we present an introduction to the topic of excep­

tion processing. A discussion of the causes of exceptions is followed

by a walk thru of an exception episode. An exception episode includes

exception detection, reporting, processing, and returning to the main

line computation.

Ch. 1 . 1 . 3 Introduction to Exception Processing page 10

In the second chapter we discuss a broad range of issues related to

exception processing. General issues associated with the organization

of the exception episode, naming of exceptions, exception processing

overhead, and the relationships among the subsystems participating in

the exception episode are disposed of first. The issues associated with

specifying the response to particular exceptions are handled before the

interesting questions surrounding the design of the handler selection

policy. The choice of a handler selection policy is the most critical

issue addressed in Chapter Two. Chapter Two also deals with the prob­

lems of how to terminate an exception episode so as to reflect the out­

come of the handler's recovery attempts.

In Chapter Three, a processor model supporting exception processing

operations in an environment of protected, mutually suspicious subsys­

tems is presented. The processor model illustrates how the base system

can implement protected subsystem interfaces and how the basic exception

processing actions can be decoupled from the policy decisions which

select handlers and control the resumption of normal processing.

Chapter Four continues the implementation of an exception process­

ing facility by describing how the policy module responsible for select­

ing and activating handlers and controlling the evolution of an excep­

tion episode can be implemented as an ordinary subsystem. An interest­

ing aspect of the implementation of the exception processing policy

module is that the programs of the exception processing subsystem are

themselves subject to exceptions. Exceptions which occur while process­

ing an exception can, for the most part, be taken in stride without get­

ting involved with special protocols or unusual processing. The last

Ch. 1 • 1 • 3 Introduction to Exception Processing page 11

chapter of the thesis summarizes the key points discussed in the body

and states the conclusions of the research.

1.2 Anatomy Qt .an Exception

In this section we first discuss the relationship between pro­

grammed abstractions and isolated or protected subsystems. The

remainder of this section is a discussion of the several phases of an

exception episode. Exception causes as well as exception detection and

reporting are discussed briefly. After introducing exception reporting

and handling, we discuss the termination of an exception episode.

1 • 2. 1 Abstractions~ Subsystems

Recent developments in the art of system design have emphasized

that complex systems should be designed and implemented as an interact­

ing set of abstractions [Parnas 72, Wulf 76, Lampson 76, Dijkstra 68].

Each abstraction defines an object type (or types) in terms of a set of

operations which may be performed on instances of objects of the ap­

propriate type. Starting with a set of primitive abstractions, it is

possible to construct a hierarchy of abstractions in which complex

abstract objects are implemented in terms of previously defined objects.

Among the advantages of this approach is the fact that the functionality

at each level of abstraction can be described in such a way that the

design can be understood and evaluated without considering the internal

details of other levels of abstraction.

Ch. 1 • 2. 1 Introduction to Exception Processing page 12

The use of abstractions permits the development of complex systems

using a "building block" approach. Operating systems are a prime exam­

ple of complex systems which can profit from a systematic decomposition

and hierarchical implementation. When composing abstractions, it is as­

sumed that the programs which make use of an abstraction do not need to

take into account the internal mechanisms used to implement the opera­

tions of the abstraction. The complementary criterion, that the imple­

mentor of an abstraction need not make assumptions about the programs

which may call upon his/her abstraction, implies that the correctness of

the implementation (program text, data structures, etc.) will not depend

on how the abstraction is used [Wulf 76, Lampson 69]. An organization

in which implementation details are concealed from the user of an

abstraction [Liskov 74, Parnas 72] facilitates the composition of in­

dependently implemented modules and conforms with the principles of pro­

gramming generality [Dennis 68].

The specification of an abstraction describes what the abstract

level does without detailing how it is accomplished [Parnas 72, Robinson

75]. The implementation of an abstraction will include programs and

data structures designed to simulate the specified effects of each of

the operations of the abstraction. The implementation of an abstraction

is known, for our purposes, as a subsystem. Each of the operations of

the abstraction is associated with a gate or entry point to the subsys­

tem. We will often refer to subsystem gates as "operations of the sub­

system" to emphasize their relationship to the abstract operations they

simulate. The programs implementing an abstract operation may discover,

during execution, that they cannot produce the specified effects of the

operation being simulated. The reported failure of an operation

Ch. 1 • 2. 1 Introduction to Exception Processing page 13

invocation to produce the specified effects of the operation is called

• an exception An important part of the specification of an abstrac-

tion is the list of the exceptions which might be reported by each of

its abstract operations.

1.2 .2 Exception Causes

Operation exceptions can occur for various reasons. One source of

exceptions is the existence of partially defined operations. If the ef-

feet of an operation is undefined for some values of the input parame-

ters or for some states of the data base associated with the subsystem

or for some combinations of parameter values and data base states, inap-

propriate use of the operation would cause an exception. These excep-

tions are sometimes called domain failures [Goodenough 75].

Resource limitations can also lead to exceptions if the implementa-

tion does not have, or is unable to obtain, sufficient resources

(memory, I/0 devices, etc.) to achieve the effects of an operation. For

example, arithmetic overflow can be thought of as occurring because the

adder and accumulator are not big enough to perform the operation.

Resource exceptions are particularly difficult to circumvent. Attempts

to guarantee sufficient resource availability at all times for all sub-

systems leads to unwanted dependencies between otherwise unrelated parts

of the system. Insufficient resources can effectively prevent the sue-

• While other terms, such as error, condition, or undesirable event
[Parnas 76], have been used to describe run time failures, we prefer
the more neutral term which reflects the, hopefully, infrequent oc­
currence of failures and the fact that failures can be anticipated and
may eventually lead to desirable results.

Ch. 1 .2 .2 Introduction to Exception Processing page 14

cessful completion of many operations.

The implementation of an abstraction will normally make use of

primitive and non-primitive operations provided by the base level

(hardware) and by other subsystems. The failure of an operation used by

a subsystem implementation may prevent the invoking subsystem from pro­

ducing its specified effects. While the failure of an invoked operation

does not necessarily imply that the invoking subsystem must fail, it is

often the case that there is no reasonable recovery action which would

enable the calling subsystem to produce its specified effects and

results. The propagation of failures from lower levels of the hierarchy

of subsystems/abstractions is a frequent cause of failures at higher

levels of the system. Of course, if the system is to be reliable, the

buck must stop somewhere.

Several authors [Zilles 74, Parnas 76, CLU 75] have distinguished

between exceptions caused by anticipated anomalies and exceptions

resulting from unforeseen developments. The latter form of exception is

sometimes termed a "failure of mechanism" and usually manifests itself

by causing the system to enter an inconsistent or "impossible" state.

Programming mistakes (bugs), hardware failures, or corrupted data can

cause failures of mechanism. Like other exceptions, failures of mechan­

ism can be detected and, sometimes, corrected.

1 . 2. 3 An. Exception Episode

Regardless of its cause, an exception episode can be broken into

several phases. Exception processing begins with the detection of a

Ch. 1. 2. 3 Introduction to Exception Processing page 15

condition which 9revents the successful completion of an operation invo­

cation. Once the operation failure has been discovered, its occurrence

must be reported to the rest of the system. Only after the exception

has been announced to the exception processing facility can the proper

response be initiated. The exception facility selects and initiates a

handler for the exception. The handler initiated by the exception pro­

cessing facility supplies the response to the exception. The exception

handler will attempt to recover from the operation failure. When

recovery actions have been completed, the exception episode must be ter­

minated. Depending on the outcome of the recovery actions of the

handler, different continuations of the suspended main line computation

will be in order. Exception detection, reporting, handling, and the

termination of the exception episode comprise the standard exception

processing scenario. Of course, furthe~ exceptions may be reported dur­

ing an exception episode. An exception during exception processing

causes a new exception episode to be initiated. When the second level

exception episode terminates, the first exception episode can be contin­

ued.

Three subsystems are involved in an exception episode. The subsys­

tem invoking the operation which detects and reports the exception is

known as the invoker. The invoker and the invoker's environment will

determine how the exception is to be processed. The subsystem which

detects and reports the exception is called the signaller. For primi­

tive operations, the signaller is the hardware or the kernel. The sub­

system which is called to deal with the exception is the handler of the

exception. In general the invoker and the signaller will be different

subsystems. The handler may or may not be part of the invoking

Ch. 1 .2. 3 Introduction to Exception Processing page 16

subsystem. The relationships between these three subsystems play impor-

tant roles in the processing of an exception.

1. 2. 4 Failure Detection

The timely detection of operation failures is extremely important.

"We know that the only way to avoid error is to detect it, that the only

• way to detect it is to ... inquire." Also, "the aim should be that

all components have a reliable mechanism for error detection, if not for

error recovery."+ The discovery of exceptions during execution implies

that the failure detection algorithms must be invoked at the appropriate

moments. Many failures are easily detected by checks embedded in the

subsystem program. Range and consistency checks on the parameters of a

subsystem invocation can be used to detect improper use of the subsys-

tem. The compatibility between a contemplated action and the current

state of the subsystem's data base can also be checked dynamically.

One of the most generally applicable mechanisms for detecting ex-

ceptions is the use of redundancy. Error detection can be based on

redundancy and consistency checks within the data structures maintained

by the subsystem. Internal check sums, "checkable" pointers, and range

checks are among the techniques which use redundant information to veri­

fy the correctness of stored data. Data structures designed to make use

of consistency controls which can detect and recover from "impossible"

states are called robust data structures [Lampson 74). Dynamic

• J. Robert Oppenhimer, quoted in Cities .i.n Flight by J. Blish.

+ Randell 71, p. 107.

Ch. 1. 2. 4 Introduction to Exception Processing page 17

verification of data consistency can not only detect errors, but also

limit their propagation once they have occured.

Another failure detection technique is based on the independent ve­

rification of the results of the subsystem operation [Fabry 73, Horning

74]. Instead of integrating the checking code into the subsystem, the

operation results are checked by independent algorithms (a form of algo­

rithmic redundancy). These verification algorithms can recalculate the

results using different methods or by checking that the results meet

certain specifications (e.g. SQRT(x) • SQRT(x) = x ± epsilon). One

problem with relying solely on this approach is that many valuable con­

sistency checks are closely related to the function being performed.

They are often heuristic tests which are intimately associated with the

logical and physical structure of the data and algorithms used to imple­

ment the operation. Outside of the execution environment of the subsys­

tem activation, information about the initial and intermediate states of

the subsystem and its data structures is not available to the error

detection algorithms.

Execution time parameter checking can be deferred under certain

circumstances. If a parameter to one subsystem is to be used by that

subsystem as a parameter to another subsystem, the parameter checking

can often be left to the second subsystem. Of course, the first subsys­

tem must be prepared to field the exception signalled by the second sub­

system if the parameter is rejected by the second subsystem. The trade

off between redundant parameter checking and the added complexity in­

volved in recovering from the parameter exception signalled by the

second subsystem must be considered in the design of the exception

Ch. 1 .2. 4 Introduction to Exception Processing page ,a

detection algorithms of the subsystem.

The importance of timely and effective failure detection mechanisms

stems from the fact that no response to the exception can be undertaken

before it is discovered. 8arly detection prevents the propagation of

the failure to other parts of the system and pinpoints the cause of the

exception. The subsystem designer should take into account the means by

which satisfactory subsystem operation can be verified and unsatisfacto­

ry behavior detected.

1 • 2. 5 Exception Reporting

Once it has been discovered that a subsystem operation cannot be

completed, the failure of the operation must be communicated to the ex­

ception processing facility. Note that if the problem can be corrected

by the subsystem which detects the anomaly, the subsystem operation has

not failed and there is no need to signal an exception. Sometimes an

impending failure can be circumvented locally by forcing parameters to

acceptable values, by repairing "robust" data structures, or by applying

alternate algorithms to achieve the effects of the operation. If, on

the other hand, a locally uncorrectable error has been detected, the at­

tempted operation must be abandoned. Before relinquishing control to

the exception processing facility, the signaller should return its data

structures to a consistent state.

Ideally, a failed operation should have no (observable) effects

[Parnas 72]. Conceptually, one can imagine an infallible oracle which

is consulted before the operation is undertaken to find out whether the

Ch. 1.2.5 Introduction to Exception Processing page 19

• operation would fail for any reason If the operation would not

fail, execution commences and completes successfully (of course). 0th-

erwise, the operation is not attempted and the failure is signalled to

the exception processing facility. It appears to the invoker of the

failed operation that the operation was not invoked.

In order to eliminate the side effects of failed operations, the

data structures maintained by the subsystem should be restored to their

state before the invocation of the subsystem. Restoring the state may

be difficult if the exception is detected after the subsystem's data

structures have been updated. Not only must local data structures be

restored, but changes made by sub-operations called before the exception

was detected must also be undone. For example, files opened by the

failed operation should be closed before the exception is signalled to

the exception processing facility.

In complex situations a recovery log can be maintained to record

the sequence of actions to be undone in order to reverse the effects of

subsystem execution. A checkpointing facility, such as the recursive

cache associated with the recovery block scheme [Horning 74], can be em-

ployed to restore the state of the subsystem following the detection of

an exception. If messages to the outside world have been sent or ac-

cepted (e.g. fire the rocket), some form of "compensation" [Bjork 72]

should be undertaken to nullify or mitigate their effect •

• This model for explaining the detection and reporting of exceptions is
due to Paul McJones who also implemented a micro coded APL interpreter
which conformed to the model [McJones 73].

Ch. 1. 2. 5 Introduction to Exception Processing page 20

Although it is less desirable than undoing all the effects of a

failed operation, it will be necessary, on occasion, to retreat from the

no effects policy. It is sometimes possible to define intermediate

states of an operation which may be retained after a failure is detect­

ed. If the failed subsystem has reached a state which could legitimate­

ly occur in response to operations of the subsystem, the subsystem can

be said to be in an interface consistent state. An interface consistent

state is one which could be observed, under normal circumstances, at the

subsystem interface.

If an operation is left partially completed, the invoker of the

operation should be provided with information which indicates how much

of the operation has been completed [Parnas 76]. This can be achieved

either by providing operations which return the necessary information or

by updating one of the operation parameters which serves as a progress

indicator. The Move Character Long (MVCL) instruction of the IBM 370

system [IBM 370] is an example of how partially executed operations can

be terminated and continued. A partially executed MVCL instruction can­

not be undone because of the destruction of the target string or re­

executed because of possible overwriting of the source string. However,

the parameters to the MVCL (length, and string pointers) are updated by

the operation to indicate how many characters have been copied. This

permits the invoker to continue the operation after it has been inter­

rupted by, say, a page fault.

After restoring the subsystem state following the detection of an

exception, the exception is signalled to the exception processing facil­

ity. The signal operation terminates the activation of the signaller

Ch. 1. 2. 5 Introduction to Exception Processing page 21

and transfers control to the exception processor. The exception proces­

sor must select and invoke a handler to respond to the signalled excep­

tion. The selection of a handler for the exception can be based on the

nature of the exception. To assist in the selection of a handler, the

signaller should supply an exception name to identify the exception be­

ing signalled.

1 .2 .6 Exception Handling

Once the signaller has notified the exception processing facility,

its participation in the exception episode is over. The subsystem

operation selected by the exception processing facility to handle the

exception is invoked by the exception processor. The rules used to

choose the handler comprise the handler selection policy. Various poli­

cies will be discussed in Chapter Two. The handler may be part of the

invoking subsystem, or it may be in a different subsystem.

The handler may be able to recover from the exception by simulating

the effects of the failed operation using alternate algorithms designed

to circumvent the problems encountered by the signalling subsystem. For

example, the failure of an in-core sorting operation might be overcome

by resorting to a sort-merge which uses secondary storage. Returning

the largest representable number might be an acceptable simulation of an

arithmetic operation which has signalled overflow. The Newcastle group

[Horning 74, Anderson 76] is investigating this form of recovery in con­

nection with their Recovery Block approach to exception processing.

Ch. 1.2 .6 Introduction to Exception Processing page 22

Instead of simulating the effects of the failed operation, the

handler may be able to correct the cause of the exception. There are

many applications for this kind of recovery. Fetching the missing page

into main memory will alleviate the cause of a page fault. The failure

of an attempted write to the beginning of a non-existent file can be

overcome by creating the file. Segment activation and initiation in

Multics [Bensoussan 72] correct the cause of segment faults in that sys­

tem. The copy-on-write rule in TENEX [Bobrow 72] is implemented by mak­

ing a private copy of a shared page in response to the exception gen­

erated by an attempted update to the shared page.

It may be that the handler is unable to recover from the exception

either by simulating the failed operation or by correcting the cause of

the failure. This may mean that the invoker will be unable to produce

the specified effects of the operation it was in the process of perform­

ing. If the handler determines that the invoker cannot complete its

mission, an exception at the level of the invoker has been detected.

The invoker's state must be restored and the exception signalled to the

invoker's invoker. From the point of view of the invoker's invoker, it

is the invoker which has failed. As the exception propagates from cal­

lee to caller, each level is given a chance to recover or to cleanup and

signal the exception to its caller. Eventually, some subsystem will ei­

ther be able to recover from the exception or, more likely, abandon the

current task and proceed to some other task. For example, the highest

level of a payroll program, when confronted with an exception caused by

inconsistent data for one employee, could print an error report and then

continue with the pay computation for the next employee.

Ch. 1.2. 7 Introduction to Exception Processing page 23

1.2. 7 Episode Termination

If the exception handler succeeds in recovering from the exception,
"

either by simulating the effects of the failed operation or by correct-

ing the cause of the failure, the invoker can be resumed. If the failed

operation was simulated by the handler, the invoker can be continued as

though nothing had happened. If the cause of the exception has been

corrected, then the invoker can re-execute the failed operation.

The resumption of the invoker terminates the exception processing

episode. The exception handler should return control to the exception

facility with an indication of whether the instruction which led to the

exception should be retried or should be considered completed. If the

instruction in the invoker which led to the exception has been simulated

by the handler, the handler may need to return the results of the opera-

tion to the invoker.

The handler may also report that it has not recovered from the ex-

ception. The handler may indicate that it was unable to recover but,

the exception processor should to try to find other handlers for the

same exception or for a different exception. In this case, the excep-

tion episode can continue with the activation of a new handler. The

handler may also report that the exception has led to the failure of the

invoker. In this case, the invoker will become the signaller of a new

exception and a new exception processing episode will be initiated after

the invoker has been terminated. Chapter Three discusses the mechanisms

for terminating exception episodes while Chapters Two and Four discuss a

variety of handler terminations and the exception handling policies they

support.

Ch. 1.2.8 Introduction to Exception Processing page 24

1.2.8 Anatomy Summary

The processing of an exception proceeds in several phases and in­

volves the subsystem which detects and reports the exception (the sig­

naller), the subsystem which called the signaller (the invoker), and the

subsystem which responds to the exception (the handler). Exception pro­

cessing begins with the detection of the failure by the signaller.

After restoring its state, the signaller reports the exception to the

exception facility which selects and calls a handler for the exception.

The choice of the handler is conditioned partially by the exception name

provided by the signaller. Depending upon the outcome of the handler's

recovery actions, the invoker can be continued or the exception can be

propagated to the invoker's invoker. The overall control of exception

processing is provided by the exception processor which selects handlers

and manages the transfer of control to the handlers as well as the ter­

mination of the exception episode.

Ch. 2 page 25

Chapter Two

Issues _ang_ Answers

2.1 Introduction

This chapter discusses a wide variety of issues related to excep­

tion processing. We begin with several general issues relating to the

organization of the exception episode. These issues are concerned pri­

marily with the beginning of an exception episode. The reporting and

classification of exceptions, the relationships among the subsystems in­

volved in an exception episode, and the the issues surrounding activa­

tion and communication with the handler are all discussed.

Section 2.3 isolates the issues surrounding the association of

handlers with the programs on whose behalf they operate. Handler

specifications must meet a variety of requirements in order to reflect

and protect the interests of the programs to which they apply. Given a

facility for specifying handlers, there must be a rule for selecting a

particular handler specification from the set of applicable specifica­

tions. The handler choice rule which selects the handler to respond to

an exception is of critical importance. In an environment supporting

protected subsystems, the handler choice rule must not compromise the

integrity of the subsystems involved in the exception episode.

Finally, this chapter discusses the various ways in which the

handler should be able to control the continuation of the computation

which encountered the exception. Different ways of terminating an

Ch. 2. 1 Issues and Answers page 26

exception episode are needed to reflect the outcome of the handler's ef­

forts to recover from the exception. Facilities for continuing or ter­

minating the computation, along with ways of passing the buck to other

handlers, allow the handler to indicate what should happen next.

2.2 Exception Episode Issues

This section discusses some of the differences and similarities

between language level and system level exception processing and the

separation of exception policy and mechanism. touched upon briefly.

The issues surrounding exception reporting and the disposition of the

signaller are examined along with the problems of exception processing

overhead and efficiency. The classification of exceptions and communi­

cation with the handler are examined at the end of this section.

2 .2. 1 Language~ System Level Exception Processing

Exception processing can be discussed either in terms of linguistic

constructs embedded in a programming language or in the context of the

extended interface provided by the operating system kernel. While most

of the issues raised when considering exception processing at the pro­

gramming language level also apply to the processing of exceptions at

the operating system level, the systematic treatment of exceptions at

the system level imposes additional constraints on the design of the ex­

ception processing mechanisms and policies. These constraints stem from

the fact that a general purpose operating system is charged with su­

pervising the harmonious execution of independently generated machine

Ch. 2. 2. 1 Issues and Answers page 27

language representations of programs written by different people and

translated by different compilers.

Protection is one important issue in system level exception han­

dling which cannot be accomplished totally at the language level.

Language level, compile time checking of the compatibility between pro­

gram components is a useful tool for discovering inconsistencies in the

program text. However, when programs which have been prepared by dif­

ferent language processors are to interact at run time, it is not always

possible to verify that the interfaces between them are understood in

the same way by all parties. This is especially the case in environ­

ments which support independent programming language systems and the

dynamic binding of subsystem invocations to subsystem instances. If ar­

bitrary machine level programs can be executed along with compiled high

level language programs, interface compatibility cannot usually be veri­

fied prior to execution.

With respect to exception processing, the compatibility between ex­

ception signals in one subsystem and handler specifications in the in­

voking subsystem can be checked at compile time or dealt with during ex­

ecution after a signal has been raised. Some modern programming

language systems [CLU 75, Wulf 76] assume that the program modules to be

combined are written in the same language and that the compiler can

check the compatibility between different modules. Goodenough's propo­

sals for exception processing [Goodenough 75] also require that the com­

piler be able to check that there is always a handler for a signalled

exception. This sort of compile time checking is similar to checking

the type compatibility of procedure parameters during compilation.

Ch. 2 .2. 1 Issues and Answers page 28

One problem with language level control of the compatibility

between exception signals and handler specifications is that exception

processing facilities outside the scope of the language cannot be in­

cluded. Particularly, system supplied default handlers and handlers im­

posed by the system fall outside of the purview of the language proces­

sor. If programs prepared by uncertified translators are allowed, it

may be impossible to tell which exceptions are signalled by these pro­

grams. The lack of global knowledge about which exceptions are possible

makes it impossible to assure that signals and handlers are well

matched.

At execution time, a system level exception facility should be able

to find some way to continue. The ability of the system to do this in

every case is required if the system is to allow reliable programs to be

written. The show must go on because some subsystems may be in a state

which requires their resumption to release resources and restore their

data bases to a consistent state. Finding a reasonable continuation in

the face of unanticipated exceptions, without compromising the integrity

of the subsystems involved, is one of the problems which should be

solved by the system exception processing facility.

At the level of the language processor, on the other hand, good

design principles impose constraints on exception processing that would

be unacceptable at the system level. It is common for the run time en­

vironment to deal with exceptions for page faults, hardware errors, vir­

tual machine traps, resource exhaustion, and so on, and to shield the

user from the complications of processing the exceptions. The result is

typically a simplified set of exception processing facilities at the

Ch. 2. 2. 1 Issues and Answers page 29

language level which are designed for ease of correct use but which rule

out certain techniques required for dealing with the more bizarre types

of exceptions. While recognizing the importance of usable exception fa­

cilities at the language level, we focus instead on a more general fa­

cility which would form an appropriate base for implementing the simpler

language level exception mechanisms.

Separately compiled, mutually suspicious subsystems require an ex­

ception processing facility which enforces orderly transfers of control

in response to exceptions discovered by one subsystem, but handled by a

different subsystem. The ability to combine mutually suspicious subsys­

tems written in different programming languages implies that the manage­

ment of subsystem interactions, including exception signals, must be im­

plemented and enforced by operating system facilities which are indepen­

dent of the language processors which help to prepare the executable

machine level programs.

2.2.2 Policy/Mechanism separation

In a hierarchically structured system, facilities implemented at

lower levels of the system are used by higher levels. Intervening lev­

els of the system may restrict or extend the ways in which the low level

facilities are used by the higher levels. The intervening level is said

to establish and enforce a policy restricting the manner in which the

low level mechanisms are exercised. Of course, programs which use the

policy controlled mechanism see the policy/mechanism combination as a

facility or mechanism which can be further regulated. In a multi-level

system, this organization can lead to a hierarchy of policies in which

Ch. 2.2.2 Issues and Answers page 30

one level's policy becomes the next level's mechanism. The multi-level

design of the resource allocator in IBM's OS/VS2 [Lynch 74) is an exam­

ple of a policy hierarchy, as is the memory management organization sug­

gested by Dijkstra [Dijkstra 74).

The separation of the policy aspects of a facility from the use of

the basic facility permits high level, decision making programs to be

removed from the lower level. In the policy driven scheduling facility

described by Bernstein and Sharp [Bernstein 71], the choice of a

scheduling strategy for a given process is a policy decision made out­

side of the portion of the system responsible for short term processor

scheduling. The dispatcher bases its scheduling decisions on a

parameterized priority rule for each process. The policy level in that

system is able to set the parameters which will cause the lower level to

supply the appropriate class of service to each process. The thrashing

control policy described by Shils [Shils 68] is another example of a

policy which regulates an underlying mechanism.

Another reason for separating policy from mechanism is so that dif­

ferent policies can be defined in order to cater to different patterns

of usage of the underlying facility or to tailor the facility to the

needs of the user. Multiple linker policies described by Janson [Janson

74] permit the dynamic linking facility to be controlled differently in

each domain of a Multics process. In HYDRA it is possible to define

different scheduling policies for different classes of processes [Levin

75).

The means by which a policy program is able to enforce its deci­

sions are usually related to the access control mechanisms of the

Ch. 2.2.2 Issues and Answers page 31

system. Privileges extended to the policy level permit it to exercise

the lower level in ways denied to the user of the policy/mechanism com­

bination. If some other subsystem could also exercise the policy prero­

gatives, it would be difficult to assure a consistent interface to the

controlled mechanism. In order to support multiple policies controlling

the same facility, the policy prerogatives must apply, not to the facil­

ity being controlled, but to instances of the objects supported by the

facility. In HYDRA, for example, a scheduling policy module must have

particular rights for the processes it schedules. [Levin 75].

The behavior of a policy controlled mechanism will depend on the

policy currently being enforced. In many cases, the user of a

policy/mechanism combination is not given any choice as to which policy

is imposed upon the use of the underlying mechanism. For example, the

system must often be able to select the policies which control the use

of its resources and facilities. However, the user of a policy con­

trolled mechanism may depend upon the behavior associated with a partic­

ular policy. If the choice of a policy is imposed on the user, the user

must at least be able to inquire as to which policy is being imposed.

If the imposed policy is not appropriate to the task at hand, the user's

program can, at least, refuse run under that policy. Note that the

mechanism by which the user learns the identity of the current policy

must be implemented outside of the policy module. It must not be possi­

ble to lie to the user about which policy is in force as is the case for

the JSYS trap mechanism in TENEX [Thomas 75].

Exception processing lends itself to a policy/mechanism decomposi­

tion. The mechanisms used to signal an exception, activate a handler,

Ch. 2.2.2 Issues and Answers page 32

and resume the main line can be separated from the policy which deter­

mines which handler is to respond to the exception. Signalling, ac­

tivating the handler, and returning to the main line are subsystem

transfer operations. The handler choice is a policy decision which can

be implemented by a policy module. The policy module in this case is a

distinguished subsystem the exception processor. The exception pro­

cessor can be activated by the signal operation and will enjoy certain

privileges with respect to the resumption of the main line and access to

other environments. Different exception processors can control the pro­

cessing of exceptions in different processes. Chapter Three discusses

the implementation of the mechanisms for signalling exceptions and

resuming the main computation. Chapter Four is concerned with the im­

plementation of a particular exception processing policy.

Not only can the exception processing facility be given a

policy/mechanism decomposition, but exception processing can also be ex­

ploited to help implement mechanism/policy separation for other system

and user facilities. In order to implement a policy/mechanism separa­

tion, the policy module must receive control at the appropriate moments

in order to enforce its control over the use of the mechanism. The ex­

ception processing facility can be exploited to transfer control to the

appropriate policy module in response to exceptions signalled by the

controlled mechanism. The exception processor and its handler selection

rule can be relied upon to activate the appropriate policy module at de­

cision points signalled by the mechanism level. For example, the selec­

tion of the name binding algorithm to be invoked in response to sig­

nalled linkage faults can be enforced by the exception processor [Janson

74].

Ch. 2. 2. 3 Issues and Answers page 33

2.2.3 Uniform Exception Reporting

In order to initiate exception processing following the detection

of an exception, the signaller must somehow inform the rest of the sys­

tem that it cannot complete the operation it was called upon to perform.

In some systems the signaller may, depending on its own classification

of the exception, initiate different sorts of exception processing. In

CAL [Lampson 69, CAL 69, Sturgis 73], the signaller would execute a

'failure-return' if it thought that the operation could possibly be sal­

vaged. If an error of usage was detected, the signaller performed a

'return-with-error. ' In Multics, exceptions can be communicated by re­

turning status codes to the caller or by using the Multics condition

mechanism [MPM 75, Organick 72]. Similarly, in OS/VS2 exceptions are

signalled either by returned status codes or by performing an ABEND

[OS/VS2 75).

The problem with supporting multiple exception reporting modes is

that the signaller must decide which mode is appropriate for the excep­

tion in hand. In general, the meaning of and response to the exception

are defined by programs residing in different environments. The sig­

naller is incompetent to make the decision as to which signalling mode

is appropriate because the response to the exception depends upon why

and for whom the failed operation was invoked. For example, the dis­

tinction between failures-of-mechanism or unanticipated failures, and

specified or anticipated exceptions is not always clear cut [Melliar­

Smith 77). A uniform exception reporting facility permits the response

to any reported failure to be handled without requiring the signaller to

select one or another exception reporting protocol.

Ch. 2. 2. 3 Issues and Answers page 34

Uniform signalling or exception reporting should extend to hardware

as well as software detected exceptions. Hardware detected exceptions

should be processed in the same ways as software reported exceptions.

This is especially true in systems in which the hardware/soft~are boun­

dary migrates on different models of the equipment (e.g. PDP 11 systems

with or without floating point hardware and the IBM S/370 with or

without VH assist). Many systems treat some or all hardware detected

exceptions differently from software reported failures. The Hul tics

[Organick 72] and IBM [OS/VS2 75] systems treat some hardware level ex­

ceptions specially. Some exceptions are processed using the system ex­

ception protocols, while others are given special treatment. The Cam­

bridge system [CAP 76c] seems to provide a uniform exception reporting

mechanism. The ability to turn hardware exceptions into exception pro­

cessor calls is also available in Burroughs systems [Organick 71].

Decisions as to how an exception is to be processed should not be

made by the signaller. A uniform exception signalling mechanism decou­

ples exception reporting from exception processing. If all exceptions

are reported in the same way, the response to any exception can be con­

trolled by uniform mechanisms and policies.

2.2.4 Disposition .2!. .1w:. Signaller

Following the detection of an exception, the signaller must report

it to the system exception facility. What should happen to the subsys­

tem activation of the signaller? The system response to the failure of

an operation usually requires that the system backup to a consistent

state from which alternative computations can be initiated to circumvent

Ch. 2.2.4 Issues and Answers page 35

the reported exception. If the signaller has determined that it cannot

complete successfully, it should give up cleanly and raise the excep­

tion. A subsystem transfer primitive which raises an exception and ter­

minates the signaller activation permits excention processing to proceed

from a clean state.

The subsystem most directly affected by the failure of the signall­

er to perform as advertised is the signaller's caller. If the signaller

cannot complete normally, it is the signaller's caller who must respond

to the exception. Maintaining the activation of the signaller compli­

cates the environment in which the invoker's handler must operate. To

leave things in a clean state, the signaller should fold its tent neatly

and leave the field. If the signaller could circumvent its own failure,

then it should do so instead of reporting an exception.

If the signaller restores its state before reporting the exception,

the handler can pretend that the failure was detected before the failed

operation was initiated. This allows the handler to operate strictly on

behalf of the invoker of the failed operation. If the signaller activa­

tion is not terminated in a clean state, the handler cannot ignore the

signaller while it attempts to recover on behalf of the invoker. If the

handler must be responsible to both the invoker and the signaller, pro­

tection problems are introduced and the recovery task becomes more com­

plex.

Existing and proposed exception facilities dispose of the signaller

in different ways. The recovery block scheme [Horning 74] is very care­

ful to restore and terminate the signaller cleanly. PL/I, on the other

hand, folds the signaller when the signaller is the system (e.g.

Ch. 2.2.4 Issues and Answers page 36

conversion, overflow, end-of-file), while maintaining the signaller and

I

its state for software reported exceptions. Lampson's and Goodenough's
I

proposals [Lampson 74b, Goodenough 75] opt for holding the signaller ac-

tivation with controls on whether the signaller can be continued or must

I

be folded later by a sort of multi-level exit from the handler.
I

One case in which the activation of the signaller might be

preserved occurs when the signaller wishes to notify or seek advice from

its caller. This application, discussed extensively by Goodenough

[Goodenough 75], processes the exception on behalf of the signaller's

caller (the invoker) so that the caller's handler can respond to the

condition reported by the signaller. This use of the exception facility

to provide a communication channel between a subsystem and its caller is

orthogonal to the main purpose of the exception facility which is to

provide notification of, and initiate recovery from failures of a system

component to perform its specified task.

2.2.5 Exception Processing overhead

An important consideration in the design of exception processing

strategies is the main line overhead involved in preparing for eventual

exceptions. One expects that many possible exceptions will seldom oc-

cur. The expected ratio of calls to exceptions is a good yardstick to

apply to the design of the exception profile of subsystem operations.

Simon's principle of complexity states that adjacent levels of a hierar-

chy should differ by an order of magnitude in the frequency of their ac-

tivation [Simon 68]. If an operation exception occurs frequently, rela-

tive to the number of operation invocations, it should perhaps be recast

Ch. 2.2.5 Issues and Answers page 37

as a result or a returned status of the operation.

Exception processing overhead can be distributed between program

preparation time (e.g. compilation and subsystem creation), run time

(normal main line execution), and exception time. If exceptions are in­

frequent, any continuing run time overhead may be unacceptable. It is

possible to exchange extra processing at program preparation time and at

exception time for less run time overhead preparing for possible, but

improbable exceptions. In most cases, the main line should not have to

execute any extra instructions solely to test for, or prepare for excep­

tions which have not yet occurred [Lampson 74b].

Some exception processing strategies are ruled out by this overhead

principle. The use of returned status codes in Multics [Organick 72,

MPM 75] and IBM OS/VS2 [OS/VS2 75] produces main line overhead whether

or not exceptions occur. The less expensive the operation, the greater

becomes the relative cost of the status code checking. Returned status

variables must be passed across all subsystem boundaries and must be

checked on every call. Systems which rely on status variables to signal

exceptions are filled with status variable manipulations and tests which

are executed whether or not an exception occurs. The situation is not

unlike the case for interrupts in the CPU; constant testing for some

change of status can be replaced by facilities to automatically transfer

control when the status changes.

Passing extra parameters to control exception processing [Parnas

72] also adds overhead in the normal case. To maintain uniform excep­

tion reporting, every operation would require the extra parameter(s).

Setup calls, such as the PL/I ON statements [Nobel 68] and the OS/VS2

Ch. 2.2.5 Issues and Answers page 38

ESTAE and SPIE facilities [OS/VS2 75], add overhead by requiring the ex-

ecution of run time code and calls to maintain and control the exception

processing environment. If setup calls must be executed by every sub-

system activation to control it~ exception processing environment, con-

siderable overhead will be involved if subsystem calls are frequent.

The condition mechanism in Multics requires that the procedure entry

prologue update and thread "condition blocks" in the stack frame if the

• procedure is to enjoy its own exception processing environmen: [Organ-

ick 72]. The CAL system [Sturgis 73, CAL 69] did not suffer from main

line exception processing overhead. Lampson's and Goodenough's propo-

sals [Lampson 74b, Goodenough 75] avoid main line overhead by compiling

information to control the handler choice at run time.

2.2.6 Exception Naming

Once an exception has been reported, the exception processing fa-

cility must select a handler for the exception. Unless the exception is

classified in some way, it is impossible for the exception facility to

provide an exception specific response. The exception~ identifies

the exception so that the exception facility can select an appropriate

handler. Several issues are raised when we consider how an exception

ought to be identified.

To begin with, it must be possible to add new exceptions to the

system. An expandable exception set permits the definition of new ex-

ceptions to characterize the failure modes of newly implemented

• This may be a case in which the sins of the system programming
language have been visited on the operating system.

Ch. 2.2.6 Issues and Answers page 39

subsystems. Many systems severely limit the number of distinguishable

exceptions. In IBM's OS/VS2, the SPIE exception handling facility per­

mits only fifteen different exceptions to be recognized while the ESTAE

form of exception handling supplies a uniform response to all, or almost

all, ABENDs [OS/VS2 75]. The CAL system [CAL 69, Gray 72] grouped ex­

ceptions into thirty-two error classes to control the selection of an

exception handler. UNIX [Thompson 74] recognizes only twelve different

exceptions. The CAP system allocates and controls the use of 256 dif­

ferent error names [CAP 76a, CAP 76b, CAP 76c]. If new exception names

are not available, exceptions signalled by newly implemented subsystems

may interfere with existing exception handling protocols and procedures.

Besides, providing for an extendible set of exception names, it

must be possible to avoid ambiguities in the exception identification.

If the name which identifies an exception is freely assigned by the sig­

naller, conflicts will occur when two signallers choose the same name to

identify otherwise unrelated exceptions. The exception processing fa­

cility and exception handling procedures require an unambiguous indica­

tion of what happened in order to provide a precise response. PL/I

[PL/I 74] and Multics [Organick 72, MPH 75) do not distinguish between

identical condition names chosen independently by different procedures.

Finally, some controls on the use of the exception names is neces­

sary to prevent conflicts between independent subsystems. It should not

be possible for a subsystem to signal an exception which is associated

with the operations of another subsystem. If the signaller can fake an

exception, the handler may need to validate the occurrence of the excep­

tion before proceeding. Misleading a handler which has special

Ch. 2.2.6 Issues and Answers page 40

privileges may cause the handler to misuse its privileges.

To avoid ambiguities and to validate the source of the signal, ex­

ception names can be centrally allocated, as in CAP, or the identity of

the signaller (signaller-~) can be combined with an exception~ sup­

plied by the signaller to form the exception name. Of course, the

signaller-id which disambiguates and validates the exception must be

unique and unforgeable. Using the signaller-id avoids the implementa­

tion of a global exception name allocation mechanism and also adds use­

ful structure to the exception name. The difference between centralized

exception naming, with controls on the use of different exception names,

and the use of the identity of the signaller to avoid ambiguity is

analogous to the difference between the seals and trademarks as dis­

cussed by Morris [Morris 73], Sealing authenticates the contents of the

sealed object (the exception name), while trademarks authenticate the

source of the object (the signaller).

Either the centralized or the structured exception naming scheme

will provide adequate identification and validation while avoiding ambi­

guities. The centralized naming scheme permits a subsystem to signal

any exception for which it can obtain authorization. In a capability

based system, authorization to signal an exception can be validated thru

the use of capabilities. In such a system, authorization to signal an

exception might be passed from one subsystem to another. This generali­

ty makes it difficult to verify the source of an exception signal.

The structured naming scheme automatically associates an exception

with the subsystem which reports it. This means that it is not possible

to signal an arbitrary exception. Occasionally it is necessary to force

Ch. 2. 2. 6 Issues and Answers page 41

the occurrence of a particular exception in order to test new handler

procedures. If the desired exception is difficult to produce (e.g. I/0

transfer errors), it becomes difficult to test the handler. The handler

must be recoded (tdmporarily) to respond to a different exception used

only for testing the handler. When the handler is ready to be in­

stalled, it can be modified to catch the correct exception. it handles.

2.2.7 Exception Parameters

The eventual handler of an exception should be given some informa­

tion about the error. The exception name, as discussed in the preceding

section, classifies the exception and participates in the selection of a

handler. The exception name is certainly the starting point for infor­

mation to be passed to the exception handler. Identifying the exception

to the handler allows a single handler to respond accurately to several

different exceptions.

Besides supplying an exception code, the signaller will usually be

able to supply details about the particular exception being signalled.

For example, the signaller of an attempted reference to a nonexistent

file can pass along the name of the file. This extra information,

called the exception message, is useful to the handler of the exception.

Different signallers will be able to provide different amounts of infor­

mation about the exceptions they signal. Therefore, the exception mes­

sage should be a variable format parameter to the signal operation. At

the language level, the type of the exception message can be associated

with the exception name to which it corresponds. The signal operation,

like other subsystem transfer operations, must be able to take

Ch. 2.2.7 Issues and Answers page 42

parameters of arbitrary type. The exception message, along with the ex­

ception name should be passed, as parameters, to the eventual handler of

the exception. Note that the exception name is used by to the exception

facility to implement exception specific handler selection, while the

exception message is solely for the benefit of the exception handler.

In addition to information identifying and describing the excep­

tion, the handler may need to know the circumstances under which the ex­

ception occurred. In particular, the handler may need to know the iden­

tities of the signaller and the invoker. If the signaller-id is incor­

porated into the exception name, only the name of the invoker needs to

be added to the parameters passed to the handler. The invoker-id tells

the handler on whose behalf it is operating. If subsystems could in­

quire about the contents of the subsystem call stack, the invoker-id

would not have to be passed to the handler. Other information about the

environment, such as episode termination restrictions (discussed later)

and authorization to access the invoker's state, could also be passed as

parameters to the handler. Access to the invoker's state would be

passed only if the handler was authorized, by the handler specification,

to access the invoker.

Most discussions of and proposals for exception processing facili­

ties do not provide for parameters to the exception handler. PL/I, Mul­

tics [Organick 72], CLU [CLU 75], and Goodenough's proposals [Goodenough

75] do not support parameters from the signaller to the handler.

Lampson's MPL proposal [Lampson 74b] does provide for an exception mes­

sage of arbitrary length from the signaller to the handler. The lack of

an information passing facility from the signaller to the handler can

Ch. 2. 2. 7 Issues and Answers page 43

lead to unstructured _a.g_ ~ protocols for passing this information. For

example, in order to make information about the exception available to

the handler, PL/I provides built-in functions which return information

about the current condition [Nobel 68, PL/I 74]. The ONCODE built-in

function returns a condition code which further classifies the condition

represented by the condition name. Other special built-in functions,

such as ONFILE which returns the name of the file involved in an

input/output or conversion condition, provide information about particu-

lar conditions.

2.2.8 Handler Environment

Once a handler for a given exception has been selected, control is

passed to the entry point of the handler code. The choice of an en-

' vironment in which to execute the handler code raises several issues.

In order to facilitate restarting the invoker after recovering from the

exception, the state of the invoker should be preserved. If the failed

operation is to be retried, the original parameters of the operation

should be preserved.

Some exception handlers need to exercise privileges not accorded to

the other subsystems involved in the exception episode. For example,

exception driven virtual memory systems need to access the page and seg-

ment tables in order to perform their functions. When an exception

handler extends a failed lower level, when it must report or log the ex-

ception, or when heavy handed recovery procedures must be initiated, the

handler may need to make use of privileges logically associated with the

handler and not available in the environment of either the signaller or

Ch. 2.2.8 Issues and Answers page 44

the invoker.

One privilege which may be needed in the handler environment is the

right to access the invoker's environment. For example, the Multics

linker must read and update the invoker's linkage section. 1 Exception

triggered debugging facilities and supervisor services also need to ac-

cess the invoker's environment. Although it must be possible to confer

the privileges of the invoker on the handler, it is not always appropri-

ate to do so. If the handler does not need to make use of the invoker's

privileges, it should not be able to do so. Restricting the privileges

of the handler conforms to the principle of least privilege [Dennis 66,

Saltzer 75, Denning 76], which states that a program should not be able

to exercise privileges that it does not actually need.

While most systems provide some mechanism for giving some handlers

extra privileges, few systems protect the main line computation from the

actions of the handler. In most programming languages and operating

systems, the handler execution environment is the same as or includes

the environment in which the association is made between the handler and

the exception which it handles. It is not possible in these systems to

divorce the handler execution environment from the environment is which

it is specified (enabled) as the handler of a particular exception. In

CLU [CLU 75] and Goodenough [Goodenough 75] , the handler's scope con-

tains the invoker's scope, while in PL/I the handler executes as an

inner block of the scope which enables it. User defined exit routines

in OS/VS2 execute in the environment of the task which declares them

I Actually the linker runs in the same environment or ring as the fault­
ed procedure, but conceptually the linker is only interested in the
linkage section of the faulted procedure [Daley 68, Janson 74].

Ch. 2.2.8 Issues and Answers page 45

[OS/VS2 75]. Supervisor service traps and privileged instruction simu-

lations in CP/CMS [VM 74] run in environments containing the invoker's

environment. In CAL, the exception handler ran either in an independent

environment or in an environment enclosing the invoker's environment •

[CAL 69]. In Multics, some handlers run in the hardcore (e.g. page

fault, segment fault), while others run in whichever ring is selected by

the procedure call executed to initiate the handler [MPM 75].

It should be possible to separate the definition of the handler ex-

ecution environment from the environment in which it is nominated

(specified) as a handler. The requirements for special handler

privileges and handler privilege restrictions suggest that the exception

handler should execute in its own environment. As privileges are nor-

mally associated with subsystems and made available in the execution en-

vironment of subsystem activations, the existing subsystem transfer

mechanisms can be used to control the privileges conferred upon excep-

tion handlers. By creating a new environment for the exception handler

through the use of an ordinary subsystem call, the invoker's state is

preserved and the privileges of the exception handler are controlled by

the subsystem transfer mechanisms. If subsystem activation environments

are system objects, access by the handler to the invoker's environment

can be conferred by authorizing handler access to the environment object

corresponding to the invoker's activation .

• The distinction was conditioned by the form of the signal: "f-return"
or "return-with-error". Actually, the only case in which the indepen­
dent environment or "f-return" form was used was one in which the
handler had access to the invoker anyway.

Ch. 2. 3 Issues and Answers page 46

2.3 Handler Specifications

In order to control the response to an exception, there must be

some way to indicate which handler should be called under various cir­

cumstances. Handler selection is based on the handler specifications

which the user and the system make to control the response to an excep­

tion. A handler specification associates a handler entry point or gate

with a particular exception. By associating handler entry points with

particular exceptions, the response to different exceptions can be

specified independently. This permits independently developed subsys­

tems to be designated as handlers for different exceptions without risk

of interference between exception handlers. Programming generality con­

siderations [Dennis 68] suggest that it should be possible to process

unrelated exceptions with unrelated handlers. Several existing systems

send control to a single handler for all exceptions. Among the excep­

tion processing facilities which do not support exception specific

handlers is the IBM SPIE facility (OS/VS2 75] and the fault procedure in

CAP [CAP 76b].

To specify the handler, a subsystem gate must be designated. The

handler gate may be from any subsystem. The form of the handler refer­

ence depends on the external reference mechanism is the system. The

handler reference does not need to be bound until after the exception

causes the handler to be selected. Dynamic binding of handler gate

references allows unused handlers to remain unbound until needed.

The exception name in the exception specification must be bound be­

fore the exception occurs. Handler selection must be able to determine

which specifications correspond to the current exception. If the

Ch. 2.3 Issues and Answers page 47

exception name includes the signaller-id, it would seem difficult to

postpone binding to the signaller. However, since the exception cannot

occur before the signaller is called, we can let the name portion of the

specification reference the linkage variable used by the call. This

means that the signaller-id will be bound by the call and before the ex­

ception specification is needed. When searching for a handler, specifi­

cations which reference unbound signallers can be skipped since an ex­

ception from that signaller cannot have occured.

Besides containing an exception name and handler gate reference,

the handler specification may be tied to one or more activation points.

The activation point of an operation is the place in a program where the

invocation of the operation is specified. The execution of an activa­

tion point invokes the associated operation. A single operation can be

invoked from several different activation points or a single activation

point can give rise to multiple invocations of the same operation. In

figure 2-1 , the operation 'bat' has two different activation points and

'bat' will be invoked several times from the second activation point.

Also, the multiplication operation has two activation points, but it

will be invoked twenty times whenever 'frog' is called.

Handler specifications can be statically or dynamically associated

with the activation points which may give rise to the indicated excep­

tions. Static handler specifications associate handlers for particular

exceptions with particular activation points which might cause the ex­

ception. Dynamic handler specifications associate handlers with partic­

ular exceptions regardless of the activation point involved. Static as­

sociation allows different handlers to be associated with different ac-

Ch. 2.3 Issues and Answers

procedure frcg;
begin
~ r : integer;

~ bat(5);

.fQ.c. I :: 1 .t.Q. 10 _g_g_ ~ bat(I*I*I);

filli1. frog;

figure 2-1: Invocations .a.ru1 Activation Points

page 48

Ch. 2.3 Issues and Answers page 49

tivation points while dynamic policies allow different handlers to be

used on different occasions at the same activation point.

2. 3. 1 Dynamic Handler Specifications

Dynamic handler specifications are communicated to the exception

facility by executing handler enabling operations. The ON statements in

PL/I [Nobel 68] are dynamic handler enabling operations. Dynamic asso­

ciation of handlers with exceptions means that the handler for an excep­

tion at a particular activation point will depend upon the enable opera­

tions executed on the path leading to the activation point. The excep­

tion processing environment reflects the most recently executed handler

declarations. Dynamic control over the current exception-to-handler as­

sociations facilitates precise control over the exception processing en­

vironment as a different handler can be supplied on different invoca­

tions from a single activation point.

Figure 2-2 introduces notation to represent the execution of dynam­

ic handler specification statements. The 'enable' operation associates

a handler with an exception. The 'enable' operation takes two parame­

ters. The first parameter is an exception name, represented here as a

string literal containing the signaller-id and the exception code. The

second parameter specifies a handler. The handler can be a procedure

identifier or a block of code. If a code block is specified, it is

treated as the body of a nameless, parameterless procedure. If excep­

tion parameters are referenced by the handler, the procedure identifier

form of the handler declaration must be used. The parameters to excep­

tion handlers are assumed to be in a standard format for all exceptions.

Ch. 2. 3. 1 Issues and Answers

procedure toad;
begin

.Y.aI: flag boolean;

{ local handler procedure declaration}
procedure hand1(invid, sigid, exCode, exMess);

begin
< body of local handler>
~ hand1;

.Q.a.ll enable("gnat:gone", hand1);

A: .Q.a.ll gnat;

.ll (flag = 11:Ye,)
.then .call. enable("fly:missed",

begin
<handler body A>
~ handler;);

~ .call. enable("fly:missed",
begin

B : .Q.a.ll fly ;

~ toad;

<handler body B>
~ handler;);

figure 2-2: Dynamic Handler Specifications

page 50

Ch. 2. 3. 1 Issues and Answers page 51

The handler procedure can be either a local or non-local procedure.

This notation is presented only to facilitate the presentation of exam-

ples.

In the figure, the 'gone' failure of the call to 'gnat' will cause

the locally declared procedure 'hand 1 ' to be entered. The 'missed'

failure of the invocation of 'fly' on line 'B' will cause either handler

body A or handler body B to be executed depending on the value of 'flag'

which selects one or the other of the 'enable' statements. Note that

different handlers may apply on different invocations from the single

.. activation point of 'fly'.

Maintaining dynamic handler specifications causes exception pro-

cessing overhead in the absence of signalled exceptions. The mainte-

nance of the association between handlers and the exceptions they ser-

vice generates main line exception processing overhead to set up for ex-

ceptions which have not, and may never, occur. If changes to the excep-

tion processing environment are frequent, the overhead may become signi-

ficant. The continuing main line overhead associated with dynamic

handler specifications legislates against their use if the exception

processing environment must be updated often.

Executable handler specifications lead to another problem: it is

not possible to simultaneously change the exception processing environ-

ment and transfer control from one subsystem to another. The simultane-

ous updating of the exception processing environment and transfer of

control to a different subsystem is important when we consider asynchro-

nous exceptions or interrupts. Also, if the exception processing facil-

ity is used to control the definition of the virtual machine interface,

Ch. 2. 3. 1 Issues and Answers page 52

the transfer of control from one subsystem to another should cause the

virtual ~achine interface to i::unediately reflect the new execution P.n­

vironment.

2.3.2 Static Handler Specifications

Static handler specifications always associate the same handler

with a given activation point. Since the handler choice strategy in

force is always the same at any particular point in the program, the

representation of the handler specifications can be constructed once and

for all when the program or subsystem is constructed. Because static

handler specifications are associated with sections cf the ~rcgram, the

exception processing environment can ~e 1efi~ed as part of ~he program

representation. The flow of control 2.t run time does not :ieed to be

analysed to determine which ;,andler specifications are in force at a

particular point in the program. When using static handler specifica­

tions, there is no continuing exception processing overhead because the

information representing the handler specifications does not need to be

updated at execution time. Of course, the elimination cf main line ex­

ception processing cvernead may result in increased exception time pro­

cessing to decode the static mapping from exception names and activation

points to handler gates.

Static handler specifications, by associating handlers with activa­

tion points, reflect the point of control at the moment of the excep­

tion. This means that the exception processing environment automatical­

ly reflects the passage of control from one subsystem to another or f~om

one statement to the next. As rnent:oned above, static specificatio:is

Ch. 2.3.2 Issues and Answers page 53

allow the exception facility to be used to control some 3spects of the

virtual machine interface. Static ~andler specifications 1re necessary

~hen some subsystems 3re responsible fer implementing the virtual

machine facilities used by other subsystems. The implementing subsystem

will execute in a different virtual machine envir'onment from the one

which it supports. Exceptions caused by the implementing subsystem

must, in general, be handled differently at the lower level. For exam­

ple, a page fault in the program responsible for handling page faults is

usually an altogether different problem than a nor~al page fault.

The automatic and immediate updating of the exception processing

environment also per!:lits exception processing facilities to be used to

deal with asynchronous exceptions such 3S the console attention key.

When asynchronous events are involved, there is no tirne to execute 'en­

able' statements on entry to, or on exit from, the routines which ser­

vice or are affected by such events. The special purpose return-from­

interrupt instruction found on many machines illustrates the importance

cf combining 3 transfer of control with a change in the exception pro­

cessing environment.

Static handler specifications can be represented at the programming

language level by appending the handler declarations to the syntactic

unit to which they apply. Notations for static handler specifications

have been suggested by Goodenough [Goodenough 75], Lampson [Lampson

74b], and Liskov [Liskov 76). Figure 2-3 specifies the same exception

handling str-ategy as f::.gure 2-2. In this case, however, the handlers

are statically associated with the statements which might lead to the

indicated exception. The bracketed static handler specification con-

Ch. 2.3.2

procedure toad;
begin

Issues and Answers

1a1:. flag boolean;

local handler procedure declaration
procedure hand1(invid, sigid, exCode, exMess);

begin
< body of local handler>

fillli hand 1 ;

A:~ gnat ["gnat:gone" hand 1 J;

8: ~ fly ["fly:missed" :
begin

~ toad;

.U: (flag = ~)
..t.rum begin

<handler body A>
filllij

li.3. begin
<handler body B>

fillli;
~ handler;];

figure 2-3: Static Handler Declarations

page 54

Ch. 2. 3 .2 Issues and Answers page 55

sists of the exception name, as before, followed by the handler body or

the name of the handler procedure. Again, the notation used here i3 not

intended to be taken as a proposal ~or the syntax to be used to

represent exception processing operations at the programming language

level. Note that the effect of dynamic handler specifications for the

invocation of 'fly' is achieved by testing 'flag' in the body of the

handler.

2.3.3 Local, Default,~ Imposed Handlers

Given the ::.dea of a static or dynamic handler specifications, we

can consider how the handler specifications ~ight become associated with

a subsystem. The implementor (or programmer) of a subsystem should be

allowed to supply handler specifications to control the response to ~x­

ceptions encountered at run time. Implementor supplied handler specifi­

cations are called local specifications. Local handler specifications

are supplied by the implementor as part of the language level represen­

tation of the program. Using local handler specifications, the imple­

mentor can provide handlers for exceptions of interest. The bulk of the

effort in exception handling research has been directed towards design­

ing mechanisms by which the implementer can control exception handling

at the level of the program representation.

Local handler specifications can be either static or dynamic. For

the reasons suggested above, static handler specifi~ations are pre­

ferred. When handlers are statically specified, the specifications can

apply to a single activation point, or a single handler specification

may apply to several activation points. At the program.ming language

Ch. 2. 3. 3 Issues and Answers page 56

level, it is convenient to associate handlers with the ~ajor syntactic

units of the language. Thus, handlers might ':)e associated with opera­

tors, statements, blocks, procedures/functions, classes/clusters, or

compilation units.

Nested handler specifications can lead to overlapping specifica­

tions which specify different handlers for the same activation point.

Only one handler at a time can be called to respond to the exception.

When local handler specifications overlap the innermost handler specifi­

cation usually overrides the handler specifications associated with en­

closing syntactic units. In figure 2-4 , the failure of the invocation

of 'cat' at state!!lent 'A' causes 'handler1' to ':)e executed, while the

failure of the call at statement '3' causes 'handler2', the handler as-

scciated with the block, to be called.

Local handler specifications allow the implementor to specify and

supply handlers for exceptions of interest. However, it is too rnuch to

expect the implementor to specify handlers for all the possible excep­

tions which might befall the executing subsystem. It should be possible

to supply local handler specifications for exceptions of interest while,

at the same time, relying on system supplied 1efault handl~rs to manage

the response to other exceptions.

Default exception handlers can provide the response to exceptions

not caught by local handler specifications. Implementor supplied local

handler specifications, which override default handler specifications,

permit the implementor to choose the handler whenever the default is

inappropriate. By relying on default handler specifications, the i~ple­

mentor is relieved f!'"om the burden of specifying local handlers for

Ch. 2.3.3 Issues and Answers page 57

begin

A: ~ cat ["cat:fai11": :iandler1J;

B: .w.l. cat;

.filli1 ["cat:fail1": handler2];

figure 2-4: Nested Static Handlers

Ch. 2. 3. 3 Issues and Answers page 58

exceptions which are not expected and/or for which the default ~andler

3.Ctions are acceptable. iiowever, the subsystem implementor should be

able to find out which default handlers are suoplied by the system.

Without the ability to determine which default specifications are in

:'Jrce at run time, the subsystem implementor cannot give a precise

description of what will happen when the subsystem is faced with an ex­

ception for which there is no local handler specification.

The .system can supply default specifications in several ways. The

most direct way is for the system programs which prepare the user's sub­

system for execution (e.g. compiler, linker, loader) to add static

handler specifications to the local specificaticns provided by the im­

plementor. The default specifications are like local specifications

which apply to all the act! vat ion points in the subsystem. Since the

defaults apply to the outermost block of the subsystem, local handlers

will naturally override the default handler specifications.

It is not necessary to ~ake the assumption that the subsystem im­

plementor always has the privilege of overriding the system supplied

handler specifications. If cne or more levels of supervisory interface

are imposed on a subsystem before it is allowed to ':!xecute in a user

process, the required supervisors may need to have the first chance to

supply the response to certain exceptions. For example, the virtual

memory manager normally needs to intercept all exceptions caused by page

and segment faults. The system command interface should be activated to

orchestrate the response to 'time limit' and the console 'kill' button

in order to terminate things in an orderly manner [Needham 71]. Overall

process and system control may depend en t!'le proper, system level,

Ch. 2. 3. 3 Issues and Answers page 59

response to selected condi ticns such as resource or accounting excep-

tions.

In order to !'.'eflect supervisory prerogatives and privileges, it

must be possible to impose handlers for selected exceptions on user sub­

systems. Imposed handlers cannot be overridden by implementor supplied

local handler specifications. The imposition of supervisory handler

specifications reflects the hierarchic relationship between a subsystem

and its supervisor(s). Imposed handlers can be thought of as enforcing

parts of the virtual machine interface supplied to the user subsystem.

The role of exception processing in the definition and maintenance cf

the virtual machine en,1ironment has traditionally been separated frcm

the exception processing facilities available to the user. !~posed su­

pervisory exception handlers can be integrated into the handler specifi­

cation and selection facilities of the system. As in the case of de­

fault handlers, the user should be able to find out what handlers are

imposed in order to understand the computation evoked by the exceptions

caused by the user's subsystem.

2.4 Handler Choice Policies

Once the exception processor has been activated by an exception

signal, it must select and activate a handler for the reported excep­

tion. The criteria used by the exception processor to select a handler

define the handler choice QQlicy. The handler choice policy extends the

subsystem interface by controlling the flow of control followi~g a re­

ported exception. In the environment of a computation composed of in­

teracting, independently developed, ~utually suspicious subsystems, the

Ch. 2.4 Issues and Answers page 60

handler choice policy must reflect and protect the interests of the sub­

systems affected by the exception.

Selecting the proper handler for a given exception is somewhat

analogous to the choice involved in evaluating generic procedure calls

in PL/I [PL/I 74] or generic forms in EL1 [ECL 72, Wegbreit 74]. In

these languages the choice of the procedure body to be executed can be

conditioned by the number and attributes of the actual parameters. In

our case, the exception processor has the exception name and must choose

an exception handler. Besides taking into account the exception name,

the handler choice policy should also be sensitive to the requirements

of the subsystem which caused the exception (the invoker).

In this section several handler choice policies ar~ di3cussed. :he

3hortccmings of object oriented, global, and inherited handler policies

are exposed and then a policy which reflects and protects the interests

of the invoker of the failed operation is presented. The invoker con­

trolled handler choice policy overcomes the problems associated with the

other handler choice policies without restricting the exception process­

ing protocols available to the user. Invoker controlled handler selec­

tion localizes the response to an exception by considering only handler

specifications associated with the the invoker of the failed operation.

2.4.1 Object Oriented Handler Choice Policies

Instead of associating except:on handlers with the activation

points of operations which might lead to the indicated exception, the

exception handler can be associated with the operand of the operation.

Ch. 2. 4. 1 Issues and Answers page 61

By associating the exception handler with the ob iect being operated

upon, the response to a failure 2an be controlled on the jasis of which

object is involved. The handler invoked follo"1ing the failure of an

operation reflects, not the static or dynamic 0 ssociation of handlers

with the activation point, but the identity of the object on which the

operation was attempted.

An example of an object oriented handler choice policy is the poli-

cy of the AED Free Storage Package [Ross 67]. The AED system associates

handlers with nzones" of storage. Whenever an attempt to allocate space

from a zone fails, the handler associated with that zone is activated.

PL/i also provides object oriented handler association for some of :he

exceptions which it recognizes [?L/I 74]. All input/output conditions

can be enabled for particular ... '
~ 1 ... es. 'men the condition occurs, the

on-unit associated with the file will be entered. Object oriented ex-

ception processing has also been proposed recently by Levin [Levin 77].

Levin suggests that program units be allowed to associate handlers with

any object instance which they can reference.

Associating exception handlers with individual objects permits ex-

ception processing actions to be associated with the particular objects

to which they are intended to apply. Because the handler is associated

with the object, any such object passed as a parameter to a subsystem

will carry its handler associations with it. A subsystem which operates

on parameter objects will inherit the handler associations of the ob-

ject. The behavior associated with operations on the object is affected

by the handlers which run in response to reported exceptions. This

means that the subsystem which operates on an object received as a

Ch. 2. 4. 1 Issues and Answers page 62

parameter cannot be sure of the effect of the operation unless it con­

trols the handler associations of the object. A similar problem occurs

with the inherited handler policy discussed in section 2.~.3.

Not all exceptions can be attributed to a particular object. Er­

rors of usage, for example, cannot always be associated with a particu­

lar object. Exceptions caused by failures-of-mechanism or by attempts

to operate on nonexistent objects cannot be dealt with under an object

oriented handler choice policy. The association of handlers with ob­

jects implies that the exception processor must have some way to deduce

the current handler given the object involved. If the handler choice

information is embedded in the object representation, the exception pro­

cessor must be able to access that infor~ation. User defined, e~t2nded

objects must also carry handler choice i.nfor:nation if object oriented

handler selection is to apply uniformly to all objects. This requires

either a standardized object representation, as in HYDRA, or the addi­

tion of operations for declaring and determining the handler associa­

tions for each object type.

An alternative to embedding the handler choice information in the

object representation is to maintain process local associations between

objects and handlers. The PL/I approach to input/output exceptions im­

plements an inherited, object orien~ed handler choice policy on a per­

process basis. In PL/I, a file may enjoy different handler associations

in different processes and is subject to inherited handler associations

in each process. Object oriented handler selection can be simulated by

other selection policies by using handler specifications associated with

the activation points which ~ight cause exceptions associated with the

Ch. 2. 4. 1 Issues and Answers page 63

objects of interest. The selected handler can locate and call the ap­

propriate object associated handler using local tables or infor!!1ation

0ontained in the object. Because object oriented handler ~hci~e ~oli­

cies associate handlers with objects, they cannot be applied uniformly

to all exceptions. Moreover, they can be locally implemented as an ex­

tension to handler choice policies which use handler specifications as­

sociated with the appropriate activation points.

2.4.2 Global Handler Choice Policies

The simplest handler choice policy chooses the handler from a pro­

cess or system wide set of handler specifications. The handler ~pecifi­

cations define a global exception-to-handler mapping. The current state

of the exception-to-handler ~ap controls the choice of a handler for any

signalled exception.

Handler specifications under a global handler choice policy apply

to all the activation points which could cause the indicated exception.

By maintaining a representation of the exception-to-handler map, the ex­

ception processor can determine which handler to activate in response to

an exception signal. The handler choice map can be maintained either on

a per-process basis or a single system wide map can control the handler

choice. Also, the exception-to-handler map can be static and unchanging

or the exception facility can support enable operations which dynamical­

ly update the handler specifications controllir.g the handler choice.

A static global handler choice policy provides uni:'or!ll exception

processing responses for all subsystems in a process. The response

Ch. 2.4.2 Issues and Answers page 64

depends only on which exception has been signalled. In general, a stat­

ic global :napping is too inflexible. A static :!lapping does not permit

the response to a gi'Ten exception :o reflect the currP.nt state of the

computation. Different subsystems :nay require different responses to

the same exception.

Instead of a static exception-to-handler map, the exception facili­

ty could allow the map to be updated. This would permit the handler

choice policy to reflect the current exception processing strategy of

the process. Such a dynamic handler specification facility requires the

execution, at run time, of enable operations to :naintain the state of

the slobal map. The UNIX system [Ritchie 74, Thompson 74] supports :.3.

dynamk global handler choice policy. In that system, a per-process

table controls the :-iandling of twelve differ~nt exceptions, each of

which can be ignored, defaulted, or handled individually by the process.

The initial state of the global map of a process is inherited from the

creating process. The equivalent of a subsystem call in UNIX resets the

handler choice map to the default handlers. There is no equivalent of a

subsystem return in UNIX. The JSYS traps in TENEX [Thomas 75] provide a

per-process global trap vector which controls the handling of operating

system calls. The meaning of the various system calls is controlled by

the state cf the JSYS trap vector.

Under a dynamic global handler choice policy, each subsystem can

enable handler specifications to reflect its own exception handling

needs. Unless a subsystem executes its own enable operations, the sub­

system will inherit the exception handling strategy of its caller. 2y

updating the global map, a subsystem can enable handlers for the excep-

Ch. 2. 4. 2 Issues and Answers page 65

tions which it wishes to process specially, while existing handler

specifications provide default processing for other exceptions. If the

right to enable handler specifications for particular exceptions ~an je

controlled, handlers can be imposed on subsystems lacking the necessary

privilege. This facilitates high level control over the set of subsys­

tems executing in a process since handlers for exceptions such as con­

sole interrupts and resource problems can be imposed on all but the most

privileged subsystems.

Figure 2-5 illustrates the effects of handler specifications in

different procedures/subsystems under a dynamic global policy. The

failure of the 'dog' call at 'A' causes 'hand 1' to be selected. .H

statement 'C', the handler is inherited from the caller of 'cat'. If'

'cat' is called from 'ant', 'hand1' will be chosen to handle a

"dog:bite". Finally, the response to the failure of the 'dog' call at

'B' in 'ant' is controlled by the handler specification in 'cat'.

Under a dynamic global handler choice policy, not only are the

handler specifications in force for a subsystem inherited by the subsys­

tems it calls, but also, handler specifications enabled by a subsystem

remain in force when the subsystem returns to its caller. This is a

serious problem since the exception processing environment of a subsys­

tem may be modified as the side effect of a call to any other subsystem.

This make:5 it difficult for the subsystem implementor to control what

will happen in response to exceptions encountered at run time. The up­

datable global exception-to-handler :nap is a global variable and, as

such, it increases the complexity of the computation by producing new

dependencies between otherwise unrelated programs .:n different subsys-

Ch. 2. 4. 2

procedure ant;
begin

Issues and Answers

~ enable("dog:bite", hand1);

A: .w.l dog; {"dog:bite" enters 'hand1'}

Q.aU cat;

a:~ dog; {"dog:bite" enters 'hand2'}
{because of enable in '~at'}

filll1 ant;

procedure cat;
begin

C: .wl dog; {"dog:bite" enters 'hand1' if}
{'cat' called from 'ant' }

~ enable("dog:bite", hand2);

D: call dog; {"dog:bite" enters 'hand2'}

.fil'.lii cat ;

figure 2-5: Global Dynamic Handlers

page 66

Ch. 2.4.2 Issues and Answers page 67

tems [Wulf 73] .

2.4.3 Inher;t~d Handler Choice Pol:c:es

The global ~andler choice policy leads to side ef~ects in the ex­

ception processing environment which make it difficult to ~aintain con­

trol over the response to signalled exceptions. The side effects of a

subsystem call on the exception processing environment can be eliminated

by (logically) undoing the handler specifications of a subsystem when

the subsystem activation is terminated. Under an inherited handler

choice policy, the effects of handler specifications supplied by a

·~al led subsystem are reversed ·.;hen the subsystem activation is ter:ninat­

ed. Sxceptions ~or Nhich there is no local handler specification Nill

be processed according to the most recent applicable handler specifica­

tion which was supplied by some active subsystem.

Instead of maintaining a single set of handler specifications, the

exception facility implementing an inherited handler policy can associ­

ate handler specifications with each subsystem or with each subsystem

activation. To select a handler for a given exception, the specifica­

tions of the invoker are checked first. If the invoker has not speci­

fied a handler for the exception, the handler search traces back thru

the dynamic sequence of subsystem activations. The handler specifica­

tions associated with each subsystem activation are checked until a

handler for the exception is found.

The inherited handler policy is exemplified by the condition facil­

ity in PL/I [Nobel 68], the signal mechanism in MPL [Lampson 74b], and

Ch. 2. 4. 3 Issues and Answers page 68

the BLISS [BLISS] enable statement. In PL/I, ON statements are executed

to enable handlers for specific exceptions. Once ~nabled, 3. handler

specification remains in force until either 1) the enabling subsystem is

terminated, or 2) the handler specification is temporarily overridden by

enabling operations in the same or another subsystem, or 3) the handler

specification is explicitly removed (reverted) by the enabling subsys-

tem.

Figure 2-6 , containing the same program as figure 2-5, illustrates

the effects of an inherited handler choice policy. At 'A' and 'B' ,
(

'hand1' will be chosen, while 'hand2' is selected at 'D'. The handler

choice at 'C' depends on the caller of 'cat'. If 'cat' is called from

'ant', 'handi' will be chosen.

The inherited handler policy allows any subsystem to override the

handler specifications inherited from its caller. However, a subsystem

can be sure of how a particular exception is handled only if it enables

its own handler specification. Exceptions not covered by the invoker's

handler specifications may be handled differently en different calls to

the invoker due to different handler specifications in force at the mo-

ment of the exception. This makes it difficult to specify the effects

of a call to the invoker without discussing the dynamic state at the mo-

ment of the call.

In a procedure or operation based system, each procedure activation

executes on behalf of and in response to the needs of the caller. Every

procedure activation returns control to the most recently activated, but

not yet terminated, procedure sctivation. One major difficulty with the

inherited handler policy in a procedure based system is that the handler

Ch. 2. 4. 3

procedure ant;
begin

Issues and Answers

~ enable("dog:bite", hand1);

A: .wl dog;

.wl cat;

E: Qall dog;

~ ant;

procedure cat;
begin

C: .wl dog;

{"dog:bite" enters 'hand1'}

{"dog:bite" enters 'hand1'}

{"dog:bite" enters 'hand1' if}
{'cat' called from 'ant' }

~ enable("dog:bite", hand2);

D: call dog; {"dog:bite" enters 'hand2'}

~ cat;

figure 2-6: Inherited Handlers

page 69

Ch. 2. 4. 3 Issues and Answers page 70

is designated by, and presumably operates on behalf of, the subsystem

which suoolies the selected handler soecif:cation. ",./hen the selected . . . ~

handler specification does net come frcm the invoking subsystem, we ~ind

that the activated handler must serve two :n<".sters: the invoker which

caused the exception, and the subsysteo which supplied the handler

specification.

We believe that a carefully written subsystem could probably pro-

tect itself against interference from inherited exception handlers.

However, the suspicious subsystem implementor cannot depend on the

goodwill of exception handlers inherited from the caller. The inherited

handler ~ay adversly affect the invoker by returning incorrect results,

by directly :nanipulating the invoker's state, or by not returning at

all. Consider, fer example, the "linkage faul r." exception in '.1ul tics.

Permitting a handler supplied by a hostile subsystem to direct the name

search and to "patch" the link in the linkage segment of the invoker

would violate the security of the invoking subsystem. An improperly

"patched" link can cause trouble when the invoker passes sensitive

parameters to the masquerading procedure !"eferenced by the improper

link.

Under an inherited handler policy it is difficult to establish con-

trol over the special privileges which might be granted to the handler.

In particular, access to the state of the invoker and control over per-

mitted handler terminations (see section 2.5) should be specifically au-

thorized by the invoker. The natural place for the ter~ination and ac-

cess authorizations is the handler specification. When the invoker sup-

plies the handler specification, the degree of trust between invoker and

Ch. 2. 4. 3 Issues and Answers page 71

handler can be reflected in the authorizations ~ith the handler specifi­

cation. ~ben handler specifications are inherited, they cannot be used

to control the handler privileges which affect the security of the in­

vokei·. On the other hand, inherited handler specifications can be used

to control the selection of unwind targets (see section 2.5.5).

The inherited handler policy introduces a channel for interaction

and interference among subsystems. Passing exceptions not covered by

the invoker's handler specifications to the invoker's caller violates

the principles of programming generality [Dennis 58]. The invoker's

caller should not need to be aware of exceptions signalled by subsystems

called by the invoker. The computation evoked by a subsystem call ~ay

depend on which handlers are called in response to exceptions caused by

the subsystem. If handler specifications are inherited fro~ the caller,

the effects of a subsystem call cannot, in general, be specified without

considering the handler specifications of outstanding subsystem activa­

tions at the moment of the call.

2.4.4 Invoker Controlled Handler Choice Policies

The global and the inherited handler policies seem to produce

unwanted dependencies between independently developed subsystems. Can

the individual exception processing needs of different subsystems be met

without violating programming generality principles and creating dynamic

program dependencies? The context most i:nmediately affected by an ex­

ception is the subsystem activation which called for the execution of

the failed operation. The environment containir:g the :nost infor~at ion

about the circumstances which led to the call of the !ailed operation is

Ch. 2. 4. 4 Issues and Answers page 72

the invoking subsystem. Because of the intimate relationship between

the failed call and the pro~ram containing the call, the invoker i.s an

appropriate source for the information to control the response to a sig-

nalled exception. Handler choice policies which depend only upon

handler specifications associated with the invoker are called invoker

policies.

Under an invoker policy, the response to a signalled exception is

under the complete control of the handler specifications associated with

the invoker of the failed operation. As in the case of the inherited

handler policy, the subsystem implementor can specify local handlers for

exceptions of interest. Local handler specifications can be either

static or dynamic. Lar.guage level constructs si:nilar to those proposed

by Goodenough [Goodenough 75] or the "except" facili.ty in CLU [CLU 75]

can be used to express local handler specifications.

However, as suggested in section 2.3.3, it is burdensome to require

the implementor to supply handler specifications for every exception

which might be signalled to the subsystem. The inherited handler policy

relies on the dynamic execution environment to supply handler specifica­

tions whenever the invoking subsystem has not specified a handler. The

ability of the inherited policy to provide default handler specifica­

tions from the dynamic environment is both a strength and a weakness of

that policy.

Instead of relying on handler specifications inherited at run time

from the calling subsystem, default handlers can be specified once and

for all during program preparation. Default handlers can be supplied by

the system facilities which participate in the subsystem definition

Ch. 2.4.4 Issues and Answers page 73

process which prepares the subsystem for execution. Before a program

~an be executed, one er more levels of supervisory interface ~re usually

imposed on the progr-am. Supervisory im:erfaces define and enforce tne

virtual machine environment in which the program executes.

The preparation of a program for execution involves a sequence of

transformations of the program representation and the binding of program

variables and references to system objects and resources. These

transformations and bindings are performed by various system facilities.

The process begins with the translation of the language level represen­

tation of the program to a ~achine level representation. Link editing

operations bir.d free variables of the program. Finally, the instantia-

ticn of the subsystem in a proce.::s requires tr.e :iSsistance of ~ernel

level facilities ~hich perform allocation and bind the program and its

data structures to virtual ~emery locations [Daley 68, Jones 73, Sturgis

73].

Subsystem preparation involves a sequence of steps during which the

current program representation is submitted to various system supplied

operations which modify and transform the representation. Each opera­

tion which works on the program/subsystem representation can be thought

of as a supervisor because each has access to the current representation

of the (not yet executable) program/subsystem. Each supervisor which is

given access to the program representation can impose run time inter­

faces by suitably modifying the representation. For example, the com­

piler can gener~te calls to its run time component and the link editor

can insert overlay management code.

Ch. 2.4.4 Issues and Answers page 74

The order in which supervisors operate on a program can be used to

define a hierarchy among the supervisors. Mnen several levels of super­

visory interface are required, the less privileged :.eve ls are usually

applied to the program before the rnore pri •rileged supervisors are called

to do their part of program preparation. Thus, the language translator

is usually the first system operation to manipulate the program

representation. Then link editors are called to combine independently

translated subsystem fragments. Eventually the user virtual machine su­

pervisor must be asked to accept the subsystem text and to make it into

an executable (callable) subsystem. If several virtual machine levels

are needed to define the user virtual :nachine, there is a lowest level,

kernel interface, which :nust be invoked r-e~ardless of which ,,1rtual

~achine is ~reparing the subsyste~. Because program preparation

proceeds from high level supervisors (language processors, link editors)

to more privileged virtual machine supervisors, the temporal sequence in

which supervisors operate on the program/subsystem reflects the hierar­

chy of virtual machine interfaces in the system [Sturgis 73, Lampson 71,

Lauer 74].

If handler specifications can be statically represented as part of

the subsystem text, the sequence of system supervisors which help

prepare the subsystem can add handler specifications to the subsystem

representation when they are called to work on the not yet executable

subsystem. Instead of relying on the dynamic environment to supply de­

fault handler specifications, the system facilities which prepare the

program for execution can introduce static handler specifications into

the representation. The supervisor supplied default handlers can pro­

vide standard responses to exceptions not caught by implementor supplied

Ch. 2.4.4 Issues and Answers page 75

local handler specifications. For example, link edit for testing can

supply the debugger as a default handler; while a production link edit

would supply a default handler which initiates recovery and ~estart,s the

system after dumping relevant debugging information.

The time sequence in which the supervisors operate on the program

representation can be exploited to extend the nesting of local handler

specifications and to define a priority for default handler specifica­

tions. Just as inner block local handlers override the handlers associ­

ated with enclosing blocks, early (less privileged) supervisor def~ults

can override the default handler specifications supplied by supervisors

which participate in subsequent stages of program preparation. A je­

faul t handler specification applies only if t~ere is no earlier jandler

specification for the same exception. Unlixe local handler specifica­

tions which may apply to a subset of the activation points of the pro­

gram, default specifications apply to all the activation points which

might give rise to the indicated exception.

By supplying default handler specifications during the program

preparation process, the default exception handler environment of the

subsystem will not depend on the dynamic environment at the moment of

the exception. Supervisor supplied default handlers, like inherited

handlers, will be executed only if there are no overriding local

handlers. Unlike inherited handlers, supervisor defaults do not lead to

dynamic dependencies between separately developed subsystems because

they are defined once and for all during subsystem definition and crea­

tion.

Ch. 2. 4. 4 Issues and Answers page 76

Supervisory subsystems should also be able to impose handlers on

the subsystems under their control. oy imposing handlers en programs as

they are transfor!ned at each stage of ;:,rogram ;:,reparation, super,1isory

prerogati,1es ca.n be stated and enforced. The imposition of exception

handlers reflects the hierarchic relationship between a subsystem and

its supervisor(s).

The priority of supervisor imposed handler specifications, like de­

fault specifications, can be controlled by the order in which superviso­

ry subsystems are called during program preparation. As mentioned ear­

lier, whenever several levels of supervision are required, the order in

·,.;hich the super1risors participate in the preparation of' a executable

subsystem usually reflects the hier~rchic relationships among the super­

•risors. Like default specifications, imposed handler specifications ap­

ply to all the activation points in the subsystem. However, the priori­

ty of imposed handlers should be the reverse of the priority for default

handlers. Imposed handler specifications override all preceding handler

specifications.

A crucial point here is that once a supervisor adds its imposed

handler specifications to the subsystem representation, it must not be

possible for less privileged supervisors or the user to remove or over­

ride those specifications. One way to enforce this requirement is to

have each supervisor call the next (more privileged) supervisor after

adding its default and imposed handlers but before returning to its

caller. The most privileged (kernel) superYisor, after installing :.. ts

own handler specifications, can freezA the subsystem representation.

The frozen subsystem representation cannot be modified without recreat-

Ch. 2.4.4 Issues and Answers page 77

ing it from scratch. The representation of an object can be frozen by

changing (copying) it to a different type of object which is inaccessi­

ole :o 311, or by providing for a new state of the storage object con­

taining the representation. For example, the HYDRA system [HYDRA 74]

allows most objects to be frozen, making it impossible to modify their

state.

If a supervisor does not return until it has called the next super­

visor, and if the kernel supervisor freezes the representation, the user

and other supervisors will be unable to update the representation con­

taining the imposed handler specifications. In practice, the first few

stages of subsystem ;:,reparation (compile and link) may be unprotected

but, once the user virtual machine supervisor is called, it will com-

;:,lete the subsystem preparation by calling the next supervisor before it

returns to the user. Once a supervisor calls its supervisor, the

representation will be frozen by the kernel before the supervisor re­

gains control.

In summary, the invoker controlled handler choice policy, because

it depends only upon handler specifications associated with the invoker,

does not lead to run time dependencies between independent subsystems.

Because the handler specifications are statically associated with the

activation points which might cause the exception, the response at run

time to any exception can be determined without considering the dynamic

activation environment. The implementor, if (s)he cares to, can examine

the subsystem representation and the published specifications of the su­

pervisors to exactly deter~ine the exception processing environment of

the subsystem.

Ch. 2. 4. 4 Issues and Answers page 78

Three sets of handler specifications control the choice of an ex­

ception handler at run time. :he handler choice rule searches f:rst fer

an imposed handler, ~hen for a local handler, and f:nal:y for a default

handler. Conflicting :1andler specifications are resolved by priority

rules within each set of handler specifications and between the three

sets of specifications. The last imposed handler, corresponding to the

more privileged supervisor, overrides earlier imposed handlers. The

lexical nesting of statically specified local handlers gives priority to

the innermost local handler specification. If no imposed or local

handler applies, the earliest default handler specification is chosen.

Invoker policies statically associate handler specifications with

activation points in the program of a subsystem. Static handler specif­

ications do not consume main line overhead and by always providing the

same handler for a given activation point and exception, they avoid un­

certainty about the exception processing environment under which the

program will execute. Extending the nesting of local handlers to the

supervisory programs which prepare and oversee the execution of the sub­

system facilitates supervisory control over exception processing and al­

lows supervisory programs to impose handlers and to supply handlers for

exceptions which are not caught by local handler specifications. The

exception processor developed in Chapter Four implements an invoker con­

trolled handler choice policy.

2.5 Handler Ier~ination~

Once an exception handler has been called and has completed execu­

tion, control must be returned to the interrupted main line computation.

Ch. 2.5 Issues and Answers page 79

Existing and proposed exception facilities do not provide very rnuch

flexibility in the termination of exception episodes. .\ ·,ariety of

har.dler termination ~odes is needed to reflect the various outcomes of

the handler's attempts to recover from the exception. The handler may

indicate that the exception episode is over or it rnay indicate that ex­

ception processing should continue. Because the possible handler termi­

nations may affect the invoker in different ways, the handler specifica­

tions must be extended to control which termination modes will be al­

lowed for each handler. The terminations pen1itted a handler reflect

the expected outcomes of handler execution and the degree of trust

between the handler and the invoker.

:n this section, a number of handler termination modes 3.re dis­

cussed. Scrne of the handler terrninations lead to the terrninaticn of the

exception episode while others cause the episode to continue. The

handler ten1inations which end the current exception episode include: 1)

continue the invoker following the failed operation, 2) restart the in­

voker so as to retry the failed operation, 3) ~ to a non-standard

continuation of the invoker, 4) abort the invoker and signal a new ex­

ception to the invoker's invoker, and 5) 1mwipd the computation to an

earlier subsystem activation. The handler ter.ninations which do not

terminate the exception episode are: 6) r~classify the exception, and 7)

reject responsibility for the current exception.

2. 5. 1 Continue Termir,ation

The handler can sometimes recover from an exception by si~ulating

the effects of the failed operation. ',fo"?never the handler is able to

Ch. 2.5.1 Issues and Answers page 80

produce the results and side effects which were expected from the failed

oper:1tion, the execution of the handler can replace the call of the

failed operation. The reccvery block archi':ecture [Hcr!'lin~ 7~] is based

on the idea that an alternate computation ~ay be able to produce correct

or acceptable results after the primary computation has failed. For ex­

ample, a handler for arithmetic underflow exceptions can return zero as

the result of a failed floating point operation.

If the handler has simulated the failed operation, the exception

facility can continue the execution of the invoker by returning from the

exception processor to the invoker. Not only can the invoker be contin­

ued by an ordinary subsystem retur!'l from the exception proce::sor, but

also, r8sul ts supplied by the handler can be returned to t:-ie invoker.

The results generated by the handler are returned to the invoker in the

place of the results which should have been returned by the failed

operation. wnen results are returned from the handler to the invoker

using ~ontinue termination, the entire episode may be transparent to the

invoker. If there are no unusual side effects cf the failed operation

or the handler execution, continuing the invoker with the handler sup­

plied results can conceal the occurrence cf the exception from the in­

voker. Transparent recovery minimizes the interaction between the in­

voker and the handler.

Instead of simulating the failed operation, the handler can modify

the invoker's state as a side effect of its execution and then order the

continuation of the invoker. Handler side effects can be tested for by

the' invoker's program. One thing the handler can do is to con·,ert an

exception signal to a change in the value of a status variable accessi-

Ch. 2. 5. 1 Issues and Answers page 81

ble to the invoker. The invoker can then test the status variable after

being continued by the handler. Ncte that such a ~echanism for convert-

ing signals to status variables is inefficient in cases where ~he excep­

tion occurs, but is ~ore efficient than st~tus cede exception reporting

whenever the exception does not occur. The status variable can be ini­

tialized once by the invoker and does not need to be passed to or re­

turned from called operations. Whenever the exception does not occur,

statu~ variable manipulations do not generate any overhead.

Continue termination can be used to return control to the invoker

following successful recovery or when the handler has modified the

invoker's state so that the invoker's program can respond to the excep­

tion. In the first case, the simulation of the failed operation by the

handler makes the exception transpareGt to the invoking subsystem. In­

teractions between the handler and the invoker are minimized. Continue

termination can also be used to return control to the invoker after the

handler has posted side effects on the invoker's state. The side ef­

fects of the handler execution can be used to trigger the invoker's pro­

grammed response to the reported exception. Communicating the oc­

currence of an exception by posting side effects on the state cf the in­

voker leads to close interaction between the invoker and the handler.

2.5.2 Retry Termination

Instead of simulating the failed operation, the handler ~ay ~e able

to correct the cause of the exception. If the cause of the exception is

removed, the failed operation can be ,"tr• ed. Like continue t.er!Dina­

tion, retry makes the exception episode transparent to the invoker.

Ch. 2.5.2 Issues and Answers page 82

When the handler returns to the exception processor requesting retry

termination, the exception processor :nust use a privileged subsystem

transfer operation to ~eturn control to the invoker without incrementing

the invoker's instruction pointer.

Recovery actions which can correct the cause of the exception in­

clude repairing the parameters to the failed operation and handler ac­

tions which drive the signalling subsystem into a state from which the

failed operation can succeed. For example, the failure of an attempt to

open a non-existent scratch file for output can be circumvented by

creating the file and re-executing the open operation. Linkage faults

in Multics are handled by repairing the :nissing link and then retrying

the instruction which caused the fault. ?age faults are handled by

causing the missing page to be brought into real ~emery and then retry­

ing the failed ~emery access.

Retrying a failed operation is also sometimes appropriate when the

failed operation was partially completed before the exception was sig­

nalled. If the failed operation has updated some kind of progress indi­

cator which can be used to control the continuation of the operation,

retrying will caused the failed operation to continue from where it left

off. The MVCL (string copy) instruction of the IBM 370 system is an ex­

ample of an operation which may fail after being partially executed.

The MVCL instruction updates its parameters as it executes to reflect

the progress made. Re-executing the MVCL after correcting the cause of

the failure (e.g. page fault) will cause the remainder of the string to

be copied. The ~llocate operation describ~d in section 3.2.6 can also

be retried after failing en a virtual ~emery fault.

Ch. 2.5.2 Issues and Answers page 83

Retry termination should not be used if the original parameters of

the f1iled operation have been lest, or if side effects of the failure

~ake re-execution of the operation inappropriate. Ancther problem ~ith

retr-y termination is the possibility that the handler did not really

correct the cause of the exception. If the same exception occurs when

the failed operation is retried, the same handler would normally 'oe

called. The handler would call for the failed operation to be retried

again, leading to an endless loop of exceptions and retries. The excep­

tion processor can make some checks to detect the simpler forms of such

loops. In the general case, however, it is difficult to distinguish

between legitimate repeated exceptions and unsuccessful retries.

2.5.3 ~ Ter~inatico

If the handler is closely associated with the invoker, it may be

allowed to force the invoker to continue execution at some point other

than the current execution point. Not infrequently, the exception

should cause the invoker to exit a loop or to transfer to some execution

path which reflects the occurrence of the exception. A return from the

handler to the exception processor with r~sults calling for~ termi­

nation causes control to be returned to the invoker at the address indi­

cated by the handler. The effect of exit termination is to cause a

non-local~ from the handler to the indicated address in the invoker.

As Liskov points out [Liskov 76], the association of handlers with

the activation points which cause the exception should be specif :ed

separately from the continuation points to which the r.andlers 1=xi t.

Syntactic constructs at the programming language level can be employed

Ch. 2.5.3 Issues and Answers page 84

to give structure to the exit transfer. When the handler body is local­

ly specified as ?art of the invoking subsystem, exit ter~ination can be

used to ~eturn control at an arbitrary point in the invoker. ~hen the

handler is not part of the invoking subsystem, exit termination should

not normally be allowed. One exception to the above rule is the debug­

ging supervisor. The debugger should be able to return control to the

debuggee (invoker) at any point in its program.

2.5.4 Abort Termination

It is not unusual for a reported exception to lead to the failure

of the invoker of the failed operation. If ~he cause of the exception

cannot be cirou~vented and alternative calculations to achieve the

specified effects of the call to the invoker are unsuccessful, there is

no alternative but to signal the failure of the invoker to the invoker's

invoker. If the invoker's handler determines that the exception will

prevent the invoker from satisfying its output specifications, the

handler should be able to force the failure of the invoker and propagate

the exception to the environment of the invoker's invoker.

Signalling the failure of the invoker without returning control to

the invoker is called aborting the invoker. Abort terminates the

current exception episode and initiates exception processing on behalf

of the invoker's invoker after the invoker has been terminated. Abort

termination permits exceptions to propagate f~om callee to caller until

a subsystem activation ~hich can handle the exception is found.

Ch. 2.5.4 Issues and Answers page 85

At each stage during the propagation of an exception, the current

invoker's handlers 3re free :o continue the ~rcpagation, usin~ abort, or

to end the 9Xception episode by retur~in; control to the current invck-

er. For example, consider a payroll system composed of interacting sub-

systems. If the check writing subsystem is asked to prepare a check for

negative dollars, it should signal an exception. The exception may

cause the employee pay calculation subsystem to be aborted by its

handler. When the exception reaches the payday subsystem which controls

the computation, the control program can print an error report and

proceed to the next employee. Abort is also useful in debugging situa-

tions. If the debugging supervisor gains control as a handler of the

debuggee, it can abort the subsyste~ under test so :hat the system can

be r-eturned ':o a clean state f:--om ·,1hich the progratm:1er can '.llodify the

subsystem and then test the new version.

The handler which requests abort termination should be trusted by

or imposed upon the invoker. A handler must be authorized by the invok-

er supplied handler specification to be allowed to cause an abort. In
\

order to implement abort termination, the exception processor must make

use of yet another privileged subsystem transfer operation. The abort

operation, described in Chapter Three, terminates both the exception

processor activation which executes the abort and the activation of the

invoker. Abort then reactivates the exception processor to process the

new exception in the environment of the new invoker. The new activation

of the exception processor can process the exception as if it had been

directly signalled by the old invoker instead of by way cf t:1e abort

operation.

Ch. 2.5.4 Issues and Answers page 86

When an exception is propagated from the invoker to the invoker's

invoker, the exception cede ::.nd :nessage can :,e supplied jy the l;ar.dler

which calls for :he abort. It ·,mulct be inappropriate, however, ~o use

the handler as the signaller of the new exception. The invoker's invok­

er can not be expected to be aware of the identity of the :nvoker 1 s

handlers. If the signaller-id of the new exception was the handler

which ordered the abort, the invoker's invoker would be confronted with

an exception from a subsystem which it never called. Similar arguments

suggest the new exception should not be the same as the original excep­

tion. The original exception was signalled by an operation called by

the invoker and not by the invoker's invoker.

In almost all cases, it is appropriate to :nake the invoker the si~-

naller of the propagated 9Xception. :'.:n some cases, ~owever, it is •1se-

ful to let the exception processor be the signaller of the new excep­

tion. Sometimes the exception processor must initiate the abort because

of improper usage of the exception facility. One example is when the

exception processor is unable to find a handler for the current excep­

tion.

When a subsystem activation is to be aborted, it is often necessary

to restore the subsystem to a consistent state before the subsystem ac­

tivation is abandoned. If the handler calling for the abort is closely

associated with the invoker, it can perform the actions necessary to

bring the invoker to a consistent state. Instead of directly restoring

the invoker's state, the handler can ~all a '~leanup' routine belonging

to the invoker. The 'cleanup' rcu tine can ':)e called directly by the

handler or the handler can reclassify (see Section 2.5.6) the exception

Ch. 2.5.4 Issues and Answers page 87

to cause a 'cleanup' handler belonging to the invoker to be located and

called. The 'cleanup' handler can then issue the abort after restori~g

the state of the invoker.

2.5.5 Unwind Termination

The exception processor can provide an unwinding facility designed

to terminate un-needed subsystem activations in order to return control

to an earlier subsystem activation. Unwinding is useful when the

results of several subsystem activations are no longer needed because

the larger computation in which they are participating is being aban­

doned for one reason or another. Each of the subsystem activations

which is to be ter~inated shculd be given a chance to restore its data

structures to a consistent state before it is forced to permanently re­

linquish control.

The handler calling for the unwind must indicate how far the pro­

cess should be unwound. The handler which initiates the unwinding can

also supply an exception message to inform the unwind target of the rea­

son for the unwind. When the indicated subsystem activation is reached,

it cannot be continued normally. The exception processor can signal an

'unwound' exception to the target subsystem after the superfluous sub­

system activations have been terminated.

The selection of the unwind target raises some protection issues.

It should not be possible for an arbitrary handler to order an arbitrary

unwind. One way in which the unwind target can be validated is to re­

quire that the ~andler present a non-local reference to the target sub-

Ch. 2.5.5 Issues and Answers page 88

system activation. The ability of the handler to produce a validated

referer.ce to the unwind target indicates, at least, that the handler is

somehow related to the target.

To unwind the process, the exception processor :nust force the ter-

mination of the intervening subsyste:n activations without ~ompromising

their integrity. Before terminating a subsystem activation, the excep-

tion processor should search for and activate 'cleanup' handlers belong-

ing to be subsystem about to be terminated. The signaller of the

'cleanup' should be the exception processor. The 'cleanup' handlers can

restore the state of the subsystem activation about to be terminated.

Subsystems which don't have 'cleanup' handlers will be terminated

without having a chance to restore their data structures.

To implement the unwinding facility, the exception processor uses

the privileged abort operation to force the termination of subsystem ac-

tivations. In order to continue the unwinding following each abort, the

terminated exception processor activation :nust communicate to the new

exception processor activation the fact that unwinding is in progress.

Making the exception processor the signaller of the abort permits the

new exception processor activation to detect that unwinding is under way

by examining the signaller-id and exception code of the propagated ex-

ception.

At each step, the exception processor checks to see whether the

target subsystem activation has been reached. -.. .L. so, an 'unwound' ex-

ception from the exception processor communicates to the target the ~act

that an unwind has occurred. The exception message from the handler

which initiated the unwind is also passed to the target. If the unwind

Ch. 2.5.5 Issues and Answers page 89

target has not been reached, the exception processor searches for and

calls the 'cleanup' handler associated with 'c.he current invoker. The

only ter~ination ~er~itted the 'cleanup' handler is reject :er~ination

(see Section 2. 5. 7). All other handler ter!!lination :-equests from the

'cleanup' handler are ignored and the exception processor propagates the

unwinding to the next level by aborting the current invoker.

A number of thorny implementation problems are raised by unwind

termination. One problem is that a 'cleanup' handler may fail to return

control to the exception processor. Another problem stems from the fact

that a second unwind may be initiated by the handler of an exception

caused by the 'cleanup' handler. The first problem requires the imple-

mentation of watch dog timers to wrest control from handlers which re­

fuse to ter~inate. The second problem requires extra ~ode in the excep­

tion processor to sort out overlapping unwinds and to choose the :nost

distant target. The i~plementation of unwind is discussed, along with

the other handler ter~inations, in Chapter Four.

2.5.6 Reclassify Termination

The handler termination modes discussed up to this ;,oint end the

current exception episode. Instead of ending the exception episode, the

current exception name can be changed to reflect the handler's decision

that the exception should be reclassified. For example, a page fault

caused by referencing beyond the logical end of a segment can be reclas­

sified f~om 'page-fault' to 'ncn-existent-page' by the page fault

handler. Reclassifying an exception allows the handler to recharacter­

ize the exception based on its own analysis of the situation.

Ch. 2.5.6 Issues and Answers page 90

To reclassify the exception, the handler can return the new excep-

tion code ~nd :::iessage to the ~xception processor along Hith the indica­

tion that reclassification is 1esired. Since the handler ~s pres~mably

not a stranger to the invoker, the signaller of the reclassified excep­

tion can be the handler. The handler's decision to reclassify an excep­

tion causes the exception processor to search for and call handler(s)

for the new exception.

Reclassify termination is equivalent to a signal from the handler.

Indeed, there is nothing to prevent the handler from signalling instead

of reclassifying. The exception facility should be prepared to convert

signals from a handler to reclassifications. Also, the exception pro­

cessor should :::iake sure that the reclassif.:.ed exception is different

from the current exception. ::~ .: +- is not, the exception pr,:,cessor

should convert the reclassify to a reject termination (see next subsec-

tion).

As in the case of retry, careless or malicious handlers can cause

the exception facility to loop. By reclassifying the exception to be

the same as it was earlier in the same exception episode, the !'landler

can cause the exception processor to call a previously ~alled handler.

That handler, behaving as before, can again reclassify the exception

leading to an endless sequence of reclassifications. The exception pro­

cessor can detect such loops by keeping track of which exceptions have

been encountered during an exception episode.

Ch. 2.5.7 Issues and Answers page 91

2.5.7 Reject Termination

Yet another handler ter~ination action permits the handler to~

ject !"esponsibility for the exception. In this case, the handler has

done whatever it could to recover from the exception, but cannot itself

handle the exception. Reject termination allows the handler to give up

on the exception in the hope that some other handler can deal with the

problem. By rejecting responsibility for the exception, the handler

directs the exception processor to search for and call another handler

for the same exception.

Under the invoker controlled handler choice policy of Section

2. 4. 4, the handler specifications for a given exception are ranked by

their type (imposed, local, or default) and order of specification. 7he

handler specification priority ordering yields a sequence of handler

specifications for each exception. If the first handler rejects respon­

sibility for the exception, the next handler specification in the se­

quence can select the next handler for the exception.

If the handler specification sequence is exausted, reject termina­

tion by the last handler cannot cause another handler for the same ex­

ception to be called. In this case, the exception processor can reclas­

sify the exception to the 'noHandler' exception to indicate that no

handler can be found for the current exception. If the current excep­

tion is 'noHandler', more drastic measures must be taken (see Section

4.4.7).

Ch. 2. 6 Issues an~ Answers page 92

2.6 Summary

This chapter has jiscussed a number of exception ~recessing issues.

7he requirements for uniform exception reporting, unarnbi~uous exception

naming, low main line overhead, and isolation of the handler environment

were analysed at the beginning of the chapter. The

handler specifications were discussed in section 2.3.

issues surrounding

The advantages of

static associations between handlers, exceptions, and activation points

were pointed out. Also the distinctions between local, default, and im­

posed handlers were discussed in Section 2.3.3.

Given the requirements for exception episode initiation and the

mechanisms for specifying exception jandlers, the ~roblem of selecting~

handler Nithout compromising the :ntegrity of the invoker was exa~ined.

The traditional global and inherited handler choice rules were shown to

lead to undesirable interactions between different subsystems. 7he in­

voker controlled handler choice policy was then presented. This policy,

with it's default, local, and imposed handlers was shown to protect the

interests of the invoker while providing flexibility in the selection of

a handler. The notion of a sequence of supervisors which participate in

the preparation of the subsystem for execution was exploited to control

the priorities of default and imposed handlers. The invoker policy, by

considering only handler specifications associated with the invoker,

provides for the isolation of protected subsystems, reflects system su­

pervisory privileges, and permits flexibility in the control of excep­

tion processing.

!he final section of this chapter discussed the handler termination

modes which should be supported by the exception facility. A variety of

Ch. 2. 6 Issues and Answers page 93

handle!" terminations is necessary to reflect the possible outcomes of

the handler's attempts to recover from the exception. Handler ter~ina-

tions which ret~r:i :o the ::.nvoker, :er:ninate the ::.nvoker, ar.d ·..;hich

cause additional handlers to :ie selected were shown to respond to the

various ways in which handlers ~ight wish to terminate their attempts at

recovery.

Ch. 3 page 94

Chapter :'~ree

An Implementation Model

3,1 Introduction

The implementation of a system level exception processing facility

requires that some exception processing operaticns be integrated into

the base level of the system. In this chapter we develop a process

model supporting protected, mutually suspicious subsystems and i:nple­

menting exception reporting and termination ~echanisms. T~e implementa­

tion of protected subsystems requires defining the environment in ~hicn

programs execute and specifying how that environment changes when con­

trol passes to a program in a different subsystem. The term domain has

been used to denote the protection environment associated with a running

or runnable program. Although the ter:n has been employed in various

contexts [Lampson 71, Schroeder 72, Spier 73], we use the term "domain"

to refer to the protection environment within which a subsystem activa­

tion executes. Different activations of a subsystem should execute in

different domains to reflect the differing para~eter privileges of the

several activations.

In order to demonstrate an implementation of the exception process­

ing facility developed in this thesis, one must assume some sort of

starting point. The relevant features of~ number of systems which sup­

port the ability to create arbitrary protected subsystems have been

abstracted and combined into what we call the basic precess]odel. Sec-

Ch. 3. 1 An Implementation Medel page 95

tion 3. 2 defines the basic precess model with an emphasis on its ad-

dressing mechanism 2nd the operations for creating domai~s and transfer-

ring control from one domain to another. Section augments the Jasic

processor model to support exception processing. The exception process-

ing primitives for initiating and terminating exception episodes must be

added to the basic process model because they require domain switching

protocols not available in the basic process model. Finally, Section

3.3 elaborates the basic processor implementation of the subsystem ac-

tivation stack so as to permit a small portion of the stack to be

resident in real memory while the rest of the subsystem acti Yation

records which comprise the stack are stored in virtual memory.

3.2 The Basic Process Model

The basic process model implements an execution environment which

supports protected, mutually suspicious subsyste!lls. A subsystem exe-

cutes in a domain which is defined by the contents of its current ad-

dr~ss space. The current address space is a mapping from computable in-

teger addresses to storage locations. The current address space binding

is changed by the subsystem transfer operations. The basic process

model includes operations for calling and returning from subsystems and

operations for allocating and freeing temporary storage. The process

model does not include facilities for s~itching physical processors from

one process to another. We ignore the issues involved with r2ultipro-

cessing because the exception processing faciJ..i ty we wish to develop

does not require (or support) concurrent processing.

Ch. 3. 2. 1 An Implementation Model page 96

3. 2. 1 Basic Addressing

Basic ~ddresses are the integer addresses ~hich a program can

present to the execution engine. The ~apping from computed addresses to

stored data is defined by the basic addressing ~echanism which is

designed to reflect the allocation and binding strategies needed to im-

plement shared protected subsystems. Basic address spaces are created

when a subsystem is activated and destroyed when the actiYation ter-

minates. An execution point is also associated with each address space.

Basic addressing in the process model distinguishes between storage al-

located and initialized during subsystem creation, on the first call to

the subsyste~ by a particular process, and on each call to the subsys-

tem.

Basic addresses reference locations in one of three storage se~-

men ts: 1) the per-subsystem root segment, 2) the per-subsystem, per-

process incarnation segment, or 3) the per-call activation frame. The

per-subsystem root segment is allocated and initialized during subsystem

creation. It contains, among other things, the code for the operations

of the subsystem and the variables which are shared by all activations

of the subsystem in all processes. A subsystem can be identified with

its root segment because the procedures and private data structures of

the subsystem are kept in the root segment.

Subsystems typically can be executed concurrently by many indepen-

dent processes. Subsystem implementors should be able to allow multiple

simultaneous activations without having :o explicitly handle the
.....

!llUl;,i-

plexing of their per-user variables. In order to facilitate the use of

per-user or per-process variables, the addressing ~echanism of the

Ch. 3 .2. 1 An Implementation Model page 97

process model binds references to such variables to the subsystem's in­

carnat:..on segment. The .:..nc3.r:1ation segment :an be 3.lloca:ed 3.nd ini­

~ialized when a subsystem is first used in a process.

Per-process, per-subsystem incarnation storage is also known as own

storage [Spier 73, ALGOL 60], static storage [PL/I 74], and linkage

storage [Daley 68]. Incarnation storage is used to maintain per-user

subsystem state information between subsystem activations. An incarna­

tion segment is necessary only if the operations of the subsystem need

to save per-process information from one activation of the subsystem to

the next. A compiler, for example, does not usually need to save any

information from one activation to the next. A terminal interface sub­

system, on the other hand, might need to remember ter~inal characteris­

tics ::.nd buffer characters on a per-process basis. A dynamic linking

facility [Daley 68] makes extensive use of incarnation storage to store

linkage variables.

The operation of allocating and initializing the incarnation seg­

ment, if it is needed, is called instantiating or making the subsystem

known to the process. In order to initialize the incarnation segment

when a subsystem is made known, a template of the incarna t::..on segment

can be stored in the root segment of the subsystem. The template can be

copied into the new incarnation segment when the subsystem is !!lade

known. This approach to subsystem instantiation is similar to the

management of the linkage section in Multics [Organick 72, Daley 68].

In addition to per-subsystem and per-process storage, we must ~ake

some provision for accessir.g the arguments of a subsystem call, allocat­

ing local variables and temporaries, and accessing the results returned

Ch. 3. 2. 1 An Implementation Model page 98

by subsystem calls. Argument binding, local variable allocation, and

:-esul t passing :nechanisms can be i:nplemented using a 3ecticned stack.

The sectioned stack allocates al: activation frames :rom a sing~e seg­

~ent. The ~ana~ement of such a stack segment can be ~andled by mechan­

isms similar to those used in the 3urroughs B5500 and B6500 processors

[Organick 71] or using the schemes described by Rotenberg in his thesis

[Rotenberg 74]. An activation frame is created on each subsystem call

and destroyed when the subsystem activation terminates. Parameters are

passed and results returned through the activation frame. The activa­

tion frame is also used by the subsystem to store its temporary vari­

ables. Much of this chapter is concerned with how the activation frame

is foroed and how it changes in response to the various subsystem

transfer operaticns.

The ~asic addresses of the process ~odel select locations in one cf

the three slots of the address space. Local addresses are mapped to lo­

cations in the activation frame. Static addresses are mapped to loca­

tions in the incarnation segment, ~hile shared addresses are ~apped to

locations in the root segment. All addresses are checked to see that

they lie within appropriate limits in the segments they reference. T~e

root segment is partitioned, at a point which we denote as root RO, into

a read/execute region and a read/write region. An instruction poi~ter

which references the current instruction in the root segment is also as­

sociated with every subsystem activation. Figure 3-1 depicts the basic

address space of a subsystem activation. The utilization of the three

address space segments is also represented i~ the figure.

·::,. =. 2.'

Jct,3ot

actT,.,p

act Um

t"'lt, - I - • ~

.) ' ... --------.
' -i :--: ·.: : r,.:-: ·~
' .
! 1: c ·: r ··- ; .~

SH.4R:.:J

' - . '
-,· • .., I I'/.... , .: (1

par,Jmi:.·~rs
! J CJi S

I ras:Jlfs i a.,
i
I

' ..
I ""' I ..,, :l

i._ t 11 ,\i '; -

Root S~,;me11f

instPtr r----------------------~~~----~.J ,-----~
root~G

consr:1nts

shanj
·1 c r i a b l .a s

~.; :-,·~~ .. -~ _ .. -

; '"""'•,· ;.; ... 1,. ,J1.·.;:-l

l frame
I

)

Ch. 3. 2. 1 An Implementation ~odel page 100

Figure 3-2 is a flowchart of the basic addressing qlgorithm. The

basic address consists of a t2g and 2n integer ~ccex. T~e tag ?ortion

of the ~ddress selects one of the slots of the address space and the in-

dex specifies a location relative to the beginning of the indicated seg-

ment. The storage for the contents of the address space is assumed to

be implemented as virtual storage at a higher level of the system. This

means that, in general, any reference to a location in the basic address

space may fail because of a virtual memory fault. Besides virtual

memory faults, faults caused by addresses larger than the indicated seg-

ment will cause the basic addressing mechanism to fail.

Addressing and other faults causing basic processor oper3.tions to

fail are called basic :'aul ~s. T;;e basic pr0cessor si:nply halts when

basic faults are encountered. ~ c: t- • .:.n ...,ec ~ion 3.3, the basic process model

is augmented to include exception reporting facilities which respond to

basic faults and signalled exceptions.

3.2.2 External References

The addresses generated by basic machine operations are normally

interpreted in the current address space. The basic addressing model

does not provide for referencing objects outside of the three segments

bound to the current address space. In order to reference one subsystem

from another or to share objects between subsystems, some facility for

referencing external objects :nust be defined. The external reference

mecnanism must protect the interests of subsystems by being able :o con-

trol accesses to external objects.

"' < ~ , - . ._. -

0 ;J s ; : ~ ~ j r : :· : ; .. ~ \ ~, :- ~ . - ,
.------"',

I
I .

\

'n •'.:::. •
l J; - ,,. "

\ -
\ J ' " ' ,l 1 • - • '\
/----~ .- • I' I 1_/

>c

,1 .,. 5 / i n d : x < \ :: . ~ ~;,.. / \ .1 c A ... , ;

1
in d e :t. < \\ , , . 4

Ji\'- I 1' n ,•-, ~, j ,-, \:-.,. .. : _' ""-'-' ~"(. ;,...; •~1 ! .·, • • i".-, ~ - , j .:: :;i \ . - • ; -. r ~ J g I , , 4 .. • • -. ·"' ;'-. """ ' \ .
l -,nccr.::·;.: \.__ ____ ..,/ \ JCt3J~) /

1 ·-

I g. J, c, I
(

'1

i,ld:~<
I_ I"'\

\ r o •J r .~ '.J -

ro0tSeg'.

shar:l ."1 •Ji
r

~\

(I ' .~ : ~ ~ ~ ' . \

\ \ 1 - : _;

\~_::~_J'
1 ---""'

,/ \ Ji':'~ \ __ _
~ '/ ::

\ I
\ ,/
\-----

.. ,.:, ., ..,;
I ,..., ... '-

\
' I

\ yes

I

return
\'ro,.,+c:.:i,,

\.III.._., ... ,

-1- index)

/

i

'

=·

inde.(> 1. P> .\ n .J :
, •,::J""I -·t':=: \ r :. c i ., v - I .
r, t:I J \

V·..J ~··.,/I

= 1 : :""'1,-t -~ '· .! ~ _,.
I • ..J---~ -·-1

nc

~ -2; ~~...;..,.:i~,·-}' ---· ·--··

Ch. 3 .2. 2 An Implementation Model page 102

Capability based addressing, in which protected or sealed pointers

are stor':!d in tl:e basic ?.ddr':!ss space, prcvides a suitable exterl".a2.

reference :nechanism. Capability systems have been discussed at length

by many authors [Dennis 56, Fabry 74, Lampson 71, Redell 74, Jones 73,

Walker 73], Various extension mechanisms, based on capabilities, permit

protected subsystems to define and control access to new types of ob­

jects [Redell 74, Morris 73, Lindsay 73, Jones 73, Ferrie 74, Gligor

76].

There are other methods for referencing and controlling access to

external objects. For example, access control lists can be used to

validate unprotected external references [Schroeder 72, Sal tzer 75 J.

Access list schemes ~heck that t:he accessor is amor.g ~he autho!'::.zed

users of the external object. The process ~odel assumes the existence

of an external reference oechanism, but leaves unspecified how external

references are represented and validated. Either a capability or an ac­

cess list system would be satisfactory. However, the process ~odel is

biased towards a capability based external reference system.

Given an external reference mechanism which permits objects outside

of the current address space to be referenced and accessed, we can con­

sider references to address spaces other than the current address space.

Operations for creating external references to address spaces and for

accessing the contents of other address spaces are supplied by the basic

processor. The creation and manipulation of address sp~ce references

must be closely controlled for several reasons. It ~ust not be possible

to :nake use of references to address spaces .,.,hich no longer exist Be­

cause access tc the address space cf a subsystem activation licenses the

Ch. 3.2.2 An Implementation Model page 103

accessor to read and update the private variables of the subsystem, it

~ust not be ~ossible for ~ser pro~rams to create references to arbitrary

address spaces. 3asic processor operations for creating external refer­

ences to address spaces are limited tc an operation for creating a

reference to the current address space. Address space references, like

other external references, can be passed as parameters from one subsys­

tem activation to another. The operations available on non-local ad­

dress spaces include: 1) referencing the storage segments of the address

space, 2) reading the instruction pointer, and 3) reading the subsystem

name (root segment-id).

3.2.3

When a ;,:'ocess is net b·2ing executed by a processor, the informa­

tion defining the process and its current state is stored in the process

~. The process base must be present in real memory before a proces­

sor can be assigned to the process. The basic process base contains a

processor state block and a stack of suspended subsystem activations

known as the subsystem acti,,aticn stack. The activation stack contains

the bindings for the address spaces cf suspended subsystem activations.

The current address space is maintained in a separate set of registers

and not en the top of the activation stack. The process state also in­

cludes some general purpose accumulators and the registers which define

the current address space.

Since we are not concerned in this thesis H:t~ ,rocessor ~ult:plex­

ing, we assume that changes to the process state are reflected directly

in the process base instead cf the registers of the processor currently

Ch. 3 .2. 3 An Implementation Model page 104

bound to the process base. Note that since the entire process base is

2.ssumed to be :.n r<=?al :nemory, ::.he basic processor ·..,rill not ~ncounter

v:.rtual ~emory f2ults when accessing the process jase. Figure 3-3 jep-

:.c:s ~he contents of the basic process base. The finite size of the ac-

tivation stack i~plies that subsystem calls, which suspend the current

address space and create a new current address space, may fail because

the activation stack is full. The augmented process model introduces

mechanisms which allow the top region of the activation stack to be in

the process base while the rest of the stack is stored in non-fixed vir-

tual ~emery segments.

3.2.4 .Subsystem C2ll

The subsystem~ operaticn initiates an operation of called

subsystem. The parameters of the subsystem call operation are 1) the

subsystem to be activated, 2) the gate of the called subsystem to re-

ceive control, and 3) the index in the current activation frame of the

beginning of the actual parameters for the called subsystem. We assume

that the invoking subsystem prepares the actual parameter vector for the

called subsystem at the high end of its activation fr2me. The ~arame-

ters to the called subsystem are passed by value or by means of external

references passed by value. The subsystem call operation saves a

description of the current address space, including the instruction

pointer, on the activation stack and then creates a ~ew current address

space for the called subsystem activation. The instruction pointer of

the calling address space is left pointing to the call instruction.

I~·., ,.,., 2 ·, ~. .. ~

I

I
I -

~--", !l-c,...: ""'"" --:----J.-:i.·~-.,,,·· '.f~...; =. ~

J

sra1ic

shared ac.,va,:on
s tee:~

D ,..,;i1.::l('"'
• "" I I I " ;)

........ : 1 ' '

,_,:I/ :..J

3 t C : :\

-
i
I ...
!

'

I
I

;.

I

J ...

i
J

. ,....,_ ·-

.: ·J rr: :-- :

,.l ,: r i 11 ·: ,. ·

Ch. 3. 2. 4 An Implementation Model page 106

The call operation creates a new current address space for the

called subsystem. The new root, incarnation, 3.nd acti ?a tion segments,

as well as the new instruction ~ointer, ~ust je deter~ined a~d jound to

the current address space. If subsystem gates are clustered at the be­

ginning of the subsystem's root segment, the instruction pointer for the

new current address space can be set to the gate index specified by the

second parameter of the call operation. For simplicity, we will assume

that all subsystems have the same number of gates. This limitation can

be circumvented in a variety of ways which will not concern us here.

The activation frame for the called subsystem is derived from the

caller's activation frame. The new activation frame should contain just

:he parameters of the call. If the parameters are prepared JY '::ie

caller at the tcp of its activation frame, that portion cf the caller's

activation frame can become the initial activation frame of the new

current address space. The called subsystem will begin execution with

an activation frame containing just the parameters of the call. An ini­

tial workspace for the called subsystem could be allocated 3nd initial­

ized by the call operation. However, extra work at call time as well as

the extra complexity to determine the workspace size make it unattrac-

ti ve to allocate the callee's workspace during the call. Instead of

mapping the parameters into the callee's address space, the subsystem

call operation could copy the parameter vector. This solution, attempt­

ed in CAL [CAL 69b] and HYDRA [HYDRA 74, Wulf 76] greatly increases the

overhead of the subsystem call operation.

The root and incarnation segments for the new address space ;,re

derived from the the nsubsystem" par~meter cf the ~all operation. '!'he

Ch. 3 .2. 4 An Implementation Model page 107

"subsystem" parameter is an external reference which specifies either

the root segment or the incar~ation segment or ':)oth :iepending of the

specific i~plementation. ~e explore :he various ~ases ir. t~e ~ollowir.g

paragraphs.

A subsystem can be identified with its root segment where the ~ode

for the subsystem, the shared data, and the shared external references

are stored. If the subsystem reference provides only a reference to the

subsystem's root segment, the process-local incarnation segment must be

located by searching a process-local "known-subsystem table". Systems

;;hich select the called subsystem by specifying only the root segment

include the Chicago Magic Number Computer [Fabry 68], the Plessey System

250 [England 74], the HYDRA system ['..Julf 74], and CAL [La:npsor. 76]. ':;f

~hese systems, only CAL supports incarn2ticn stora~e.

Instead of specifying the root segment, the subsystem reference of

the call operation can specify the incarnation segment of the target

subsystem. The incarnation segment, having been initialized when the

subsystem was made known, can contain an external reference to the root

segment. In Multics, the call operation specifies the incarnation seg­

ment (linkage section) of the callee. The l.:.nkage section contains a

reference to the root segment of the subsystem [Daley 68]. One conse­

quence of this approach is that every subsystem must have an incarnation

segment to store the process-local references to the incarnation seg­

ments of the subsystems it calls and through which it can receive con­

trol. In the CAP system [CAP 76b, Needham 7 2], the external references

used to :dentify the called subsystem spec:fy both the root ar.d incar~a­

tion segments. Subsystems which don't need incarnation storage do not

Ch. 3.2.4 An Implementation Model page 108

have incarnation segments in CAP.

Li~e t~e mechanism for implernentin; external references,

~echanism by which the "subsystem" parameter !pecifies the root and in-

carnation segments is left unspecified in the process ~odel. It is as-

sumed however that the mechanism for identifying the root and incarna-

tion segments may fail to produce results if the subsystem is not known

to the process.

A subsystem call pushes a description of the current address space

onto the activation stack al'!d then constructs a new current address

space. The root and incarnation segments, as specified by the "subsys-

tem" parameter of the call operation, are bound to the current address

space. Tte new acti~ation frame is jefined to ~xtend from the beginning

of the parameters to the top of the caller's activation frame. ?igure

3-4 illustrates how the activation frame for the new current address

space is derived from the caller's frame and the parameter index of the

call. Figure 3-5 depicts the effect of a call on the activation stack.

Note that in the figure, the current address space is represented as be-

ing at the top of the activation stack instead of in a special set of

registers. Figure 3-6 is a flowchart of the algorithm cf the call

operation. Manipulations of the activation stack are represented by

qualified occurrences or the module 'actStk' which implements and main-

tains the representation of the subsystem activation stack. (Note: the

notation used in the flowcharts is drawn partially from the Euclid syn-

tax [Euclid 77].) 'Act.Stk. full' tests for overflow of the activation

stack while 'ActStk.push' adds the description of an ~ddress space onto

stack. The cur~ent address space is referenced by the structured vari-

c::.

I

:: .: ! 1 2 ; 3
I

ca1lee s
I

5 J'I ~ 'j : J : : : ~ 3

fra:n2 fr.Jme ' rra:TI~

!

ccilee' 5 j

~---p~r~~3_ J
.l I l

! , CJ!!-:r 5 I
n a r:: ms --.,_

1

J ' ~ · ~' · 11 ~ '~'""·.....:I.)

I r - --,- ~
1 ' ,. JI 1 .:i r • ! i ~ . ~ :i i

I parc,T1s !
I I
I I
I I

i I
I

act :3cr ·

------L-~ : : t . ~ .,
cal l 2 e' s . I _______ .J

act Top I

I . ~ c r a .11 s , __ .,,.;.-____ _,
I I ,, j

! CC!J.~r 3
act Bet

I

lo cc: s !
J l .----i-·1
; r -i, '·~ r • I I ·~"' II v I :) I

I T" a<,·•,....,• I I I' ' .: '' ~ '. I
r - - - --· -~ : .~ t 3 : t
I I I i
I I !__.#_.....--·

'

,_ _______ .,,_.,j

,.., ... , ~

-~

call (ca'l22)
,,

ct]:; : ."
I

I ..__ ____

' "' - :

::~.

C,J!I (subs;s
1

~:i::
1

JJ,::i"::s

.. ~
J ~] l :i ,:

\ / ---.----"
t

yes

'"'< / u _ocr:i'i'ls.::::: ~

(,.... .,\ ~ ., .- • __ ,.. _ \'-. _n_c ____ .j ~ ? "-
1.., ,., .~~· ,~.~ I C/
"''\C:~.-+:::,i) I
l,.r,.._;.\.,J.,l~'

j ',JO~
1 l - ...,

1

I ,, 2 s
1 ,

no
-1

.>4CtSt'.c i F2: bad ::J:JrJ::1·3

. r r \ - , I
puSil\v'"':i; J

r .·\ .,.::;. t 1' ,... ;,+- ~ . i ;-, ~ 11· " ; :1 ""' !
_. ,"""\ -...) • .:) I'-.- I -..J ..J - ""'...,., ...J, , , .., .,.. ,

C,4S.sncr:::d +- h,Jsys.rJcf

CAS.instPtr ...--:pre

- , -: -·J:

F 3 : :...i n ~ ,1 .J ·,1 : :3 S .! 3

F4: """',' - I J C T j f :\ ,- '.J : !

' - I""'.; - ·- -,
:,;"'.:.....;_;;,,,;~----·-s

Ch. 3 .2. 4 An Implementation Model page 111

able 'CAS'. Note that the return at the end of the flowchart causes

control to pass to the called subsystem. It should not be confused with

the subsystem return operation which is discussed next.

3.2.5 Subsystem Return

The subsystem return operation terminates the executing subsystem

activation and continues the topmost suspended subsystem activation.

Result values can be transmitted to the calling subsystem by adjusting

the activation frame of the caller to include the results. The return

operation does not take any parameters. Before returning, a subsystem

shrinks its activation frame to include only the results (plus the ori­

ginal parameters). The results to be returned to the caller are assumed

to occupy the entire activation frame. The return thus restores the ac­

tivation frame of the caller to its state before the call, except for

any results which may have pushed into the top of the frame. Figure 3-7

illustrates the adjustments to the saved activation frame which pass

results from the callee to the caller.

The subsystem return operation removes the top address space from

the activation stack and binds it to the current address space. Figure

3-8 shows how subsystem return affects the activation stack. The in­

struction pointer in the caller's address space is advanced to reflect

the completion of the operation which was under way when the address

space was suspended. To keep things simple, we assume that all instruc­

tions are the same length. Normally the operation under way will have

been a call operation. In the augmented process model, however, basic

faults may leave the instruction pointer of a suspended address space at

c:1. 3. 2. 5

;

CJ I l-:e -5

CJ ct

l :Jct 3or

I CJ II 2':
1

3 i
Jct 'Tc 9

- - - ~-------i r results I
ra !'1;;);:l ',.. I

Jct Top
"' 1..:) j

I I pCrJi:'iS !

l~er'sj
j I JCO ls !
rc:,-1;;)-r'--·! I - ' - :) I

RE TU~:~ ---- ·------===>

I I

I C.J!i":12 S
I

I re SI' if,..
j ..J,,::, !

r---;---i
1

1 r~/fcia - ! ...,..J I:i I

i ',
.oarcrr1s i _____ _J

I ::llar
1

s
i
j iGCJi3
!--------!

i

car ,j r1: 3
:::

0

s~ t ~ ... ,. : ___ ~ _____ _,_'.
1 - .-J '.JI j

I par:ms '
-------,:--}--~ : : i 3 c -~ I _. _____ .J

I I -------·
I
I

..._ _____ ...;
i
i
\
I
i '--·--~-

Ch. 3.2.5 An Implementation Model page 113

any operation which might cause a fault.

Return adjusts the activation frame of the caller to include the

results returned from the terminating callee. The activation frame of

the reactivated subsystem has the same base as before the call but the

top of the frame is set to include the returned results. If the activa­

tion stack is empty, the return operation fails without terminating the

subsystem executing the return operation. Figure 3-9 gives the algo­

rithm of the subsystem return operation.

3.2.6 Allocating Activation Storage

The subsystem call operation initializes the new activation frame

to contain just the parameters of the call. Most subsystems will need

storage for local and temporary variables. The basic processor includes

an operation for allocating and initializing activation frame storage

and an operation for determining the current size of the activation

frame. The operation frame size simply stores the size of the current

activation frame into one of the processor's general purpose accumula­

tors. The allocate operation takes one parameter: the new size of the

activation frame. If the new frame size is larger than the current

frame size, the current activation frame is extended at the top and the

new storage is initialized to zeros.

If the new activation frame size is smaller that the current size,

the activation frame is truncated from the top. However, the activation

frame is not permitted to become smaller than it was when it was creat­

ed. This restriction avoids problems stemming from the fact that the

~ · 2. S

:J :l J.. i" '
'\ • I 'j r ,i \

(/'
__ b2gin ~
~ ; I __ ___,,

i

act St\ inl'· yes \ <'i' I_,)~;---~~
___ 1'•/

l ___ j ~
i ,10
!

] ___ _

1 ____ 1

--~-----
I

--- 1

'

C A S · C C t TO n -l- 1 I
CA

...... . r- j

· :).JnstD· · I • 1 r - , 11 s / p ! ~ , ... lj

_l
·J,. r· C' ~----i \,. ,::; '·~ '.JOO ' ' .. ' : i

return

-~. - :...r.._-·_:r ~- ~ , .::--: : . . ~
---"-·' ---· ·-·-"-

Ch. 3 .2. 6 An Implementation Model page 115

caller's saved activation frame includes the parameter area which became

the initial activation frame of the callee. Accesses to a suspended ad­

dress space can be make using non-local address space references which

use information saved in the activation stack. If the callee could free

and the re-allocate the parameter area of its activation frame, non­

local references to the top region of the caller's activation frame

would reference storage no longer associated with the caller. The prob­

lem is circumvented by preventing the callee from freeing the shared

portion of its activation frame.

The allocate operation will fail if the new frame size would exceed

the space left in the activation segment as well as if it would reduce

the frame to less than its original size. Allocate will also fail if it

encounters a virtual memory fault while initializing new activation

storage. If the allocate operation fails because of a virtual memory

fault, it can be re-executed after the virtual memory fault has been

handled. The allocate operation is re-executable because its parameter

specifies the the desired size of the activation frame. If the pRrame­

ter specified the change to the activation frame size, a partially exe­

cuted allocate operation could not be re-executed without first changing

the parameter value to reflect the progress made before the virtual

memory fault. Instead, the current activation frame pointers in the

process base record the progress made by a failed allocate operation.

Note that the allocate operation does not conform to the ideal of no

side effects for failed operations and must be carefully designed to be

re-executable following a failure.

Ch. 3. 2. 6 An Implementation Model page 116

Figure 3-10 illustrates the changes to the process base caused by a

successful allocate operation. Figure 3-11 gives the algorithm of the

allocate operation. Note the use of the function 'Seg. write' to ini­

tialize newly allocated activation storage and the use of the 'actTop'

pointer to record the progress made.

3.2.7 lf.Qn-Local Address Space References

The basic process model supports non-local addressing thru the use

of external references to suspended address spaces. In the basic pro­

cess model, any subsystem activation can create an external reference to

its own address space. The reference can then be passed as a parameter

to other subsystem activations. The representation of the non-local ad­

dress space reference is left unspecified. However, we can assume that

the information contained in the reference is sufficient to locate the

address space in the activation stack and that accesses to non-local ad­

dress spaces are interpreted using the information in the activation

stack. No provision for restricting access in the address space is in­

cluded in this simple process model.

The management of non-local address space references is tricky be­

cause, if no precautions are taken, the reference may outlive the ad­

dress space to which it refers. One way to validate a non-local address

space reference is to assign a unique identifier to each address space

as it is creatP.d and to store this identifier with the address space in

the activation stack. If the non-local reference contains the address

space identifier and its activation stack index, the use of obsolete ad­

dress space references can be detected. Note that at tempts to access

Ch. '. 2. -

curr-:nt
I

i I r,-----~
! I

frJme

act Top ,
I
. I
! I."\,.,, I • i I . v ".., l:J !

size--, ·---- --1
.----·---, p J r-: :-n s i

I I I
act SJ t ! __ r ___ ~------,

I i I ______ 1 l !

I i
I
i

j <I,.
-- I '.,J.

ne 1Ji· CJrr2<1~

t
-.- I ac :'Jp ;;.. I

I i
L_zer-~s_J
I !

I I I,::,.:: Ji s
I ______ j
I 0'.1(2,~S:

--i I ,

:J.'"I~ :-~-----:
_i '-'. •

>

,, (" +
u v' _____ _J

; ? ~ - . - . '

11 s·1z" + \
' ·- .\ no B

CAS.cct 3cr/• ·---, F 2
<act~irn '
- I

-----~ yes
I
1

' ' I ~ '• i v ,\
I
I

1

l
r' ' :::: J t" I .,.. - .., I
......, r,. ...;. ... t ,...,~ t

r ·" c: ,, : ~ : " ·i .;.. i i
..J M. ...,; ' - /4' . - !

-I

no size=
'----<'!!"'~$... r+T"".J. -

\ v' - ' '>J'

CAS.act3Jt)

I yes

"',4"';..,~ l, .::: .••• ~;.:J~(·~ I
c~s. inst .:Jtr 't' 1 j

(__ r_e_t_u_r_n _)

cllo:Jt2

i
I ·,

I
j t +- '"I ,.. a S ", ..,..,, ,; I I ~-1 IA.IV~ i

I
l
+

/ si::e < "'\ .,,~ -. -,
\
/ (~ -·-· l''J- ~J:::. \

.... J •• -. ..J I -..v : I j I • //

' (:\ ·~ '1 + ' ,< ,..-.. ~ \ / 1-.-.,,'
\.;M.,J • ..,..,.1...,. ,.1 ! ·/

'-F'
,__ _____ 1 ______ '"'

C .~ S . G G 7 !J ,:; ··.r

C;\S.e1ct3Jf +·3;::

I
I
1 r \ I r2t·Jrn

~)

:co
: ,,., I' ·1;:. _,... 4-, -

F3: VM fcuit

~ : ~ - -""l : ... - ,...... ,.,., ; ~ ·- .-,

~__.;:,_:,·:;...-;...,,.;:;..~ ---·-· ·----· -·

Ch. 3 .2. 7 An Implementation Model page 119

the contents of a non-local address space can cause a basic fault if the

address is out of bounds, if the address space is not in the activation

stack, or if a virtual memory fault is encountered.

3.3 ..IbQ Augmented Process Model

The basic process model makes no provisions for reporting faults

which prevent the completion of basic process operations. In this sec­

tion, the basic process model is augmented to include a mechanism for

dealing with basic faults and an operation for signalling an exception

from a subsystem activation. Subsystem transfer operations for ter­

minating an exception episode are also added to the basic precess reper­

toire of instructions.

The basic fault mechanism of the augmented process model activates

the distinguished exception processor subsystem and communicates infor­

mation describing the fault. The basic fault mechanism must succeed in

activating the exception processor without encountering any problems

which would prevent the exception processor from being successfully ac­

tivated. If the augmented processor encounters basic faults attempting

to process a basic fault, there is no continuation for the process.

Note that once control is passed to the exception processor, additional

faults can be processed. However, the basic fault mechanism must be

designed to avoid virtual memory and subsystem call faults while at­

tempting to activate the exception processor. It is still possible that

the processor hardware is broken. In this case, the processor should

halt, leaving the process base in 3 state from which other processors

might carry on the process.

Ch. 3 .3 An Implementation Model page 120

In response to basic faults and exception signals, the augmented

processor activates the exception processor subsystem whose identity is

stored in the process base. The distinguished status of the exception

processor is also used to authorize the privileged subsystem transfer

operations used to terminate an exception episode. Operations for re­

trying failed operations, exiting to any location in the invoker, and

for aborting the invoker's activation allow the exception processor to

terminate its own activation in ways not permitted for other subsystems.

These termination operations are too powerful to be used directly by

normal subsystems. It is assumed that the exception processor will con­

trol the use of the special terminations on behalf of the invoker of the

operation which caused the exception processor to be activated. Chapter

Four discusses the details of the protocols which can be used by the ex­

ception processor to control the use of the special terminations.

The augmented processor model also expands the implementation of

the activation stack to allow the top portion of the stack to reside in

the in-core process base while the rest of the stack is stored in virtu­

al memory segments. The activation stack management facility interacts

with the non-local reference mechanism of the basic process model. Be­

cause the address space referred to by a non-local reference may not be

in the active portion of the activation stack, non-local references may

fail in new ways in the augmented process model. The details of the ac­

tivation stack management facility are discussed in Section 3,3.4.

Ch. 3. 3. 1 An Implementation Model page 121

3.3.1 The Basic Fault Mechanism

Whenever a basic (or augmented) processor operation is unable to

complete normally, the basic fault mechanism is used to terminate the

operation and to activate the exception processor. The exception pro­

cessor must have at least two gates: one for basic faults and one for

signalled exceptions. Two gates are necessary because the parameters

describing the exception are transmitted differently in the two cases.

The parameters describing signalled exceptions can be prepared by the

signaller in its (virtual memory) activation frame. The processor, how­

ever, cannot risk a virtual memory fault trying to store the information

describing another basic fault. For this reason, the fault data for

basic faults is stored in the wired down process base. The exception

processor can access the fault data in the process base by using an

external reference which it obtains at initialization time.

In response to the detected failure of a basic (or extended) pro­

cessor operation, the information describing the failure must be saved

in the process base and the exception processor must be activated. The

process base is extended to include room to store the identity of the

exception processor and space for the parameters of a basic fault. The

identity of the exception processor can be stored as an external refer­

ence to the exception processing subsystem. The fault parameters in­

clude 1) a non-local reference to the invoker's address space, 2) a

signaller-id representing a related set of processor faults, 3) the ex­

ception code identifying the particular fault, and 4) the exception mes­

sage giving additional information about the fault. Figure 3-12 depicts

the modified process base as expanded to support the implementation of

Ch.

I accurnui.J'::n
,----~---~-l

__ 1oca1 __ J
stat: c I

I ------,
shor2d

I ex?r·'JC~-::
I I

I
. -ii \

.._ - -~ 'I .~ 2~ ·- -~

I s i q: j :
I - I r-- - -- ·-- --- - 1
! ~~CcJ= ;
L--------i
I '
I -= ::: .'.i ~ s 3 i i ------~--,

C C 1 i 'IC f i C 0

st Jc x

_:ointers -1
acfr,a:icn !

s tac\<

s Io ts

f:gi..:re 3-12:

Curr2nt
.4ddr?S3
Spac2

\ .~~C2J~iJ.~

I ,'=) J (J ·1 ,: t 2 (3

Acti'larion

st Jc:,

Ch. 3. 3. 1 An Implementation Model page 123

basic fault processing and signal operations.

Figures 3-13 and 3-14 illustrate how the activation frame for the

exception processor activation and the activation stack are manipulated

by a basic fault. Note that following a fault the exception processor's

activation frame is initially empty. Figure 3-15 is a flowchart of the

basic fault mechanism. The augmented processor, in response to a basic

fault, pushes the current address space onto the activation stack. The

instruction pointer of the invoker's address space is not incremented

and therefore it continues to reference the failed operation. We shall

assume at this point that pushing the current address space onto the ac­

tivation stack will not cause the stack to overflow. In Section 3.3.4

the notion of activation stack overflow is defined so as to always leave

room to process the worst case basic fault scenario without running out

of stack space.

After saving the invoker's address space, the processor stores the

signaller-id, exception code, and exception message into the in core

process base. A non-local reference to the invoker's address space is

also generated and stored in the process base. Once the information in

the process base has been updated, the exception processor can be ac­

tivated. Using the subsystem reference in the process base, an address

space for the exception processor is constructed. The subsystem refer­

ence in the process base must not fail to produce root and incarnation

segments for the exception processor. This means that the exception

processor must always be known and ready to run. When the address space

for the exception processor has been constructed, the exception proces­

sor is entered through its fault gate. Note that the root segment of

Ch.

:nv·J~::r :,

fr :J me

TJp
I ,Jct r----:

I act rl (I~ r--- ~ I !

2 :'(.:J r :: r: 5

f;a,n;
I

_ _J
7Jp act I

~j in,,o ~?.r

locais
-- - ,Jct 8 Gt I

i n·1 o :,er :,

I parer.is -- '\ ! '. ""r"
I .- .-1 '.! !..- I ..,
'

i
' I_

i :,I I

1 / :nvok2r s
,,/ L !cc: ls

- - -I

1rwo.<.:r s
9arams

=>

. . . - .. ' ·- - . -.... -· -· -· ·--·-----· -~
.. -·=-;:)

I
I

e:i:croc . I ,! r :Ju t !---~~~-~~~~~.,..;
invc\er

I
I

i
I

3 J ·1 e d : ;-: ·1 i: (~ T

fi:J1i1·?

l
l-----; ~ - I T0p

' I ·1---: •\ l, 3 J t
l

.... \.J;

.::::1. •

s i g: d

I
!

'

J ::: '3;: .~ J ·.-1: r

---,
I !

·-}- I ::) ':; r'\ ,,..... :: ::::: ~ ,""\ .. -;
'' -~ 'J _, ,._,_, '.

ex Co d : -- · :; ._; . :

i n 1/ :~ ~ f •.:},-- :. ," ; 'J :_ :: .~ : (I

i (1,::s: 1'\.f::,:; 1 . , . ,. ________ _J

I
!
; - ·---------1

I CAS ar-tP.,,, -.;- "' S ~-','r'I I

c~s· s-i·J~i~' .,.._ ;,~r~.; ~,: ;;,ar I,'

CA S. shared+- 2~;:'r-J,:(?.2l. ro.Jt

CAS. instPtr ,~ ,:JJirG,:i: J

I
'

fi~ure 3-15: :;" ::')' l ~ ...
~~

'"! _,; ... ·-
. _ _..:;. 'J. - -· .••••

Ch. 3.3.1 An Implementation Model page 126

the exception processor must be fixed in real memory in order to avoid

virtual memory faults in the code of the exception processor.

3.3.2 ~ Signal Operation

Signal is an augmented machine operation in the same class of

operations as the subsystem call and return operations. The signal

operation terminates the activation of the subsystem executing the sig­

nal and then activates the exception processor. The signaller, before

executing the signal operation to report its own failure, prepares the

exception parameters its own activation frame.

The signaller provided exception par~meters, which include the ex­

ception code and exception message, should be placed immediately follow­

ing the parameters of the call to the signaller (i.e. where the results

would normally be found). The exception code is chosen by the signaller

to distinguish among the different exceptions which it reports. The ex­

ception message provides details about the instance of the exception

denoted by the exception code. The exception message can be of variable

length. Since this is below the language level, the variableness of the

length and format must be dealt with explicitly. For simplicity, we as­

sume that the first word of the exception message contains the length of

the rest of the message.

After preparing the exception code and message, the signaller

should shrink its activation frame so that it contains just the

signaller's original parameters and the exception parameters. The sig­

nal operation itself does not take any parameters. The exception param-

Ch. 3. 3 .2 An Implementation Model page 127

eters are assumed to occupy the space between the parameters of the call

to the signaller and the end of the si~naller's activation frame.

The signal operation, like the basic fault mechanism, activates the

exception processor. Unlike the basic fault mechanism, the signal

operation passes some of the exception parameters to the exception pro­

cessor through the activation segment. The exception processor's ini­

tial activation frame contains the exception code and me~sage generated

by the signaller. The rest of the parameters must be generated by the

processor and stored in the process base.

Besides activating the exception processor and passing the excep­

tion code and message through the activation segment, the signal opera­

tion must authorize the exception processor to access the invoker's ad­

dress space. Also, the signaller-id must be passed to the exception

processor. This information can be passed through additional slots in

the process base. If the signal operation attempted to store the

signaller-id and the invoker reference into the activation frame, a vir­

tual memory fault might occur. Since the exception processor is author­

ized to access the exception information in the process base in order to

deal with basic faults, it can also access the signaller-id and invoker

reference in the process base. The exception processor, however, must

be very careful to move the information out of the process base before

another signal occurs.

Figure 3-16 illustrates how the signal operation forms the activa­

tion frame for the exception processor from the signaller's activation

frame. Figure 3-17 shows that only the current address space (the pseu­

do top of the activation stack) is changed by a signal. Signal does not

c:1.

si,;nailer

f r·J me

I ,~, -:--.. "\ :_J__j
invo~:;'s
fr,Jm~

~I I

~';;::~:" _I~
! sign,J!l~r's J"~

0ar,Jt,1s 1 :, I
·J , ... , :, r-· :. --~ I
~ ~., I . I

----- ''l'IGKer
1.,,... ,. I

j '"''.-..;1:i j L _____ J
I '
j ir,o~~r s I

' ;
I ---------:-1 :; ·~ ~ ,:, .; i
i

3-15:

'J ·: r 2 o t

I

i sianJll~r

L~~rams

----i
i ·~'!o.~er
I . I L ,oca ;

! i ;---------.,J-1

':) ::i -; ,.,.,,o .. ~ ~
~-.;. •. :~:.....;;;:.

sig~a!,er

in·,o:~er

)!q;,Jl I .:1x1r~ ...
'-----------..;,J, ~ \,,,

i ,1 vo Ker

"'· - ~ ·""'.9 • i...,_.;·:-:.-·-~

Ch. 3. 3 .2 An Implementation Model page 129

push an address space onto the activation stack and, therefore, an ac-

ti vat ion stack overflow cannot occur on a signal. Figure 3-18 gives

some of the details of the implementation of the signal operation.

3,3.3 Episode Termination Operations

The augmented processor implements three special subsystem transfer

operations designed to support the termination of an exception episode.

Only the exception processor is allowed to execute these operations.

The retry operation returns control to the invoker at the failed opera-

tion, while the abnormal return operation returns control at an arbi-

trary address in the invoker's root segment. Al though retry can be

treated as a special case of the abnormal return, we distinguish them at

this level because they are used to achieve different sorts of recovery

from the exception. The abort operation terminates both the exception

processor and the invoker.

Retry is like the return operation except that no results are

passed and the instruction pointer of the saved address space is not in-

cremented. The invoker's activation frame will be the same size as it

was when the failed operation was executed. If the parameters to the

failed operation have been updated by the handler or by the failed

operation, the operation will be retried with the new parameters. The

retry operation will fail if the activation stack is empty or if the

current subsystem activation fs not the exception processor. Figure 3-
;

19 depicts the restoration of the invoker's activation frame to its

state before the failed operation execution. Figure 3-20 is a flowchart

of the action of retry.

Ch.

---,\
c e ,; i i1 J

I .,,

I \;~5 ~
~ctSt'.';in!Js-:1---~ty

\ ""I

no

:; ,::, \ ' ~-, \
\ :...J '..._ 1 ,_i I:'\• I i.,1 ,-' /

- i
I
i

--------: -----·-;:--...,
i

i
1 ~-------· --· l CA.S.acr3ot ~cct3i:,.tcp.Jct7op ·

l C A S . s t <'J t i c ··i-- 2 x .:=i r J c ? ~ 1: • i n c a r

C .i.\ S . i ri s i' P ; r ·l- I

J

'i:::t ::"'.::. <(' ··-:: -

.:.. .~ ·J j /

Ch. An

I

exproc s

~~I e,proc I
~I 1occ1, J

saved
I ,5 in·,o ,\er

frar:ie

\.....---.- I
..............

l
l 13~r2ot:cnl:

..,~5 , I ··+ car~i:; ',___i ~·~,
----- -~ I -- ---". 11 -----L___:-..4 --- . I. I
act Bot. I is:.~nc:'er ~;

L. p ·• r ,., ':1 .S ;
,_..,... J - __..

1 i
! • l, ·~,. j i
j Ii'\'/·~·,~· l
I 1.., r ,., i 3 1

1 I ,., • ~ - -1

~:-- ,.,/. !

--,;
;;l :: : °1'. I

I i il'/C .~:.' _, l
II n-, ,.,J T :5 , I
1 f' ,.,,,.. I --'.- •}--1
i ·- i

I I

- - -. - ,...... ..-...,· - .:: . ~ - .

.Ar Q c res,v \'
i;ivok,er s
frame

! l
T,J :": : .. - -)>,I · •. ·;r = Jc t I ,- : ' s : J :°'. U ' ' - , :

i -...J I _.,,-,: ' '---·- l -·1r,~··· -J •

L !"'~ - -- -:

I -·- ·, I
'.n 1/Ci\:?; :.

-------=----.::.> I ! c ·:: .:; I j -·
L __ I

i . I,..., i, ~ -r 3 I :i· -- n ...

'. ..,J (: ; .. ;: ~
1 ~L -~- -----... --.... : l Jct Be_~~-- L_J

-,._'<:::...,..I::

r .::i • r ·1 r ' ~ I J I I

CAS.sh·Jred= \ ,1J

e::: Pr ·Jc R 2 f. ~ ·~ c ~ i ________ _)

I j ~ s

"

----.--·--· I
I n :J
l
·1

return
---,---~

'.?-2):

F2: act 3t~ E:mpry

Ch. 3.3.3 An Implementation Model page 133

The abnormal return is similar to retry termination except that the

instruction pointer of the invoker is arbitrarily repositioned. Abnor­

mal return takes one parameter: the new instruction pointer value for

the continuation of the invoker. The new instruction pointer value is

checked to see that it lies in the executable region of the invoker's

root segment. Like retry, abnormal return will fail if the activation

stack is empty or if the current subsystem is not the exception proces­

sor. Figure 3-21 illustrates the algorithm of the abnormal return.

Abort termination causes the exception processor to be re-initiated

after the invoker has been removed from the activation stack. The abort

exception code and exception message are prepared by the exception pro­

cessor and occupy the entire activation frame of the exception processor

both before and after the abort operation. The single parameter of the

abort operation is a flag indicating whether the signaller of the abort

should be the invoker or the exception processor. Like retry and exit,

only the exception processor is permitted to execute an abort. Also,

there must be at least two entries on the activation stack to execute an

abort.

Because abort terminates the invoker along with the current excep­

tion processor, the exception parameters must be moved from one place in

the activation segment to another. Moving the exception parameters may

cause a virtual memory fault. A progress indicator to indicate how much

of the exception parameters has been moved will allow the abort opera­

tion to be retried following a virtual ~emery fault. Since the invoker

is not going to be continued, the invoker's activation top pointer can

be used as the progress indicator. The invoker's ilcti vat ion top ini-

Ch. ' ' . - -

(
\

--\:
b : : i :1

CA 3.shcr~.j = \ __ :1. _o ___ ~~
exProcF~ef.rJot L/

i 1 e s

-\ ves
·J c ~ s r 1(, • 1 :1 :J s e ,.... ___ _

<1 I
I .._ ___ ! ___ ,.,

I no
I

1

CAS +- ac tSt~. t'Jµ
CA S. inst Pt r -+- a 8 j i e ss

I
---..:.'---

actsr:~.pop

l
I .,

(return)

1~/
L.__,

,...2· ~,..t-··· -- -·· r · ·J ._ ::, 1 ~ • c. :n .v : J

Ch. 3.3.3 An Implementation Model page 135

tially points to the base of the exception processor's activation frame.

The abort operation increments the invoker's activation top after moving

each word of the exception parameters. The copying is complete when the

invoker's activation tcp eauals the exception processor's activation

top.

After moving the exception parameters, the abort operation stores a

non-local reference to the invoker's invoker into the process base as

the new invoker reference. The invoker's name is stored as the

signaller-id if the parameter of the abort is False. Otherwise, the ex­

ception processor's name is stored as the signaller-id. The activation

stack is popped and the exception processor is reactivated. The activa­

tion frame for the new exception processor contains the same values 3S

the old exception processor frame except that they are at new locations

in the activation segment. Figure 3-22 illustrates the copying of the

exception parameters and the activation frame formation protocol while

figure 3-23 shows how an abort removes the invoker's activation from the

activation stack. Figure 3-24 is a flowchart of the ;:ictions of the

abort operation.

3.3.4 The Augmented Activation stack

We have assumed that, following a basic fault, there is always room

to push the current address space onto the activation stack. But, we

have also assumed that the activation stack is stored in a finite real

memory buffer in the process base. It is important to limit the amount

of fixed memory necessary to run a process. In this section, the

management of the activation stack is extended to permit entries to be

I

~,:Jr .J ~ 3

~ i :] .i1 -:

JC t 'JO

JC: 3 0 t

5 ·J , ". .j

L1 I

"''' --1~-
::;J r J ~ s i_J : c: 'J) '. :

i '----.J,_, -=---3 ; ·; n o i ' er 3 I
~~,1';~1
irivo',:r , i
I r • I

O c J '_: _ J---J : c: 0 J ; 2;

I i:a~:r '; 1
1
'---~--

SO 'I,: J

I

I ~
j J b '.l r '. I

l...._ ! JJr~.TI, i ,

frame

1 ; --·--1
1 : l Ii__ ____ _
I ; r· '/ :J '., -; : :;

I

...... ~
J~.

.,... - ,"'\
' ~ ...

1- .Jar1,,1s 1 ••• ,,.,~

----1:·~·--· I

I ',:~ ;~; ~ ' ~- -~W·:...:.·----======-':> . --

~ - - --1
;

I I
,: JI J : r s r

i I
1_ - - -- ~
1 : J : I : : ;

I
I

: J ! l er 3

-----, a ,J t' J r: 5 r-- . -'
l _ - - - -~-: j ·~ i :::) ! ' .:: l
I

I
i ··~---'

iL-_~j
::-22:

i:, ·, o;.:, = r
c JI i ~ r

J j O it

\ ,-.,)"'! -..... -· _, . .

-·'· !-- ' J ~ ' =, .~ ~
I
1. ______ .;

L~~r~'7'3
I

I

---, --- .

I .

L__J

l ::..ar.):

c .J l: -= r -i
L...., ___ _

":-' .. ~ ~ _,.
........._:..:. .-..~

"b"rt r-·1.,c-,.., ... ,
·~ V \.) '-j I L•..J Y} ------""' ("~ ~. :1 \ _., • j . ' I

___ I __ _)

+ (• 1 :~ " • ·, -0 • - ,•',
! • , """ ~~) , J 1..,

I

C .~ S . : ·: t 3 G f) l
'---- ____ .J

i
!J~
7

I
: no
~

? I

t 1 a c t S I '.<. t 0 ~ ; i
acrSl'(.pcp; i

+ ? • ·a c • c: • ', • -, " ! I - ! ...) I r\ ~ ! -..I . .., I
-r-----
1 .,

~ l, ' JC I :::i; :<:.

fault3
s:-2·:3~•"•1 --, +· I • i (..: I .:, ! ;\.:..:I: :'J 1 ./

'F3:\/,'.,,1 f.'JLi!~

' ' ____ J ___ ,

~i.-,Td·"I--''..,a,
~ j ,1 ;' j' • "-• I .., ') - ' '

t 1. shared "' ~ p (J ~ - .~ :, t !
• '' I...' • "'' J

I

1 ______ ,.,. _
' I
i

cr2at~?2/ '. :2)'

I
"

I

'

----------·-r
C ~ 3. ·J ·.: 1 1

C .4.. S . a c t 3 1J t r- l
push(tl) j

t ,..... '(•'' 1,

i
~

CAS.acr3ot +- t 2. Jct 'T2p

CAS.actTop +-C..~S.:ic:88:+lsi:=

CAS.instPtr - signal G,~ie
J ac ;:ii:<..pusn 1lJ I

I_ _____ -,
(return
"'----

''\
\

_)

Ch. 3.3.4 An Implementation Model page 138

removed and added at the bottom of the stack so as to limit the amount

of fixed memory dedicated to the activation stack. Also, the notion of

when the stack buffer is full is modified to permit basic faults to be

processed without overflowing the buffer.

The activation stack in the process base can be implemented as a

double-ended queue or circular buffer [Knuth 68, p.240]. The subsystem

transfer operations will push and pop entries from the top of the queue,

while special, privileged operations will be provided for unloading and

loading entries at the bottom of the queue. Figure 3-25 illustrates the

data structure used to implement the activation stack buffer. An ac­

tivation stack full fault will be reported before the stack buffer is

fully occupied and while there is still enough room to process the worst

case scenario of basic faults.

The eventual handler of the stack full fault can use the privileged

stack operations to unload entries from the bottom of the stack and save

them in virtual memory segments. When the fixed stack buffer becomes

empty, a related handler can load entries back into the stack buffer.

The privilege of loading and unloading the stack buffer can be con­

trolled by requiring the handler to present a special external reference

(capability) or by recording the handler's identity in the process base.

Detecting and reporting that the activation stack buffer is full

requires some care. The full fault cannot be allowed to occur during a

basic fault sequence because information about the current fault would

be lost. To accommodate faults when the stack buffer is logically full,

some spare slots are reserved. The full fault only occurs on subsystem

calls which occur after the activation stack buffer begins to use its

c~.

I :iir:CJdy :=,J:1
1 -----t=_in Use~-_-J

I
! I st1<Tco ')o:---r- - - - · ---:
I I _,,~:;Qt 1--.,

-~--l I :)J,_ !

I I

act St:,.
Size

•

I I
I j

slot3

I I
I -~-i- - ~·- --· -- --
l :Spar~s ; - ,..... .., ,.. ..l .. - ' ~

.J .,, .• ! .,. ::) I .) i J

--~--,- - -- - --
1

I
I
! __ .•

I
I

free s!ors

' _..... --~
i
'
I !

-- --,~4---

I
I

r

..... ,-. . _,

Ch. 3.3.4 An Implementation Model page 140

spare slots. Figure 3-26 gives the algorithm for testing whether the

activation stack buffer should be considered full. Note that a flag is

used so that the full condition is only reported once each time the

buffer becomes almost full. We must be able to activate the exception

processor and make the handler calls necessary to process the full fault

without getting more full faults. Figure 3-27 shows how the full flag

is reset when the stack retreats out of the full region. A worst case

scenario of basic faults in which seven extra slots in the stack buffer

are needed is described in Chapter Four.

no

1,.,
...... l ..

~~
~~1 j

1

\

',ies / \ ni:;
I -,.'/ ---·~ ~--- -----'.\ :::r2:J..:1j I .~:1 /

l \ ______ /
~--"'-,

I I ,' - • \ '.

: (>l'l'(r1: ,.~Ji'-:'
\.1~1·1 "''__;!

:?.-2S: .: ;... ~ - ' '"",.... ~-----~~ ::" -. -: -, 't --._
- -~--·-· -·----.a,

I

J

1 ' 1
14 !

1....,..1.

(..__o __,'q...-1_il _)

I .,
inUse=C ?\.~ _y_e_s __ 0

I __ ... _,,.._..._

I
l

l
j

inUse < \ yes
(~ t ~·'~·I".'"' '.

\

CJ '- ' "' ! .,,...., ;. • •

-spJr2~

no

l l
:a:r2adi.=u:+i

t':;,l ' !
l ~"i "="' I , "' ~ •
1 _J
'-----r---

(_r_e tu r_n)

-:;, _·~·-.

. '~ . -.::::

Ch. 4 page 143

Chapter Four

Exception Processor Implementation

4.1 Introduction

In this chapter we develop an implementation of the distinguished

subsystem which provides exception processing services for the subsys­

tems executing in a process. These services correspond to the exception

facility described in Chapter 2. In particular, the exception processor

will implement an invoker controlled handler choice policy and will sup­

port the several handler ter~ination modes discussed in Section 2.5.

The exception processor is itself a subsystem, albeit a very spe­

cial one. Building upon the subsystem isolation and protection facili­

ties described in Chapter 3, the exception processor extends the proces­

sor level fault and signal mechanisms. The processor level isolation of

subsystems, along with the subsystem transfer operations for signalling

exceptions and terminating the exception processor, make the task of im­

plementing the exception processor fairly simple.

The management of the response to exceptions caused by the excep­

tion processor itself is of particular interest and importance. Theim­

plementation of the exception processor will depend heavily on the ex­

ception processor•s ability to select handlers to deal with its own ex­

ceptions. Exceptions caused by the exception processor are processed,

for the most part, by the same algorithms which are used to process nor­

mal exceptions. The exception processor interprets its own handler

Ch. 4. 1 Exception Processor Implementation page 144

specifications to determine the response to its own exceptions. The

ability to manage exception processor exceptions without inventing new

exception handling mechanisms or algorithms supports our feeling that

the exception facility being implemented is powerful and flexible enough

to handle user and system exceptions without compromising the integrity

of individual subsystems.

In order to implement the exception processor, we must make some

assumptions. We assume that parts of the exception processor are fixed

in real memory so that no virtual memory faults will be caused by re­

ferencing the program or the handler specifications of the exception

processor. On the other hand, we also assume that the exception proces­

sor can cause virtual memory faults on references to its activation

frame or to the handler specifications stored in the invoker's root seg­

ment. In addition, activation stack full and empty faults may be caused

by exception processor actions. These assumptions allow the exception

processor to cause faults which are correctable, but rule out faults

which might cause an endless sequence of faults. We assume, for con­

venience, that handlers are available for virtual memory and activation

stack faults and that the exception processor can call them directly

whenever they are needed.

We must also assume that the exception processor and the necessary

handlers are installed in the process when the process is created and

that the per-process incarnation segment of the exception processor is

initialized and fixed in real memory. This assumption is necessary be­

cause the processor model requires an exception processor for fault and

signal operations and the exception processor requires virtual memory

Ch. 4. 1 Exception Processor Implementation page 145

and activation stack fault handlers in order to function. Also, the ex­

ception processor is assumed to have an external reference to the pro­

cess base stored in its incarnation segment so that it can reference the

fault and signal parameters stored there by the processor.

The implementation of the exception processor can be divided into

four parts. Figure 4-1 is a flowchart of the organization of the excep­

tion processor. Exception processor execution begins with the entry se­

quence. There are three entry points to the exception processor. They

correspond to 1) basic processor faults, 2) subsystem signals, and 3)

exception processor direct calls. The task of the entry sequence is to

collect the information describing the exception into the exception

processor's activ::=ttion frc1.me. Once the exception parameters have been

safely stored in the activation frame, the handler choice rule is ap­

plied to find a handler. Next, the handler is activated. The fourth

stage of exception processor execution is the processing of the handler

results. When the handler returns to the exception processor, the re­

quested handler termination action is undertaken.

The rest of this chapter is divided into three sections which

describe the details of the exception processor implementation. Section

4.2 discusses the entry sequences. Handler selection and activation are

discussed in Section 4.3. Finally, Section 4.4 presents the implementa­

tion of the several handler termination modes.

Ch. 4. 1

(FA 1JL;) , _______ _...
-1 ~ \j \ \
"'I(... j .:..... I !
~ ~ .. ·-_,;

I
7 ., ----- ------, _____ :__ _____ _ r----·----·-~

·~·\i?C~ I~ ::1i
:::::- ~ ~' ~ ': ,,.. :
.._, - .., ·..I ..

i

~-----~--------~!----~
-------,--------'

:-i---------------­
--------~-~-----J I .,

Gnwinder

j

'? c ASORT)

1

Handier
Selection

...----------· ---, I \
I
I (' .-i n 1' I I~ I ! ;) : ,: J :) ; i 1: u 2 I -- . \ (~ j ~ :: ~ I ,=-? -2 ,: e c t

'..J ~ I ' I ' ' . .., "" I I ~ .. '""¥°1 : i ,"1 ~ I (' ': \
_ . ..J,, ---------.\ , I :, .. -' 1 _,1, ,--------~ _. • r

I T -: r ~ ; ;; J t · J :1 1 I 1 : : r ;:--~ i 11 ~ ~ · : n : I _______ _; \ .\1 J J 2 I ________ _J

i

1 . 7
,. ...::i ,.., : ~, ':"' - ••
I , ..J) ; I

·J n .-.1 • n J
.., •f .----

I
Un·;'/iniJ

Termination I
-------,---...!

~

1

___ !__

Retry l
..,. . ,· I
I :rm:na ;JrJn

S IG,'I ~L __)

I

,----"----
?eclas:;; f J

·re r ;71 i n ·:: I ·: ·J :; \

---~---l

! J
c

Aber t l
- . . I
!er:n,nJ~!.J:"l j

\
)

c ABORT)

Ch. 4. 2 Exception Processor Implementation page 147

4.2 Exception Processor Entry Sequences

Before the exception processor can proceed to handler selection,

the information describing the exception must be stored in a safe place

where it will not be destroyed by subsequent processor faults. The

fault data is stored by the augmented processor into a buffer in the

process base. Should the exception processor cause a processor fault

before the current fault data has been :noved out of the process base,

the original fault information would be overwritten by the new fault

data. One main requirement for the entry sequences is that they not

cause such premature faults.

The objective of the exception processor entry sequences is to

leave the exception information in the activation frame of the exception

processor. Once the fault information is arranged in the activation

frame, additional exceptions can be processed without losing information

about the current fault. Handler selection and activation can proceed

using the standard exception processing facilities to manage recovery

from exceptions encountered along the way.

There are three exception processor entries to consider. First of

all, processor faults cause the exception processor to be activated with

an empty activation frame. All the fault information is stored in the

process base. Signal operations activate the exception processor with

part of the signal data (exception code and message) in the activation

frame and the rest (signaller-id and invoker reference) in the process

base. Finally, the exception processor direct call supplies all of the

exception information, except for the signaller-id, as parameters from

the caller.

Ch. 4. 2 Exception Processor Implementation page 148

The exception information which must be gathered to~ether in the

exception processor's activation frame includes: 1) a reference to the

invoker's address space, 2) the signaller-id, 3) the exception code, and

4) the exception message. Let us assume that the information is to be

arranged at the base of the exception processor's activation frame in

the order given above. Besides collecting the exception information,

the entry sequences perform per episode initialization for the exception

processor. The only initialization necessary is to :nake the set of en­

countered exceptions empty (see section 4.4.6).

4.2.1 ~ Fault Entry Sequence

The most difficult entry sequence is the processor fault entry.

Because all of the information about the fault is in the process base

where it will be overwritten by the next processor fault, the exception

processor must move it to somewhere else without causing a fault. Mov­

ing it directly to the activation frame is out of the question because

accesses to the activation frame can always cause virtual memory faults.

Therefore, the exception processor must have a buffer in wired down real

memory into which it can store the fault information before risking vir­

tual memory faults. The fault data buffer can be in the exception

processor's incarnation segment. The CAP FAULTPROC uses a similar

buffer to safeguard its fault data [CAP 76b].

A virtual memory fault may occur in the fault entry sequence when

the exception processor allocates activation frame space or while copy­

ing the fault data from its buffer to the activation frame. If a virtu­

al memory fault occurs during the fault entry sequence, a new exception

Ch. 4.2.1 Exception Processor Implementation page 149

processor activation will be initiated by the processor. Our first at­

tempt to deal with virtual memory faults during the fault entry sequence

is to detect, during the fault entry sequence, that a virtual memory

fault occurred in the fault entry sequence of the preceding exception

processor activation. We shall see that things are :nore complicated

when the finite size of the activation stack buffer is taken into ac­

count. The condition which must be detected is characterized by 1) the

invoker is the exception processor, 2) the signaller is the processor,

3) the fault is a virtual memory fault, and 4) the instruction pointer

of the invoker (old exception processor) is in the fault entry sequence.

Condition two is i:nplied by the fact that the fault entry sequence is

chosen. The other conditions can be detected by checking the fault data

and the activation stack.

If the above condition is detected, the entry sequence of the new

exception processor activation can directly call the virtual memory

fault handler. The virtual memory fault handler is assumed to take its

parameters from the process base since they cannot be passed through

virtual memory. We also assume that once the virtual memory fault

handler has been activated, it will retrieve the missing activation

frame page and return with retry termination without causing any addi­

tional exceptions. If the virtual memory fault handler cannot retrieve

the missing activation frame page, the process must halt.

Figure 4-2 is a flowchart of our first attempt at an exception pro-

cessor entry sequence. Before allocating activation frame space and

copying the fault data to the activation frame, the current fault data

is copied to a wired down buffer in the exception processor's incarna-

1 . 2. ~

·J·1i 1 :- ,~.,
! ..J, I _JI!, j

(cegin)

--~~~~i.-~~~~-
(:n,, ;::,::, 1 r"(' t = :i·, or,,1r r""' ~ye 5 i ::·1 .. :J,;:,_ f. i .::irr E yes I Ii,.. I., ..)..,,, .., "'. ·..., ..,. ,...,,.JI , .

-~-r~...,r"",..,..J~-'·''iF ,Ji.'. \ :, 11 1+= ~-4· <::-:i_..,

1
1

Cl \ ~ " ,., . ..; -1 • - 1 , , . o ..J , : 1 • \ a .. , , ·-- .1 , : J ._, • -1

'---- _ _/ .
n c ! i no

! ___ _,.,_ _____ l
j bu•r.:1, . ..-,
I ; •• ll, ... 1~ j, I
' , '.J IJ / I 1.., ·J. J I L ________ J

I .,, ,_ ___ ,, ___ __,

'.J ! IO CJ.'~)
.., ~··-r-~- -,1--1
·-~Ji u !~~~~-j

I .,
I copy bu;fer
~J : t Fr a m e

-r-

i
I
7

(:;]
: o :1 and! er
selec~io.'1

' ---------...... ~

t .. -, 1 • \ ' \, 1 : ... ' l ~ 1
) "" ~ l I I I, \J · ... , , !
I I , n::; :1 j 1 ~ r

I
___ 11~---

faultOa\J -~
buffer

r t - -'\
(\..._...__r_2_1_r Y__)

Ch. 4. 2. 1 Exception Processor Implementation page 151

tion segment. The check for a previous virtual memory fault by the ex­

ception processor entry sequence is performed before moving the fault

data to the buffer. If a previous virtual memory fault in the exception

processor entry sequence is detected, the virtual memory fault handler

is activated. When the handler returns, the fault data in the process

base is restored from the buffer and the exception processor returns to

the earlier exception processor activation using the retry operation.

The retry causes the failed allocation or copy operation in the original

exception processor activation to be attempted again. Figure 4-3 dep­

icts the sequence of activation stack states for a virtual memory fault

during the fault entry sequence.

We must consider carefully the possibility that additional faults

may occur while processing the virtual memory fault. In particular, the

activation stack may enter its full region on the call to the virtual

memory fault handler. This complicates the situation. Data describing

more than one fault must be saved in wired down buffers. A stack of

buffered fault data in the exception processor's incarnation segment can

be used to save fault data while other faults are processed. Figure 4-4

is a modified version of the fault entry sequence. Both virtual memory

faults and activation stack full faults are detected during the entry

sequence. Fault data is stacked in the fault buffer to safeguard it

from being overwritten by subsequent faults. The response to a virtual

memory fault is the same as before. If an activation stack full fault

is caused by attempting to call the virtual memory fault handler, a

third exception processor activation detects the condition and calls a

handler to empty the activation stack buffer. When the activation stack

handler returns, the fault data in the process base must be restored

Ch. 4. 2. 1

invoker

exproc
exproc
invo:<er

1
.exproc

1

1/M fa:Jit ! I ,nvo"er
1
'-, ------•j

I . _.l I

any fault

e~prcc

return e~prr:c

(retr_y_)-1 · -i-n-vo_,_2r__.

re tr J

exp rec
2;:(pr:JC

invoker

exp rec
i11vok2r

, -..,
, JG

cal I '/ \1 ~and ,___ _____ ,..

:h. 4. 2. 1

fault Entry S2qu2nce

begin

I

buffer. push
(faultData)

(invRef. root= exp roe.
root) a (invRef.i Ptr 6

fault Entry Seq)

no

I
·~

copy

buffer.top
to act Frame

I
'

buffer.pop

to handler
selection

yes ax Code,\) yes J :a I! v .',If, •J !i L
V'A f.Jult j handler j j

no

no

I
1

buffer.pop

I
1

buffer. too

i
I
I
"/

/' \
"'-

retry)
/

Ch. 4. 2. 1 Exception Processor Implementation page 154

from the stack of saved fault information because the virtual memory

fault handler will expect to find its parameters in the process base.

How many fault buffer must be reserved? Assume that the virtual

memory fault handler does not cause any faults, that the activation

stack full handler causes only virtual memory faults, and that the ac-

tivation stack full fault will not occur while the full fault is being

processed (see section 3.3.4). Under these assumptions, we can find the

worst case scenario of faults during the exception processor entry se-

quence.

Five faults may occur in the exception processor entry sequence be-

fore any exception processor activation completes the entry sequence.

Figure 4-5 is the worst case sequence of ~ctivation stack states. The

circled numbers indicate the number of buffers in use. First, there is

the original fault. Next a virtual memory fault moving data to the ac-

tivation frame interrupts the entry sequence. The third fault is an ac-

1
tivation stack full fault caused by attempting to call the virtual

memory fault handler. Next, after the activation stack full fault

handler has been activated, a virtual memory fault moving data out of

the stack buffer may occur. Finally, the entry sequence for the activa-

tion stack full handler's virtual memory fault can cause another virtual

memory fault. This time the call to the virtual memory fault handler

will not fail because the suspended full fault is only signalled once

when the stack enters the full region. It appears that a buffer with

room for five faults will handle the worst case of faults during the

fault entry sequence. Note also that seven spare slots in the activa-

tion stack are needed to accommodate suspended subsystem activations if

Ch. 4. 2. 1 ::ia~e 155

!':\
·~. I

~/
~ ·0' =:q:,roc

I ,
~ =xoroc ":A or,:;c

J ny fault =x~r-Jc '/ \j ':J JI 7 ~ oroc S ::, f·_.;, fa 'JI t ~~Jr'JC

1nvo~er 1n·10~2r i r, "1J ~ = (t,·,; D ~ i r

8
I 0
I ~

I I
exproc

exoroc ex pro c
actfuilH act full:-, I JC t f u II :-i
exproc exproc exp roe
exproc e XOr'.lC exor0c

I ! '/ '.i cail aci f J;I H ex:,rcc •/ M f:J c; it ex ;i r oc f ,J !j ! t expnc :Jil '/\i :,and

I invo~cr invoker in·,oker ...

I
I 1; ,\; r J n d !

exoroc I ex::ir,E

i exaroc I ~,ore:
i ·JC! t'J,i C., ! I JC' 'ull'-<
I =~ ~r".I: i 1 · e~;ro~.

I
ex;:,roc I I exoroc
•
0 X"f0C I :X'.;', oc -' ret•Hn r I in·,o~e r

1

. ____ __,:,-1 i n·1o~er
(re r r y)

re tr J

I
exproc

I
0

:: :·;:;

0

: ::;~~ I I, ::~~~ ~
return I exproc retr 1 J exproc / return ex!:iroc reirJ

------+<j'I io,a<,, i.-----~
1

:nvokerl ~ -----1LI _i_n_v~--~-d_r -----• \retr1) I (retr:f} ..

exp ro c
exp roe
invoker

I '/ :'A hand I I
I :all 1/M hand ::~~:~ return I ::~~:~ i r et rJ j exp roe I

,_

-i-n-vo-ke_r__,1------•-.1 "'° "' II 'o, OKeC I (re t rJ)

·, ---::: ~-- . -
__;~

(: -;i,...., I'::::.,..,,.,~
-·--· ·i-·-··~

Ch. 4. 2. 1 Exception Processor Implementation page 156

the original invoker happens to be the exception processor (see section

3,3,4).

4.2.2 Signal and Direct .c.s.ll Entry Sequences

Having discovered the fault entry sequence, we can dispose of the

signal and direct call entry sequences easily. The signal operation is

similar to a basic fault. Instead of placing all the fault data into

the process base, only the invoker reference and the signaller-id are

stored in the permanently resident process base. The exception code and

message are supplied by the signaller in the activation frame. When the

exception processor is entered through its signal gate, the exception

code and message are already in the activation frame.

The invoker reference and the signaller-id must be copied from the

process base to the exception processor's activation frame. The excep­

tion code and message are shifted upward in the exception processor's

activation frame to make room for the other information. The invoker

reference and signaller-id must be staged through a wired down buffer

because virtual memory faults may occur moving them to the activation

frame. Alternately, the signal operation could have stored the

signaller-id and invoker reference in a different place in the process

base.

The algorithm for safely moving the invoker reference and

signaller-id to the activation frame is similar to the algorithm

developed for the fault entry sequence. The difference is that no sig­

nal can occur before the signal entry sequence is complete. The only

Ch. 4. 2 .2 Exception Processor Implementation page 157

fault that the signal entry sequence can cause is a virtual memory

fault. The virtual m~mory fault caused by the signal entry sequence can

be processed by the exception processor's normal handler selection and

activation algorithms. If we know that the exception processor's

handler for the virtual memory fault does not signal an exception, and

that the fault entry sequence does not lead to signals, the signal entry

sequence does not need to maintain a stack of buffers. A single buffer

for the invoker reference and the signaller-id will suffice. Figure 4-6

is a flowchart of the signal entry sequence.

The exception processor direct call permits the signaller to ini­

tiate exception processing without giving up control. Also, the sig­

naller can select the environment from which the exception processor

will select a handler. The parameters of the direct call are the excep­

tion code and message plus an invoker reference. The basic processor

allows any subsystem activation to generate an address space reference

to its own address space. If the signaller passes a reference to its

own address space, it will play the roles of both the signaller and the

invoker. If the signaller has somehow obtained a reference to some oth­

er existing address space, the signaller can cause an exception to be

processed as if the passed address space was the invoker. By passing a

non-local address space reference, the signaller can implement some

non-standard exception handling protocols. For example, a handler can

signal exceptions to the invoker without relinquishing control by using

a direct call and passing the invoker reference which it received as a

parameter. Direct call exception processing can be used to implement

notification to the caller that help is needed (c.f. Goodenough) and can

also be used to implement an inherited handler policy.

Ch. 4. 2. 2 2xcept:on ?rQcessor =~pl2~enta:ion

Signal Entry S2quen:2

(begin)

'
sigBuf+

inv FU:f 8 i

si g Id I

i

••
allocate

act Frame
space

I
1

I mo,, e ~ i: CJ d '= :3; I
2x\12ssJ~NcJrd !

i n a c t :- r \J ,Tl e ·
-----.---_]

copy sig 3uf
to act Frame

to hcindler

selection

figure 4-6: Sig~al Sntrv Secuenc~

Ch. 4. 2. 2 Exception Processor Implementation page 159

The direct call entry sequence does not need to safeguard any in­

formation from the process base fault area. The only information miss­

ing from the exception processor's activation frame is the signaller-id.

The signaller-id is the same as the identity of the caller of the excep­

tion processor and can always be found at the top of the activation

stack. The exception processor can examine the activation stack in the

process base to deduce the identity of the caller (signaller). There is

no danger, in this case, of losing information because of faults during

the entry sequence. The algorithm of the direct call entry sequence is

given in figure 4-7.

When the exception processor entry sequence is complete, the excep­

tion processor's activation frame contains 1) a non-local reference to

the invoker's address space, 2) the signaller-id, 3) the exception code,

and 4) the exception message. The information necessary to proceed with

handler selection has been assembled in the exception processor's ac­

tivation frame and the type of the entry to the exception processor is

no longer of any importance. Handler selection can proceed without tak­

ing into account whether the exception processor activation is due to a

processor fault, a subsystem signal, or a direct call.

4.3 Handler Selection~ Activation

Once the exception processor has succeeded in collecting the excep­

tion data into its activation frame, it can proceed to the selection of

a handler for the exception. The exception processor selects a handler

using the invoker controlled handler choice policy, which was described

in Section 2. 4. 4. Handler selection is accomplished by examining the

Ch. 4. 3 2xception Processor I~pl~~er::2t:on

!"'\. • ,.. ·1 - . ,... :.)1rec; ~a:' :.ii~ry 02~uen::2

begin

allocate
act Frame

space

l
mo,,e 2tCode8

e :x. M e s s u p 'H a r d

1:1 actFrcrn2

i
I ,,

Sig Ij +-

act Stk.top. shar2d

figu:'e 4-7:

store sig Id
in act Frame

to handler
selection

~age ~60

Ch. 4. 3 Exception Processor Implementation page 161

invoker's handler specifications using the address space reference which

is stored at the beginning of the exception processor's activation

frame.

The invoker controlled handler selection rule selects a handler

from the imposed, local, and default handler specifications stored in

the invoker's root segment. The exception processor handler selection

rule is implemented by a procedure, 'findHandler' , which searches the

invoker's handler specifications for one which corresponds to the

current exception. The procedure looks first for an imposed handler.

If there is no imposed handler for the exception, 'findHandler' examines

the local handler specifications. Each local specification is associat­

ed with a range of instruction pointer values in the invoker's root seg­

ment. The handler search procedure selects the local specification with

the smallest range which contains the current execution point of the in­

voker. If no local handler can be found, the default specifications are

examined.

After a handler specification has been located, the handler must be

called. The exception name and message must be passed to the handler.

If the handler specification authorizes it, the invoker reference is

also passed to the handler. Many exceptions may occur during handler

selection and activation. The exception processor's response to its own

exceptions is controlled by the exception processor's handler specifica­

tions.

Ch. 4.3.1 Exception Processor Implementation page 162

4.3.1 Representation Q!. Handler Specifications

The handler selection procedure must examine the data structures

representing the handler specifications of the invoker. Because the

handler specifications are prepared by subsystems other than the excep­

tion processor, care must be taken to prevent malformed data structures

from compromising the exception processor. The data structures which

represent the handler specifications should be designed with two princi­

ples in mind: robustness and safety.

The handler specifications should be robust in the sense that a

single mistake in their structure should not ruin the entire set of

handler specifications. Also, robustness implies that the well for~ed­

ness of the data structures can be checked. Safety for the handler

specifications means that errors in the data structures should not lead

to malfunctions in the exception processor. Particularly, the exception

processor should be able to avoid endless looping caused by malformed

handler specifications.

Besides locating the highest priority handler for a given excep­

tion, the exception processor must be able to locate the next highest

priority handler for a given exception when the first handler rejects

responsibility for the exception. If 'findHandler' returns the highest

priority handler, another procedure, 'nextHandler' is needed to step

through the handlers for a given exception. Given the requirements for

locating handlers, for robustness, and for safety, we can proceed to a

design of the data structures for representing handler specifications.

The following design should be considered an example of one way in which

the handler specifications might be implemented. The reader will no

Ch. 4.3.1 Exception Processor Implementation page 163

doubt think of other, possibly better, implementations.

Simplicity and robustness considerations suggest that the three

sets of handler specifications be represented independently. Each set

of specifications can be accessed through a hash table keyed on the ex­

ception name (signaller-id plus exception code). A chained hash table

implementation avoids searching the entire table when no specification

with the desired name is present. The elements of the chain from the

hash table entry should contain the exception name, a pointer to the

next entry with the same hash code, and a pointer to the first handler

specification with the indicated exception name. The hash chain ele­

ments should also contain some redundant information to protect against

looping in the exception processor caused by loops in the hash chains.

A check field containing the length of the rest of the chain will do the

job. Figure 4-8 illustrates the hash table data structures used for all

three types of handler specifications.

The format of the handler specification will depend upon the type

of the specification. Imposed and default specifications can be linked

in a simple list from their hash table element. The order of the

specifications in the list should correspond to their priority. For im­

posed handlers, new specifications would be inserted at the head of the

list during subsystem definition and creation. Default specifications

should be added at the end of their list. Besides chaining information,

the handler specifications should contain 1) the handler gate, 2) flags

to authorize handler access to the invoker's address space and to au­

thorize the various handler termination modes, and 3) a check field

similar to the check field in the hash node. Figure 4-9 depicts the

Ch. 4. 3. 1

h,so~c, n
(ex,'4ame) ---+---

' I

*

:hec1t

:l>i ex 5

I
>j -:x 3
I 0 • -

y
•

>t ex 7

I 2
>l ~~ :o

' i ?
•

..,
~ x 2

0 ' -
'1

hash Noda

1-,i_:d'----;---> c n e,: :i< n e d

I

n and I inv ~ci: 1

Ch. 4.3.1 Exception Processor Implementation page 165

handler lists for imposed or default handler specifications. For im­

posed and default handler specifications, the exception processor should

encounter only monotonically decreasing check fields.

Local handler specifications are more complicated than imposed or

default specifications. Local specifications may apply to only part of

the invoker's code space, and they can be nested. An appropriate data

structure for representing nested structures is a tree. The local

handler specifications associated with a single exception can be

represented in a triply linked tree [Knuth 68, p.352].

Each node of the tree contains, in addition to the handler gate and

authorizations, an upper and a lower instruction pointer value delimit­

ing the range of activation points covered by the local specification.

The ranges of the descendents of a node should all be contained in the

range of the parent. The ranges of siblings are not allowed to overlap.

Three links are used to traverse the local handler tree. Each node con­

tains a link to its parent, to its elder sibling, and to its latest

offspring. The sibling and offspring links are used to locate the

specification with the smallest range which contains the invoker's locus

of control. The parent link is used by 'nextHandler' to find the next

enclosing local handler specification.

Figure 4-10 presents a data structure which might be used to imple­

ment local handler specifications. As in the case of the other handler

specifications, a check field is used to detect loops in the pointer

structure. If the local handler tree is numbered in endorder, every

parent will have a higher number than any of its offspring, and younger

siblings will have higher numbers then older siblings. When searching

Ch. :+. 3. 1

~~x'5 •
I 2 •

I
.--~•--~~~~~~l -r,i

hand I .

.--~4_0~---~-9_0 _ _j
3

,and J, ! .~Jnd3 1
2

y '\
:-iand 7 j

I

i--~5-0;;._---,i---5-0~~ I

1---.~-: I:
150

hand 5

5

..L J_

lo,;:il Soec

i<) .v ii g,,
:nt!c:< Jcrenr

j off soring I s:iJer

, and 6
91 -'

15 5

•

s
I °7 J'"\

: i .J

:iand ! 3

i 5 6
4

;:,age i 66

-~
! !

i70

Ch. 4.3.1 Exception Processor Implementation page 167

for a local handler, the exception processor should encounter ever de­

creasing values of the check field. Because the local handler tree is

completed during subsystem creation, the ~umbering of the nodes must be

completed before the subsystem is executed. It is not the exception

processor's responsibility to build or number the handler specification

trees or lists. Of course, subroutines for building handler specifica­

tions can be made available to compiler and supervisor implementors.

4.3.2 Handler Selection

Handler selection begins with a check to see if unwinding is in

progress. If the exception processor has been activated to propagate an

unwind request, the unwinder is invoked instead of proceeding to handler

selection. We defer the discussion of unwinding to section 4.4.5. If

unwinding is not under way, the exception processor calls 'findHandler'

to select a handler for the current exception. Given the data struc­

tures for representing the handler specifications in the address space

of the invoker, the 'findHandler' procedure is easily implemented.

The 'findHandler' procedure searches the imposed, local, and de­

fault specifications, in that order. If 'findHandler' locates an im­

posed or default hash table entry with the correct exception name, it

returns a pointer to the first handler specification on the list. If a

local hash table entry is located, 'find Handler' returns a pointer to

the specification with the smallest range which contains the invoker's

instruction pointer. If no containing range is found, then the search

proceeds to the default table. When 'findHandler' is unable to locate a

handler specification, it returns a nil pointer.

Ch. 4.3.2 Exception Processor Implementation page 168

Figure 4-11 is a flowchart of the handler selection algorithm.

When 'findHandler' fails to produce a handler specification, the excep­

tion processor should change the exception to reflect the failure of the

invoker to provide a handler specification. Changing the excepti•m is

discussed in section 4.4.6. The new exception code can be 'noHandler'

and the new signaller should be the exception processor. The old excep­

tion name should be prefixed to the old exception message to form the

new exception message. After the exception name is changed, handler

selection is re-initiated.

The exception processor may encounter a variety of exceptions in

the process of selecting a handler, including 1) virtual memory faults

in the exception processor activation frame or in the invoker's address

space, 2) illegal addresses in the invoker's address space caused by bad

pointers in the handler specifications, 3) the use of an obsolete invok­

er reference passed on a direct call to the exception processor, 4) out

of stack non-local references because the invoker is no longer in the

active portion of the activation stack, and 5) malformed handler specif­

ications detected by 'findHandler'. The exception processor's handler

specifications can designate handlers for each of these anticipated ex­

ceptions. The range of these handler specifications should include

'findHandler' and 'nextHandler'. Figure 4-12 illustrates the flows of

control and the exception processor actions in response to exceptions

occurring during handler selection. Dashed lines represent transfers of

control via the exception processor. In this case, the exception pro­

cessor controlling the transfers is operating on behalf of another ex­

ception processor activation.

Ch. 4. 3. 2 Exception ?rocessor :~p:ement~ti~n page 169

(sig Id= exproc. root) yes
a (C x c C d e = I U n ',lj i n d i n g I)

i no

handler find Handier
{sigid,exCode)

I
1

handle:= :1;i/

I no

®
to handler
ca II

yes

~ TO

C/ unwinder

-----i
I

"?

sigid ~ exproc. rocr
I 1 . t I

exCode ·+-- no Handier J

t
~

to change
exception

Ch. 4. 3. 2 2xception ?~ocessor =~plemen~a:~~~

obso_!_e~f _ -1
- o u t o f s: a c :<. i

i
!
l

----l

I

fi;id Handler
a

-1
I

I
L_:{ ~_11 f.J u I'. -- -,
I
I I

i

i
' I
i

;,age : 70

~ut Of Stacx
handler

~I ~I
<:::(I c.n
-0 -::::,

\/ .\ii F J u It
hand:er

I continue I
j

..._ - ____J

_g I ..; I
I reclass I I

L retry •
----- J

reclass 1

I
r- -- - _:_:__J

I(' ' I • '"' f \ 1 { ODS01e:2 ,""".e,)

results~
<::i 't !""?' ~XI

1
•,.,H_)

I
I
1

(return)

' I I

newCode ..- bad Ref

:,

I

1
(b1JdAdd-;jj j

? 1
results +- l

< 't rw-) ex 1
1
.,,. j

.,
(return

I l

newCode-+- badSpec

~

(sig Id= exp roe. root) 3
I I

(exCo:e = cleanup)

no

new Mess+-- <sig Id,exCode I ex Mess>

new Id +-exproc. root

to change
,:)vc::i"•1 ;,~n
,.,.. A \,,, ~ t •..;

return to
,:!eanup

routine

Ch. 4. 3 .2 Exception Processor Implementation page 171

Four different handlers are needed to manage the response to the

five exceptions which may occur during handler selection. The virtual

memory and the 'outOfStack' faults can be directed to system handlers.

Exception processor local handlers for obsolete address space references

and malformed handler specifications respond to unrecoverable exceptions

during handler selection. If handler selection exceptions occur during

abort or unwinding termination, the exception is ignored. The cleanup

routine, which attempts to locate 'cleanup' handlers for the subsystem

activations which are being forced to terminate, is discussed in section

4.4.4.

Virtual memory faults can occur in the exception processor activa­

tion frame or on a reference to the handler specifications in the

invoker's address space. The response to virtual memory faults can be

controlled by an imposed handler specification and a local specifica­

tion. The imposed handler is the system virtual memory fault handler.

After retrieving the missing page, it terminates with a retry causing

the original exception processor activation to repeat the failed access

to virtual memory.

The 'outOfStack' fault occurs when the invoker is not in the active

region of the activation stack. The handler for 'outOfStack' faults

will attempt to simulate the non-local reference. This handler is as­

sumed to be part of the subsystem which is responsible for maintaining

the virtual memory part of the activation stack. The handlers for

'actStkFull' and 'actStkEmpty' are also in this subsystem. The

'outOfStack' handler can simulate the failed reference using the address

space description which has been saved in the virtual memory stack. If

Ch. 4. 3. 2 Exception Processor Implementation page 172

the 'outOfStack' handler succeeds in making the reference, it can con­

tinue the original exception processor activation with the requested in-

formation. If the non-local reference cannot be simulated, the

'outOfStack' handler reclassifies the exception. The reclassified ex­

ception may be either 'badAddr' or 'obsoleteRef'. The exception will be

reclassified to 'obsoleteRef' if the address space cannot be located.

The exception is reclassified to 'badAddr' if the requested address is

not with the ranges allowed for the target address space.

If the original fault is 'obsoleteRef' or the exception is reclas­

sified to 'obsoleteRef' , the exception processor's handler specifica­

tions select a local handler. This handler exits to a code fragment in

the original exception processor a.:tiv:c,_ti::,n. T' -· ~ode fragment checks

to see if handler selection is in progress for the cleanup routine. If

so, a transfer back to the cleanup routine ends the processing of the

exception. If normal handler selection was in ?rogre, the exception is

changed to 'badRef' by transfering to the change exception sequence (see

section 4.4.6). Note that 'obsoleteRef' exceptions from either the pro­

cessor or the 'outOfStack' handler are directed to the same handler,

This requires two handler specifications in the exception processor.

The fourth handler involved in handler selection exceptions is the

'badSpec' handler. This handler is selected by three handler specifica­

tions in response to 1) a 'badAddr' fault from the processor, 2) a

'badAddr' exception from the 'outOfStack' handler, and 3) a 'badSpec'

exception reported by 'findHandler' or 'nextHandler'. Note that

'findHandler' and 'nextHandler' report exceptions by calling the excep­

tion processor thru its direct call gate. The action of the 'badSpec'

Ch. 4. 3. 2 Exception Processor Implementation page 173

handler is similar to the 'obsoleteRef' handler. The 'badSpec' handler

uses exit termination to transfer to a code fragment which changes the

exception to 'badSpec'. If cleanup processing was in progress, control

is returned to the cleanup routine instead of changing the exception.

Seven handler specifications are needed to control the exception

processor's response to exceptions during handler selection. The first

handler specification directs virtual memory faults to the system virtu­

al memory fault handler. The 'outOfStack' fault from the processor is

directed to the system 'outOfStack' handler. Two more handler specifi­

cations direct 'obsoleteRef' exceptions from the processor or the

'outOfStack' handler to the exception processor's 'obsoleteRef' handler.

A 'badAddr' exception from the processor or from the 'outOfStack'

handler is directed to the 'bad' Spec' handler. F'inally, 'findHandler'

and 'nextHandler' report a 'badSpec' exception by calling the exception

processor when loops are detected in the handler specifications. The

result of handler execution during handler selection is either to return

to handler selection following recovery by the virtual memory fault

handler or the 'outOfStack' handler, to change the current exception to

'obsoleteRef' or 'badSpec', or to return to the cleanup routine.

This section has illustrated the use of the exception processing

facility to recover from exceptions during handler selection. The abil­

ity of the exception processor to make use of its own exception process­

ing facility has been demonstrated. The interactions between the excep­

tion processor and its local handlers show how a subsystem can supply

the response to its own exceptions. The use of non-local handler for

virtual memory and activation stack faults demonstrates how a subsystem

Ch. 4.3.2 Exception Processor Implementation page 174

might interact with system supplied exception handlers. The following

sections will provide further examples in which the exception processor

exploits its own exception processing facilities to control the response

to the exceptions it causes.

4.3.3 ~Handler~

Once a handler specification has been located, the exception pro­

cessor can call the handler through the gate designated in the handler

specification. The exception processor must prepare the handler's actu­

al parameter list at the top of its activation frame. The parameters to

the handler include: 1) an indication of which handler ter~ination modes

are allowed, 2) a reference to the invoker's address space (if author­

ized), 3) the exception name (signaller-id and exception code), and 4)

the exception message.

The handler specification includes handler termination authoriza­

tions which are passed on to the handler. The handler should not at­

tempt to use terminations which are not authorized. The invoker refer­

ence is a non-local address space reference. The handler can access the

contents of the invoker's address space using the invoker reference. If

the handler specification does not authorize invoker access, a nil in­

voker reference will be passed to the handler. The exception name and

message are passed to the handler so that it can check to see which ex­

ception caused it to be activated.

Once the parameters have been prepared at the top of the exception

processor's activation frame, the handler can be activated by a subsys-

Ch. 4.3.3 Exception Processor Implementation page 175

tem call. If the exception is a processor fault, the exception proces­

sor should restore the fault data in the process base before calling the

handler. The only reason for restoring the fault data is that some

handlers may not execute in virtual memory. These handlers (e.g. virtu­

al memory fault handler) will take their parameters from the process

base. Figure 4-13 illustrates the handler call and the processing of

the exceptions which can be caused by the handler call operation.

The invocation of the handler may succeed, or an exception may be

encountered either on the call or signalled from the handler. If the

handler invocation succeeds and the handler returns, the exception pro­

cessor can continue to the processing of the termination actions. Oth­

erwise, the handler specifications of the exception processor will be

used to select a handler to deal with the handler call exception. Pos­

sible exceptions caused by the handler call include: 1) the handler is

not known in the process, 2) the activation stack becomes full, or 3)

the handler signals or is aborted.

If the handler call fails because the handler is not known to the

process or the activation stack is full, the exception processor's

handlers for these exceptions can attempt to correct the situation and

then return to the suspended exception processor activation to retry the

operation. Unknown handlers can be incarnated or made know and a full

stack buffer can be emptied by privileged system handlers. The excep­

tion processor's handler specifications for the 'unknownSSys' and the

'actStkFull' exceptions should designate a local handler. This local

handler calls a system handler for the particular exception in hand and

then process the results from the system handler. The system handlers

Ch. 4. 3. 3 2xception ?roc~ssor :~p:ementati:n page

c

restore fJult

data

~ ~---. ., --,
!

prePcc1;,'cn~;;;;2r I

yes sigij=
1

PROCESSOR
1

...._----~----~ no
" u:i:~:iown SS;s

no Handler
r-----

sigid =
exproc.r'Jot

re suits,;.- j

<e:::it 1 Crl-+> j
!

return)
I

.
I

r

resu::s-1
U:or.t1nu2 ,
< r2class 1

exCode 1

exMess»

return

!
I
I

resp~*- CJII

handler.gate

I--.>.
'

!
I '

act St~ full

1

-----1 .,

I , I

actSt.'(foJl
I

1

c: a 11 l rl -,..,,',"~'.,.,n I :
han .-i!.fH, • hana·:,< -----~--_-_ __,! I . i (: I !

_____ J I v
to handler

I

I

terminations
no resp.tmode

= retry $
l..- - _J

I
i I

.-------.~ I
! results.,.__..

n e 'N ,1.,1 es s -+--< s i g : d 1

ovroa·., .::,.,.\los-~\
,_ A "", ' w Ad .. :) I I r--~

I
I I

~

results~
l;::,v'1t t'•H.::;)
\ ,_ . .-\ I 1 \.., I;

.

I (exit 1 HC> 1

I

new Id+- exproc.root
I I

new Code+- handAbort

I

I c,

! C r,furn
I I
1...,_ ----1

n e w M es s ·+- < s i g Id 1 ex Cod e 1 ex ~1 es s >

new!d ..,._ exproc. roor
to change
exce;;tion

I

nettCode+- hcolli=°'..lii
I

:~cc:pat~;~ ~J

.,, I

return) !
I I '------.-.

Ch. 4.3.3 Exception Processor Implementation page 177

for 'unknownSSys' and 'actStkFull" should return with retry or reject

termination depending on whether they succeeded in correcting the the

problem. If the system handler succeeds, the exception processor's

handler can exit to the beginning of the handler call sequence. The

handler call sequence must be started over because the original excep­

tion may be a virtual memory fault. The virtual memory fault handler

expects to find the fault data in the process base.

If, instead of correcting the 'unknownSSys' or 'actStkFull' fault,

the handler rejects the exception, the exception processor is unable to

activate the handler for the original fault. The exception processor's

response to this should be to change the original exception. The excep­

tion is changed by exiting to a code fragment in the original exception

processor activation. The code fragment transfers to the reclassify ex-

ception sequence (see section 4.4.6).

'hCallFail' from the exception processor.

The new exception will be

If the handler call succeeds, but the handler terminates by signal­

ling an exception, or if the handler is aborted for any reason, a new

exception processor will be activated to select a handler. Normally the

exception processor will not have handler specifications for exceptions

from the handlers it calls since these handlers are selected by the in­

voker. However, if the exception processor has a local handler for the

'noHandler' exception, the new exception processor activation will call

that handler because the failure of 'findHandler' to locate a handler

specification for the original exception causes the exception to be re­

classified to 'noHandler' . If the signalled exception is from the

handler, it can be converted, by the exception processor's 'noHandler'

Ch. 4. 3. 3 Exception Processor Implementation page 178

handler, to a reclassification of the original exception. To reclassify

the signal, the 'noHandler' handler continues the original exception

processor activation with results calling for reclassification of the

original exception. The original exception processor activation cannot

distinguish between a return from the original handler and a return from

the exception processor's 'noHandler' handler and therefore will proceed

with normal termination processing (see section 4.4).

If the original handler was aborted by the exception processor, the

'noHandler' handler must exit to a code fragment which changes the ex­

ception to 'handAbort' . A reclassify continuation will not work when

the handler was aborted by the exception processor because the signaller

of the 'handAbort' should be the exception processor. Normal reclassify

termination chooses the handler as the new signaller.

In summary, handler activation involves preparing the handler

parameters, calling the handler, and processing exceptions caused by the

call or signalled by the handler. Exceptions on the call are processed

by calling the appropriate system handler for the exception. If the

system handler succeeds in correcting the cause of the call failure, the

handler call is re-executed after restoring the fault data in the pro­

cess base. If the handler call succeeds but the handler signals an ex­

ception or is aborted, the exception processor's handler for a

'noHandler' exception will catch the signal or abort. The 'noHandler'

handler will change the current exception either by continuing the ori­

ginal exception processor with a reclassify request or by exiting to a

code fragment which changes the exception to 'handAbort'. If the

handler invocation succeeds and the handler returns normally to the ex-

Ch. 4.3.3 Exception Processor Implementation page 179

ception processor, the exception processor can proceed to the handler

termination actions.

4.4 Handler Terminations

The exception processor supports a variety of handler termination

actions. The various terminations permit the handler to exercise con­

trol over the continuation of the computation. The handler termination

modes were discussed in section 2.5. In this section, the implementa­

tion of the exception processor termination actions is described.

There are seven handler termination modes. The first three, con­

tinue, retry, and exit, return control to the invoker. Abort and unwind

ter~inate the invoker and propagate except~on processing to the environ­

ment of the invoker's invoker. The last two handler terminations, re­

classify and reject, continue the exception episode by selecting and ac­

tivating additional handlers on behalf of the original invoker.

As suggested earlier in this chapter, information embedded in the

handler specifications can be used to control which terminations are al­

lowed for a given handler activation. Any attempt to use an unauthor­

ized termination mode will be reported to the invoker as a new excep­

tion.

Handlers select a termination mode by returning results to the ex­

ception processor. The results are passed through the activation seg­

ment from the handler's frame to the exception processor's frame. The

handler should prepare its termination request in its activation frame

immediately following the exception parameters. The first word of the

Ch. 4. 4 Exception Processor Implementation page 180

result selects the ter!Dination mode. Passinis the termination request

through the activation segment presents no problems except for handlers

which do not execute in virtual memory. These handlers must pass their

termination reauests through the accumulators of the processor. A flag

in one of the accumulators can be used to inform the exception processor

where to expect the handler termination request.

Figure 4-14 is a flowchart of the beginning of the handler termina­

tion processing. If the handler passes the results through the accumu­

lators, the exception processor copies the information to its activation

frame. Of course, virtual memory faults may impede the copy, but the

exception processor's handlers for those faults can take care of the

problem. After checking for non-virtual memory handlers, the handler's

termination request is compared with the termination authorizations in

the handler specification. If the requested termination is not compati­

ble with the handler specification, the exception processor changes the

exception to 'badTerm' by transfering to the change exception sequence.

Finally, if the requested termination is compatible with the handler

specification, the exception processor branches to the requested termi­

nation action. The rest of this chapter is concerned with the implemen­

tation of the various termination actions.

The exception processor can sustain the usual virtual memory faults

while performing a handler termination request. Also, the exception

processor may find the suspended stack is empty when it attempts to re­

turn to the invoker. An exception processor handler specification for

the empty stack exception can select a gate in the subsystem responsible

for managing the virtual memory suspended stack. That handler will load

Ch. 4. 4

·'l.>

-~ I
-I
c: I o,

®~
to
contin·J~

v
to
retry

.... t. ~xcep :.on ?::'~cesscr :::::iplem.en:ation

~
!
1

Jccum[r2spJ

=True

yes

resp. t Mode no

resp

accumulators

E ha n d I er. o k ;er m '---------------~

I _,
,_ I

_g I
01

I

I
I

-0 !
C: I

·-
3
c:
~

I

ii
;I
u
(l)

'-

f ! '"'
I I I !Rel
Vi v

to

I - , U!
~l

·;:;-1
'- I

~

~
to reject

unwind reclassify
to ex.~:t

I
to

AB

io abort

I
'1 ----i

n e "' '· ,·I P. s ,: I :~ .., n I, ' ::, r , J • :) ! ,-. .., · \ , l 1...1 i ·...l , c; J , :i I ""1 (

cc '1 ,., T jd. ::> ,, (' .J r1 p ::i ·1 \ • ~:. ; ~ \ \
...; ., ... 7 ".._,. .. - I 1: - ..., ..., I j

11 e ·NI j ·+-

newC.J j = - I
I

...... 91 r~ ...,... ,'l ,0 'i'

..J • ._. I\- j 1,1

-J

l
'1

~
to change
exception

Ch. 4.4 Exception Processor Implementation page 182

saved entries into the suspended stack and then terminate with a retry

request. The return to the invoker should succeed on the second at­

tempt.

4. 4. 1 Continue Invoker

The handler will request continue termination when it has simulated

the failed operation. The substitute results of the failed operation

are returned to the exception processor immediately following the termi­

nation indicator in the handler results. Continue termination is imple­

mented by copying the substitute results to the base of the exception

processor's activation frame, reducing the activation frame, and then

executing a subsystem return. ~he effect of these actions is to return

the handler supplied results to the invoker immediately following the

parameters to the failed operation. The size of the substitute result

vector can be deduced by inquiring about the size of the exception pro­

cessor activation frame and then subtracting the distance to the end of

the handler parameters. Continue termination assumes that the invoker

expects its results following the parameters of the failed call. The

exception processor also expects the handler results (the termination

request) to follow the parameters it passes to the handler. Figure 4-15

illustrates the actions of the continue termination sequence.

4.4.2 Retry Failed Operation

The second handler termination mode is used to retry a failed

operation. The result from the handler consists only of the termination

Ch. 4.4.2 page i33

from
Handler T:rminaf:c;;s

CT

---------- -r-- ------,
I retry I
I I

V M fa u i t I \/ ,\l f cu It I ! ----~ I I l handler j

copy resp. results
t o b a s e o f a ct Fr 1J ,71 :

I

c)'

a c t S t ~ E rn p t J . I J c t S T '.~ E ,T! r: t j] J
return ------1 r-:-:;--handler , retr~

---~-~--J ,

.~. ,...,....., .:, - : -----.
-- ·: - • - -- • - -::. j - - ••

------ --- - ·-- - --,
I

I

retry
l 1. ,JCIStxEmpry f--_J

handler I rejrJ

Ch. 4.4.2 Exception Processor Implementation page 184

indicator. The are no results to return to the invoker. To implement

retry termination, the exception processor simply executes the

privileged retry instruction. The retry operation was presented in Sec­

tion 3.3.3. Retry is a privileged processor operation which returns to

the invoker without incrementing its instruction pointer.

The possibility exists that the retried operation will fail in the

same way as before. The exception processor should probably record some

information in its incarnation segment to permit it to detect repeated

exceptions on a retry. The test for a repeated retry exception should

be ~ade before handler selection. It is difficult to distinguish

between legitimate repeated exceptions on a single operation and failed

retries. The exception pro'.;e.s~or ·,.;::·c:.l..:. '.= ·;.: to somehow determine that

the retried operation failed immediately and not on some subsequent in­

vocation. An execution timer associated with the address space is one

mechanism which would be helpful for detecting repeated retries [Graham

71, Walker 73].

Figure 4-16 gives the algorithm for retry termination. The test

for repeated retries is not included in this implementation. The retry

operation restores the invoker's activation frame to its size before the

failed operation invocation. If the parameters of the failed call have

not been disturbed by the signaller or the handler, the retried opera­

tion will be called with the same parameters as before.

Exception Processor Implementation Ch. 4.4.3

4.4.3 .Exil To Invoker

page 185

Exit termination directs the exception processor to force a

transfer of control in the invoker. The handler passes the instruction

address for the continuation of the invoker with the results it returns

to the exception processor. The exception processor uses the privileged

abnormal return operation to return control to the invoker at the indi­

cated address.

The abnormal return operation can fail because the handler selected

continuation address is not a legal instruction pointer value. In this

case, an exception processor local handler for the 'badAddr' exception

reported by the abnormal return operation can chanii;e the exception to

'badExit' by exiting to a code fragment as usual. Figure 4-17 shows how

exit is implemented.

4.4.4 Abort~ Invoker

The handler may request that the invoker be terminated and that ex­

ception processing be re-initiated in the environment of the invoker's

invoker. The handler will pass with its termination request the excep­

tion code and message for the new exception. The signaller of the new

exception will be the current invoker. The exception processor will

abort the invoker by executing the privileged abort operation (see sec­

tion 3. 3. 3). The new exception code and message are passed as the

parameters of the abort operation.

Before terminating the invoker, the exception processor should give

the invoker a chance to restore itself to a consistent state. The

Ch. 4.4.4 r, t- . .:.xcep .,ion

l E :< l v
! ----
1

...,

exit(resp.addr)

?r::cessor

i i l e g a I .'4 d d r - --,
I

results+­
<exit 1CH7)

c retu:J
I .,

I .,
newMess+-(hcnd:er.~ 1Jre,

handler

sigid I exCode 1 ex:\less>

new Id_ 2xproc. not
newCode 4-- 'oad ~xi:'

to change
except ion

---,
i
I

! ~- __.

·1

I

Ch. 4.4.4 Exception Processor Implementation page 187

invoker can declare its desire to be given control before being ter-

:ninated by supplying handler specifications for the 'cleanup' exception.

figure 4-18 shows how the exception processor can give the invoker a

chance to put its affairs in order before it is forced to terminate.

The cleanup routine of the exception processor searches for 'clE>anup'

handlers using the 'findHandler' and 'nextHandler' procedures. If

'findHandler' locates a 'cleanup' handler, the cleanup routine of the

exception processor will call the indicated handler. All of the usual

exceptions associated with handler selection and activation can occur in

the cleanup routine. However, the handler selection exceptions (except

VM faults) are handled a little differently during cleanup. Instead of

chan~ing the current exception to 'noHandler' when 'findHandler' fails,

control is returned to the cleanup routine because there are bigger fish

to fry the invoker is being aborted. An exception on the handler

call is managed similarly. If the handler cannot be called, or if it

signals an exception, the handler is bypassed by the cleanup routine.

The exception processing paths and specifications are not represented in

the cleanup routine flowchart.

Only reject terminations are allowed from 'cleanup' handlers. All

other terminations are converted to reject termination. When a 'clean­

up' handler terminates, the cleanup routine calls 'nextHandler' to lo-

cate another 'cleanup' handler. This allows a nested set of local

handlers to back out from each block of the invoker. If also allows su­

pervisor imposed and default handlers to be activated to close files and

release resources. When no more 'cleanup' handlers can be found, the

cleanup routine returns to the abort sequence. The cleanup routine is

also used during unwinding (see next section).

Ch. 4. 4. 4

r ! ,;l r, n ', ,,
V,,. ...II ._.; ,-

(__ b_e_g_i n_J

t
handler +find Handl~r
(e::::proc. root 1

1

cleanup
1

)

_I

I \
\ yes

handler= nil

no

I resp 4- .:J fl i
ha ri d I er. g c; = I

-------.J

• d' '11 l~ nan 1er ..- ne:,r nanc,ier ·
(hand!er,exproc. root,

1

cleanup
1

)

'

from sel2ctio;i
e::::ceptlons

Ch. 4. 4. 4 Exception Processor Implementation page 189

The possibility exists that the invoker reference used by handler

selection during cleanup does not refer to the subsystem about to be

aborted. This can occur only on a direct call to the exception proces­

sor. The abort sequence skips the cleanup if the invoker reference is

not to the subsystem about to be aborted. Note that this can happen

only on a direct call in which case the caller has placed itself at the

mercy of the invoker which it designated.

Once the invoker has been given a chance to set its affairs in ord­

er, the abort sequence prepares to invoke the privileged abort opera­

tion. The abort code and message from the handler are copied to the

base of the exception processor's activation frame and the activation

frame is reduced to contain just the abort code and message. Finally,

the exception processor issues the abort. Figure 4-19 shows the algo­

rithm of the abort sequence.

The abort operation will fail if there are not two entries in the

activation stack or if a virtual memory fault occurs during the copy of

the abort parameters to their new spot in the activation segment (see

Section 3.3.3). In either case, a system handler can be selected by the

exception processor's handler specifications. The handler, after fetch­

ing the missing page or loading entries into the activation stack

buffer, can retry the failed abort operation. The implementation of the

abort primitive uses the activation frame pointers of the invoker as

progress indicators during the copy of the abort parameters. Any at­

tempt to return to the invoker after an abort has been issued will cause

trouble because parts of the invoker's activation frame contents will

have been overwritten with the abort parameters.

Ch. 4.4.4 Sxcepticn ?r~cessor :~ple~en~a~:8~

in v ? e f. id= ;l ,) -------s us p. too.shar:::d

i yes

call cleanup

,
abtCode ._ r2sp.C.Jde
ab U,l es s +- resp.\i~ss

(abort)

invRef=

Sa ,·1:1d T,.,r,.,"· i ... \,,./, 'j ... l

I no
1

call cleanup

I
l

yes

I
j

abtCode +-
1

unwinding
1

•

abt Mess +- < >

I
'1
f

1, '1 ('' • -,-.:::,,._.).

s a v e : T a r g e t ,.i- .1 i i

ne'.'I Id - 2x;Jroc. ,0ot
r'\ I I I

new •_.,ode~ unn'ouna

n e w M es s +- s ci ,, e d /,less

® to change
exception

Ch. 4.4.5 Exception Processor Implementation page 191

4.4.5 Unwind Termination

A handler can request that the computatior. be unwound to an earlier

state. This may require the ter!llination of several subsystem .::icti va-

tions. The request passed to the exception processor includes the

unwind indication, a non-local address space reference, and an exception

message. The non-local reference identifies the target of the unwind.

The exception message will be passed to the target as the message of an

'unwound' exception. To effect the unwinding of the process, the excep­

tion processor may have to abort several subsystem activations. Each

activation should be given a chance to cleanup before it is terminated.

The exception processor must propagate the unwinding from subsystem

activation to subsystem activation. To propagate the unwinding process,

the exception processor will use a distinguished exception code. Every

exception processor activation will detect that unwinding is in progress

by checking for the 'unwinding' exception before it begins handler

selection. The target and the message for the target are saved in the

exception processor's incarnation segment during unwinding.

Figure 4-20 illustrates unwind propagation. If unwinding is under

way, the test before handler selection (see figure 4-11) will detect the

'unwinding' exception and transfer to the unwinder. The unwinder checks

first to see if the unwind target has been reached. If so, the unwinder

changes the exception code to 'unwound' and sets the signaller-id to it­

self. The new exception is eventually reported to the target of the

unwind by calling the target's 'unwound' handler.

Ch. 4.4.5 Exception Processor Implementation page 192

If the current invoker is not the target of the unwinding, the

unwinder calls the cleanup routine which was discussed in the last sec­

tion. When the cleanup routine has finished giving the invoker a chance

to restore its state, the invoker is aborted. The abort code is

'unwinding' and the exception message is empty. The signaller of the

abort will be the exception processor. The new exception processor ac­

tivation responding to the abort will detect the 'unwinding' code and

propagate the unwinding another level in the suspended stack.

Having discussed how unwinding is propagated until the target is

reached, we must explain how unwinding is initiated by a handler termi­

nation request. Figure 4-21 gives the algorithm for initiating unwind­

ing. The handler requesting the unwind passes the target reference and

message in th2 ~;sults it returns to the exception processor. The tar­

get reference must be validated before the exception processor can begin

unwinding. The target reference may be an obsolete address space refer­

ence. If so, the exception processor can signal a 'badUnwind' to the

invoker by changing the exception.

It is possible for a handler to request unwinding after unwinding

is already in progress. The interactions between independent unwind re­

quests must be sorted out by the exception processor. A simple rule is

to always aim for the most distant unwind target. In order to sort out

multiple unwind requests, the exception processor maintains a record of

the current target. If the new unwind request is closer than the

current target, it is ignored and unwinding is continued from the

current position. If the new unwind target is more distant, the new

unwind request is honored and recorded in the incarnation segment. Note

Ch. 4. 4. 5

yes dist(savec TtJrc:et)
>dist(resp. target) 1

I no

;age 193

y
1

resp.tari;et "" .. .,
\ ,,a Ii d) >------->,

no

yes

saved Target
= n i I

yes

I
I

I

,'1 e ':V ,
111 e s s ·+- : :1 a " d ! e r. 1 a t 2 1

sigld 1 :::{CJde, e:..:.'.!-::ss>

7

saved T-:iqet-..­
resp. target

saved Mess +­

resp. mess

- I -,
+ -

• .~ I ' .-, • ;--i s1gncl 1.,ode+- ,.rnw,nu:n:;· !
SJ·g.,al \,~-- ~ r \ 1i ,11..,.:;.J '\ I

signal

to change
exception

!

i
J

Ch. 4.4.5 Exception Processor Implementation page 194

that whichever target is used, there is an exception processor activa­

tion between the current activation and the target which was working on

the previous unwind. The intervening exception processor activation

will be aborted after being given a chance to cleanup. The exception

processor does not need any 'cleanup' handlers. The only exception pro­

cessor state which can interact with other activations is the unwind

target in the incarnation segment. (The fault data buffer is only used

during the entry sequences and entry sequences are not subject to

unwinds.)

The unwind handler termination initiates unwinding by signalling

'unwinding' after updating the saved target and message. The signal

will re-initiate the exception processor. The 'unwinding' exception

code will divert the exception processor to its unwinding routine. The

exception processor should signal 'unwinding' in order to insure that

the invoker reference used to select the cleanup handlers is correct.

The current invoker reference may not refer to the subsystem which

called the exception processor if the exception processor was activated

by a direct call.

4.4.6 Reclassify Exception

A handler may request that the exception be reclassifed to reflect

the handler's determination to characterize the exception differently.

The handler selects the new exception code and message by returning them

with the reclassification request. Figure 4-22 shows how the exception

is changed. If the new exception is the same as the current exception,

the reclassify sequence transfers to the reject sequence.

Ch. 4. ll. 6 ~xcepticn ?rocesscr I~ple~e~ta~:on

Reciassif'I Termination
;

~
I
'

newIJ·r­
handlu. gate

new Code -+-resp.code

new Mess +-r 2sp.mess

(sig]d 0 ne•!d) a\ j2S ~
\exCode snewCod

1eyi-------u
~ ~~nJ

~'

to reject
termination

/ < n e '., I ,j 1 -.,\ 1
;'.\ s /< e x qr o c. r ;~ ;\ 'J ~

5

change
exc2prion

page 195

I ~ v \ -,... _.j \ \ • I I . 'l ' n e '8 ,., o , .. ?. ,, :-----.;,,, re o e ::ii:: J > :-------~
\;:;)~c=ip1',:o,n~ I ~ exceptic,ns

n o ,...! -o>-------.
1

exceptions+

exceptions U
<newid,

newCode >

I
I
'

sig1d +- newid

ex Code .._newCode

exMess +- ne·,vMess

to handler
selec~ion

\' -~-- ·~ I
I ----'
~ no

__ n_e_w_i'-!_l e_s_s_..,._-' < n e w I d
1

l
newCode 1 newMess>

1

1

ne·r1Id +-- e,~proc.root I
I I

newCode repeated I

1

I .,
abtCode+ II

I. I

1n1JR=pea:

ab t :,.1 e ss ·r

2xceoticr,s

b > I '-/) a or, , ,.._ ,

Ch. 4.4.6 Exception Processor Implementation page 196

Part of the reclassify sequence is also used by the exception pro­

cessor when it changes the exception. Reclassify and change exception

should detect attempts to change the exception to be the same as it was

earlier in the exception episode. If the new exception is not among the

set of already encountered exceptions, the current signaller-id, excep­

tion code, and exception message are updated and control is passed to

the handler selection sequence.

If the new exception is the same as some earlier exception in the

same exception episode, the reclassification should not be allowed. If

the new exception was accepted, an endless loop through the same se­

quence of handlers and exceptions would probably occur. To detect re­

petition, the reclassify sequence maintains a set of encountered excep­

tion names. The number of exceptions remembered can be bounded or vir­

tual memory buffers can be acquired as needed. Eefore changing the ex­

ception, the current exception is added to the set and the new exception

is checked to see if it is in the set. If the new exception has already

been encountered, the exception is changed to 'repeated' unless there

has already been a 'repeated' exception. If a repeated 'repeated' ex­

ception is detected, the invoker is aborted with an 'invRepeated' excep­

tion.

4.4.7 Reject Termination

A handler can reject responsibility for dealing with an exception

and indicate that other handlers for the same exception should be locat­

ed and activated. A handler termination request with only the reject

indicator will cause the exception processor to search for the next

Ch. 4.4.7 Exception Processor Implementation page 197

handler for the current exception. Handler requested reclassifications

which do not change the exception are converted to reject terminations.

Figure 4-23 shows how the exception processor .searches for additional

handlers using the 'nextHandler' procedure.

If 'nextHandler' finds a handler specification, the reject sequence

transfers to the handler call sequence to activate the new handler. If

there are no more handlers for the current exception, the reject termi-

nation sequence changes the exception. The new exception will be

'noHandler' and the message will contain the original signaller-id, ex­

ception code, and exception message. The 'nextHandler' procedure can

encounter the usual handler selection exceptions. The handler selection

exceptions were discussed in section 4.3.2.

4.5 Conclusions

In this chapter we have developed an exception processor implemen­

tation supporting the invoker controlled handler choice policy and a

variety of handler termination actions. The implementation consists of

the exception processor entry sequences, handler selection, handler ac­

tivation, and the termination actions. Several interesting implementa­

tion issues were discussed. The fault entry sequence, handler specifi­

cation data structures, and the use of the exception processor itself to

process exceptions caused by exception processor activations are the

most interesting aspects of the exception processor implementation.

The entry seauences, in which machine level and software reported

exceptions are mapped to a common interface, raises interesting issues

Ch. U. 5

handler+- ne.dhanc:erj
('nandli:>r ·1· ... ~d

w l ~ ';;•~I

ex Code)

hand:.2r

=nil_/1

I

j no
•!'f

~
to handler
ca II

'j 2 5

page 19'3

' ...,

n e w ~11 es s ..,._ < s ; q I J
1

·vcoa':, ;:,,,.\1'::i<:<:) C: A \;) ._" . 'i "" ..., ..., •

new Id "4--- 2xpr,Jc.roct
' I newCode +- no Hendler

to change
e:{ception

Ch. 4. 5 Exception Processor Implementation page 199

concerning the preservation of fault information in the face of addi­

tional faults. The complexity of the interactions between different ex­

ception processor activations and the system fault handlers is somewhat

disturbing but manageable. Using a set of fixed fault buffers, the ex­

ception processor entry sequence succeeds in preserving the fault infor­

mation despite virtual memory and suspended stack full faults.

Handler specifications are interesting because they are supplied by

the invoker but processed by the exception processor. The invoker con­

trolled handler choice policy leads to three sets of handler specifica­

tions. Some redundancy in the handler specifications is necessary in

order to make them safe for the exception processor. The check fields,

which prevent the exception processor from looping indefinitely, are a

simple yet effective mechanism for protecting the exception processor

from malformed data structures.

The most interesting aspect of the exception processor implementa­

tion is its ability to sustain a variety of exceptions and to recover

from the exceptions using its own exception processing facilities. The

exception processor depends upon itself to select and activate handlers

for the exceptions which it causes. There is no circularity because the

handler specifications used to control the response to an exception are

drawn from the root segment of the invoker. When the exception proces­

sor is the invoker, its own handler specifications select exception pro­

cessor gates or system handlers to recover from the exception. The

ability of the exception processor to process its own exceptions also

raises our confidence in the effectiveness of the handler selection pol­

icy and termination actions which were proposed in Chapter Two.

Ch. 5 page 200

Chapter Five

Snmmary and Conclusions

5.1 Thesis Summary

In this thesis we have developed an exception processing facility

for a system composed of interacting, but mutually suspicious subsys­

tems. We began with the assumption that an exception is the reported

failure of a subsystem (or the basic processor) to deliver its specified

results in response to a call from another subsystem. We argue that the

party most directly affected by an exception is the invoker of the

failed operation. Because the invoker directly depends on the outcome

of the failed operation, we are led to investigate exception processing

strategies which focus on the invoker to determine the course of action

in response to the exception.

The called subsystem is the one which determines that it cannot

perform the requested operation. Since the failing subsystem cannot

complete the call successfully, we argue that it should be retired once

it reports its own failure. Terminating the signaller's activation sim­

plifies exception processing since the eventual handler of the exception

does not need to be responsible to both the signaller and the invoker.

The handler which eventually responds to the reported exception should

be initiated in the same way as a subsystem operation. This permits the

handler to operate in its own environment and also allow parameters

describing the exception to be passed without inventing new communica-

Ch. 5. 1 Summary and Conclusions page 201

tion protocols.

A major thrust of this thesis is the idea that the invoker of the

failed operation, being the subsystem most directly affected by the

failure, should control the selection of the handler which responds to

the exception. Permitting any other subsystem to control handler selec­

tion violates the principles of programming generality either by making

use of global information or by reflecting the dynamic state of the com­

putation. In either case, the response to an exception would be con­

trolled by circumstances outside the purview of the invoker. If infor­

mation derived from other than the invoking subsystem is used to select

the handler, the semantics of the calls which the invoker makes will

depend upon which handlers are selected in case of exceptions. This

makes it hard to define the semantics of a call to the invoker without

considering the global or dynamic conditions controlling the selection

of the handlers.

When considering how the invoker's control over the selection of a

handler can be specified, we were led to consider three classes of

handler specifications: default, local, and imposed handlers. Default

handler specifications are intended to supply the "system standard"

response whenever there are no local or imposed handlers. Local

handlers allow the programmer to supply the response to an exception.

Imposed handlers allow the system to supply the handler for system sen­

sitive exceptions which are related to virtual machine interfaces or

global resource utilization.

In order to provide mechanisms by which default and imposed

handlers are specified, we discussed the program preparation process and

Ch. 5. 1 Summary and Conclusions page 202

the relationship between the program in preparation and the subsystems

which perform the actions of preparing the program for execution.

Language translators, for example, can enforce the run time environment

and provide standard responses to anticipated exceptions by supplying

imposed and default handler specifications. The subsystems which parti­

cipate in the preparation of a subsystem can add default and imposed

handler specifications to the subsystem representation when they are

called to work on the not yet executable subsystem. The imposed

handlers reflect the right of the supervisory subsystem to have first

crack at an exception. Default specifications relieve the implementor

of having to supply a response for every possible exception. Because

imposed and default handler specifications are supplied during program

preparation, they are statically associated with the subsystem and do

not lead to global or dynamic dependencies at run time.

Besides selecting and activating the exception handler, an excep­

tion processing facility must control the resumption of normal process­

ing following the completion of handler execution. Supporting a variety

of termination modes allows the handler to have some control over the

continuation of the interrupted computation. Based on the decision of

the handler, the exception processing facility may resume the invoker,

continue exception processing by calling additional handlers, or pro­

pagate the exception by reporting the failure of the invoker to the

invoker's invoker. Of course, the exception facility should enforce in­

voker specified controls over the terminations allowed for each handler.

The handler can resume the invoker following the failed operation,

at the failed operation (retry), or at some other point in the invoker's

Ch. 5. 1 Summary and Conclusions page 203

program. At the handler's discretion, exception processing can be con­

tinued either by selecting another handler for the same exception or by

changing the exception and selecting a handler for the new exception.

The handler can also abort the invoker in order to propagate the excep­

tion to the invoker's invoker. This causes the invoker's activation to

be terminated without regaining control. If the results of several sub­

system activations are no longer needed because of the exception, the

handler may request that the exception be propagated several levels back

in the subsystem call sequence. The various handler termination modes

reflect different outcomes of the handler's attempts to deal with the

exception.

Chapter Three describes a processor model supporting the exception

facility described above and in Chapter Two. The processor model sup­

ports protected subsystems and exception processing. Basic processor

operations for calling and returning from subsystems along with virtual

address space separation between subsystem activations protect subsys­

tems from mutual interference. In order to maintain isolation between

subsystems and also support exception processing, the processor must

supply several exception processing operations. The signal operation

allows a subsystem activation to report its own failure and, at the same

time, terminate its activation. The signal operation causes a dis-

tinguished subsystem, the exception processor, to be activated in order

to control the processing of the exception. Additional operations, used

only by the exception processor, are needed to support some of the ter­

mination modes.

Ch. 5. 1 Summary and Conclusions page 204

Chapter Four presents the implementation of the exception process­

ing subsystem. This subsystem is responsible for selecting and activat­

ing the handler. The exception processor also implements the termina­

tion actions which reflect the outcome of the handler's attempts to re­

cover from the exception. The exception processor decouples the handler

selection policy and termination protocols from the basic processor

mechanisms for reporting exceptions and for transfering control from one

subsystem to another.

Besides making exception processing facilities available to other

subsystems, the exception processor makes use of its own exception pro­

cessing facility to control recovery from the exceptions which the ex­

ception processor itself causes. The exception processor implementation

is almost completely insensitive as to whether it is invoked on behalf

of itself or for some other subsystem.

This thesis defines an exception as the reported failure of an

operation to produce its specified results and side effects. Invoker

control over the response to a reported exception was shown to be impor­

tant. Imposed, local and default handler specifications permit flexible

system and user control over the selection of a handler. A variety of

handler termination modes was developed to reflect the various outcomes

of the handler's attempts to recover from the exception. The implemen­

tation of the exception processing facility was partitioned into proces­

sor level operations for reporting exceptions and for transfering from

one subsystem to another, and the exception processor subsystem which

implements and enforces the handler selection policy and the termination

protocols.

Ch. 5.2 Summary and Conclusions page 205

5.2 ~ Directions for Further Research

We have discussed the design of a system level exception processing

facility for protected subsystems which interact thru calls and returns.

This thesis has not addressed the problems of exception processing in a

non-procedural environment. Real systems contain interacting processes

as well as interacting procedures. When some subsystem in one process

depends on results or work being done in another process, the failure of

the second process should be communicated to the proper party in the

first process.

Communication between processes can be based on polling or inter­

rupts. Polling requires co-operation from both processes and does not

lead to any unusual transfers of control. Under a polling protocol,

processes must check for the occurrence interprocess events. Inter­

rupts, on the other hand, force a transfer of control in the target pro­

cess. For processes which are composed of sets of protected subsystems,

interrupts pose many problems. Unfortunately, there are a number of si­

tuations which to not lend themselves to a polling solution. These ap­

plications include the management of external devices, the user console

attention key, interval or watch dog timers, and some resource preemp­

tion problems. Exception processing in a multi-processing environment

would seem to be related to the interrupt facility.

Handling asynchronous events without violating the protection of

the subsystems of a process is not an easy task. The selection and ac­

tivation of the handler (interrupt routine) pose a number of interesting

questions. If the subsystems of the process are hierarchically organ­

ized, the determination of whether to allow a forced transfer of control

Ch. 5. 2 Summary and Conclusions page 206

can be based on the relative positions in the hierarchy of the currently

executing and the interrupt handling subsystems. Organizations which do

not require a static hierarchy among the subsystems should also be con­

sidered. Other considerations include the necessity of synchronizing

the manipulations of data shared by interrupt handlers and main line

routines. The development of a facility for controlling the response to

asynchronous events in a multi-processing environment with protected

subsystems would be most interesting and useful.

Another area which we have not pursued is the embedding of excep­

tion processing facilities into a programming language. A syntax for

exception declarations (in the signaller) and handler specifications (in

the invoker) must be developed. The syntax should permit the programmer

to lexically separate the main line from the exception handling code.

In strongly typed languages (e.g. Euclid, CLU, Alphard), exceptions must

be declared by the signaller. The signaller can then export the excep­

tion name along with the type declaration for the exception message. In

typed languages, the formal parameters of the handler procedure should

be checked to insure compatibility with the types of the actual excep­

tion parameters. The syntax of the handler specifications should allow

the programmer to control which termination modes will be allowed for

the handler. It is important that the syntax make it easy to tell what

will happen in case of an exception.

5.3 concluding Remarks

Our investigations of exception processing in computer systems have

led to several conclusions. A single, uniform exception reporting and

Ch. 5. 3 Summary and Conclusions page 207

processing facility allows independently developed subsystems to

cooperate without risking their individual integrity. Terminating the

signaller of the exception is important because it simplifies the excep­

tion processing environment. Since the signaller does not need to be

resumed, the handler can operate strictly on behalf of the invoker.

Perhaps the most important conclusion we have drawn from our inves­

tigations is that it must be possible to determine statically which

handlers will be called to deal with the failure of a particular opera­

tion invocation. This leads to the conclusion that the handler specifi­

cations used to select a handler at run time should be associated (stat­

ically) with the invoker of the failed operation. Two problems which

have traditionally led to non-local control over the response to an ex­

ception are 1) the desirability of providing for default actions whenev­

er the implementor fails to specify a handler, and 2) the fact that the

"system" must supply the response to some exceptions (e.g. page fault or

real resource problems)

By considering the program preparation process as a sequence of

transformations on a not yet executable subsystem we are able to stati­

cally associate default and imposed handler specifications with the sub­

system. At the programming language level, an analogous concept is the

use of a standard prologue to define parts of the language environment.

Static handler specifications make it possible to determine exactly what

will happen in response to the failure of any operation invocation. The

final subsystem representation contains the information necessary to

tell what will happen. Also, the program text and the published specif­

ications of the supervisory subsystems provide the same information in a

Ch. 5.3 Summary and Conclusions page 208

more convenient form.

Default and imposed handler specifications allow the subsystems

which participate in program preparation to define and enforce the run

time (virtual machine) environment without inventing new or different

exception reporting and processing protocols. Any system level excep­

tion processing facility which does not allow for default and imposed

exception handlers will be inconvenient (no defaults) or will require

additional mechanisms to force control to system handlers when certain

failures occur.

The implementation of an exception processing facility can be

decomposed into a set of low level subsystem transfer operations for in­

itiating and terminating exception processing and a subsystem responsi­

ble for the overall control of the exception episode. The exception

processing subsystem can implement and enforce the handler selection

policy and control the termination of the exception episode if it is ac-

tivated by the exception reporting operation. Because the processor

level exception reporting operations initiate a new activation of the

exception processor, the exception facility can deal with exceptions

during an exception episode. The invoker controlled handler selection

policy and the suggested episode termination modes are sufficient to

support the processing of exceptions caused by the exception processor

during exception processing. The ability of the exception processor to

deal with its own exceptions demonstrates the utility and versatility of

the exception facility.

The analysis of exceptions during exception processing exposes ex-

ception processor dependencies on other system facilities. We were

Ch. 5. 3 Summary and Conclusions page 209

unable to eliminate dependencies between the exception processor and the

virtual memory system and between the exception processor and the pro­

cessor. If the processor cannot activate the exception processor fol­

lowing a processor fault, it must abandon the process. The exception

processor depends upon the virtual memory system to repair virtual

memory faults while the virtual memory system depends on the exception

processor to call it in response to virtual memory faults. Careful

design of the exception facility is necessary to avoid true circulari­

ties at the base levels of the system.

The importance of an exception processing facility stems from the

fact that in order to be robust, a program must be able to deal with

failures encountered during execution. The robust program must specify

the response to the failure of the operations which it invokes. The

response may be to report failure to the next level or to somehow cir-

cumvent the failure. In any case, the important point is that the

response to a reported failure should be specified by the program which

initiated (called for) the failed operation. The invoking program is

the one which is most directly affected and the one best qualified to

control the response to the failure.

A uniform and flexible exception processing facility encourages the

programmer to think about and supply responses for run time failures.

An exception processing facility helps the programmer deal with unusual

or exceptional cases by providing a mechanism for separating the main

line actions from the recovery and special case code needed to handle

operation failures at run time.

210

References

[ALGOL 60] Nauer, P. (ed.), "Revised Report of the Algorithmic Language
ALGOL 60," Communications Qf the ACM, Vol. Q., No. 1 (January
1963), pp. 1-17.

[Ambler 77] Ambler, Allen L., et.,al.., "GIPSY: A Language for
Specification and Implementation of Verifiable Programs,"
Proceedings Qf .fill ACM Conference .Qil. Language Design .f.Qr.
Reliable Software, Raleigh, North Carolina, March 1977, pp.
1-10 (reprinted in ACM SIGPLAN Notices, Vol . ..12., No. 3 (March
1977), and in A.CM Operating Systems Review, .Y.Ql. 11, No. 2
(April 1977), and in A.Q1 Software Engineering Notes, .Y.Ql • .2.,
No. 2 (March 1977)).

[Anderson 76] Anderson, T. and Kerr R., "Recovery Blocks in Action: A
System Supporting High Reliability," Proceedings 2nd.
International Conference .Qil. Software Engineering, October
1976, pp. 447-457.

[Baker 72] Baker, F.T., "Chief Programmer Management of Production
Programming," IBM Systems Journal, Vol. 11, No. 1 (1972), pp.
56-73.

[Bensoussan 72] Bensoussan, A., Clingen, C.T., and Daley, R.C., "The
Multics Virtual Memory: Concepts and Design," Communications
Qf. .the. .AQ:1, .Y.9.l.. 1.5., No. 5 (May 1972), pp. 308-318.

[Bernstein 71] Bernstein, A.J., and Sharp, J.C., "A Policy Driven
Scheduler for a Time-Sharing System," Communications Qf ..t.M
A.CM, .YQ.l • .l!!., No. 2 (February 1971), pp. 74-78.

[Bjork 72] Bjork, L.A. and Davies, C.T.Jr., "The Semantics of the
Preservation and Recovery of Integrity in a Data System," IBM
System Development Division, San Jose, TR02-540, December
1972.

[BLISS] BLISS-.11 Programmer'..§. Manual, Computer Science Department,
Carnegie-Mellon University, Pittsburgh, Pa., undated.

[Bobrow 72] Bobrow, D.G • ..e.t. .al, "TENEX, a Paged Time Sharing System
for the PDP-1 o," Communications Qf the ACM, Vol. 1.5., No. 3
(March 1972), pp. 135-143.

[Boehm 75] Boehm, B.W., McClean, R.K., and Urfrig, D.B., "Some
Experience with Automated Aids to the Design of Large-Scale
Reliable Software," Proceedings International Conference .Qil.

Reliable Software, Los Angeles, Calif., April 1975 (reprinted
in ACM SIGPLAN Notices, .YQ.l • ..1.Q, No. 6 (June 1975), pp. 105-
113).

References

[Brooks 75] Brooks, Fred P. Jr., The Mythical Man Month, Addison­
Wesley, Reading, Mass., 1975.

[CAL 69] .QAL.-TSS Internals Manual, Computer Center, University of
California, Berkeley, November 1969.

[CAL 69b] CAL-TSS User'~ Guide, Computer Center, University of
California, Berkeley (November 1969).

211

[CAP 76a] ~ Hardware Manual, Version 1.3, ed. C.J. Slinn, University
of Cambridge Computer Labortory, Cambridge England, July 1976.

[CAP 76b] ~ System Programmers Manual, Version 1.8, ed. C.J. Slinn,
University of Cambridge Computer Labortory, Cambridge England,
June 1976.

[CAP 76c] CHAOS Manual, Version 1.1, ed. C.J. Slinn, University of
Cambridge Computer Labortory, Cambridge England, September
1976.

[CLU 75] Schaffert, C., Snyder, A., and Atkinson, R., The .Q1JI Reference
Manual (revision Q), Project MAC, Massachusetts Institute of
Technology, Cambridge, Mass., June 1975.

[Dahl 70] Hahl, Ole-Johan, Myhrhaug, B., and Nygaard, K., "SIMULA 67
Common Base Language," Norwegian Computing Center, Oslo,
Norway, 1970.

[Daley 68] Daley, R.C. and Dennis, J.B., "Virtual Memory, Processes,
and Sharing in MULTICS," Communications Qf ..tM ACM, 1.Q.l.. ll,
No. 5 (May 1968), pp. 306-312.

[Denning 76] Denning, Peter J., "Fault-Tolerant Operating Systems,"
Computer Science Dept. TR-175, Purdue University, West
Lafayette, Indiana, April 1976 (to appear in Computing Surveys
special issue on software reliability, 1976).

[Dennis 66] Dennis, J.B. and Van Horn, E.G., "Programming Semantics for
Multi-programmed Computations," Communications of ..tM AQ1,
.YQl. • .9.., No. 3 (March 1966), pp.143-155.

[Dennis 68] Dennis, Jack B., "Programming Generality, Parallelism and
Computer Architecture," Computation Structures Group Memo No.
32, Project MAC, Massachusetts Institute of Technonogy,
Cambridge, Mass., 1968 (early version reprinted in Proceedings
lEl£. .1..9&a, North Holland, Amsterdam, 1968, pp. C1-C7).

[Dijkstra 68] Dikjstra, Edsger W., "The Structure of "THE"
Multiprogramming System," Communications of the ACM, Vol. ll,
No. 5 (May 1968), pp. 341-356.

[Dijkstra 72] Dijkstra, Edsger W., "The Humble Programmer," 1972 ACM
Turing Award Lecture, Communi~ations of the .AQ:1, Vol. 15., No.
10 (October 1972), pp. 859-866.

References 212

[Dijkstra 74] Dijkstra, Edsger W., "A Time-wise Hierachy Imposed on the
Use of a Two-level Store," EWD 408 unpublished, 1974.

[Dijkstra 76] Dijkstra, Edsger W., A Discipline Qf Programming,
Prentice-Hall, Englewood Cliffs, N.J., 1976.

[ECL 72] ~ Programming Manual, Ben Wegbreit et . .a.J... eds., Center for
Research in Computing Technology, Harvard University,
Cambridge, Mass., September 1972.

[England 74] Endland, D., "Capability Concept, Mechanism and Structure
in System 250," .IRlA. International Workshop .o.n. Protection .in
Operating Systems, Rocquencourt, France, August 1974, pp. 63-
82.

[Euclid 77] Lampson, B.W., Horning, J.J., London, R.L., Mitchell, J.G.,
and Popek, G.L., "Report On The Programming Language Euclid,"
A.QM SIGPLAN Notices, Vol • .12., No. 2 (February 1977).

[Fabry 68] Fabry, R.S., "Preliminary Description of a Supervisor
Organized around Capabilities," Quarterly Progress Report No .
.1.§., Institute of Computer Research, University of Chicago,
Chicago, Illinois, 1968, pp. 1-97.

[Fabry 73] Fabry, R.S., "Dynamic Verification of Operating System
Decisions," Communications of the ACM, .Y.Ql. ti, No. 11,
November 1973, pp. 659-668.

[Fabry 74] Fabry, R.S., "Capability-Based Addressing," Communications
.Q.f ~ ~' .YQ.l. Jl., No. 7, July 1974, pp.403-411.

[Ferrie 74] Ferrie, J., Kaiser, C., ..e.i,.al,, "An Extensible Structure
for Protected Systems," l.RlA. International Workshop .o.n.
Protection .in Operating Systems, Rocquencourt, France, August
1974, pp.83-105.

[Gligor 76] Gligor, Virgil D., "A Study of Extensible Architectures,"
Ph.D. Thesis, University of California, Berkeley, Calif.,
1976.

[Goldberg 73] Goldberg, Robert P., "Architectures of Virtual Machines,"
Proceedings~ .191.:i, AFIPS Press, Montvale, New Jersey, 1973,
pp. 309-318.

[Goodenough 75] Goodenough, J.B., "Exception Handling: Issues and a
Proposed Notation," Communications Qf ~ .AQ:1, .YQl • .la, No. 12
(December 1975), pp. 683-696,

[Goodenough 75b] Goodenough, J.B. and Gerhert, S.L., "Toward a Theory
of Test Data Selection," Proceedings International Conference
.Qf Reliable Software, Los Angeles, Calif., April 1957
(reprinted in .A.Q1 SIGPLAN Notices, Vol . .lQ, No. 6 (June 1975),
pp. 493-510).

References

[Graham 71] Graham, Martin, "Time as a Control Parameter," personal
communication, 1971.

213

[Gray 72] Gray, J.G., Lampson, B.W., Lindsay, B.G., and Sturgis, H.E.,
"The Control Structure of an Operating System," IBM Research
Report RC3949, July 1972.

[Hoare 73] Hoare, C.A.R. and Wirth, N., "An Axiomatic Definition of the
Programming Language PASCAL," Acta Informatica, Y.Ql • .2.., pp.
335-355 (1973).

[Horning 74] Horning, J.J., Randell, B. et ..a.l, "A Program Structure
for Error Detection and Recovery," International Symposium .Qn
Operating Systems, Colloques IRIA, April 1974, Roquencourt,
France, pp. 177-193,

[HYDRA 74] Cohen, Ellis (ed.), ~._al., "Hydra User's Manual
(Preliminary Version)", Dept. Computer Science, Carnegie
Mellon University, November 1974.

[IBM 370] ..lll..M System/31.Q. Principles Qf Operation, IBM System Reference
Library, GA22-7000-4, Poughkeepsie, 1974.

[Janson 74] Janson, Philippe A., "Removing the Dynamic Linker from the
Security Kernel of a Computing Utility," MS Thesis, Project
MAC TR-132, Massachusetts Institute of Technology, Cambridge,
Mass., 1974.

[Jones 73] Jones, Anita K., "Protection in Programmed Systems," Ph.D.
Thesis, Carnegie-Mellon University, Pittsburgh, Pa., June
1973.

[Knuth 68] Knuth, Donald E., The .AI:i Qf Computer Programming, Volume .1
I Fundamental Algorithms, Addison-Wesley, Menlo Park, Calif.,
1968.

[Lampson 69] Lampson, B.W., "On Reliable and Extendable Operating
Systems," .N.Al'Q Science Committee Workshop Material, Vol. ll,
Rome (October 1969) (reprinted in State Qf ~ .AI:i Report .1,
Infotech Ltd., Maidenhead, Berks, England, 1971).

[Lampson 71] Lampson, B.W., "Protection," Proceeding Fifth Annual
Princeton Conference .on. Information Sciences .ans1 Protection
Systems, Princeton, N.J., March 1971, pp.437-443 (reprinted in
A.CM Operating Systems Review, !.o.llt, No. 1 (January 1974),
pp. 18-24).

[Lampson 74] Lampson, B.W., "Redundancy and Robustness in Memory
Protection," Proceeding IFIP .1.91.!!., North Holland, Amsterdam,
1974, pp. 128-132.

[Lampson 74b] Lampson, B.W., Mitchell, J.G., and Satterthwaite, E.H.,
"On the Transfer of Control Between Contexts," Lecture Notes
.on Computer Science .19., Springer-Verlag, Berlin, 1974.

References 214

[Lampson 76] Lampson, Butler W. and Sturgis, Howard E., "Reflections on
an Operating System Design," Communications Qf the ACM, Vol.
13., No. 5 (May 1976), pp. 251-265.

[Lauer 74] Lauer, H.C., "Protection and Hierarchical Addressing
Structures," llilA. International Workshop QD. Protection .in
Operating Systems, Rocquencourt, France, August 1977, pp.
137-148.

[Levin 75] Levin, R. fil .al, "Policy/Mechanism Separation in Hydra,"
Proceedings Fifth Symposium M Operating Systems Principles,
Austin, Texas, November 1975 (reprinted in AQ1 Operating
Systems Review, 1.Ql • ..9.., No. 5 (Special Issue 1975), pp. 132-
140).

[Levin 77] Levin, Roy, "Protection Structures for Exceptional Condition
Handling," Ph.D. Thesis, Carnegie-Mellon University,
Pittsburgh, Pa., June 1977.

[Lindsay 73] Lindsay, Bruce G., "Suggestions for an Extensible
Capability-Based Machine Architecture," International Workshop
.o.n Computer Architecture, Grenoble, France, June 1973.

[Liskov 74] Liskov, Barbera and Zilles, Stephen, "Programming with
Abstract Data Types," AQ:1 SIGPLAN Notices, Y.Q.l • ..9.., No. 4
(April 1974), pp. 50-60.

[Liskov 76] Liskov, Barbera, "Exception Handling," CLU Design Note 60,
Laboratory for Computer Science, Massachusetts Institute of
Technology, Cambridge, Mass., August 1976.

[Lynch 74] Lynch, H.W., and Page, J.B., "The OS/VS2 Release 2 System
Resources Manager," 1fil1 Systems Journal, Vol. 13., No. 4
(1974), pp. 274-291.

[McJones 73] McJones, Paul, "CRMS APL Processor Reference Manual,"
Center for Research in Management Science, University of
California, Berkeley, Calif., February 1973.

[Melliar-Smith 77] Melliar-Smith, P.H. and Randell, B., "Software
Reliability: The Role of Programmed Exception Handling,"
Proceedings Qf .an .AQ1 Conference ..Qil Language Design fQ.C.
Reliable Software, Raleigh, North Carolina, March 1977, pp.
95-100 (reprinted in~ SIGPLAN Notices, Vol • .12., No. 3
(March 1977), and in AQ1 Operating Systems Review, 1.Ql . .11,
No. 2 (April 1977), and in ACM Software Engineering Notes,
.Y.Ql • .2., No. 2 (March 1977)).

[Miller 73] Miller, Lance A., "Harlan Mills on "The Psychology of
Quality," IBM Research Report RC 3779, May 1973.

[Morris 73] Morris, J.H.Jr., "Protection in Programming Languages,"
Communications ..o.f ~ ..A£M, Vol. l.Q., No. 1 (January 1973), pp.
15-21.

References 215

[MPM 75] Multics Programmer'..§. Manual - Reference Guide, Section VII,
Honeywell Information Systems Inc., 1975.

[Needham 71] Needham, Roger M., "Handling Difficult Faults in Operating
Systems," Proceedings Third Symposium on Operating Systems
Principles, Stanford University, October 1971, pp. 55-57.

[Needham 72] Needham, R.M., "Protection Systems and Protection
Implementations," AFIPS Conference Proceedings ..!:U_, Vol • .1,
1972, pp.572-578.

[Noble 68] Noble, J.M., "The Control of Exceptional Conditions in PL/I
Object Programs," Proceedings lI..lf. rn, North Holland,
Amsterdam, 1968, pp. C78-C83.

[Organick 71] Organick, E.I. and Cleary, J.G., "A Data Structure Model
of the B6700 Computer System," SIGPLAN Notices, Y9.l . .Q., No. 2
(February 1971), pp. 83-145.

[Organick 72] Organick, Elloitt I., .1h.e. Multics System: An Examination
.of I!& Structure, MIT Press, Cambridge, Mass., 1972.

[OS/VS2 75] .Q.S./~ Supervisor Services and Macro Instructions, IBM
Systems Reference Library, GC28-0683-1, Poughkeepsie, 1975.

[Panzl 76] Panzl, David J., "Test Procedures: A New Approach to
Software Validation," Proceedings 2nd International Conference
Qf Software Engineering, San Francisco, Calif., October 1976,
pp. 477-485.

[Parnas 72] Parnas, D.L., "A Technique for Software Module
Specification with Examples," Communications .of~ .AQ1, Vol .
.15., No. 5, (May 1972), pp. 330-336.

[Parnas 76] Parnas, D.L. and Wurges, H., "Response to Undesired Events
in Software Systems," Proceedings 2nd International Conference
.Q.Il. Software Engineering, (October 1976), pp. 437-446.

[PL/I 74] .QS. £1./.l Checkout~ Optimizing Compilers: Language
Reference Manual, IBM Program Product Library, GC33-0009-3,
White Plains, 1974.

[Popek 74] Popek, Gerald J. and Goldberg, Robert p., "Formal
Requirements for Virtualizable Third Generation
Architectures," Communications .Qf ~ ACM, .Y.Ql • .ll, .YQ.l • .ll,
No. 7 (July 1974), pp. 412-421.

[Randell 71] Randell, B., "Operating Systems: the Problems of
Performance and Reliability," Proceedings l..E.li: .191.1, North
Holland, Amsterdam, 1971, pp. 1100-1109.

References

[Redell 74] Redell, David D., "Naming and Protection in Extendible
Operating Systems," Ph.D. Thesis, University of California,
Berkeley, 1974 (reprinted as Project MAC TR-140,
Massechussetts Institute of Technology, Cambridge, Mass.,
November 1974).

[Ritchie 74] Ritchie, D.M. and Thompson, K., "The UNIX Time-Sharing
System," Communications Qf .tM. ACM, No. 7 (July 1974), pp.
365-375.

216

[Robinson 75] Robinson, L. fil ~' "On Attaining Reliable Software for
a Secure Operating System," International Conference Qil
Reliable Software, April 1975 (reprinted in A.CM SIGPLAN
Notices, Vol. J.Q., No. 6 (June 1975), pp. 267-284).

[Ross 67] Ross, D.T., "The AED Free Storage Package," Communications Qf
~ .AQ1, YQl . .lQ., No. 8 (August 1967), pp. 481-492.

[Rotenberg 74] Rotenberg, L.J., "Making Computers Keep Secrets," Ph.D.
Thesis, Project MAC TR-115, Massachussetts Institute of
Technology, Cambridge, Mass., February 1974.

[Saltzer 75] Saltzer, J.H. and Schroeder, M.D., "The Protection of
Information in Computer Systems," Proceedings of .illE., Vol.
.QJ., No. 9 (September 1975), pp. 1278-1308.

[Schroeder 72] Schroeder, Michael D., "Cooperation of Mutually
Suspicious Subsystems," Ph.D. Thesis, Project MAC TR-104,
Massachusetts Institute of Technology, Cambridge, Mass.,
September 1972.

[Shils 68] Shils, A.J., "The Load Leveler," IBM Research Report RC2233,
October 1968.

[Simon 68] Simon, Herbert A., "The Architecture of Complexity,"
(reprinted in Simon, Herbert A.,~ Sciences Qf. .tM.
Artificial, MIT-Press, Cambridge, Mass., 1968.

(Spier 73 J Spier, M. J. , fil· al., "An Experimental Implementation of the
Kernal I Domain Architecture," Proceedings Fourth Symposium Q!1

Operating Systems Principles, Yorktown Heights, N.Y., October
1973 (reprinted in A.CM Operating Systems Review, Y.Ql. 1., No. 4
(October 1973), pp.8-23).

[Sturgis 73] Sturgis, H.E., "A Postmortem for a Time Sharing System,"
Ph.D. Thesis, University of California, Berkeley, Calif., 1973
(reprinted as Xerox PARC Technical Report TR 74-1 ,1974).

(Thomas 75] Thomas, R.H., "JSYS Traps -- A TENEX Mechanism for
Encapsulation of User Processes," Proceedings NCC J.ill., AFIPS
Press, Montvale, New Jersey, 1975, pp. 351-360.

[Thompson 74] Thompson, K. and Ritchie, D.M., .!lN.IX. Programmers Manual,
fifth edition, June 1974.

References 217

[VM 74] .llll:1 Virtual Machine Facility I .31Q: Introduction, Idm Systems
Reference Library, GC20-1800, Poughkeepsie, 1974.

[Walker 73] Walker, R.D.H., "The Structure of a Well-Protected
Computer," Ph.D. Thesis, University of Cambridge, Cambridge,
England, December 1973.

[Wasserman 77] Wasserman, Anthony I., "Procedure-Oriented Exception­
Handling," University of California at San Francisco,
Laboratory of Medical Information Science Report, 1977.

[Wegbreit 74] Wegbreit, Ben, "The Treatment of Data Types in EL1,"
Communications Qf. .th§. A.CM., Vol . ..11, No. 5 (May 1974), pp.
251-264.

[Weinberg 71] Weingerg, Gerald, The Psychology Qf. Computer Programming,
Van Nostrand Reinhold Co., Computer Science Series, New York,
1971.

[Wulf 73] Wulf, W. and Shaw, M., "Global Variable Considered Harmful,"
A.CM. AIGPLAN Notices, Vol.~' No. 2 (February 1973), pp. 28-34.

[Wulf 74] Wulf, W. , fil·il·, "HYDRA: the Kernel of a Multiprocessing
Operating System," Communications Qf. the A.QM, Vol. ..11, No. 6
(June 1974), pp. 337-345.

[Wulf 76] Wulf, William A., London, Ralph, and Shaw, Mary, "Abstraction
and Verification in ALPHARD: Introduction to Language and
Methodology," Carnegie-Mellon TR, June 1976.

[Zilles 74] Zilles, Steve N., "Working Notes on Error Handling," CLU
Design Note 6, Project MAC, MIT, Mass., Cambridge, January
1974.

