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NAMING AND PROTECTION IN EXTENDIBLE OPERATING SYSTEMS 

David Day Redell 

Abstract 

The properties of capability-based extendible operating systems 

are described, and various aspects of such systems are discussed, 

with emphasis on the conflict between free distribution of access 

privileges and later revocation of those privileges. The discussion 

culminates in a set of goals for a new capability scheme. 

A new <Jc.sign is then proposed, which provides both type exten

sion and revocation through the definition of generalized sealing 

of capabilities. The implementation of this design is discussed 

in sufficient detail to demonstrate that it would be workable and 

acceptably economical. 

The utility of the proposed capability mechanism is demon

strated by describing two facilities implementable in terms of it. 

These are: (a) revocable parameters for calls between mutually 

suspicious subsystems, and (b) directories providing a civilized 

medium for the storage and distribution of revocable capabilities. 
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1.1 Overview 

1 

Chapter 1 

Introduction 

Computers have been with us now for just over a quarter of a 

century. Although their ultimate potential impact on society is 

still hard to predict, it seems safe to say that they will rank 

with such transforming inventions as the printing press and tele

vision in their effect not only on the way we live, but also on 

the way we think. Already their role has Hhifted from that of 

simply high speed calculating tools to a more fundamental function 

as the natural repository for an increasing amount of society's 

body of information. The near future should see the development 

of computer utilities bringing reliable and economical computer 

access to the general public, in the form of services of unpre

cedented scope and power [Fr 74]. 

These new roles of computers raise many serious social ques

tions which are far from being answered [Ro 74, DF 65, HEW 73]. 

Moreover, even if these questions are satisfactorily answered, the 

resulting policies will require an appropriate technological frame

work within which they can be expressed and enforced [Po 74, Pe 74]. 

Thus, such social and legal issues as privacy, secrecy, confiden

tiality, and accountability generate a technological problem which 

could be called the "total system security problem." 

The main subject of this thesis is protection. Protection is 

that aspect of the total system security problem which deals with 

the control of access by programs running within a computer system 
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to information stored within the system [La 71, Jo 73). It is thus 

concerned with prevention of undesired accesses, whether accidental 

or malicious. Protection is intimately involved with the naming 

mechanisms used by programs to specify which items of information 

they wish to access. We will discuss system designs which provide 

both naming and protection in a single integrated mechanism [DVH 66, 

Fa 74). We also emphasize the notion of freely distributable 

access privileges, in the sense that any possessor of a privilege 

may pass it on as he sees fit [La 69). On the other hand, we recog

nize the importance of allowing later revocation of such privileges. 

The main result of the thesis is the description of a naming and 

protection mechanism allowing both free distribution of privileges 

and subsequent revocation in an orderly way. 

Another desirable characteristic of naming and protection 

mechanisms is extendibility [La 69b, Wu 74). This property allows 

the construction of the system in layers or "levels of abstraction" 

[Di 68b], thus increasing reliability and allowing user-written 

extensions to augment the system with new services in a uniform 

way. The extendibility of the proposed mechanisms will be discussed 

in some detail. 

1. 2 Protection 

The protection problem is only one aspect of the total system 

security problem. Thus, in discussing the protection problem, it 

is important to delimit the scope of the discussion by distinguish

ing several other closely related problems, including: 
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a) Hardware reliability 

b) Physical security 

c) User authentication 

d) Personnel certification 

All of the above problems exhibit two rather unfortunate properties: 

1) They do not admit of complete solutions, but only of solu-

ions quantitatively comparable in terms of cost-effective 

prevention of trouble (e.g. high penetration cost, long 

mean-time-between-failures, etc.) 

2) The failure of a solution to any one of them can under-

mine the entire protection system. 

On the other hand, if we hypothesize a situation in which problems 

(a) through (d) have been completely solved, we can consider the 

protection problem as occurring in a self-contained artificial 

universe, free of such real-world distractions as locks which can 

be picked and circuits which can burn out. Within this idealized 

framework, the protection problem does admit of complete solutions· 

in many important situations [La 74]. This is not to say, of 

course, that all solutions constructed within such a framework 

are automatically complete. For example, one can protect data by 

requiring accessing programs to provide a password or key authorizing 

the access [La 69]. Internal passwords, like external passwords, 

are vulnerable to guessing, and are thus not a complete solution. 

On the other hand, one can implement internal keys which are 

unforgeable, opening locks which are unpickable, thus providing 

a complete solution to the problem. The significance of this lies 

not primarily in the reduction of the probability of failure (from 

, 
) 
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negligible to zero) but in the conceptual shift in how one views 

the mechanism (with absolute confidence, rather than quantitative 

optimism). 

It can be argued that the above viewpoint is unrealistic, 

since problems (a) through (d) do not admit of complete solutions 

as hypothesized. The point, however, is that this factorization 

of the total security problem allows one to take a very rigorous 

approach to the situation in which malicious intent manifests 

itself in the behavior of high speed internal computations. This 

is precisely the situation in which our intuitions are least likely 

to prove reliable in assessing the quantitative adequacy of incom

plete solutions. 

1.3 Framework for Discussion 

For our purposes, we can regard the function of the operating 

system as being the transformation of the basic hardware resources 

of the computer into a universe of abstract resources or objects, 

and a set of operations for manipulating those objects. This point 

of view is often referred to as the object-oriented approach, and 

the collection of operations as the abstract machine. Each object 

has an attribute called its~. which determines the set of 

operations which can meaningfully be applied to the object. Various 

types of objects are provided, most notably processes. Processes 

are the active entities in the system, capturing the intuitive. 

notion of a "locus of control" or "execution point." Processes 

can attempt to access other objects in the system by performing 
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various operations on them, and it is these accesses which are 

checked and allowed or disallowed by the protection mechanisms of 

the system. At any given time, a process has some set of privileges, 

specifying which operations it may perform on which objects. This 

set of privileges is called the domain in which the process is 

executing. The privileges available to a process can change as a 

result of either: 

a) addition or removal of privileges in its domain of 

execution, or 

b) switching to a different domain of execution. 

Thus, domains themselves have an independent existence and are 

objects in. their own right. (The reasons for taking this point of 

view will become clear in Chapter 2.) A domain can be characterized 

as a passive object, serving to control the execution of an active 

process. It will often be convenient, however, to refer to the 

actions of a process executing in a domain as being performed by 

the domain itself, and we will use this active characterization 

when there is no danger of ambiguity. 

The domain model is general enough to describe most protection 

schemes found in existing systems [La 71]. We are interested in 

a particular class of such schemes in which a domain consists of 

a set of capabilities [DVH 66, La 69, Fa 74]. A capability serves 

both as the name of an object and as a set of privileges to access 

that object. Thus, in a capability system, a domain is able to 

name only those objects to which it has access via its capabilities. 

Those capabilities are stored in the memory of the domain, which 

w,· wi 11 :1:-Hmmc• com;lsts of a number of segments [De 65, BCD 72], 
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each of which comprises a variable length array of addressable 

items. A domain may copy its capabilities and distribute them as 

it sees fit, although it may not, of course, make arbitrary modi

fications to them. Thus, capabilities are like data "sealed in a 

box," a characterization which we will pursue in some detail later. 

1.4 The Computer Utility 

The mechanisms discussed in this thesis would be useful in 

any computer system. The context which maximizes their importance, 

however, is that of the computer utility. The notion of a computer 

utility has received considerable attention in the literature [CV 65, 

Sa 66, Sc 72, Fr 74] and seems likely to play an increasingly 

important role in the future. In such a utility, a large user 

community shares an appropriately large information storage and 

processing facility in much the same manner that the users of elec

trical and telephone utilities share the corresponding power genera

tion and communication facilities. Such physical sharing (i.e., 

sharing of physical resources) provided the original motive for 

developing multi-user computer systems. That motive was the desire 

to lower the cost of hardware resources through economies of scale 

and statistical smoothing of load fluctuations. This is gradually 

being rendered less important by the continual decline in hardware 

costs. A much more fundamental motive remains, however, which is 

in itself more than adequate justification for building a computer 

utility. This is the desire for flexible logical sharing (sharing 

of information) between users, so that they may build upon each 
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other's work [Sa 66, De 68]. 

Since the user community of a computer utility consists of the 

public at large, the logical sharing within that community takes 

on more the character of transactions in a marketplace than of 

informal friendly cooperation [Fr 74]. In particular: 

a) 

b) 

Sharing is often financially motivated. 

The parties involved may not trust each other. 

.,·;' 

Point (a) implies that sharing often represents sale or rental of 

the shared objects. The rental case is a strong test of the pro

tection and accounting mechanism of the computer utility. This is 

particularly true in the case of subletting, in which access to a 

rented object passes through several hands before reaching the end 

user. Point (b), which is in part a result of (a), reflects the 

fact that the standard attitude of the parties involved in a trans

action in any market place is usually some degree of mutual suspi

cion. Since programs in the system serve as the agents of users 

on the outside, the programs themselves also exhibit mutual suspi

cion. More detailed discussion and examples of mutual suspicion 

can be found in Lampson [La 69] and Schroeder [Sc 72]. 

One aspect of the mutual suspicion problem which can be awk

ward to handle is the fact that the degree of suspicion between two 

users may change with time. For example, an employee may join or 

leave a company, or a renter may be late in paying his bill. Thus, 

it is important that the privileges of a given user or program to 

access a given object be able to change with time. Moreover, it 

is very desirable that these adjustments of privileges be as pain

ll•:-H; nH pnHH lb le. We will address this issue at some length, 
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particularly in the case of increasing suspicion where previously 

granted privileges are to be revoked. 

1.5 Extendibility 

The construction of a large operating system is a formidable 

task. As the richness of the user environment provided is increased, 

so also is the size and complexity of the system which provides it. 

In fact, unless controlled by a suitable design methodology, the 

complexity of a large operating system may preclude its ever being 

completely debugged. One of the most promising such methodologies 

is that of layering, in which the system is constructed as a base

level* and a series of extensions. Each layer extends the environ

ment in which it runs, thus presenting a richer environment for 

higher layers. The key assumption in such a system is that no layer 

has embedded in it any knowledge of the functioning of higher 

layers. This, combined with the obvious precaution of protecting 

lower layers from irterference by higher layers, yields a structure 

in which changes to and malfunctions of higher layers cannot affect 

the correct functioning of lower layers in any way. 

The construction of a layered system can be viewed in two ways. 

From a top-down point of view, the task is one of appropriately 

dividing the desired set of functions into a sequence of layers. 

From a bottom-up point of view, the task is to transform some pre

existing system into a more complete environment by adding useful 

new features. The latter point of view is most appropriate in the 

* Sometimes called the "kernel" [Wu 74] or "nucleus" [Ha 70]. 
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case of user-written extensions, although to a large extent, the 

exact distinction between system programs and user programs becomes 

unimportant in a layered design. 

Given the object-oriented point of view discussed above, the 

appropriate way to view extensions is as defining new types of 

objects and providing the appropriate operations on them. This 

immediately raises the question of how such objects are named and 

how access to them is controlled. It is IIPSt desirable for the base

level naming and protection mechanisms to provide these functions 

for all higher level objects in the system. We will describe 

various~ extension features which allow this. 

1.6 Thesis Plan 

Since the mechanisms described in this thesis represent fur

ther developments of ideas found in several existing or proposed 

computer systems, it is appropriate to summarize those ideas. 

Therefore, Chapter 2 begins by describing a hypothetical system 

exemplifying the relevant features of those systems, and goes on 

to discuss the use of those features in various situations, placing 

special emphasis on revocation of privileges and on type extension. 

The chapter concludes with a list of goals derived from these 

discussions. 

The central portion of the thesis is Chapter 3, which proposes 

a new system design satisfying the goals derived in Chapter 2, and 

discusses the implementation of that design in some detail. Some 

possihilities for further elaboration of the design are also 
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discussed briefly. 

Chapter 4 examines the use of the mechanisms.of Chapter 3 in 

providing two facilities helpful in counnon situations: revocable 

parameters for mutually suspicious subsystem calls, and directories, 

for storage and distribution of capabilities. 

Finally, Chapter 5 suunnarizes the results of the thesis and 

briefly evaluates their significance. 
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Chapter 2 

A Typical Capability System 

2.1 A Typical Capability System 

The central goal of this thesis is the detailed specification 

of a proposed behavior for capabilities, and the description of an 

efficient implementation of capabilities exhibiting such behavior. 

The main aspects of capability behavior to be examined are the 

distribution and revocation of privileges, and type extension. To 

bring the issues into focus, we sketch a hypothetical system called 

"TCS" (for "Typical Capability System") to serve as a context for 

discussion and as a starting point from which various improvements 

can be explored. This typical system as described below is not 

identical to any existing or proposed system but contains features 

found in many previous systems, including CAL-TSS [La 69, St 73], 

Magnum [Fa 68], Plessy 250 [En 72, Co 72], HYDRA [Jo 73, Wu 74], 

Project SUE [Gr 71], BCC 500 [La 69], and Multics [BCD 72, CV 65, 

Sa 74]. 

In the definition of TCS, two conflicting considerations 

influence the level of detail at which the various features should 

be described. On the one hand, it is important that the definition 

be specific enough to make subsequent discussions clear and unam

biguous. On the other hand, the inclusion of extraneous detail 

would not only cloud the issue, but might also falsely appear to 

restrict the class of systems to which our subsequent improvements 

are applicable. 

For these reasons, the definition that follows tends to pin 



12 

down only those details which are relevant to the later discussion. 

In other cases, several alternatives may be sketched, or the fine 

points may be glossed over entirely when not sufficiently 

interesting. 

In defining TCS, a logical place to begin is with the capa-

bilities themselves. As stated previously, a capability serves 

both as the name of an object and as a package of privileges allow-

ing the object to be accessed in various ways. It is also desirable 

to distinguish between objects of different types; in TCS this 

distinction is carried in the capability, rather than in the object 

itself, for reasons which will become clear during the discussion 

of type extension. Thus, a capability for an object contains: 

a) the unique identifier or "ID" of the object~ 

b) the~ of the object, 

c) a set of privileges to access the object. 

Each domain in TCS has its own segmented address space. (As 

pointed out by Fabry [Fa 74], freely copyable capabilities elimi-

nate the need for communicating domains to share a common address 

space.) The capabilities possessed by a given domain are stored 

within the segments of its address space. At the same time, those 

capabilities serve as the skeleton which defines and structures 

that address space. (It is worth emphasizing that an address space 

defined by freely copyable capabilities tends to be a much more 

fluid structure than a more conventional address space defined by 

system data structures.) Associated with each domain is a single 

* The object ID has sometimes been referred to as the "unique name" 
or "global name" of the object. We wish to avoid this terminology 
to emphasize the fact that it is the capability itself which 
should be thought of as the global name of the object. 
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implicit segment, which serves as the "root" of its address space.* 

A capability for the implicit segment is part of the definition of 

the domain. All other segments (or objects of other types) are 

addressed via capabilities in this implicit segment. There is no 

fundamental reason, however, to restrict capabilities to appear 

only in this implicit segment; in fact, it will be assumed here 

that capabilities and "normal" data can be freely intermixed in 

any segment. (Ways of implementing this without compromising the 

integrity of the capabilities will be discussed later.) 

Outside the context of any particular address space, we can 

define the absolute address of an item (capability or datum) to be 

a pair <C,d>, where C is a capability (for a segment) and d 

is a displacement (word, byte, or bit number). Let (C,d) denote 

the contents of address <C,d>. Then if CI is a capability for 

some domain's implicit segment, a simple address w issued by 

that domain corresponds to the absolute address <CI,w> (i.e., 

word w of the implicit segment). Similarly, the standard notion 

of the two part address slw of word w in segment s is equi-

valent to <(CI,s),w>. When capabilities can be stored anywhere 

in the address space, addresses involving them can become more com-

plicated, such as slw1 !w2 = <((CI,s),w1)w2> (where both <CI,s> 

and <(CI,s),w1> must contain segment capabilities). This suggests 

the provision of direct hardware implementation of these multi-

level addresses and/or programmable capability registers to hold 

* This is similar to the Multics descriptor segment [BCD 72] or the 
CAL-TSS working C-list [St 73]. In the MAGNUM [Fa 68] and 
Plessy 250 [En 72] machines, it is effectively implemented in hard
ware in the form of several capability registers. Lampson [La 74] 
refers to the implicit segment as the "access point" of the domain. 
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intermediate capabilities during the evaluation of such addresses. 

Lacking these features, a domain could directly utilize only 

capabilities in its implicit segment; all other capabilities would 

have to be copied into the implicit segment before use. Various 

forms of multi-level addressing have been provided in existing 

systems [Ha 72, St 73, Ne 72, Wu 74]. 

Figure 2.1-1 depicts two domains D1 and D2 , whose implicit 

segments are s1 and s2 respectively. The address space of D1 

includes segments s1 , s3 , s4 and SS. The address space of D2 

< includes s2 , s1 , SS' s6 , and s7 • Note that s1 and SS are 

shared by both domains, and that the address space of o2 may in 

fact include (indirectly) the entire address space of D1 , depend

ing upon the privileges in o2•s capability for s1 • 

As mentioned in Chapter 1, domains can be characterized as 

either active or passive objects. In its passive role as a collec-

tion of privileges, a domain in our typical capability system is 

identical to its implicit segment; from this point of view, the 

distinction between a domain and a segment is simply a question of 

emphasis. On the other hand, in its active role as an exerciser 

of privileges, a domain is sure to require additional information 

in its representation, relating to control structures, error handling, 

entry points and so on, which we will call its domain-descriptor. 

While the exact details of this extra information are not relevant 

to the current discussion, it will sometimes be useful to distin-

guish between the domain in this larger sense, and its implicit 

segment. 
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Figure 2.1-1: An example of two domains 
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The active characterization of domains is somewhat imprecise, 

since, strictly speaking, nothing is ever done by a domain but 

always by a process executing in or associated with the domain. 

This raises the issue of the exact relationship between domains and 

* processes. Since protection and scheduling are essentially inde-

pendent functions, it is tempting to define domains and processes 

independently, and to allow processes (at least potentially) com-

plete freedom to choose their domain of execution. This implies 

that 

a) A given process may execute in various domains at 

different times. 

b) A given domain may have zero, one, or several processes 

executing in it at any given time. 

In such a scheme, two types of communication mechanisms are required. 

One is interprocess communication, which allows two parallel pro-

cesses, in the same or different domains, to synchronize their 

execution and exchange messages. The other is interdomain 

communication, which occurs at the point in time when a process 

crosses from one domain into another. This is generally viewed as 

being much like a procedure call/return sequence, including the 

passing of parameters, and is thus referred to as a domain-call. 

This will be discussed in more detail later. 

In actual systems, one or both of two simplifying restrictions 

is often imposed. The first restriction is to force a given process 

to always execute in the same domain. This eliminates the rather 

complex machinery needed for domain-calls, and forces all 

* Called "environment binding" by Jones [Jo 73). 
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inter-domain communication to be cast as inter-process communication. 

While this is clearly a simplification of the base-level system, 

in practice it often forces higher level software to essentially 

simulate domain-calls using multiple processes, only one of which 

is active at any given time. This is not only inefficient, but can 1 

also be surprisingly clumsy, considering that parallel processes 

seem to be such a powerful construct. Indeed, the unused potential 

parallelism seems to cause much of the clumsiness. 

The other restriction which is often applied is to allow only 

one process at a time to execute in a given domain. This can be 

done dynamically, treating the domain as a "critical section," but 

is more often done statically, by associating each domain with a 

single process, and allowing only that process to execute in it. 

One reason for making this restriction is the previously mentioned 

correspondence between domains and address spaces. As pointed out 

by Lampson [La 69] this tends to result in address conflicts between 

multiple processes executing in the same domain. One way to avoid 

these conflicts is to equip each process with special base registers, 

or a pushdown stack for working storage, but what such mechanisms 

really provide is simply the ability for each of the processes 

executing in a given domain to see the domain somewhat differently, 

in a rather stylized way. A more straightforward and flexible 

approach is to actually provide a different "copy" of the domain 

for each process, and to use the standard sharing mechanisms to 

avoid redundant storage of the identical components of these domains, 
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* (e.g. pure procedures, unchanging capabilities, etc.). In such a 

scheme, each process has a private set of domains, and moves among 

them using the domain-call mechanism. Such a scheme will be assumed 

in subsequent discussions of TCS, although this is not essential 

to the proper functioning of the improved capability mechanisms 

proposed later. 

Given that a domain possesses some capability, it is allowed 

not only to use the capability to access the indicated object, but 

also to manipulate the capability itself in certain carefully 

constrained ways, including: 

a) Copying: the capability may be freely copied at any time, 

here denoted by a simple assignment 

b) Reducing privileges: the privileges in the capability 

may be reduced, here denoted by 

where P 

reduce(C ,P) 
a 

is a mask indicating the subset of 

previous privileges which are. to be retained. 

C's 
a 

In some systems [St 73] these two operations have been combined; 

here, they are presented separately to ease the later transition 

to an improved scheme. 

* 
One use of the mechanisms described so far would be the 

We will assume that a domain is created by an explicit create-
domain operation, and remains in existence until destroyed [St 73]. 
A more complicated approach provides the automatic creation of a 
domain whenever a call is directed to a global domain-prototype 
object [Wu 74]. 
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passing of capabilities between domains via shared segments. In 

one sense, this is a very powerful feature, since it allows any 

possessor of a privilege to pass it on without requiring any sort 

of approval by the original donor of that privilege (except in the 

special case in which the donor is empowered to disallow all such 

sharing; .e.g. in the case of a "confined" subsystem [La 73]). In 

't 
·'· - .__; 

--~~ v 

another sense, however, this feature is very weak, since it pro-

vides only a relatively costly, clumsy and unstructured method of 

inter-domain communication. This weakness would be particularly 

evident in the case of mistrust between domains (e.g. "mutually 

suspicious" subsystems). Both of these considerations suggest that 

the domain-call mechanism should provide for the passing of capa- ,,, 
.., 

-
bilities, as well as data, as parameters. The latter consideration ... s: 

v1 

suggests the utility of such a feature, while the former shows 

that the ability to keep a domain from giving away its privileges 

is already eliminated by freely copyable capabilities and is not 

further compromised by allowing the passing of capabilities as 

parameters. 

We assume that TCS allows the passing of capability parameters 

and implements this by copying the indicated capabilities from the 

calling domain (or caller) to the called domain (or callee) at the 

time of the call, and copying back any result capabilities at the 

time of the return. A domain-call thus takes the form 

' . '. 

where the Pi are parameters (data or capabilities) and CG is 
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a gate capability for the callee, allowing activation at a particular 

entry point. Similarly, a domain-return takes the form 

where the Ri are the results and the return gate is implicitly 

the site of the original call. We leave unspecified here such 

details as static vs. dynamic allocation of space for capability 

parameters in the receiver's address space, automatic type checking 

of capability parameters, and so on. 

In addition to making unwanted accesses to objects, domains 

can misbehave by making unreasonable demands on the resources of the 

system [La 71]. Some mechanism must be provided to prevent them 

from interfering with each other in this manner. Since the details 

of accounting and resource allocation are beyond the scope of this 

thesis, we will simply assume that each domain is funded by an 

account, which limits its resource consumption. 

One particularly tricky problem which occurs in capability 

systems is the "lost object problem," which arises when all capa

bilities for a given object are inadvertantly discarded, making 

explicit destruction of the object impossible, and the space occu

pied thus unrecoverable. Given our attitude about accounting, this 

is really an opportunity for self-inflicted harm, rather than mali

cious sabotage. Nevertheless, recovery from such situations must 

be possible, hence several possible solutions to the lost object 

problem will be discussed at appropriate points. 

-
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2.2 Implementation of Capabilities in TCS 

In this section we discuss, in a fair amount of detail, cer-

tain aspects of the implementation of a system like TCS. Three 

considerations influence the choice of the particular mechanisms 

described in this section. For one thing, various systems similar 

to TCS have been constructed, and their implementations, although 

varying in many ways, have shown some conunon features whose advan

tages have become generally accepted. In addition, certain facilities 

not included in any existing capability system are widely regarded 

as desirable, hence their implementation implications are of interest. 

Finally, discussion of implementation of TCS is intended to set 

the stage for the corresponding discussion in Chapter 3 concerning 

the implementation of a more sophisticated capability scheme. 

The most obvious necessity in implementing a capability system 

is some mechanism to protect the representations of the capabilities 

themselves from unauthorized alteration. The proper functioning 

of the entire system is based upon the integrity of capabilities, 

hence this mechanism should be simple, to maximize not only its 

reliability, but also its understandability, and thus inspire user 

confidence. Two mechanisms have been proposed, which we will call 

"partitioned memory" and "tagged memory." 

All capability systems which have actually been constructed 

have used partitioned memory. As its name suggests, this scheme 

involves partitioning the segments in the system into two classes: 

capability segments which contain only capabilities, and data seg

ments, which never contain capabilities. One obvious advantage 

of this mechanism is that the cost of distinguishing between 
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capabilities and data is distributed over an entire segment, reduc

ing the overhead per item, but the main advantage of partitioned 

memory is more subtle; it involves the avoidance of certain address

ing complications which arise in the tagged memory approach, as we 

shall see shortly. The main disadvantage of partitioned memory is 

that the artificial division of a user's memory into two parts is 

inconvenient. It is often quite natural for information structures 

(e.g. entries in a table) to contain both data and capabilities. 

While such intermixing can be simulated using a pair of segments, 

this is a fairly clumsy procedure. For this and other reasons, 

discussed in detail by Fabry [Fa 74], we reject partitioned memory, 

as indicated by our specification of TCS as allowing free inter

mixture of capabilities and data in any segment. 

The tagged memory approach allows such intermixture by attach

ing one or more extra "tag" bits to each information item in each 

segment. The term "item" is used here to denote the basic address

ible unit of memory (word, byte, etc.). These tag bits are unmodi

fiable by any software except the most central routine of the base

level system. Each item's tag indicates its status as 'data' or 

'capability.' An item must be tagged as a capability to be used 

as one. An item so tagged can be generated only by copying another 

such item, or by the base-level capability-creation routine. On 

the other hand, a tagged capability can be erased by overwriting 

it, either with data or with another capability. (The system could 

require that capabilities always be explicitly erased before their 

storage is reused. We reject this as too inconvenient for the user, 

-
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although there are cases in which it would make things slightly 

easier for the system.) 

The only production computers which use tagged memory are 

the Burroughs B5000 [Bu 61] and its descendants.* The protected 

items in these machines are "descriptors" rather than capabilities. 

The differences between the two do not concern us here, except for 

one: descriptors are considerably smaller than capabilities. A 

Burroughs descriptor is 48 bits long, while many extendible capa-

bility systems have allowed in excess of 100 bits for each capa-

bility. The impact of this will become clear in a moment. 

While the advantages of tagged memory have been slowly gain-

ing acceptance, another trend which has had even more impact is 

the reduction of the size of the addressable items in memory. 

While machines with items of 36, 48, or even 60 bits were comm.on 

in the past, the byte (8 bit character) is rapidly becoming a 

universal standard, and strong arguments can be made for the ulti-

mate reduction to bit addressable memories. In such schemes, a 

larger unit of information (e.g. a capability) is represented by 

a contiguous sequence of items and named by the address of its 

first item plus its length (implicit or explicit) in items. 

There is a very real conflict between these two features. 

Two problems arise when the representation of a tagged capability 

is a sequence of addressable items in memory. One is the obvious 

increase in cost of associating a tag with each item as the items 

get smaller. The other is the possibility in such a scheme of 

* Various experimental machines have used tagged memory, including 
the Rice computers and Iliffe's BLM. A general discussion of 
tagged memory is given by Feustal [Fe 73]. 
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addressing the middle of a capability. 

If we assume that each item has a one bit tag, we are faced 

with the question of which of the items in a capability should have 

their tags on (i.e., set to 'capability'). If all of their tags 

are on, there is no convenient way for the system to distinguish 

between a valid capability address, and one which points to the 

middle of a capability. The latter case could lead to the recog

nition of the last few items of one capability, together with the 

first few items of an ilillllediately following capability, as con

stituting a valid capability, hence this ambiguity must be avoided. 

One way of doing this is to turn on only the tag of the first item 

in each capability, and require that the first (and only the first) 

item located by a capability address be so tagged. This makes the 

other items in a capability indistinguishable from data, however, 

and leaves them open to alteration unless every store operation 

scans the tags of the appropriate number of preceding items and 

turns them off to insure invalidation of any capability which con

tains the item(s) being modified. 

It is clear, then, that an address pointing into the middle 

of a capability must be distinguished both from a valid capability 

address and from an address of untagged data. This suggests the 

need for two tag bits on each item, one indicating whether the 

item is part of a capability at all, and the other indicating whe

ther it is the first item of a capability. Since the second tag 

is necessary only when the first one is on, it could be "stolen" 

from the bits of the item only when needed (although this obviously 

doesn't work on a bit-addressable memory, since the item would then 
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have no bits left at all!). 

The other problem, the high cost of tagging small items, 

exerts a strong pressure to increase the size of items. Arguments 

in favor of small items generally cite the fact that, for a given 

total bit capacity, address size grows only logarithmically with 

decreasing item size. Unfortunately, the cost of tagging grows 

linearly, reaching a maximum in the bit-addressable case of two 

tag bits per information bit, which is clearly out of the question. 

One alternative tagging scheme which we reject allows small 

items but imposes the restriction that capabilities can only be 

stored at addresses which are an even multiple of the length of a 

capability. In such a scheme, memory is item-addressable for normal 

data, while capability addresses must locate one of the predeter

mined "capability frames." Such restrictions tend to complicate 

the software and sacrifice many of the advantages ,of item

addressability. 

A much more sophisticated scheme, which also involves the 

notion of a capability frame, attempts to exploit the fact that 

the assignment of tag bits to each item is a relatively ineffi

cient encoding of the set of possible data/capability configura

tions in a given region of memory. Even if capabilities can begin 

at any address, the number of different arrangements in a given 

capability frame is not large. At most one capability can begin 

in a frame, and can be preceded by one or more data items and/or 

the trailing items of a capability which began in the previous 

frame. By associating with each frame the integer displacement of 

the capability, if any, beginning in the frame, it is possible to 
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simulate two bit tagging of each item. This is a somewhat compli-

cated approach, but may eventually prove to be the key to bit-

addressable tagged memories, since it allows the cost of tagging, 

like that of addressing, to grow only logarithmically with decreas-

ing item size. This scheme also has the rather intriguing property 

that reducing the size of capabilities does not always increase the 

efficiency of memory utilization. For a given pattern of usage, 

there is an optimum size for capabilities, such that deviation in 

either direction increases the total overhead for capability 

storage.* No existing system uses such a scheme, although it has 

been tentatively investigated by Gray [Gr 73). 

We thus conclude that our implementation of TCS should use one 

of three tagged memory schemes: 

* 

a) Items should be single bits, and the scheme just described 

should be used to simulate two bit tagging. 

b) Items should be a substantial fraction of the size of a 

capability, allowing a two bit tag per item at a reasonable 

cost. 

c) Items should be large enough to hold an entire capability, 

allowing a simple one bit tag per item. 

Assume, for example, a bit addressable memory in which the average 
object is N bits long and is pointed to by k capabilities. 
Then the overhead for capability storage is the fraction of memory 
taken up by tags, plus the fraction holding the capabilities them
selves. As a function of the size c of capabilities, this is 

F (c} = log c + kc 
c+ log c N+kc 

For instance, if N = 105 bits and k = 10, the storage of 64 bit 
capabilities requires about 15% of memory, while reduction to 32 
bits or expansion to 128 bits increases the overhead to about 17%, 
and 16 bit or 256 bit capabilities require about 22%. 

--
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To simplify subsequent discussions, we adopt alternative (c), 

although it would probably not be feasible for TCS as described, 

since capabilities are so large. In Chapter 3, however, we will 

describe a scheme in which capabilities fit into more reasonable 

sized tagged items. 

The second major implementation aspect to be discussed is the 

mechanism for mapping the IDs found in capabilities into physical 

addresses of objects. The most obvious solution would be to simply 

use the physical address as the ID, but that would imply updating 

all the capabilities for an object whenever it was moved or deleted. 

This is impractical due to the proliferation allowed by free copy

ability, especially in a system allowing intermixing of capabilities 

and data in segments. 

Most capability systems have solved this problem by localiz

ing changeable information about objects in a system data structure 

and forcing all access to the object via capabilities to go indi

rectly through this structure, which has been referred to by such 

terms as "Master Object Table" [St 73], "System Capability Table" 

[En 72], and "Global Symbol Table" [Wu 74]. Here, we will refer 

to it as simply "the map." 

There is a one-to-one correspondence between objects and 

entries in the map. An object and its map entry are created and 

destroyed together. Since the capabilities for an object are not 

updated when it is destroyed, it is not satisfactory to use the 

location of an object's entry in the map as its ID, since that 

would prevent re-use of map space freed by object destruction. In, 

fact, the ID of a destroyed object must clearly never be re-used, 
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since capabilities for the old object could then be used to access 

the new one. This suggests that IDs should be quite long, so that 

the space of IDs can never be exhausted, even if objects are created 

and destroyed at the maximum possible rate for the entire life of 

the system. The alternative of occasionally stopping the system 

and compacting the space of IDs is plausible, but less attractive. 

Any generator of a sequence of unique long integers can be the 

source of IDs. A counter of the total number of objects created, 

or a real-time clock of sufficient length and resolution are the 

common examples. In either case, provision must be made for 

restarting the system after a failure without any possibility of 

repeating a previously used ID. 

As a first approximation, we can consider the map translating 

such IDs into physical addresses as being implemented as a large 

hash table in primary memory, keyed on IDs. Figure 2.2-1 shows 

the representation of capabilities and map entries. (The field 

labeled "address" is assumed to contain any extra information 

necessary to distinguish between primary and secondary storage 

addresses. The details are not relevant here.) Each exercise of 

a capability involves: 

1) checking the appropriateness of the action, given the 

type and privileges in the capability (and signalling 

an error otherwise), 

2) hashing into the map to verify the existence of the map 

entry, and hence the corresponding object (and signalling 

an error otherwise), 

--
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type 

capability: privileges 

object ID 

object ID 
map entry: 

address 

Figure 2.2-1: Format of capabilities 
and map entries in TCS 
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3) checking the address in the map entry for the presence 

of the object in primary memory (and signalling an excep

tion otherwise), 

4) using the address to perform the access to the object. 

These steps are simple enough to be implemented in hardware or 

firmware, and would be used heavily enough to justify such imple

mentation. 

As described so far, the mechanism does not deal adequately 

with the two extreme cases of objects which are accessed very fre

quently, and those which are accessed very ipfrequently. Objects 

in the former class, such as segments containing executing programs, 

are so heavily used that hashing into the map in primary memory is 

unlikely to be efficient enough. Thus, it is necessary to hold 

the most active map entries in special hardware. 

In our implementation of TCS, this hardware takes the form of 

a special associative memory, each element of which can hold one 

map entry. The association is on IDs. On each access, the ID in 

the capability is first presented to the associative memory. If 

a matching entry is found, no reference to the map in primary memory 

is made. Otherwise, the standard map reference is done, and the 

result replaces the least active (e.g. least recently used) entry 

in the associative memory, as well as being used to perform the 

access. The effectiveness of similar hardware has been clearly 

demonstrated in existing systems [Sc 71]. 

Whenever an entry in the primary-memory copy of the map is 

updated or deleted, any corresponding entry must be invalidated 

in the associative memory. This can be done by selectively 

.... 
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clearing the matching entry (if any) or by totally flushing the asso

ciative memory. The cost of reloading the entire associative memory 

on each such flush might be acceptable, but the extra complication 

required to do selective clearing is so low that it would undoubtedly 

be the method of choice. Note that total flushing of the associative 

memory is never logically necessary, due to the use of context

independent names as association keys. Similar mechanisms involv

ing association on context-dependent names require total flushing 

each time the context (domain, process, etc.) is switched. Of 

course, the significance of this is entirely dependent upon the 

frequency of such context switching. 

One apparent alternative to.a special associative memory would 

be the provision of a general purpose associative memory or "cache" 

holding the most active items in primary memory, regardless of how 

they are being used. Such a cache would naturally tend to capture 

the most active entries in the map, and thus speed up the standard 

machinery for accessing via the map in primary memory. In spite 

of its appealing simplicity, we reject this scheme for several 

reasons. For one thing, a cache which is large enough to be useful 

for non-map items (e.g. instructions, data) is unlikely to be as 

fast as we can afford to make special hardware which captures only 

active map entries. Placing map entries in the same cache with 

other data also sacrifices any opportunity to access the two in 

parallel. In addition, the cache, by transpara:idy speeding up 

primary memory, in no way bypasses the hashing necessary to locate 

a map entry. This means that entire "collision chains" from the 

map, rather than just active entries, would need to migrate into 
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the cache, and would have to be scanned on each access, thus further 

degrading performance as compared with that of the special purpose 

associative memory. A more general way of stating all of these 

objections is to say that the cache simply makes the memory faster; 

the relative overhead for accessing map entries in memory is thus 

not reduced by the cache. Hence a cache, while valuable for other 

purposes, is not optimal for capturing active map entries. 

Another alternative which has been adopted in some systems 

stems from the observation that active capabilities, as well as 

active map entries, should be held in fast hardware. To this end, 

programmable capability registers can be provided, into which an 

executing program can load capabilities before use [Fa 69, En 72]. 

Moreover, the map entry corresponding to an active capability is 

itself active, suggesting that space be provided in the register 

for the map entry as well. An access via such a "smart" register 

can then proceed directly to the object. Of course, it is still 

necessary to automatically reload any registers holding copies of 

a map entry which is updated, which adds a certain amount of com

plication to the mechanism. Also, the addition of progranunable 

capability registers, whether smart or not, introduces the standard 

problems of register allocation, save/restore sequences, and so 

on, as well as the novel requirement that a calling domain expli

citly erase registers containing capabilities not being passed as 

parameters. Other considerations in the use of capability regis

ters are discussed by Needham [Ne 72]. 

We adopt for our implementation of TCS the associative memory 

approach rather than smart capability registers, although the 
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preference is not a strong one. We assume that the overhead of 

fetching the capabilities themselves from primary memory is suffi

ciently reduced by transparent mechanisms such as a program-counter 

holding the current procedure capability, or hardware implementation 

of all or part of the executing domain's implicit segment. 

The success of the associative memory approach is completely 

dependent upon the observed tendency for only a small number of 

objects to be heavily accessed during any given small interval of 

time (i.e., fraction of a second). On a coarser time scale (i.e., 

minutes), the same kind of behavior is observed in the sense that 

during a given coarse time interval most of the objects in the 

system will not be accessed at all. This suggests that the map 

entries for such objects be kept in secondary memory, and be brought 

into the hash table in primary memory only when needed [Fa 74]. 

Experience with a similar scheme (the "Active Segment Table" [BCD 72]) 

in Multics shows that this approach can be quite successful in 

saving a large amount of primary memory without incurring a signi

ficant speed penalty. 

Another aspect of TCS' implementation to be discussed is para

meter passing during domain calls. This is included mainly as 

background for a more elaborate scheme developed in Chapter 4, 

hence it omits details not relevant to that discussion. Figure 

2.2-2 shows the workings of the domain call instruction. First, 

the return gate must be retained, allowing re-entry into the caller 

at the site of the call. This is saved in a pushdown stack of such 
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call(CG,Pl,P2, •.• ,PN) 
p 

ENTER 

I + 1 

P + get_parameter(I,Caller) 
put_parameter(I,Callee,P) 

I+ I+l 

CG+ get_parameter(O,caller) 

EXIT thru G 

Figure 2.2-2: TCS domain-call operation 
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* gates which is associated with the process. Then the parameters 

are copied from the caller's address space into that of the callee. 

We assume the existence of two sub-operations internal to the base-

level system: 

P + get__parameter (l,D) 

put_parameter (I,D,P) 

These operations serve to fetch and store the th I parameter P 

at the appropriate location in the address space of domain D. 

The actual layout of the parameters in the address space need not 

concern us here. We assume that NP, the number of parameters, 

and GR, the return gate, are automatically available to each base

level operation. (Most operations finish by exiting through GR; 

the exceptions are domain-call and domain-return.) To simplify 

the discussion, we have omitted description of the copying of 

results from the callee back to the caller when the return is done, 

since this is virtually identical to the handling of the parameters 

during the call. Thus, Figure 2.2-3 shows only the retrieval of 

the return gate from the stack necessary to resume execution of 

the caller. 

In concluding our discussion of TCS' implementation, we 

briefly consider two possible ways to attack the lost object pro-

blem, neither of which we regard as satisfactory. One approach 

is to maintain with each object a reference count of existing 

* A variant of the call operation, referred to as a "jump-call" is 
obtained by omitting the saving of the return gate. This causes 
the callee to return not to the current caller, but to the pre
vious caller. This is occasionally useful, as we shall see in 
Chapter 4. 
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return( ) 

ENTER 

G+ pop( ) 

EXIT thru G 

Figure 2.2-3: TCS domain-return operation 
(without results) 

pa 
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capabilities, and to delete an object when it becomes lost, as well 

as when it is explicitly deleted.* There are at least three draw-

backs to this approach: 

a) The destruction of capabilities (e.g. through overwriting 

or segment deletion) must be detected and the reference 

counts maintained. 

b) Lost self-referential structures are not deleted properly. 

c) An object may be lost to the user who funds it, even 

though capabilities exist elsewhere. 

We therefore reject the reference count approach. (For a contrary 

view, see Wulf, etaL [Wu 74]). 

Another approach is to allow "un-losing" of lost objects by 

allowing a suitably authorized domain (e.g. one which owns the 

funding account) to request spontaneous generation of fully privi-

leged capabilities for funded objects [CC 69]. This is rather 

inelegant and requires fairly complicated data structures which 

may or may not be otherwise necessary. 

Other approaches to a base-level solution to the lost object 

problem can be envisioned (e.g. global garbage collection) but we 

choose instead to postpone the solution until a higher level of the 

system. Thus, the base-level system simply allows objects to 

become lost, and the users depend upon the directory system, as 

described in Chapter 4, to prevent this occurrence. 

* We assume that explicit deletion is also available, since other-
wise, the user who funds the object may be unable to reclaim the 
space occupied by it. 
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2.3 Revocation of Access Privileges 

In the context of TCS, we now explore various approaches to the 

distribution of capabilities and the revocation of access privileges. 

As an example, we use the simple situation in which domain A 

wishes to grant to domain B a set of privileges to access object 

x. 

The first approach which suggests itself is the simple copying 

from A to B of a capability for X containing the desired 

privileges, as shown in Figure 2.3-1. This is clearly the intended 

use of copyable capabilities, and is quite satisfactory provided 

that the amount of trust A has in B * remains constant. If, 

however, A subsequently decides that some different set of privi-

leges is more appropriate for B, a second capability for X must 

be passed as a replacement. This may be quite inconvenient for B, 

who may have made various copies of the original capability, some 

of which may have been passed on to other domains. Moreover, 

unless the privileges in the new capability are a superset of those 

in the original, A must pessimistically assume that B will 

retain both capabilities, and thus possess the union of the privi-

leges in the two. In other words, privileges once granted can never 

be revoked. 

This simple example shows that the typical capability mechanism, 

while useful, does not adequately cope with the difficult situation 

of changing levels of trust, particularly when trust decreases and 

revocation of privileges is desired. Before proposing any 

* We will generally omit the phrase "the person who owns a domain" 
and simply inpute feelings of "trust" and "suspicion" to the 
domains themselves. 
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Note: 

object name __ ....,. 
capability propagation 

x 

Figure 2.3-1: Passing a capability 
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fundamental changes to the behavior of capabilities, however, it 

seems appropriate to explore the various approaches which have 

been proposed for solving the revocation problem without making 

any major modifications to the underlying capability mechanism. 

Caretakers: A standard "escape hatch" in most protection 

systems is the ability to interpose a "caretaker" domain between 

an object and the domains which access it. The caretaker can 

implement any access control protocol not provided by the system. 

This situation is shown in Figure 2.3-2, in which A has created 

a caretaker domain C, and given to B a capability to call C, 

rather than a capability to access X directly. Two problems 

are immediately evident. One is simply the inefficiency of 

calling C each time B accesses X. For example X may be a seg

ment, in which case the extra domain-call is likely to cost much 

more than the segment access itself. The other problem is that 

B now receives a capability of type 'domain' rather than one 

indicating the type of X. Unless the system provides facilities 

for allowing domains to "masquerade" as objects, this will change 

the interface seen by B when accessing X. For example, to 

store into a segment, B must execute either a store-operation 

or a domain-call-operation, depending on whether or not a care

taker has been interposed. 

More generally, one can object that the caretaker mechanism 

is not, in itself, a solution to the problem, but merely a frame

work within which a solution can be implemented. We have said 

nothing so far about the basis upon which the caretaker C 

to allow or refuse a given access request. In the simplest case, 

p 
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A B 

call-only 

Figure 2.3-2: A caretaker domain 
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A specifies a single set of privileges and gives a corresponding 

capability to C, who exercises it each time B (or any other 

domain having a copy of B's capability) attempts an access. When

ever A's level of trust in B decreases, a weaker capability can 

be given to C. On the other hand, if A wishes to confer inde

pendently revocable privileges to access X on various domains 

by authorizing them all to call C, then C, given that it can 

distinguish reliably between its various callers, finds itself in 

the position of a process in Lampson's "message system" [La 71]; 

that is, C must essentially re-invent the system's protection 

machinery. This can be avoided by defining multiple caretakers 

for X, each allowing an independent set of privileges, as shown 

in Figure 2.3-3. Since the caretakers in this situation are not 

really making any decisions, but are merely using their privileges 

whenever requested, one would hope that the overhead of an actual 

domain call might be avoided. We will return to this point later. 

Control: Most modern protection systems provide some mechanism 

to capture the notion of one domain being subordinate to, or under 

the control of, another domain. This is sometimes represented by 

a static domain hierarchy [St 73], but we will treat control as 

being a privilege which, when contained in a capability for a 

domain, authorizes the possessor of the capability to control that 

domain. (The distinction is not very important for the discussion 

which follows.) In our typical system, much of the power of con

trol can be granted by giving one domain a suitably privileged 

capability for another domain's implicit segment, as was suggested 

in Figure 2.1-1, although complete control would require a 
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m 

Figure 2.3-3: Multiple caretakers 
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capability of type 'domain' allowing access to the controlled 

domain's domain-descriptor. 

This facility for one domain to control another is applicable 

to a subset of our problem of changing degrees of trust; domain A can 

attempt to enforce any reduction in its degree of trust of B by retain·, 

ing control over B, although this requires that B have total 

and unconditional trust in A. The latter condition clearly limits 

the class of situations in which control of B by A is appro

priate. 

Even when the control facility is applicable, there are still 

problems with its use. It would appear that A, having given a 

capability for X to controlled domain B, could later search 

the entire address space of B, reducing the privileges in all 

copies of the capability to match its revised intentions. The 

success of this search, however, can be compromised if B is 

allowed to execute concurrently, making the capabilities in ques

tion "moving targets." Thus, concurrent execution by B (or any 

other domain able to manipulate B's address space) must be pre

vented, either implicitly by placement in the same process with 

A, or explicitly by being "stopped" by A, using its control 

privilege. 

Even if. A manages to successfully weaken the capabilities 

in B's address space, there remains the possibility that copies 

may have escaped to other domains which are not under A's control. 

To prevent this, A must carefully limit B's conununication with 

other domains via shared segments, domain-call parameters, and so 

on. In short, B must be "confined," which, as noted by Lampson 

p 
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[La 73] can be both very restrictive for B and very difficult 

for A. In the latter regard, however, it is worth noting that 

the problem of "covert channels" does not exist for capabilities, 

since transmission of the bits of a capability is not the same as 

transmission of the capability itself. 

A simpler mechanism which has been proposed [La 71, Gr 72] 

to deal with the above problems uses a "copy-flag" contained in 

each capability. Originally, the flag is on to allow copying, but 

once it is turned off, it can never be turned back on, and all 

copying of the capability is disallowed. Thus, A can place a 

non-copyable capability for X in B's address space, and later 

revoke any desired privileges from that capability, confident that 

no other copies exist. This is even more of a restriction on B 

than confinement, however, since free copyability is one of the 

fundamental properties of capabilities. If one assumes that the 

passing of capabilities as domain-call parameters is done by copy

ing, then non-copyable capabilities cannot even be passed as para

meters, making them virtually useless. The scheme can be salvaged 

by introducing "indirect capabilities" which point to the non

copyable capability and are themselves copyable, but, as we will 

see later, such an indirection feature is powerful enough to com

pletely eliminate the need for A to control B in the first 

place. 

Ownership: The idea of one user or domain "owning" a shared 

object has appeared in many systems, for such purposes as account

ing and resource allocation, as well as for protection. In the 

context of protection, the owner of an object is thought of as 
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retaining ultimate control over the object, in the sense that any 

other domain's capability for the object should be subject to revo

cation by the owner. Ownership, like control, could be defined 

as a static relationship between each object and its owning domain, 

but again, we assume instead that 'ownership' is simply a privilege 

which confers 'owner' status on any possessor of a capability con

taining it. 

As described thus far, ownership avoids the problems which 

limit the applicability of the control scheme. In particular, it 

is usable in the case of mutual suspicion, since it makes no assump

tions about the relationships between domains. However, several 

issues have been left unresolved. 

If the owner of an object wishes to revoke a given set of 

privileges from all outstanding capabilities for the object then 

the desired action is clear, if somewhat impractical. The base 

level system must suspend all other activity and search the address 

space of every domain in the system, performing the appropriate 

reduction on each capability for the object in question. It is 

worth noting that one case of such uniform revocation has a much 

more reasonable interpretation; if all privileges are to be 

revoked from all capabilities for the object, the owner can simply 

make a copy of the object and destroy the original. An even more 

efficient mechanism to produce the same effect can be provided in 

the context of the implementation in section 2.2 by simply allow

ing the owner of an object to change its ID, thereby invalidating 

all outstanding capabilities [CC 69]. (Of course, the operation 

must return to the owner a new capability containing the new ID.) 
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If the owner of an object wishes to revoke individual privi

leges, a global search is implied, as indicated above. If, how

ever, the owner wishes to revoke these privileges from some but 

not all of the capabilities for the object, even more fundamental 

problems arise. The central question is how the owner should 

specify the set of capabilities on which the revocation is to take 

effect. In the context of TCS, the only obvious possibility is 

the specification of a set of domains in which the revocation 

should occur, either by listing the set, or by listing the comple

mentary set of domains which should remain unaffected. The pro

blem is that in a system providing freely copyable capabilities, 

the owner of an object is unlikely to have complete knowledge of 

the propagation of capabilities for that object throughout the 

system, and is therefore not in a position to provide either type 

of domain list. Figure 2.3-4 depicts the situation in which A 

has given capabilities for owned object X to B and C. Sub

sequently, B and C have passed copies of their capabilities 

to D and E, respectively. If A now decides to revoke some 

privileges from B's capability, the revocation should clearly 

effect D's capability, but not C's or E's. A domain list pro

vided by A to control the revocation would specify either revo

cation from B, allowing D to escape, or exemption of C, 

incorrectly affecting E. 

There are other relatively simple situations in which no 

correct domain list can be prepared, regardless of A's global 

knowledge of the distribution of capabilities among domains. 

Figure 2.3-5 depicts such a situation, in which domain D has 



I 
I 

___ /~ 

48 

x 

\ 
\ 

~(~ 

Figure 2.3-4: Ownership 

E 



I 
f 

~,'~ 
I 

49 

/ 
/ 

x 

A 

/ 
/ 

/ 

I 
/ 

I 

Figure 2.3-5: Multiple sources of capabilities 



50 

received capabilities for X from both B and C. Ideally, revo

cation of B's privileges should affect the capability which D 

received from B, but not the one received from C. Such distinc

tions clearly cannot be expressed in a domain list, and require 

of A a completely unreasonable amount of knowledge of the inter

nal structure of other domains. 

Yet another fundamental problem involves the authorization 

of revocation by domains other than the original owner. In 

Figure 2.3-4, for example, B stands in much the same relationship 

to D as A does to B, hence it would seem reasonable to allow 

B to revoke the privileges it granted to D. Since ownership is 

a normal privilege, A could authorize this by simply including 

'ownership' among B's privileges, but this clearly gives B too 

much power (e.g. the ability to interfere with C and E). Simi

larly, in Figure 2.3-5, B should be authorized to revoke the 

privileges of the capability it has passed to D, but not the one 

D has received from C. 

Thus, the privilege of ownership, while sufficient to author

ize the total revocation of all capabilities for an object, is 

insufficient to deal with more general situations. 

Indirection: Most of the problems with revocation in capa

bility systems seem to be caused by the propagation of capabilities 

throughout the system. This suggests that domain A in our exam

ple should never give to B a capability for X whose privileges 

it may subsequently wish to revoke, but should retain the capability 

and give B a "pointer" to it. The success of this approach is 

very sensitive to the exact nature of the "pointer." 

p 
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ro- From domain A's point of view, the most obvious kind of 

pointer to the capability is simply its address in A's address 

IC-
space, but this address by itself is meaningless to B. To use 

the address, B needs to specify that it should be interpreted 

relative to A's address space, an action which clearly requires 

authorization in the form of a capability for A (or for A's 

implicit segment) allowing capabilities in A's address space to 

be exercised, but not fetched or stored. Giving such a capability 

ip to B clearly compromises A, however, since B may use it not 

w only in conjunction with the pointer provided by A, but also 

with any other pointer B may invent. Moreover, this scheme 

also causes problems for B, since instead of a single capability 

for X, a capability for A and a pointer must be used. Thus, 

B effectively receives the absolute address where ~ 

is the multi-level address of X in A's address space. These 

problems can be reduced somewhat by the obvious expedient of always 

passing the simple absolute address <C,d> of A's capability 

for X, thus limiting A's vulnerability to a single segment, and 

guaranteeing that the pointer which B must handle will always 

be a simple displacement. Moreover, if this simple absolute address 

can itself somehow be squeezed into a single capability, both 

!S 
problems have been solved, since only the single "slot" in A's 

address space which contains the capability for X is usable by 

B, who need only keep track of the slot capability, rather than 

.ty a capability and a pointer. Of course, care must still be taken 

to allow B to ignore the difference between a slot capability 

and a capability for the desired object. 
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Even ignoring the problem of squeezing so much information 

into a single capability, there are still restrictions on the use 

of indirection through capability slots. The problem is that such 

slots can never be reused. For example, suppose that A passes 

to B a capability for the slot containing one of A's own capa

bilities for X, as shown in Figure 2.3-6. If A later decides 

to revoke all of B's privileges to access X by erasing the capa

bility from the slot, B still retains its slot capability. There

fore, A must be very careful never to place another capability 

in that slot. 

One way of attacking the non-reusability problem is to squeeze 

still more information into the slot capability, namely the ID of 

X, and to check on each access that this ID matches the one in 

the slot. This eases the restriction somewhat: a slot may be 

used any number of times, but only once for any given object. Com

plete reusability of slots requires the inclusion of a "slot ID" 

in both the slot capability and the capability in the slot, to be 

compared on each access. This essentially amounts to re-invention 

of the unique ID mechanism of the base-level system, and is likely 

to be very cumbersome, for both user and implementor. 

The non-reusability of slots in the indirection scheme is not 

really a fatal flaw. It simply forces the mechanism to be used 

in a rather stylized way. For example, domain A, rather than 

giving B a capability for some location in its own data struc

tures containing a capability for X, must copy the capability 

for X to some spot which will never be used for anything except 

indirection via B's slot capability. Actually, A would 
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undoubtedly have made an extra copy for B's use in any case, so 

that subsequent revocation of B's privileges would not interfere 

with A's own accessing of X. Thus, the only real burden on A 

is the careful allocation of slots so that they will never be 

reused. One approach would be to set aside one segment of A's 

address space and allocate slots in it sequentially. A much more 

attractive, if rather more expensive, scheme is the creation of a 

tiny new segment to hold each slot. This not only takes advantage 

of the base-level allocation machinery, but also implies that the 

displacement which we squeezed into the slot capability is always 

zero, and hence may be omitted. 

Privilege revocation by indirection through such "link" seg

ments is actually a fairly attractive scheme, which we pursue in 

some detail in the next section. It is conceptually related to 

both the caretaker and control schemes discussed above. If one 

thinks of the link segments as domains, in the passive sense, then 

indirection through such a link domain is much like calling a 

simple caretaker which merely exercises its capability on demand. 

(Note, however, that the cost of an actual domain-call has been 

avoided.) On the other hand, from the point of view of its 

creator, this passive caretaker is a very well-behaved controlled 

domain, since there is no possibility of its capability being 

copied or moved. 

2.4 Indirection Through Link Segments 

Since indirection through link segments created especially 
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for that purpose seems to provide many desirable features for revo

cation, we now pursue this approach somewhat more vigorously. The 

discussion is still in terms of TCS, in the sense that we attempt 

to minimize modifications to the base-level system and construct 

the revocation machinery "on top of" that system. Although we 

will later argue that a fairly complex revocation facility should 

instead be included in the base-level system, it is useful to 

explore this higher level implementation as a first step. 

As mentioned during the discussion of ownership, it is 

desirable for any possessor of a capability to be able to distri

bute copies of it while retaining the power to revoke the privi

leges thus conferred. Thus, if access privileges pass through the 

hands of several distributors, the corresponding link segments 

form a chain. Capabilities accessing via that chain are subject 

to revocation by any of the distributors. Any possessor of such 

a capability may extend the chain by creating a link segment and 

storing the capability in it. Retaining a powerful capability for 

the link segment allows later reduction of the privileges in the 

capability stored there. If and when all privileges are to be 

revoked, the link segment can be destroyed. 

Thus far, we have made no changes at all to the TCS base

level capability mechanism, but neither have we provided any way 

for the indirection chains to be used to access the target object. 

This will require a fairly simple modification of the base-level 

system, but before describing that modification, it is instructive 

to observe precisely what goes wrong in attempting to do without it. 

In terms of our standard example of A giving B privileges 
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to access X, we find that A, in Figure 2.4-1, having created 

link segment SL and stored its capability c x for x there, 

must now give to B a capability CL for SL. Clearly, B's 

capability CL must not allow B to tamper with the capability 

in SL, but only to use it as a component of a multi-level 

address for X. (For example, if X is a segment, B's address 

for its 5th word, given that CL is located at location 3 of B's 

implicit segment s1 , is 

<C ,5> 
x 

. ) 

There are four interdependent problems with this attempt to 

implement link segments on an unmodified capability system: 

1) Non-transparency: A domain accessing an object must 

know how many links are present in the chain leading 

from its capability to the object (i.e. how many O's 

to insert in its multi-level address, as in "3IOl5" 

above). 

2) Ambiguity: A link in the chain is indistinguishable 

from a target object which happens to be a segment con-

taining a capability in location 0. 

3) Subvertability: This is really implied by problems (1) 

and (2); if the accessing domain accidentally or mali-

ciously specifies a multi-level address which is too 

short, it can obtain a copy of a capability stored in 

the chain, thus circumventing subsequent revocation. 

4) Loss of selective adjustment in long chains: Only the 

last link in the chain contains a capability whose 
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privileges apply to the target object. Each earlier 

link contains a capability whose privileges apply to the 

next link in the chain. The only revocation allowed by 

such a link is total revocation by breaking the chain. 

All of these difficulties are avoided by a simple modifica

tion to the base-level system, which introduces a new operation 

on capabilities, and changes the behavior of the base-level system 

slightly when a capability is encountered to which this operation 

has been applied. 

The new operation allows a capability of type 'segment' to 

be converted into a capability of type 'indirect' in which all pri

vileges are 'on. 1 (As we shall see later, this is just a specific 

instance of a more general mechanism useful for type extension.) 

The intention is that such indirect capabilities for link segments 

should be handed out to domains which are being given revocable 

privileges. For example, in Figure 2.4-1, the capability CL 

which A gives to B must be of type 'indirect,' although A's 

own capability for SL is of type 'segment.' 

Whenever an operation which expects a capability for some 

object encounters instead a capability of type 'indirect,' the 

indirect capability is followed; that is, it is replaced by a copy 

of the capability in (location O of) the segment to which it points, 

with any privileges deleted which did not also occur in the ori

ginal indirect capability. This step is iterated, as necessary, 

until the resultant capability is not of type 'indirect,' at which 

point the operation proceeds as usual. 

Thus, each time an object is accessed via a chain of link 
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segments, that chain is automatically followed to the target object 

unambiguously indicated by the first non-indirect capability 

encountered. The resultant capability is exercised, but is not 

otherwise available to the accessing domain, hence the chain cannot 

be circumvented. The privileges conferred are the intersection of 

those found during the entire scan of the chain, thus allowing 

independent revocation by each intermediary domain controlling 

a link in the chain. In other words, problems (1) through (4) 

above have been avoided. 

It is important to note that an indirect capability is 

followed only when it is used to access its target object; follow

ing is not performed when the capability itself is manipulated 

(e.g. by the copy or reduce operations). 

The indirection feature being described is fundamentally 

different, not only in design, but in intention, from the multi

level addressing feature of TCS. In some systems, such addressing 

has also been referred to as "capability indirection." A system 

in which both of these features were desired would require two 

separate mechanisms. 

Distribution of revocable capabilities using this scheme 

involves five steps: 

1. Creation of a link segment. 

2. Conversion of a capability for that segment into an 

indirect capability. 

3. Copying of the distributor's own powerful capability 

for the object into the link. 
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4. Reduction of the privileges of the capability in the 

link to an appropriate level. 

5. Distribution to the receiving domain(s) of copies of 

the indirect capability produced in step 2. 

Any later reduction in level of trust can be enforced by re-execut

ing step 4, specifying some reduced set of privileges. 

Although this indirection scheme does a reasonable job of 

capturing the notion that a distributor of a capability should 

retain the power to revoke the privileges it confers, it gives 

one the feeling that the desired mechanism is being "simulated," 

in the sense that the basic action of distributing a capability 

is provided by a particular non-atomic sequence of operations, 

rather than being an atomic operation. This has two consequences: 

a) It is inconvenient for the user. 

b) It may allow other sequences of operations to produce 

a non-meaningful state. 

The former problem can be easily dealt with by providing a simple 

library procedure to perform the actions required for capability 

distribution. The latter problem, however, is not so easily dis

posed of. Suppose, for example, that by accident or design, a 

domain, in performing step 3 of the procedure, stores not the 

appropriate object capability, but the indirect capability created 

in step 2. This is just one way in which circular indirection 

chains can be created. Such chains, when followed, will cause an 

endless loop in the base-level system. Of course, one could deal 

with such a situation by placing an arbitrary limit on the length 

of an indirection chain to be followed before it is abandoned and 
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an error is signalled, but this is rather ad hoc and inelegant. 

An atomic operation producing only well formed chains would be 

much more attractive. 

Another problem with this scheme is its relative inefficiency. 

For one thing, it would generate large numbers of small segments. 

This could be extremely costly in terms of both space and time, 

especially in a system using block-oriented rotating magnetic 

storage and a corresponding paged primary memory. For another 

thing, the scheme requires the following of a chain of links each 

time an indirect capability is exercised. This overhead could 

prove prohibitive, particularly in the case of indirect access to 

segments. Moreover, any mechanism attempting to capture a compu

tation's set of recently used chains and retain them in fast hard

ware would be complicated by the fact that every store instruction 

would have to be regarded as potentially invalidating this "look

back" information by overwriting a link in some chain. 

By comparison, if equivalent revocation features were built 

into the base-level system, they would probably be easier to use, 

harder to misuse, and more amenable to optimization. This approach 

is explored in detail in Chapter 3. 

2.5 Type Extension 

The definition of a large complex system as a sequence of 

"layers" has been found to be a valuable technique, aiding all 

stages of design, implementation, testing, and documentation 

[Di 68b, Pa 72, La 69]. In an object-oriented system, this implies 
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that not all of the various types of objects provided will be imple-

mented, or even known about, by the base-level system. On the 

other hand, it would be most inconvenient if the naming and pro-

tection machinery provided by the base-level system (i.e. capabil-

ities) had to be reinvented by each new layer of the system; this 

would not only raise serious problems for the implementation, but 

would also force the users to interface with several parallel 

mechanisms for storing privileges, passing privileges to other 

domains, and so on. It is therefore very desirable for the base-

level capability machinery to provide capabilities for objects 

of which the base-level system has no knowledge. 

The various base-level facilities involving capabilities can 

be divided into two categories. In the first category are the 

facilities involving capabilities themselves: their creation, 

integrity while stored, copying, erasure, and so on. In the second 

are the facilities for manipulating base-level objects named by 

capabilities: fetching from a segment or calling a domain, for 

example. It is the facilities in the first category which can and 

should be provided for higher-level objects unknown to the base-

level system. 

As indicated in section 2.1, a capability provided by TCS con-

tains the~ of its corresponding object. The division of the 

set of all objects into types is a well known and intuitive idea 

(although, as pointed out by Morris [Mo 72], the difference between 

the type of an object and the privileges allowing access to it is 
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is: what type of capability is used to name a higher-level 

("extended") object? Various answers have been proposed, four of 

which we will explore. 

Approach 1: Representation capabilities. Any given layer of 

the system runs in an environment provided by the lower layers, 

hence any object it defines must be represented in terms of lower 

level objects. We will assume that the representation of each 

extended object is a single lower level object, since that single 

object can be a segment containing capabilities for any other ob

jects which are necessary. Thus the most obvious candidate for 

the capability for an extended object is simply a capability for 

the representing object. A possessor of that capability could 

call the layer implementing that extended type to request some 

operation, and pass the capability to indicate the extended object 

to which the operation should be applied. Having been passed this 

capability, the domain implementing the extended operation would 

automatically have access to the representation .of the object. 

There are at least three problems with this approach. The 

first and most important concerns the selection of an appropriate 

set of privileges to appear in the capability. The difficulty is 

that the domain implementing the extended object requires essen

tially complete power to manipulate the representation, while 

wishing to deny such power to the using domain(s) in order to 

prevent tampering with the representation. If the same capability 

is used by both, this is clearly not possible. Hence, the imple

menting domain, having upon request, created the representation 

of a new extended object, and thus obtained a fully privileged 

I 
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capability for that representation, must appropriately weaken that 

capability before returning it to the calling user domain. However, 

in order to guarantee its own future access to the representation, 

the implementing domain must do one of two things. Either it must 

save a copy of the original fully privileged capability for later 

use, or it must make arrangements allowing it to convert the weaker 

capability back into the fully privileged one when it later receives 

it as a parameter to some operation on the extended object. 

The first method obliges the implementing domain to maintain 

a global table containing privileged capabilities for all existing 

extended objects which its layer has created, and to locate the 

corresponding entry whenever it receives a weak user capability. 

This method is reasonable, if somewhat clumsy. 

The second method requires some facility similar to Jones' 

"amplication" [Jo 73], allowing the implementing domain to add 

specified privileges to capabilities of the type of the represent

ing object. Clearly, the power to amplify capabilities of a given 

type is a very dangerous power, and must be tightly controlled, 

since it can completely subvert the inter-user protection of 

objects of that type if misused. While this is an incomplete sub

version of the objects in question, in the sense that they still 

follow the semantic rules which define their type, it must be 

regarded as a failure of the corresponding layer, since the correct 

functioning of a layer includes the protection of its users from 

each other. Thus, the authorization of amplication must be the 

responsibility of the layer implementing the type whose capabilities 

are being amplified. One of the main criteria of layering, however, 
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is that a given layer should have no knowledge of higher layers. 

Thus, it is not possible for a layer to distinguish between "legi

timate" higher layers which need amplification, and untrustworthy 

domains which would use amplification to gain undesired access to 

other domains' objects. We thus conclude that privilege amplifi

cation by itself is insufficient to solve the problem of assigning 

appropriate privileges to the using and implementing domains of 

an extended object, given that the same type of capability is used 

by both domains. (In conjunction with another complementary 

mechanism ("constituent rights" [Jo 73)), however, amplification 

can provide a very powerful type extension facility which is equi

valent to one which we will describe later.) 

The second problem with the representation-capability approach 

involves the control of access to the extended object, as op.posed 

to its representation. Privileges are needed in each capability 

to specify which of the operations on the extended type are author

rized to possessors of that capability. This certainly cannot be 

done by assigning new meanings to the existing privileges, since 

granting the use of some operation on the extended object would 

then imply granting some unrelated access to the representation. 

Hence, multiple sets of privileges are needed. On the one hand, 

this tends to make capabilities undesirably large. On the other 

hand, the number of sets of privileges provided places a fixed 

upper bound on the number of times a base level type can be extended. 

This situation is especially frustrating since in most capabilities, 

only one of the sets of privileges will be non-empty. 

The third problem with the representation-capability approach 
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is the difficulty of determining, given some capability, the type 

of the corresponding object. This is caU3e:i by the "unofficial" 

status of extended types in this approach. A given base-level 

object may have been extended one or more times, but the type 

fields of all capabilities for it still contain its base-level 

type. The only indication that the capability is of a given 

extended type is the presence of a matching fully privileged capa-

bility in the previously mentioned table kept by the domain imple-

menting that extended type. Thus, one is not able to ask of a 

given capability "what is its type?" but only "is it of type T?" 

for some list of types T. This is a clumsy and costly substitute. 

Approach 2: Domain capabilities. This approach is, in some 

sense, a variant of the previous approach, in which the represen-

tation of each extended object is a domain. A using domain has 

only one privilege in its capability for this representation domain: 

the privilege of calling it. To perform an extended operation, 

the user performs such a call, indicating only the operation to be 

performed; the object to which the operation applies is implicit 

in the identity of the called domain. Actually, this approach 

falls outside the framework of our discussion, since it requires 

independent domains callable by any process (at least if extended 

objects are to be shared). It deserves mention, however, since 

it has been used in at least two systems [En 72, Fa 68], and 

because it attacks the three problems of the representation-

capability approach, with somewhat mixed results. 

The first problem, that of easily allowing only the imple-

plementing domain full access to the object's representation, is 

p 

I 
! 
I 
! 

I 
i 

l 



67 

bypassed, since each object has, in effect, its own copy of that 

domain, which can retain a privileged capability for the rest of 

the representation in some convenient location in its address 

space. 

The second problem, that of controlling access to the extended 

object, is solved by embedding in the domain information about the 

operations it is willing to perform. Thus, privileges for extended 

objects are represented and controlled differently for base-level 

and extended objects; whenever a less privileged capability for 

an extended object is desired, a copy of the domain can be made, 

which is then ordered never to perform the operations being denied 

to receivers of the less privileged capabilities. This is not as 

expensive a solution as it might appear, for two reasons. First, 

the various copies of the domain representing a given extended 

object can retain in their implicit segments the information spe

cifying the operations they are willing to perform, and can thus 

share all the other identical components of their address spaces. 

Second, the capabilities for a given object exhibit a strong ten

dency to fall into a small number of subsets, each containing capa

bilities with identical privileges (a tendency which we shall 

exploit later). Thus, the number of copies of the domain repre

senting a given object tends to be much smaller than the number 

of capabilities for the object. 

The third problem, that of determining the type of a given 

object, is handled in an interesting if somewhat clumsy way. 

Clearly, examination of the capability will always indicate the 

type to be 'domain.' One can establish a uniform convention, 
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however, for associating some arbitrarily chosen unique capability 

with each extended type, and storing a copy of that capability in 

some standardized location in each domain (e.g. location O of its 

implicit segment) representing an object of that type. If users 

are allowed to examine that location, they can then reliably deter

mine the type of each extended object. The main objection to this 

scheme is that base-level types and extended types are represented 

differently, which disallows any uniform type-checking mechanism. 

There are some other problems peculiar to the domain-capability 

scheme. Two difficulties arise from the fact that the domains 

implementing the extended type are associated with the objects of 

that type, rather than with the accessing processes. One reason 

for wanting to associate a domain with each process as the "repre

sentative" of a given layer is that the local storage of the domain 

provides a natural repository for information describing the status 

of that process from the point of view of that layer. This "own" 

storage is not provided by a scheme which associates domains with 

extended objects instead of processes [Fa 74]. Some systems have 

made heavy use of such own storage (e.g. CAL-TSS, Multics); it is 

not clear to what extent this is intrinsically necessary. 

Another minor difficulty with the domain-capability approach 

is its implicit assumption that all operations on extended objects 

are monadic. While this is undoubtedly the most connnon case, 

examples abound of useful operations which apply to two or more 

objects ("file-to-file copy"), to some large implicitly defined 

set of objects ("close all open files") or even to no object at 

all ("create a file"). Forcing such operations into the mold of a 
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call on a particular object is not only artificial for the user, 

but can be somewhat inconvenient for the implementor. 

Approach 3: Sealed-data capabilities. This approach is moti-

vated by the following observation about the use of representation 

capabilities in' Approach 1: If the using domains are not allowed 

direct access to the representation,of an extended object, and if 

the implementing domain always replaces the user's weak capability 

with the corresponding strong one saved in its own table, then the 

user's weak capability is never actually used to access the repre-

sentation. This suggests the possibility of changing the type 

field in the user's capability to contain, not the type of the 

representation, but some new value associated with the type of the 

extended object. There are two distinct advantages to this change. 

On the one hand, it provides an easily visible and unforgeable 

(given mechanisms to be described shortly) indication of the type 

of the extended object. On the other hand, it renders the capa-

bility useless for directly accessing the representation, thus elim-

inating the need for a separate set of privileges to control 

such access, as was required in the representation-capability 

approach. 

From the implementing domain's viewpoint, the creation of a 

new extended object using this approach could be done by: 

1) creating a representation of the object 

2) saving a fully privileged capability for the representa-

tion in a hash table keyed on IDs 

3) constructing a new capability containing the extended 

type, full privileges, and the ID of the representation, 

! 

1 
l 
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and returning it to the caller. 

When called to perform some operation, the implementing domain can 

examine the passed capability: 

1) checking the type to verify that the object is one that 

it implements 

2) checking the privileges to verify that the requested opera

tion is authorized 

3) locating the representation capability in its table and 

performing the operation on the representation 

Clearly, the creation of capabilities for extended objects 

must be carefully controlled, since a forged capability could deceive 

not only the users, but also the implementing domain. The creation 

of capabilities of a given type can itself be authorized by a capa

bility. When this capability and an arbitrary datum are presented 

to an appropriate new base-level operation, a new capability is 

returned with the authorized type, all privileges 'on,' and the 

datum as its unique ID. (As suggested above, this might be the ID 

of the representation, but could be any value desired by the imple

menting domain.) Section 2.6 will discuss how such authorizations 

to create new capabilities can themselves be created and distri

buted. 

The sealed-data approach as described is a quite acceptable 

type extension mechanism, and has in fact been used in at least 

one actual system [St 73]. It places each higher layer in much 

the same position as the base-level system; a capability is regarded 

as holding an ID sealed in a tamperproof box, which guarantees 

that the name presented by a user is in fact a valid name given 

p 
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him by that layer. Furthermore, it allows this without forcing 

re-invention of the sealing mechanism in each new layer. It does, 

however, require that each new layer implement its own table for 

converting an ID into a capability for the representation of the 

corresponding object; this is a partial duplication of the function 

of the base-level "map" of section 2.2. It is desirable to avoid 

re-invention of the map, as well as of the capabilities themselves, 

an advantage possessed by our fourth approach to type extension. 

Approach 4: Sealed capabilities. The need for each layer to 

maintain a table mapping extended object capabilities into repre

sentation capabilities can be eliminated if the system simply 

allows each extended capability to contain the corresponding repre

sentation capability. The extended capability thus becomes a 

tamperproof box holding another capability! On the surface, this 

makes it appear inevitable for capabilities to grow larger and 

larger as objects are extended repeatedly, a problem already dis

cussed in connection with our first approach to type extension. 

A carefully designed implementation, however, can avoid this 

phenomenon, allowing unlimited extension with fixed size capabil

ities, as we shall see in section 2.7, which discusses the sealed

capability approach in more detail. First, however, we digress 

briefly to examine some more general questions about type extension. 

2.6 Hierarchies of Objects and Types 

In a non-extendible system, only a small fixed number of 

predefined types are provided, hence types can be identified by 
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small integers. In an extendible SY,stem, a much larger set of 

types is needed. Two conflicting considerations influence the 

choice of the size. of this set. On the one hand, it is desirable 

to minimize the size of type identifiers, since these appear in 

capabilities, where compactness is a great virtue. On the other 

hand, it is desirable to maximize the total number of types 

available, to insure that the supply will never be exhausted, 

especially since type identifiers, like object IDs', can never be 

reused. 

Emphasizing the first consideration results in a system in 

which the number of types, while much larger than the number which 

would ever be legitimately used, is still fairly modest (e.g. thou-

sands or millions of types) [St 73]. This leaves open the possibility 

of a malicious program using up all available types within a few 

minutes of determined computing. Types in such a system must 

therefore be viewed as a finite resource, and must be allocated 

as such. This is possible, but somewhat inconvenient. 

Emphasizing the provision of an inexhaustible supply of types 

results in a system design in which the space of type identifiers, 

like the space of object IDs, is effectively infinite (i.e. too 

large to be exhausted during the lifetime of the system). By 

combining these two infinite name spaces, the HYDRA system [Wu 74, 

Jo 73] provides an elegant conceptual framework in which types are 

themselves objects. This is illustrated in Figure 2.6-1, which 

depicts the set of all objects as forming a three-level tree. For 

purposes of this figure, only two attributes of each object are 

of interest. One is its ID. The other is its type, which is 
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An object: 

l-

.ity 

Figure 2.6-1: Three-level object hierarchy 
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simply the ID of some other object.* Insisting that the other 

object so identified be of type 'type,' and providing a special 

root-object with ID 'type' (which is also of type 'type') forces 

all objects (except the root) to occupy either the second or third 

level of the tree. The second level contains the types, while 

the third level contains the non-type objects. 

Creation of objects in such a scheme can be described concep-

tually as a single operation: 

C bj + create object (Ct ) o - ype 

where the new object will be a type if c type 

naming the root object, and a normal object if 

is a capability 

C is a capabil-type 

ity naming a second level object. If C names a third level type 

object, an error is signalled. In practice, of course, such a 

unified base-level create_object operation cannot replace the 

specific object-creation operations for the various extended types, 

since only the corresponding layer has both the authority and the 

knowledge needed to create and initialize the various components 

of the representation of a given type of extended object. 

The practical disadvantage of the viewpoint just described 

is the large size of type IDs. Nevertheless, we adopt the HYDRA 

view of types as being objects. In Chapter 3, we describe a scheme 

which manages to adopt this point of view, and yet provides an 

extremely compact representation for capabilities. 

There is a second kind of hierarchy among the types in an 

* Unique IDs, which are simply long integers, are shown as symbols 
in Figure 2.6-1 for clarity. 

r 
I 
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extendible system, which has been described by Morris [Mo 72]. 

This second hierarchy involves only the types, rather than all 

the objects, and attempts to characterize the layered nature of 

the system. Figure 2.6-2 illustrates a simple example, in which 

segments are assumed to be predefined, and various plausible 

extended types are shown, each indicating the type of its imple-

mentation. This assumes that all objects of a given extended type 
I-

have the same type of representation, which does not seem unreasonable. 

One can find examples, however, of situations in which differing 

characteristics of objects of the same extended type might make 

different types of representations desirable. In Figure 2.6-2, 

for example, one might wish to allow long documents composed of 
il-

a collection of text files, which, according to our conventions, 

would be represented by a segment containing several text file 

capabilities. As another example, one might wish to represent a 

customer list as a sorted file or as a linked list, depending on 
s, 

the frequency of insertions and deletions expected. In the general 

case then, the types form not a simple tree, but a directed graph 

I 
f t 

withoutcycles. The latter property expresses the partial order 

induced on types by the layered structure of the system. Note that 

for any given extended object, there is only one representing 

object, hence for a given representing object, the extended objects i 

me 
it represents can form at most a tree. (Of course, in any realistic 

situation, this tree is only a linear chain.) 
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Figure 2.6-2: A type tree 
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2.7 Type Extension Using Sealed Capabilities 

We now return to the last of our four approaches to the naming 

of extended objects, that using "sealed capabilities." As in the 

sealed-data approach, the manufacture of extended capabilities 

must be carefully controlled to prevent forgery. Given the view 

that types are objects, the appropriate authorization to manufac-

~ ture a capability of a given type is a capability ill# that type. 

A layer can obtain a new type T by executing 

CT+ create_type () 

Subsequently, it can seal any capability C by executing 

as illustrated in Figure 2.7-1. C will have type T, all privi
s 

leges on, and a new unique ID assigned by the system. 

Later, C can be recovered by executing 

Note that CT must be presented to authorize unsealing, thus pre-

venting any random possessor of 

C which is sealed inside. 

c 
s 

from obtaining the capability 

The implementation of capability sealing as just described 

requires a fair amount of machinery, such as that to be described 

in Chapter 3. However, a slightly restricted version of capability 

sealing can be added to TCS in a surprisingly simple way. In the 

description below, we assume that a layer wishes to implement 
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c 
type 

privileges 

ID 
type (T) 

privileges (all) 

ID (new) 

"'!,-,-,-,---------,~--,,,, 
,, ' '"-__ ...... ___________________ ,, 

Figure 2.7-1: Sealing a capability 
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T whose representations are of type 
x 

The creation of type T 
x is performed by the operation: 

+ create_type (T ,P) 
r r 

Note that the type of the representation (T) must be specified. 
r 

This is one of the restrictions necessary for the implementation 

described below, and forces the set of types to form a tree, as 

T . 
r 

discussed in the previous section. Also, a set of privileges (P) 
r 

must be specified, whose significance will be explained below. 

The resulting capability for the new type (CT) allows the crea
x 

tion of new capabilities of type T, containing representation 
x 

capabilities of type T 
r 

sealed inside. 

The creation of an extended object involves the creation of 

its representation (which results in a capability c ), 
r 

followed 

by the creation of a capability C for the extended object, using 
x 

the operation: 

This produces a sealed capability 

the scheme is the requirement that 

c . 
x 

c 
r 

The second restriction in 

contain at least the privi-

leges in p • 
r 

(In practice, this is no problem, since sealing is 

generally preceded by the creation of the representation, which 

produces a fully privileged capability c .) 
r 

Later, whenever the implementing domain receives as a para-

meter a capability c 
x 

of the new type, it can recover the sealed 

capability c 
r 

using the operation: 
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Cr+ unseal (Cx,CT) 
x 

Note that the recovered capability c 
r 

has exactly the privileges 

P , which cannot be greater than the privileges in the capability 
r 

originally sealed. Thus, the layer which implements the repre-

senting type need not trust the layer implementing the extension, 

since the latter can only recover privileges which it had previously. 

The scheme just described can be implemented by representing 

the extended type as shown in Figure 2.7-2. The implementation 

of sealing now consists of merely changing the type field of c 
r 

from T to T and turning on all privileges to produce C, r x x 

while unsealing simply changes it back and sets the privileges to 

p ' r 
thus recreating c 

r 

the same object ID as did 

again. 

c ' r 

Note that C will thus contain 
x 

rather than a new ID provided by 

the system. In practice this is not a serious problem. 

This implementation clearly allows a given object to be extended 

one or more times, and still be represented by a standard-sized 

capability. Variations on this scheme which depend on short type 

IDs are described by Sturgis [St 73] and Lindsay [Li 73]. Another 

related scheme is the "constituent rights" approach discussed by 

Jones (Jo 73], which is essentially equivalent to sealing a segment 

containing several capabilities. Chapter 3 will describe a scheme 

which eliminates the restrictions described above, allowing arbi-

trary sealing of capabilities. 
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Figure 2.7-2: Representation of a type 
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2.8 Goals for a New Capability System 

This chapter has attempted to set the stage for the proposed 

capability mechanism of Chapter 3 by sketching a typical capability 

system, exploring the problems of revocation and type extension in 

the context of that system, and discussing various relatively minor 

modifications to such a system attempting to solve those problems. 

In disucssing these modifications separately, examining both their 

strengths and their weaknesses, a number of desirable properties 

have been noted. These are listed below, and are adopted as the 

goals to be met by the design p~oposed in Chapter 3. 

Goals 

1) Revocation should take effect inunediately. 

2) It should be possible to revoke the various privileges 

in a capability independently. 

3) It should be possible to selectively revoke the privi

leges of a subset of the capabilities for an object, and 

this should require no global knowledge of capability 

propagation. 

4) Any distributor of a capability (i.e. not just the "owner" 

of the object) should be able to revoke its privileges. 

5) The users of capabilities should not need to distinguish 

between revocable and non-revocable capabilities. 

6) The cost of revocability should not be excessive. 

7) The mechanisms of revocation and type extension should 

interact correctly. 
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Chapter 3 

A New Capability System 

3.1 A New Capability System 

The goal of this chapter is the description of a new capa

bility system (called NCS for short) which meets all of the goals 

listed at the end of Chapter 2. This requires a fairly substan-

tial departure from the TCS system of Chapter 2. After discussing 

two abstractions of the "link segment" scheme of Chapter 2, we 

adopt the family tree model to describe the revocation behavior 

of capabilities. The mechanism of generalized sealing is then 

proposed, to provide both revocation and type extension, and the 

practicality of implementing the scheme is argued in some detail. 

3.2 Design Considerations for Revocation 

In the design of the NCS capability scheme presented in this 

chapter, we wish to retain as many as possible of the advantages 

of the indirection scheme of Chapter 2, while avoiding its pro-

blems. There are at least two approaches which can be taken in 

attempting to capture the essence of the indirection scheme in a 

base-level construct, as depicted in Figure 3.2-la. On the one 

hand, as in Figure 3.2-lb, one can regard C as being merely 
a 

a part of the mapping from Cb to the object, and Cr as being 

a special revoker capability which allows that mapping to be broken. 

On the other hand, as in Figure 3.2-lc, one can regard both c 
a 

and as being capabilities for the object, with 

somehow dependent on c 
a 

in the sense that revoking 

being 
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object 

(a) Indirection scheme 

object 

(b) Revoker-capability approach 

Figure 3.2-1 

object 

(c) Dependent-capability 
approach 



85 

automatically revokes Cb as well. 

Taking the former point of view results in a scheme in which 

the mapping from a capability to an object is itself viewed as 

being essentially like an object, since one can have a capability 

for it and thus be authorized to manipulate it. To allow indivi-

dual privileges to be revoked independently, one must define the 

mapping as containing, or at least limiting, the privileges of the 

capability. The establishing of one's future power to revoke a 

capability should be an atomic operation, as discussed in Section 

2.4. For example, the situation in Figure 3.2-lb can be produced 

by executing 

Subsequently, the possessor of c 
r 

can revoke the privileges in 

Cb by executing 

revoke (C ,P) 
r 

In its effect on Cb, this is equivalent to the TCS operation 

The difference lies in the fact that, unlike reduction, revocation 

also takes effect in any and all copies of Cb which may exist. 

The interaction of revocation with copying is clarified in 

Figure 3.2-2, which shows the situation resulting from executing 
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E 

object 

Figure 3.2-2: Interactions of copying 
and revoker capabilities 

c x 

c 
y 

c 
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C + revoker (C) 
r Y 

c + c 
x y 

This kind of interaction causes subsequent revocation of c 
y 

to 

affect C but not C, which is clearly the desired behavior. x z 

More complicated situations include "subletting," as shown in 

Figure 3.2-3, in which both the _original owner (holding c ) 
0 

and 

an intermediate distributor (holding Cd) retain the power of 

revocation over the user (holding c ) ' u 
and "bill collecting," 

as shown in Figure 3.2-4, in which the ability to revoke the access 

of the user (holding ·c) is delegated to a "collection agency" 
u 

domain, with the owner (holding c ) 
0 

retaining the option of later 

disabling the collection agency if the contract with the user is 

renegotiated. Note that the latter example takes advantage of the 

fact that revocability, being authorized by a capability, is itself 

thus revocable. 

The revoker-capability approach just described has a good 

deal to reconunend it, and has in fact been explored in some detail 

in a system design project at Stanford Research Institute [Neu 74]. 

However, we pursue here the dependent-capability approach instead. 

Investigation of the two approaches reveals the following advantages 

of this choice: 

a) It avoids the introduction of special capabilities 

authorizing revocation, thus simplifying matters some-

what (although a certain amount of complication is 

unavoidable, as we shall see shortly). 
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u 

Cd [ ~ J 

.l I c • 0 

object 

Figure 3.2-3: Subletting using revoker capabilities 

i ] c 
u 

Cb 

~ ~ ~ J~ c 
0 u 

object 

Figure 3.2-4: Bill-collecting using revoker capabilities 
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b) It avoids treating the capability-to-object mapping as a 

manipulable object, which significantly reduces imple-

mentation costs, but sacrifices the ability to make 

revocability itself revocable. 

c) It can be cast in terms of a mechanism (to be described 

in Section 3.4) which unifies the notions of revocation 

and type extension. 

It must be admitted that the choice is not entirely clear-cut; in 

particular, the opposite conclusion might be reached in a context 

in which revocable revocability was considered important. 

One motivation for the notion of dependent capabilities is 

the observation that a weakened copy of a particular capability 

can arrive in the possession a domain as a result of either of the 

following sequences of actions: 

a) The privileges in the original capability are reduced 

to the desired set, and then a copy is passed to the 

receiving domain. 

b) A copy is passed to the receiving domain, and then the 

extra privileges are revoked from the original. 

The essence of sequence (b) is that the granting domain "has 

second thoughts" and wishes it had used sequence (a) instead. This 

suggests defining the revoke operation by simply changing the 

reduce operation to be commutative with copying, in the sense that 

and 

Cb+ C ; revoke (C ,P) a a 



90 

produce the same net effect. Of course, revocation cannot be 

expected to undo any intervening exercise of the affected capa

bilities hence this commutativity applies only to the state of the 

protection structures, rather than to the state of the objects 

being protected. Nevertheless, it is an attractive way of describ

ing the effect of revocation. 

Exactly how the revoke operation manages to find all outstand

ing copies of the capability being revoked is, of course, the cen

tral implementation question concerning this scheme. At this 

level of discussion, however, we simply imagine that a global 

search is done to locate and revoke the appropriate capabilities. 

Given that we require commutativity of copying and revocation 

there are several possible schemes, corresponding to different 

assignments of dependency among the various capabilities existing 

for a given object. Clearly, the commutativity requirement con

strains the choice to assignments in which the dependency set of 

any given capability includes all other capabilities which have 

been derived from it through one or more levels of copying. We 

examine three schemes, corresponding to three such assignments. 

Scheme 1: The simplest scheme considers all capabilities 

for a given object to be interdependent, so that revoking privi

leges from any of the capabilities affects them all. This approach 

is clearly unsatisfactory in general, for two reasons: 

a) All capabilities for a given object are forced to contain 

the same set of privileges. 

b) Any domain possessing a privilege can revoke it from 

all other domains. 
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Nevertheless, this approach has one virtue which makes it worth 

mentioning: it is possible to copy a capability and have the copy 

retain the revocation powers of the original. This is desirable, 

for example, when a domain simply wishes to move a capability 

within its address space. 

Scheme 2: A more appealing scheme considers the capabilities 

for a given object as forming a 11 family tree" generated by the 

copy operation as follows: 

a) The initial capability (produced at object creation time) 

occupies the root node of the tree. 

b) Whenever an existing capability is copied, the copy occu

pies a new son node of the node containing the capability 

being copied. 

A typical family tree is shown in Figure 3.2-5. By defining a 

capability to be dependent on each of its ancestors in the family 

tree, we maintain at all times the condition that no capability 

can have any privilege not possessed by all of its ancestors. 

Thus, revocation affects entire subtrees of the family tree. 

This tree-structured dependency solves the two problems 

encountered with version 1 above. since it allows different 

capabilities to contain different sets of privileges, and strictly 

circumscribes the effect of revoking privileges from any given 

capability. Thus domain A may pass capabilities to domains B 

and C, such that 

a) B and C have different privileges from each other, 

ai;id from A, 

b) A may revoke the privileges of B and C independently, 
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Figure 3.2-5: A typical family tree of capabilities 
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B and C may not interfere with each other, nor with 

A, by revoking the privileges. 

Unfortunately, by treating copying in this way, Scheme 2 sacrifices 

the one advantage of Scheme 1: the ability to produce a copy with 

identical revocation powers. A capability cannot be moved by copy

ing it and discarding the original, since the copy, being a son 

of the original would lack the power of revocation over other 

such sons, and would therefore be an inadequate replacement for 

the original. 

The problem is caused by two conflicting notions of what 

copying is for, suggesting that two different operations are needed. 

Scheme 3: By combining the notions of Scheme 1 and Scheme 2, 

we define a "reduced family tree" of capabilities generated by a 

pair of copy operations: 

Cb+ Ca (as in Scheme 1) 

Cb+ son (Ca) (as in Scheme 2) 

The reduced family tree is generated as follows: 

a) The initial capability occupies the root node. 

b) The copy operation produces a new capability occupying 

the same node as the capability being copied. 

c) The son operation produces a new capability occupying 

a new son node of the node containing the capability 

being copied. 

A reduced version of the family tree in Figure 3.2-5 is shown in 

Figure 3.2-6, As in Scheme 2, revocation affects entire subtrees. 

Thus, while Scheme 1 proposed a set of capabilities, and 
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Figure 3.2-6: A reduced family tree 
corresponding to Figure 3.2-5 
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Scheme 2 proposed a tree of capabilities, Scheme 3 proposes a tree 

of sets of capabilities. This is intended to capture the observed 

tendency of the capabilities for a given object to fall naturally 

into subsets containing equivalent capabilities (as mentioned in 

Chapter 2). In this scheme, the capabilities in each family tree 

node always contain the same privileges, since any change to one 

of them affects them all. On the other hand, capabilities in 

different nodes of the family tree can contain different privileges, 

and interact according to the rules of descendant revocation. This 

contrasts with a system like TCS, in which any two capabilities 

may contain different privileges, and reducing the privileges in 

one never affects the other. 

One valid complaint about this scheme is that it forces an 

early decision as to which capabilities one may eventually wish to 

revoke. The recommended policy would be to use a revocable capa

bility whenever there was any doubt concerning the trustworthiness 

of a receiving domain. Indeed, this is the justification for our 

restriction that capabilities with the same revocation status may 

not differ in their privileges. It seems intuitively reasonable 

that a~y level of trust less than complete trust may be subject to 

change, especially since incomplete trust is often based on incom

plete knowledge. Thus, the same reservations which prompt one to 

pass a capability with restricted privileges should prompt one to 

make that capability revocable. 

We wish to adopt the reduced family tree as the model of 

revocation behavior in NCS. The implementation described in 

Section 3.6 produces exactly this behavior, in addition to a 
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sealed-capability type-extension mechanism. In the implementation, 

these two mechanisms not only interact strongly, but also display 

a striking similarity, despite their apparently dissimilar defini-

tions. We therefore present, in Section 3.4, a more general 

mechanism which subsumes them both. It should be emphasized that 

this generalized mechanism does not provide any additional privi-

lege revocation features, but functions rather as an interesting 

descriptive device unifying two seemingly different constructs. 

We will continue to use the family tree description as well, where 

appropriate. 

3.3 Interactions with Type-Extension 

In the design of NCS, we wish to adopt the sealed-capability 
f 

approach to type extension, as described in Chapter 2. The minor 

restrictions in the TCS capability sealing mechanism of Section 2.7 

will be eliminated, but this is not a major improvement. What 

is crucial, however, is the proper interaction of type-extension 

with revor.ation. 

One aspect of such proper interaction has already been men-

tioned: it must be possible to revoke access to extended objects, 

as well as to base-level objects. Moreover, such revocation must 

be handled through the normal base-level revoke operation, without, 

for example, any need to explicitly notify the layer which imple-

ments the object that access is being revoked. Thus, no extra bur-

den is placed on the user of the extended object, although certain 

mild constraints are placed on the implementing layer, as we shall 
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see in Section 3.5. 

Another interaction which must be handled properly is the 

revocation of capabilities for objects which are representations 

of extended objects. Since such capabilities can be sealed inside 

the extended object capabilities (to any depth), the revoke opera

tion, during its hypothetical global search, must be able to look 

inside the extended object capabilities and remove the appropriate 

privileges from any eligible representation capabilities it finds 

there. This requirement rules out such implementations as that 

described for TCS in Section 2.7, in which a sealed representation 

capability has no explicit existence, but can be reconstructed on 

the basis of certain assumptions, the key assumption being that 

its privileges remain constant, which can be false in a system 

providing revocation. The important point here is not that a 

layer implementing an extended type would normally be in the posi

tion of having its representation capabilities revoked, but that 

it must not be possible for the freely available type-extension 

mechanism to be misused to "hide" capabilities from the revocation 

mechanism. 

3.4 Generalized Sealing 

In discussing capabilities, we have sometimes referred to 

them as being information "sealed in a box." This characteriza

tion has been used by Lampson [La 69], Morris [Mo 73] and others, 

and suggests the obvious generalization of repeated sealing, i.e. 

boxes within boxes. We have already seen one situation in which 
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such a construct was useful: the sealed capability approach to 

type extension. In this section, we propose a much more general 

capability sealing mechanism for NCS which not only allows type 

extension without the restrictions imposed in Section 2.7, but 

also provides for revocation which follows the reduced family tree 

discipline of Section 3.2. 

The act of sealing information in a box can have two conse

quences: 

a) Reading of the information is prevented. 

b) Modification of the information is prevented. 

Morris [Mo 73] has referred to sealing as being transparent if 

only restriction (b) holds, and opaque if both restrictions (a) 

and (b) hold. We wish to generalize this distinction to allow 

partially opaque sealing of capabilities. This is accomplished 

by using boxes which are partly opaque and partly transparent. 

The opaque parts of a box have information on them; they cover 

and override the corresponding parts of the capability sealed 

inside. The transparent parts of a box allow the corresponding 

parts of the capability sealed inside to show through, and to thus 

remain in effect. It is not surprising that this selective "fil

tering" action can be used to capture the notion of privilege 

revocation, as we shall see. 

The ability to seal things in boxes is carefully controlled, 

as is the ability to unseal boxes and thus gain access to their 

contents. Various kinds of boxes are available; the sealing and/or 

unsealing of a given kind of box is itself authorized by an appro

priately privileged capability for a type. In this scheme, a type 
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is simply a template for making boxes. As we will shall see, such 

templates, when used in a particular way, generate a HYDRA-style 

3-level object hierarchy, but this is not an explicit part of our 

definition of types. The association of boxes with types should 

not be taken as meaning that boxes are themselves objects, which 

they are not. A box is merely the "skin" of a capability, and has 

no independent existence of its own. 

The format of boxes is shown in Figure 3.4-1. A type is just 

a template for making boxes, and a capability is just a box con

taining something, hence this can also be used as the format of 

types and capabilities. One can think of the fields as being 

written as "trit strings" where each digit takes its values from 

{0,1,transparent}. The fields are all familiar from previous dis

cussions, with the exception of the "capability-ID" field. This 

field identifies the capability, and serves to distinguish it 

(and all copies of it) from other similar capabilities, even if 

their type, privileges and object-ID fields are the same. This is 

important, for example, during the hypothetical search which per

forms revocation of privileges. 

In spite of the alarming size of these capabilities, we con

tinue to assume that each addressable location in memory is capable 

of containing one. At the same time, we will take the apparently 

paradoxical view that each of the four fields in a capability is 

the full size of a data item which could be stored in the same 

location as the entire capability. This kind of behavior should 

come as no surprise in a system which allows capabilities to be 

nested to any depth without increasing in size. 
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capability-ID 

type 

privileges 

object-ID 

Figure 3.4-1: Format of boxes, 
types, and capabilities 

~ 
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The seal and unseal operations are fairly simple. Executing 

creates capability CS by sealing C in a box specified by the 

template contained in type T, as authorized by the privilege of 

sealing in CT. The box produced is a verbatim copy of the tem

plate in type T, with the exception that the capability-ID and 

object-ID fields, if opaque, will have the same new unique ID 

written on them. Executing 

reverses the process by removing one or more boxes from CS until 

it suceeds in removing a box whose type field is opaque. The 

value of its type field must match that of the template in type T· 
' 

otherwise, an error is signalled and no value is returned. The 

capability CT must contain the privilege of unsealing. 

Given the above mechanism, various kinds of templates can be 

defined, of which we will use three. 

The simplest kind of template is shown in Figure 3.4-2. It 

is completely transparent, and generates boxes we will call 

"lockers," since their only function is to prevent their possessors 

from modifying their contents in any way. In particular, lockers 

are used to control revocation, as will be discussed in the next 

section. A type containing this template is provided by the system, 

and a capability for the type, allowing sealing but not unsealing, 

is publicly available. 
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Figure 3.4-4: An "extender" 
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A slightly more complicated template is shown in Figure 3.4-3. 

It is transparent except for an opaque capability-ID field, and 

generates boxes we will call "revokers." (Recall from the defini

tion of the seal operation that each new revoker will thus have 

its own new capability-ID.) As will be seen in the next section, 

sealing a capability in a revoker box is equivalent to generating 

a new son-node in the reduced family tree. A type containing this 

template is also publicly available for sealing, but not unsealing. 

The third kind of template is shown in Figure 3.4-4. It is 

completely opaque. The value of the type field is just the ID 

of the type containing the template. Boxes generated by such tem

plates we will call "extenders." Extender boxes provide a sealed

capability type extension facility as described in Chapter 2. 

Several types containing such templates are predefined by the system, 

and an operation is provided for creating more such types on demand. 

These types are not made publicly accessible. 

There may be other kinds of templates which would prove 

interesting or useful, but we will not pursue this here. Instead, 

we turn to the relationship between the sealing mechanism and the 

other operations of the base-level system. 

As mentioned previously, the base-level operations taking capa

bilities as arguments can be divided into two groups. Most of 

them simply "look at" the capabilities as the names of objects 

which are their actual arguments. A few of them are directly con

cerned with the capabilities themselves. The treatment of capa

bilities by the former operations is quite simple: they always 

rely on the external appe_arance of a capability, regardless of its 
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internal structure of nested boxes. For the latter operations, 

the situation is more complex. 

In addition to the seal and unseal operations described above, 

there are four kinds of base-level operations which manipulate 

capabilities themselves: 

a) creation of base-level objects 

b) copying of capabilities 

c) erasing (overwriting) of capabilities 

d) revocation of privileges 

Each of these is now described in some detail. 

Creation of base-level objects is involved with the capability 

mechanism in two ways. On the one hand, each new object must be 

named by an initial capability which is to be returned as the 

value of the creation operation. The fabrication of this capability 

can best be described as the sealing of an empty extender box, 

using a type owned by the base-level system as a template. Thus, 

base-level object creation depends on sealing. 

On the other hand, sealing depends on the previous creation 

of types, which are base-level objects. Types corresponding to 

the various base level objects (segments, domains, etc.) are 

created at system initialization time. At least the "root" type 

(ID= 'type') must be created "out of thin air," and in fact, all 

base-level types are presumably created this way (although concep

tually, one can think of the base-level system using its own 

create_type operation, which would in turn use the seal operation 

specifying the root type as a template). 

Copying of ~apabilities is conceptually simple in this scheme. 
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The entire capability, including any number of nested boxes, is 

reproduced exactly, so that the new capability is indistinguishable 

from the original. Thus, executing 

results in two identical capabilities. 

The overwriting of a capability with data or with another 

capability is also simple. The overwritten capability is destroyed, 

with no particular side-effects except for the obvious possibility 

that some previously allowable actions are now forbidden. 

The most complicated operation in this scheme is revocation, 

which is performed by executing 

, revoke (C,P) 

which revokes from C (and all copies of C) any privileges 

which are zero in mask P. The outermost box of C is required 

to be a revoker. Note that the revoke operation, like the TCS 

reduce operation, is portrayed as modifying an existing capability, 

rather than producing a new one (cf. seal, unseal). Generalizing 

the discussions of Sections 3.2 and 3.3, we will hypothesize that 

the underlying capability machinery performs a global search any-

time an existing capability is modified and reflects the changes 

in all copies of the capability, even those which are sealed in 

nested boxes.* (These copies are easily recognized by their 

* In the design being described, this hypoth~tical search is exploit-
ed only by revocation. Section 3.8 will survey some possible ela
borations on the design, two of which would also depend on this 
search. At risk of repetition, we again point out that this global 
search is only a descriptive device, and is not actually implemented 
as such. 
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capability-ID fields.) The particular modification performed by 

the revoke operator is the writing of an opaque O at each posi

tion in the privilege field of C which corresponds to a O in 

the mask P. This is only done, however, if the outermost box of 

C is a revoker; the revoke operation refuses to write on any 

other kind of box, and signals an error if this is attempted. 

Operations must also be provided for testing the tag of a 

memory location to see whether it contains a capability, and if it 

does, for displaying the various fields of the capability. These 

operations are straightforward and require no detailed discussion. 

3.5 Examples of Generalized Sealing 

This section outlines some intended uses of the NCS sealing 

mechanism just described, and reviews the goals listed at the end 

of Chapter 2, to assure that they have all been met. The descrip

tion of directories and other specific facilities which can be 

implemented using NCS capability sealing is postponed until 

Chapter 4. 

There is more than one reasonable way to use the NCS sealing 

mechanism for revocation, depending upon the exact situation (i.e. 

the number of domains involved and their relationships to each 

other). In the example situations below, it is assumed that 

domain A possesses a capability and wishes to pass it to one or 

more domains B. In choosing
1

a method of doing this, A controls 

the possibility of later revocation of the various capabilities 

passed. 



107 

To illustrate the various situations, the sealed capabilities 

are shown as arranged in corresponding reduced family trees. Recall 

that sealing a capability in a revoker box corresponds to generating 

a new son node in the tree. 

The simplest situation is one in which A completely trusts 

B, and simply passes a copy (CB) of its own capability (CA), as 

shown in Figure 3.5-1. The most important example of this is in 

"system calls," in which A regards domain calls on B as being 

operations of its "extended machine." As will be seen in Section 3.6, 

the passing of such non-sealed capability parameters represents 

a considerable saving. This is very significant, since experience 

suggests that a great majority of domain calls executed are in 

fact system calls [SS 72). There are also logical reasons for 

passing non-sealed capabilities on certain kinds of system calls, 

namely those which are part of extended mechanisms for capability 

storage and/or transmission, such as directories or message 

channels. 

If A does not have complete trust in B, then before pass-

ing CA to B, A should seal it in a revoker box. By keeping 

one copy (CR) of the sealed capability, and passing another (CB) 

to B, A retains the power of later revoking B's privileges. 

This situation is illustrated in Figure 3.5-2. 

If A wishes to pass reyocable capabilities to the several 

domains B1 ,B2, ••. ,Bn, one alternative would be the creation of 

CR as above by sealing CA in a revoker, followed by the passing 

of n copies of CR (denoted CB.) to the domains Bi, as 
l. 

shown in Figure 3.5-3. (Note that this is just the situation 
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Figure 3.5-1: Passing.a non-revocable capability 

. 
~ 

Figure 3.5-2: Passing a revocable capability 

Figure 3.5-3: Passing simultaneously revocable capabilities 
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which would arise if A passed CB to B1 , and B1 , completely 
1 

trusting B • • ·B 2 n' 
in turn passed copies to them.) There are two 

limitations to this use of the mechanism. One is the non-selectivity 

of A's power of revocation; revoking privileges from any of the 

domains Bi requires revoking from all of them. The other limita

tion is the lack of isolation between the domains Bi; any of 

them is capable of revoking the privileges of all of them, which 

may be inappropriate. 

Both of these limitations can be avoided by simply handling 

each of the domains B. separately as in Figure 3.5-4. This 
1 

allows selective revocation from each of the B., and isolates 
1 

them from each other in case they are mutually suspicious. For 

example, the various Bi may be the renters of a program owned 

by A, in which case both of these considerations are important. 

On the other.hand, there are situations in which A does 
I 

not need to revoke the privileges of the various Bi selectively, 

but does wish to isolate them from each other. For example, a 

professor may wish to grant access to a grading program to all of 

the students in his class. He certainly wishes to prevent the 

students from revoking this privilege from each other, but may 

well have no desire to revoke their privileges independently, 

especially since this is somewhat costly and requires that A 

retain and use n different capabilities CR. In this situation, 
i 

A can produce a single CR by sealing CA in a revoker box, and 

can then distribute the capabilities CB produced by in turn 
i 

sealing CR in a locker box, as shown in Figure 3.5-5. This not 

only eases simultaneous revocation, but is significantly cheaper, 
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Figure 3.5-4: Passing independently 
revocable capabilities 

Figure 3.5-5: Passing isolated 
simultaneously revocable capabilities 
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given the implementation to be described. 

From this discussion, it should be clear that goals 2, 3, 4 

and 5 of Section 2.8 are satisfied by the proposed design. Goal 6, 

that of reasonable cost, will be treated in the next section, 

which proposes an implementation for sealed capabilities and dis-

cusses its efficiency. This leaves only goal 1, that of immediate 

revocation, and goal 7, that of proper interaction between revo-

cation and type extension. Between them, these two goals generate 

one fairly subtle problem, which must be discussed before all the 

goals can be considered satisfied. 

It is clear that revocation as defined takes effect immediately 

in the sense that the privileges of the appropriate capabilities 

are immediately modified. This is only significant, however, to 

the extent that the, corresponding operations on the object in ques
/ 

tion are immediately prohibited, which in turn depends on the 

checking of the privileges by the operations. One can imagine the 

following kind of scenario, in which revocation is effectively 

delayed. Suppose that domain A in process PA passes to domain 

B in process PB a capability to access X, which is an extended 

object implemented by layer ·L. Suppose that layer L is repre-

sented by domain LA in PA and by domain LB in PB. Assuming 

that we can say nothing about the relative execution speeds of PA 

and PB [Di 68] the sequence shown in Figure 3.5-6 is one possible 

outcome, and produces an effective delay in revocation which is 

visible to A. Strictly speaking, the problem here is caused by 

the occurrence of step Al between steps B2 and B3, which should be 

executed together as a "critical section." Synchronization between 



Al. A revokes B's privilege 

to modify x 

A2. A calls LA to examine x 

A3. LA returns to A the 

original state of X 

A4. A palls LA to examine X 
/ 

A5. LA returns to A the 

modified state of X 
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Bl. B calls LB to modify X 

B2. LB verifies that Bis 

authorized to modify X 

B3. LB performs the previously 

checked modification of X 

and returns to B 

Figure 3.5-6 
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the base-level system and higher layers is fraught with difficulties, 

however, hence the following alternative seems preferable: when a 

layer is about to access the representation of an object, it must 

first lock all parts of the representation to be touched and then 

check to see that the requested operation is authorized. In many 

cases, this interlocking would be necessary anyway; the major 

change due to revocation is the moving of privilege checking inside 

of the critical section. (In particular this means that pre-check-

ing of privileges as an integral part of the domain call machinery 

[St 73, Wu 74] is not very useful in a system in which privileges 

are revocable.) 

In the context of Figure 3.5-6, such checking would delay 

step A3·un7il after step B3. The crucial point is that this 

renders the situation indistinguishable* from one in which step B3 

occurred before Al. Thus, although an access may occur slightly 

after permission to perform it has been revoked, there is no way 

for a properly written (i.e. timing independent) program to detect 

this occurrence. 

3.6 Implementation of Generalized Sealing in NCS 

As in previous discussions, we begin by describing the repre-

sentations of capabilities themselves. A tagged memory location 

holding a capability appears to the user to contain a rather large 

amount of information, but in actuality it contains a short form 

* Except for real-time delays. 
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of the capability, consisting of a "locker bit"* and the ID of the 

capability as shown in Figure 3.6-1. The other fields are stored 

elsewhere, and the ID is sufficient to locate them, allowing recon-

struction of the complete long form of the capability. 

The most important advantage of this approach is that it 

allows the changeable information (e.g. revocable privileges) in 

all copies of a capability to be centralized and thus updated 

without a global search. This is crucial to the practicality of 

the scheme, and will be discussed in more detail shortly. 

This approach also allows the effective storage of an entire 

capability in a single practical-sized word of a tagged memory. 

For example, on the terribly pessimistic assumption that a new 

' 
unique ID/ is generated every 10 microseconds, the use of 48 bit 

words would allow the system to run continuously for about a cen-

tury without exhausting its supply of names. Using a name-space 

compaction approach and a somewhat more realistic level of pessi-

mism would probably allow the use of 32 bit words without requiring 

an objectionable frequency of system shutdowns to perform the 

compactions (i.e. once every few weeks or months, at worst). 

An attractive way to store the boxes which constitute the 

actual substance of the capabilities would be in a global hash 

table containing small fixed sized entries and keyed on unique IDs. 

The map, as described in Section 2.2, is just such a structure, 

which suggests implementing each box as a map entry. This approach 

yields an integrated structure for the reconstruction and inter-

pretation of nested capabilities from their short forms. The 

* This is not the same as the tag bit on the capability, and will 
be discussed below. 
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capability-ID 

capability-ID 

type 

privileges 
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Figure 3.6-1: Format of (short-form) 
capabilities and map entries 

locker bit 

I I 
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increase in size and complexity of the map machinery, while non

negligible, is not excessive. 

The format of a map entry is shown in Figure 3.6-1. The 

capability-ID, type and privileges fields of the corresponding 

box are represented directly, while the object-ID field is replaced 

by a new "contents" field which serves to locate the contents of 

the box. Map entries for various particular kinds of boxes are 

shown in Figure 3.6-2. 

Base level capabilities, while conceptually the same as other 

extenders, are represented in a special form. The contents field 

contains the physical address of the object, hence these map 

entries correspond to the map entries in a system like TCS. The 

privilege field would always contain all l's since revocation 

does not operate on extender boxes, hence its value can be implicit; 

the space in the map entry is used to record the size of the base

level object instead. 

Normal (i.e. user created) extender boxes are represented 

similarly, but their contents are capabilities, rather than physical 

addresses, and they make no use of their privilege fields. 

Revoker boxes represent their transparent type and privilege 

fields as all l's. In the case of the type field, this value is 

a constant which is specially recognized by the capability recon

struction machinery. In the case of the privilege field, it is 

used as a mask~ hence any O's written in it are effectively opaque, 

as required for revocation. 

Note that no map entry format is described for locker boxes. 

Locker boxes are so simple that they may be implemented in a much 
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cheaper way. As shown in Figure 3.6-1, a single locker-bit in the 

short form capability, rather than a complete map entry, serves to 

indicate the presence of one or more locker boxes. (Since they 

are transparent and non-removable, multiple consecutive locker 

boxes are indistinguishable from a single one.) 

Given the described representations of the various kinds of 

boxes, the seal and unseal operations may be implemented as shown 

in Figures 3.6-3 and 3.6-4, respectively. The seal operation 

creates a new map-entry representing the new box and stores in its 

contents field the capability being sealed. Sealing in a locker 

box is handled specially by simply turning on the locker bit in 

the sealed capability. The unseal operation simply returns the 

contents of the appropriate extender box. (Recall that revokers 

and lockers can never be unsealed.) Figure 3.6-5 sununarizes the 

various low-level facilities used in the description of these and 

other operations. These are assumed to be clear from previous 

discussions, with the exception of capability reconstruction 

("Recap") and associative memory lookup ("Cap_find" and "Cont_find") 

which will be described shortly. 

The creation of each new base-level object includes the 

construction of the "root" map entry representing its initial 

capability. This map-entry is self sufficient, in the sense that 

it does not depend on any other map entry for its proper interpre

tation. On the other hand, a map entry representing a revoker or 

extender box contains another capability; its one-word contents 

field holds the short form of the capability, hence its interpre

tation is dependent upon the other map entry holding the rest of 
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Figure 3.6-4: NCS unseal operation 
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Fields in various data structures (see also corresponding figures) 

Cap (x) 

Type (x) 

Priv (x) 

Obj (x) 

Size (x) 

Cont (x) 

Unique names 

New ID ( ) 

New_map_entry (I) 

Map_entry (I) 

Delete_map_entry (M) 

Capability reconstruction 

Recap (c) 

Associative memory 

Cap_find (I) 

Cont find (x} 

capability-ID 

type 

privileges 

object-ID 

size 

contents 

generates a new unique ID 

creates map entry with capability-ID= I 

finds map entry with capability-ID= I 

deletes map entry M 

reconstructs long form of c 

find entry with capability-ID= I 
(else LRU entry) 

find entry with contents= x 
(else LRU entry) 

Figure 3.6-5 Low level facilities used by operations 
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that capability. Thus, repeated sealing of a base-level object 

results in the generation of a tree of map entries, which combines 

the functions of the type tree of Section 2.6 and the reduced 

family tree of Section 3.2. An example of such a tree is shown in 

Figure 3.6-6, in which a segment is used as the representation of 

an extended object of type 'directory,' for which various capabilities 

have been distributed. 

It is important to note that while the seal operation 

generates such tree structures, the unseal operation does not dis

mantle them. For example, in Figure 3.6-6, if the layer imple

menting directories unseals c3 to obtain c
5

, the map structure 

remains unchanged. The mechanism for deletion of unneeded map 

entries will be discussed later. 

In order to reconstruct the long form of a capability, it is 

necessary to examine the boxes which compose it, starting with the 

outermost and working inward, until all fields are completely opaque. 

Given the particular kinds of boxes used in our scheme, this simply 

entails scanning down a chain of (zero or more) revokers until a 

non-revoker box is encountered. This reconstruction procedure, 

shown in Figure 3.6-7, is rather similar to the "following" proce

dure for indirection chains of Section 2.4. In other figures, the 

capability reconstruction procedure is referred to in the form 

C + Recap (c) 

where c denotes the short form and C the reconstructed long 

form of the capability. In addition to the visible long form, the 

reconstruction process also recovers the representation pointer 



Capabilities: 

long: y 

'dir' 

pl 

B 

cl 

short: y 

Map: 

Objects: 

123 

y B 
'dir' 'dir' 

pl 11. .. 12 

B B 

c2 c3 

[: ::::w 

y 

'dir' 

a O 

a 

'seg' 

size 

Segment 

0 

0 

'dir' 

p2 

B 

c4 

11. .. 12 

p2 

Figure 3.6-6: A map entry tree 

a 

'seg' 

11 ... 12 

a 

cs 

li.::H 



124 

C + Recap(c) 
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A+ Cap_find(I) 

P + 11. .. 1 

----~M + Map_entry(I) 
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Return A 

EXIT 

ERROR 
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Figure 3.6-7: Capability reconstruction 
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from the capability to the object, which consists of the short form 

representation capability in the case of extended objects, and 

the address and size for base-level objects. Thus, the result of 

the reconstruction process is a mapping, as shown in Figure 3.6-8. 

The cost of the reconstruction process is relatively high, 

since it involves scanning a chain of map entries, each of which 

must be located by hashing into the map. The retention of the most 

active mappings in fast hardware thus becomes even more important 

than in a system like TCS. The associative memory discussed in 

Section 2.2 could be used without change to hold map entries from 

active chains and thus speed up the scan. On the other hand, a 

50% increase in the size of the associative memory entries allows 

them to contain entire mappings, rather than single map entries. 

On the average, this modification would probably not provide a very 

dramatic improvement in speed (by bypassing the reconstruction 

process entirely, rather than merely accelerating it) and might 

even slightly reduce the efficiency of space utilization in the 

associative memory (if the average chain length was less than 1.5 

map entries). It is desirable, however, since it allows a fixed 

amount of associative memory space to effectively contain a chain 

of arbitrary length, thus preventing long chains from severely 

degrading performance by filling up the associative memory. We 

therefore specify the associative memory as containing the several 

most recently used complete mappings. The exact number to be 

retained would depend on several considerations, ranging from 

available hardware components to expected usage patterns. Two 

factors which favor maximizing the number are the relatively high 
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cost of initial loading(= capability reconstruction) and the fact 

that the retained mappings remain valid through domain-calls and 

process switching. 

In the various figures, the associative memory facilities are 

represented in the form: 

A+ Cap_find (X) 

A+ Cont find (X) 

Each of these finds an associative memory entry whose appropriate 

field (capability-ID or contents) contains the value X. If no 

such entry is present, the least recently used entry is found. 

The revoke operation is quite straightforward in terms of 

its effect on the map. Since all copies of a given revoker box 

are represented by a single map entry, the masking of the privilege 

field of that map entry automatically revokes the corresponding 

privileges from all the copies, including those sealed inside 

other capabilities. The only problem is that some of these latter 

capabilities may already have been reconstructed and saved in the 

associative memory, necessitating their removal. 

Unfortunately, the names of all such capabilities cannot be 

determined from the name of the capability being revoked, except 

by introducing a complicated and fragile backpointer structure 

into the map-entry trees. One way of dealing with this problem is 

to completely flush the associative memory on each revocation. 

This will be satisfactory if the frequency of revocation is rela

tively low. If revocation is a sufficiently frequent occurrence, 

however, this will drastically reduce the utility of the associative 
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memory by forcing heavy use of the expensive reloading procedure. 

A quite satisfactory compromise between total flushing of the 

associative memory and selective removal of only the affected 

capabilities is the removal of all capabilities for the same 

object. This is easily accomplished using the "Cont_find" feature 

of the associative memory, as shown in Figure 3.6-9. (For sim-

plicity, we have assumed that O is not a valid value of the :cap 

or Cont fields of a mapping, and can therefore be used to disable 

an associative memory entry.) This semi-selective removal will 

sometimes force unnecessary reloading of capabilities which were 

not affected by the revocation, but this will only happen when a 

capability is revoked and another capability for the same object 

which is not its descendant in the family tree appears in the 

* associative memory. 

The storage of inactive map entries in secondary memory is 

much the same in NCS as in TCS. Each TCS map entry corresponds to 

a complete tree in NCS, but only the active paths in the complete 

tree need be kept in primary memory. It seems likely that known 

techniques for localizing list structures in secondary memory · 

[Bo 67] could contribute significantly to minimizing the overhead 

incurred when an inactive path becomes active and must be brought 

into primary memory. 

* One possible frequent example of this would be revocation of~ 
domain-call parameter upon return from the call. Revocation of 
the callee's capability would unnecessarily remove the caller's own 
capability from the associative memory. This could be avoided us
ing a modification suggested by Peter Bishop of M.I.T., in which 
the mapping produced by the capability reconstruction mechanism 
would include the length of the chain scanned to produce it. By 
comparing this value for the capability being revoked and the 
capability being removed from the associative memory, one could 
avoid removing tree-ancestors of the revoked capability. 
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revoke(C,P) 

ENTER 

C +- Recap(c) 

No Yes 
ERROR 

M + Map_entry(Cap(c)) 
No ERROR 

Priv(M) + Priv(M) /\ P 

K + Cont(C) 

---------.aA + Cont_find(K) 

Cap(A) 0 ....,_Y_e_s< 
Cont(A) = 0 

EXIT 

Figure 3.6-9: NCS revoke operation 
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3.7 Some Implementation Details 

In describing an implemented system, it is often desirable · 

to omit or simplify certain details which, while necessary in the 

implementation, are of little intrinsic interest, and tend to 

obscure the significant principles of the design. Unfortunately, 

in arguing the practicality of an unimplemented system like NCS, 

one is obliged to address such issues. This section is involved 

with such details relating to the maintenance of the system data 

structure we have called the map. Readers who find themselves 

growing bored with the arguments can skip the remainder of this 

section without significant loss of continuity. 

The basic problem with the map as described thus far is the 

lack of any mechanism to keep it from filling up. For example, 

by repeatedly sealing a single capability at the relatively modest 

average rate of once per millisecond, a malicious domain could 

fill up a 1 million word map in a few minutes. In a system like 

TCS in which each map entry corresponds to a different object,,one 

might be able to depend on the limitation of other resource usage 

for the object to limit usage of the map-space resource and pre

vent its exhaustion. This is clearly not the case in the new 

scheme, in which creation of map entries does not imply any other 

resource usage at all. 

For this reason, it is necessary to treat map entries as an 

allocatable resource and thus limit the amount of map space 

available to each domain via its account. An account's reserve 

of available map space must be decremented each time a domain it 

funds creates a map entry, and incremented when the map entry is 
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deleted. This requires that each map entry contain an extra field 

specifying the account which funds it since this may not be evident 

at the time at which it is deleted. Since unused map space resides 

on secondary storage, it is quite inexpensive, hence the allocation 

given to each account can be sufficiently generous that no reasonable 

program would ever exhaust it. The limit serves only to contain 

the damage done by pathological programs. 

From the system's point of view, the problem is now solved 

since each user can harm only himself by extravagant use of map 

space. This is not really sufficient however; the consequences of 

such self-inflicted harm must not be too severe. A given account's 

allocation of map space can be cluttered by an undebugged program, 

hence some mechanism must be provided for prevention of and/or 

recovery from such a situation. Prevention cannot reasonably be 

expected of the base-level system, since it cannot distinguish 

between legitimate and illegitimate use of map space, hence recovery 

must be possible. We take the point of view, however, that this 

recovery need not be particularly easy or graceful, since, as 

mentioned previously, most use of the sealing mechanism is expected 

to be made via more civilized facilities rather than directly. The 

implementation of such facilities will be discussed in some detail 

in Chapter 4. At this point we are only concerned that such faci

lities use sealing in an orderly way. 

What constitutes orderly use of the sealing mechanism? So 

far, no method has been described for removing unneeded map entries, 

hence any use of sealing will eventually fill up the map. The 

basic question is: when is a map entry no longer needed? There 
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are at least two circumstances in which this is true: 

a) Its privilege field is empty. 

b) Its contents field points to a non-existent map entry 

or object. 

If either of these conditions holds, the map entry is useless and 

may be deleted. Condition (a) suggests the revoke operation, upon 

reducing the privileges in a map entry, should check whether any 

privileges remain, and if not, delete the entry from the map. Con

dition (b) suggests that the capability reconstruction mechanism, 

upon encountering a map entry whose contents field contains such 

a "dead-end" capability (which we will call an "isolated" entry) 

should delete it from the map. A map entry whose contents field 

contains the address of a base level object is deleted when the 

object is deleted, thus isolating any map entries pointing to it. 

In general, the deletion of a map entry can cause one or more 

other map entries to become isolated, and thus be deleted the next 

time they are exercised by the reconstruction process. In this 

way, entire isolated subtrees can be gradually eliminated. (The 

case in which such entries are never subsequently exercised will 

be discussed shortly.) 

Thus, in addition to its normal cleaning-up activities 

(destroying unneeded objects, etc.), a well-behaved domain should 

revoke any unneeded capabilities to clean up the map. 

Similarly, the problem of cleaning up after the execution of 

an undebugged domain involves deletion of unneeded objects and map 

entries, followed by deletion of the domain itself. Problems can 

arise if the faulty domain has discarded all capabilities for any 
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such object or map entry, which is then lost. A feature solving 

the lost object problem will be described in Chapter 4, but it 

would be expensive and cumbersome if used for every map entry. We 

therefore allow map entries to become lost and require that recov

ery from this situation be possible. This requires the revocation 

of all capabilities originally passed to the faulty domain, thus 

isolating the subtrees of map entries produced by its execution. 

The lost map_entries in these trees will never be exercised, how

ever, since by definition there are no capabilities for them. 

For the reason just cited, some mechanism must be provided to 

exercise lost map entries. Moreover, even for map entries which 

are isolated but not lost, it would be helpful if their elimina

tion from the map was automatic, since it may be some time before 

they are exercised. This can be accomplished by adding to the 

base-level system a relatively simple operation of the form: 

exercise (I) 

which simply exercises the I-th map entry by reconstructing its 

capability. A low-priority background process (sometimes called a 

"daemon" or "phantom") can now be constructed which uses the new 

operation to slowly sweep through the map eliminating isolated map 

entries. The rate at which this is done is a tradeoff between 

minimizing the extra load imposed on the map machinery and maxi

mizing the rate at which map space is recovered. Given generous 

allocations of map space to the various accounts, the rate could 

probably be quite low. The exercise operation is not available 

to the users, since they have no use for it, but it is not at all 
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dangerous, hence the background process need not be trusted by 

the base level system. 

3.8 Possible Elaborations on the Design 

There are several directions in which NCS as described in 

this chapter could be elaborated. We here digress briefly to dis

cuss four examples, arranged in order of increasing difficulty 

of adding them to the implementation described. 

A simple feature which might well be included in an actual 

system allows examination of the relationship of two capabilities, 

to determine if one is a descendant of the other in the same map 

tree. This would be useful: 

a) To determine revocability of one capability by another. 

b) To determine accountability for unauthorized distribu-

tion of a capability. 

This checking could easily be provided by an operation which simply 

scanned from the first capability's map entry to the root (base

level object) entry of the tree, watching for the second capability's 

map entry. 

Another feature, which has been mentioned previously, would 

be the definition of other useful kinds of boxes in which to seal 

capabilities. For example, a box in which two or more capabilities 

could be sealed would eliminate the need for a small segment to 

act as the root of a compound representation of an extended object. 

This is similar to the scheme used in the HYDRA system [Wu 74]. 

On the other hand, its implementation would require variable-sized 
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map entries, thus significantly complicating the implementation of 

the map. 

A third rather interesting possibility is based on the obser

vation that the masking of privileges by the revoke operation is 

not an intrinsically irreversible process. One could just as easily 

provide an "unrevoke" operation for restoring previously revoked 

privileges. Note that in this context, the use of locker boxes 

takes on a new significance, since it not only prevents inter-user 

interference, but also prevents the possessor of a capability from 

restoring privileges which have been revoked from it. The only 

major implementation difficulty with this feature is the impossi

bility of automatically deleting totally revoked entries from the 

map, since they may later have their privileges restored. This 

would require explicit deletions of map entries, making the appear

ance of the mechanism more complex. In addition, the whole notion 

of unrevoking privileges cannot be described cleanly in terms of 

the family tree model. Nevertheless, this feature could be quite 

useful, since it allows increased levels of trust between domains 

without necessitating the inconvenient repetition of the capability 

distribution procedure. The whole notion of temporary revocation 

could be quite useful, for example, in the debugging of locking 

protocols in a complex multi-process data-base system. 

The fourth possibility is similar to the previous one in the 

sense that it attempts to preserve an established pattern of dis

tributed capabilities while changing the meaning of those capabil

ities. In this case, the change is to allow switching of the con

tents of an extender box. This would enable a layer implementing 
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an extended object to dynamically change the identity of its repre

sentation. Of course, care must be taken to avoid the possibility 

of circularities in the map; this can easily be done by using the 

first extension mentioned above to detect the case in which the 

new representation is a descendant of the extender which is being 

modified and signal an error. 

The extensions described in this section could be added to 

NCS without excessive difficulty, but for the sake of clarity, the 

remainder of this thesis will assume that only the mechanisms ori

ginally described in Section 3.4 are provided. The facilities 

described in Chapter 4 would require some modification if any or 

all of the extensions were in fact included. 
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Chapter 4 

Two Facilities Using the New Capability System 

4.1 Possible Facilities Using Generalized Sealing 

The purpose of this chapter is to briefly explore two examples 

of helpful facilities which can be constructed using the NCS 

generalized sealing mechanism described in Chapter 3. One is an 

improvement to the base-level domain-call machinery providing 

selective revocation of capability parameters passed on a call 

when the corresponding return occurs. The other is an extension 

providing a new type of object called a directory, which allows 

storage and distribution of capabilities in a manner which is often 

much more convenient than that provided by the base-level system. 

Other useful facilities could also be defined in a similar 

fashion. Plausible examples might include: 

a) An interprocess connnunication facility providing extended 

objects called message channels, capable of transmitting 

messages containing capabilities valid only until the 

next message is received. 

b) A rental mediation service, guaranteeing to the lessor 

that privileges will be revoked upon contract expiration, 

and to the lessee that revocation cannot occur before 

that time. 

These and other possibilities will be left unexplored here. The 

point is simply that the nested capability scheme allows the 

construction of an open-ended set of extensions, many of which can 

also make use of the revocation properties provided. 
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4.2 Revocable Parameters 

There are certain events which constitute natural points at 

which to distribute and revoke capabilities. The most obvious 

examples are the occurrence of a domain-call and the subsequent 

corresponding return. As discussed by Schroeder [Sc 72], the 

temporary granting of access to parameter objects is a natural 

and useful feature of calls between mutually suspicious domains. 

There are other situations, however, in which it is unnecessary 

or even inappropriate to revoke all capability parameters when a 

return occurs. In particular, as previously noted, calls to trusted 

machine-extension domains need not revoke their parameters, which 

can result in substantial savings. We therefore propose a more 

general mechanism in which the caller can specify, for each para

meter passed, whether it is to be revoked when the called domain 

returns. 

It would probably be possible to provide this improved domain 

call as an extension rather than an integral part of the base

level system. This would require that all domain-calls and returns 

(or at least all those which involved any revocable capability 

parameters) be routed through this extension, which would be both 

clumsy and costly. We therefore describe revocable parameters as 

being included in the base-level domain-call mechanism. 

In the previous discussion of parameter passing in Chapter 2, 

we found it unnecessary to specify the details of the copying of 

capabilities from the caller's address space to the callee's 

address space. In discussing the modifications necessary to pro

vide revocable parameters, we continue in the same fashion, 
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describing the implementation of parameter passing in terms of the 

get_J>arameter and put_J>arameter operations used in the discussion 

of TCS in Section 2.2. 

When a domain call occurs, the caller controls parameter 

revocation by passing a Boolean vector R as an extra parameter, 

each element of which specifies whether the corresponding parameter 

should be revoked upon return. The call thus has the form: 

where R[i] controls the revocation of Pi. 

Revocation of parameters is implemented using the same push

down stack which saves the return gate used to reactivate the call

ing domain when the callee returns. Thus, instead of just a gate 

capability, each domain-call corresponds to a packet of information 

as shown in Figure 4.2-1. The first item is NR, which is the 

number of capability parameters to be revoked, and the last item 

is the return gate. Between them are the NR capabilities which 

will be revoked when the return occurs. Figure 4.2-2 depicts the 

domain-call operation, and resembles Figure 2.2-2 which shows the 

TCS version. The differences comprise the steps necessary to save 

the extra information in the stack. Each revocable capability 

parameter is sealed in a revoker box; one copy of the sealed capa

bility C is passed to the callee, and another is retained in the 

stack. The discipline followed is thus that of Figure 3.5-2; seal

ing of the callee's parameter in a locker is not necessary, since 

it is riot received by any other domain. Figure 4.2-3 depicts the 

domain-return operation, as compared with the TCS version in 
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Figure 4.2-1: Parameter revocation data in stack 
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call(CG,Pl,P2 , ... ,PN _1 ,R) 

------- p 
ENTER 

I +- 1 

R +- get_parameter(Np,Caller) 

N +- 0 
R 

Yes 

No 
push NR 

CG+- get_parameter(O,Caller) 

EXIT thru 

P +- get_parameter(I,Caller) 

No 

put_parameter(I,Callee,P) 

I+- I+l 

Yes 

C +- seal(P,C k ) revo er 
put_parameter(I,Callee,C) 

push(C) 
NR +- NR+l 

Figure 4.2-2: NCS domain-call operation 
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return( ) 

ENTER 

NR +- pop ( ) 

No 

c +- pop ( ) 
revoke(C,O) 
N +- N -1 

R R 

G +- pop( ) 

EXIT thru G 

Yes 

Figure 4.2-3: NCS domain-return operation 
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Figure 2.2-3. The added steps use the information in the stack to 

revoke the appropriate capabilities from the callee before retriev-

ing the return gate and returning control to the caller. Note that 

the revocation is total, and thus-releases map entries in an orderly 

way, as discussed in Section 3.7. 

4.3 Directories 

The notion of a directory, catalogue, or name-table mapping 

symbolic object names into some form of internal object pointer 

has appeared in most operating systems. The idea of a large 

collection of directories arranged in a tree-structured hierarchy 

originated mainly with the Multics system [Da 65], and has been 

adopted in several other systems ance that time [St 73, Co 72, 

Ri 74]. 

A directory consists of a variable number of entries, each 

containing a different symbolic name and a pointer to an object 

(plus other information to be discussed shortly). The assumption 

* that a unique directory entry is created with each object, com-

bined with the fact that directories are themselves objects, induces 

a tree-structured hierarchy on the set of all objects in existence 

at any time. The internal nodes are the directories and the leaves 

are the objects of other types. Concatenating the names of all 

entries along the path from the root directory to a given object 

yields the tree name of that object which uniquely identifies it. 

The global tree-structured view of the universe of objects 

* Except the pre-defined "root" directory. 

-· 
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can be useful in several contexts, such as system backup and 

recovery, accounting, and, as described below, in solving the 

"lost object problem," but it is often more convenient in other 

contexts to modify this view in two ways: 

a) To allow the establishing of several directory entries 

for the same object. 

b) . To allow general path names which can be interpreted as 

starting in any directory, rather than only the root

directory. 

Both of these features can be added without disturbing the under

lying tree-structure, as long as the extra entries ("links") in 

(a) can be distinguished from the original entries ("branches") 

when this is desired. This treatment of links as being full

fledged directory entries, contrasts with the Multics approach 

in which links are merely·a re-naming device and have no pro

tection significance. We choose this approach to facilitate sub

letting of rented objects. 

In addition to naming, the directory system is useful for 

purposes of access control. Attaching an access list to each 

directory entry aids in the orderly distribution of privileges 

to access shared objects. Each entry in the access list contains 

a pair 

(lock, privileges) 

which allows any possessor of a key matching the lock to obtain 

the corresponding privileges. (Of course, the specification of 

the access list, like the creation and deletion of entries, 
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represents an access to the directory itself, and must also be 

controlled.) The simplest example of a lock would be a user name. 

A more sophisticated version of this is the "principle identifier" 

used in Multics [Sa 74], which is a kind of three-dimensional user 

name with more complicated rules for matching locks with keys. 

An even more flexible scheme will be described below. Note that 

in all such schemes, a user may not invent his own key(s), but 

may invent any locks he chooses and apply them to his objects, as 

discussed by Lampson [La 69]. 

In non-capability-based systems, directories are usually 

implemented as base-level objects [Or 72, Ri 74], since their 

access lists are generally used as the system's primary protection 

facility. In a capability-based system, however, directories can 

be implemented as a higher-level extension, providing symbolically 

named "pigeon holes" for the storage and dissemination of capa

bilities [Fa 68]. This is an attractive organization, since it 

removes from the base-level system all handling of symbolic names 

and the corresponding variable-sized data structures. From the 

point of view of the base-level system, the directory layer is 

simply another user domain, although, of course, it must be regarded 

as a trusted machine extension by normal user programs which store 

their capabilities in directories. The desirability of providing 

both directories and capabilities in the same system is convincingly 

argued by Lampson [La 69]. 

The directory layer described below provides for storage of 

any number of capabilities in each directory, one per entry. 

Attached to each entry is an access list authorizing a domain to 
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obtain a sealed copy of the stored capability by executing 

* C + lookup (CD, Name, CK) 

where CD is a capability for the directory (authorizing lookup 

access), Name is a character string, and CK is a key capability. 

The unique ID of the key capability is matched against the locks 

in the access list of the entry and the corresponding privileges 

are returned in C. Subsequent reduction of the privileges 

authorized to holders of key CK will retroactively reduce the 

privileges in C, using the underlying revocation machinery. 

(Various conditions, such as failure to find an entry with the 

given name, or failure to find a lock in the access list which 

matches the key CK cause errors to be signalled and no capability 

to be returned.) The use of freely distributable capabilities as 

the keys authorizing directory lookups allows the users to flexibly 

and economically establish any group authorization scheme desired 

by simply passing keys to each other. Neither the base-level 

system nor the directory layer need take any explicit notice of 

such gr0ups [La 69, St 73]. More complicated facilities such as 

path name lookup [Da 65], multiple directory searching [Or 72, St 73] 

and automatic lookup on first use of a symbolic name [Da 68] 

could be implemented in terms of this basic lookup primitive; 

these will not be discussed here. 

In such a directory system, there is no intrinsic distinction 

* In terms of base-level operations, this would be written 

C + call (CG,CD,Name,CK) 

where CG is a capability for a gate into the directory layer 
corresponding to the lookup operation. 
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between the various directory entries containing capabilities for 

a given object. For the reasons cited previously, however, it is 

useful to distinguish one of the entries as a branch and consider 

the others to be links. In particular, one can solve the lost 

object problem by guaranteeing that the branch exists for at least 

as long as the object. This is accomplished by creating the 

object and the branch simultaneously, and having the directory 

system, upon removing the branch from the directory, delete the 

object (if it still exists). 

The use of branches to solve the lost object problem is rela

tively straightforward in the case of base-level objects and 

directories. By performing the creation of all such objects through 

calls on the directory layer which also create a directory branch, 

one can insure the existence of a branch for each new object. 

When the branch is removed, the object can be destroyed by the 

directory layer, either internally (in the case of directories) or 

by calling the appropriate operation (in the case of base-level 

objects). 

In the case of extended objects, however, the situation is 

more complicated, for two reasons: 

a) It is inappropriate for the directory layer to have 

embedded in it any knowledge of (e.g. calls on) higher 

layers. 

b) New higher level extended types can be defined at any 

time. 

These considerations render impossible the creation of such objects 

via the directory layer, and necessitate a more circumspect 
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approach to their deletion when a branch is removed. 

When a higher layer creates an extended object X and wishes 

to take advantage of the directory system to keep X from becoming 

lost, it can do so by executing 

This creates an entry in the directory indicated by CD. The 

entry has name Name and contains ex• a capability for the new 

object. In addition, the entry holds CG, a capability for gate 

G into the caller (i.e. the layer implementing the object). When 

the branch is later removed from the directory, the directory sys-

tem guarantees to execute 

The gate G should correspond to the deletion operation for objects 

of the extended type, hence this is equivalent to 

delete (CX) 

Of course, it is the responsibility of the layer implementing X 

to insure that this call does in fact result in the deletion of X. 

The directory layer's only concern is that it must be prepared for 

anything which may happen between the time it performs the call 

* Repeated use of the make_branch operation specifying the same 
object X would cause the directory structure to fail to be a 
tree. This might be of concern to layers at or above the level 
at which X was implemented (although it certainly would cause no 
trouble for the directory layer). The layer implementing the ob
ject could protect itself from this situation if the make branch 
operation were modified to require an extra parameter CT• a 
capability for the type of X, as authorization to make a branch 
for X. 
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and the time the callee returns. This could include various types 

of errors, blocking of the process, and even further calls on the 

directory layer. The straightforward way to handle this is simply 

to have the directory layer complete its part of the branch removal 

and then exit to the opject deletion operation via a jump-call as 

* described in Section 2.2. 

It might appear that the calling of the higher layer object 

deletion operation by the directory layer violates the ordering 

constraints of layered system construction. This is not really 

the case, however, since this call does not represent any knowledge 

of the higher layer embedded in the directory layer. Such "blind" 

upward calls are quite similar to hardware "traps" or "exceptions." 

The other directory layer operations of interest are: 

make_link (CD,Name,CX) 

remove_entry (CD,Name) 

set_lock (CD,Name,L,P) 

CK+ create_key () 

create_directory (CD,Name) 

delete_directory (CD) 

The make link operation establishes a new entry in directory D, 

containing CX and named Name. The remove_entry operation 

removes a link or a branch. In the latter case, it performs 

object destruction as described above. The set lock operation 

establishes a new lock on the named entry in directory D. The 

lock is L (i.e. it can be opened using a key with capability-ID= L) 

* We ignore the extra complications involved if object deletion is 
allowed to fail. 
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and it confers the set of privileges P. The create_key opera

tion simply returns a capability of type 'key' with a new unique 

capability-ID. The create_directory operation establishes a new 

empty directory as a son of directory D (i.e. pointed to by a 

new branch in D with name Name). The delete_directory opera

tion deletes the directory D. This requires removal of all 

entries from D, including any branches for other directories 

which must thus be deleted, and so on. In other words, the entire 

subtree rooted in D must be traversed and deleted. This compli

cation is best postponed until a higher level utility program, 

hence the directory layer can simply refuse to delete a non

empty directory. 

The implementation of directories as described is relatively 

straightforward. Each directory is represented as a segment, con

taining entries formatted as in Figure 4.3-1. The original capa

bility C and the entry name are present when the entry is first 

created, along with the deletion-gate capability in the case of a 

branch. Subsequent use of the set lock operation proceeds as 

shown in Figure 4.3-2. First the lock is added to the access list 

if not already present, together with a capability to hold the 

privileges corresponding to the lock. This capability is created 

by sealing the original capability CX in a revoker box. Then 

the privileges in the capability are revoked down to the desired 

level. Note that in the case of applying the set lock operation 

to an already existing lock, any outstanding capabilities previously 

obtained via that lock using the lookup operation will also have 

their privileges revoked. Finally, if the revocation was total 
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deletion gate capability* { ~'----------------c_G_, ________________ _ 

object capability { ~'----------------c_x ________________ __ 

symbolic name Name 

11 

cl 

12 
access list c2 

• . . 
1N I CN 

*in branches only 

Figure 4.3-1: A directory entry 
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set lock(C ,Name,L,P) - D 

ENTER 

I+ index of 
Lin access list 

bad 
parameter 

not found 

No 

ERROR 

ERROR 

I+ N + N+l 

L + L 
I 

CI+ seal(C,C k ) revo er 

No 

EXIT 

Yes 
remove <LI,CI> 

from access list 

Figure 4.3-2: The set lock operation 



(i.e. P=O), the lock is deleted from the access list. (Such 

total revocation is also performed on each lock in the access list 

when the entire directory entry is removed. This is another exam

ple of orderly use of the underlying map lll8Chinery, as discussed 

in Section 3.7.) 

The lookup operation, upon finding the named entry, searches 

the access list for a lock matching the proffered key. If one is 

found, the corresponding capability is sealed in a locker box and 

returned to the caller. Thus, the net result of the set lock 

and lookup operations is distribution of capabilities following 

the discipline of Figure 3.5-5. 

The create_key operation is quite simple to implement. It 

would be nicely captured by the simple sealing of an empty extender 

box. Lacking this facility, the directory layer can simply seal 

any handy capability, since only the external appearance of the 

new key capability is significant. 

The directory layer just described is probably the best exam

ple of the kind of useful extensions which can be constructed using 

the NCS nested capability mechanism. It provides extremely useful 

features for the users of the system, yet its implementation is 

rendered relatively simple by the power of the underlying base

level naming and protection facilities. 



5.1 Sunnnary 

Chapter 5 

Summary and Conclusions 

This thesis has discussed integrated naming and protection 

mechanisms for computer systems, providing protected names called 

capabilities which both identify an object and authorize access 

to it. A major advantage of capabilities is the flexibility pro

vided by their being freely copyable. A corresponding disadvantage 

in existing capability systems has been the difficulty of revoking 

previously distributed capabilities. The main result of this 

thesis has been the design of a capability system providing both 

free distribution and orderly revocation of capabilities. Various 

approaches to this problem were discussed in Chapter 2, culminating 

in a set of goals to be met by a new design. The generalized 

capability sealing mechanism of Chapter 3 was shown to meet these 

goals, providing selective revocation of capabilities, as well as 

a flexible type extension facility. A possible implementation of 

the design was discussed in sufficient detail to demonstrate its 

practicality. Various possible elaborations on the design were 

also discussed. Chapter 4 described two facilities applying 

revocable capabilities to the needs of users in specific ways. 

5.2 An Area for Further Research 

In terms of the facilities provided, the naming and protection 

mechanisms described in this thesis appear to be a sound basis 

upon which to build a secure and flexible user environment. In 
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particular, the provision of revocable capabilities eliminates 

one of the main objections often made to capability-based designs 

[Sc 72], thus making the proposed design applicable in a wider 

class of situations. One could thus characterize the thrust of 

this thesis as an attack on the flexibility aspect of the pro

tection problem. 

On the other hand, the thesis does not make any direct attack 

on another more general aspect of the protection problem which one 

might call the comprehensibility of protection mechanisms. 

Experience indicates that protection mechanisms which are confusing 

to users are likely to be misused, or even go unused [Sa 74, Sc· 72). 

Even the user who correctly applies a confusing protection feature 

may feel no great confidence that it enforces his intentions. 

There are at least three ways in which protection systems can be 

confusing: 

a) They can be based on a disorderly set of separate but 

interacting mechanisms. 

b) The relevance of the mechanisms to specific situations 

can be obscure. 

c) The correspondence between global state of the protection 

machinery and the desires of the users can be difficult 

to assess. 

A fair amount of progress has been made on problem (a). The 

early proliferation of ad hoc protection mechanisms was a major 

motivation for the original development of capabilities [DVH 66], 

as well as later more abstract treatments by Lampson [La 71], 

Jones [Jo 73], and others. On the other hand, strict minimization 



of the set of primitives will not necessarily clarify the descrip

tion, especially since it may exacerbate problem (b). For example, 

our unification of privilege revocation and type extension in a 

single mechanism, while interesting in itself, may or may not repre

sent a net increase in the comprehensibility of the design. 

Problem (b) is caused by the gap -- often quite broad 

between the concerns of the human users and the mechanisms provided 

by the protection system, in terms of which they must express 

those concerns. Of course, the user need not deal only with the 

protection primitives of the system; various extensions, such as 

those mentioned in Chapter 4, can be provided. These do not go far, 

however, in attempting to capture the interactions between users 

seen in the larger social context. This is due in part to the 

imprecision of many legal and social principles, resulting from 

their implicit reliance on the reasonable judgement of the parties 

involved, a characteristic sadly lacking in most computers. Much 

work remains to be done in mapping such principles into the pro

tection primitives of computer systems [Ro 74, Pe 74, Tu 74]. 

Problem (c) is perhaps the most difficult of the three. 

During our discussion of capability mechanisms, we emphasized 

the desirability of allowing distribution and revocation of capa

bilities without requiring global knowledge of such propagation on 

the part of the participants. Such global knowledge is sometimes 

desirable for its own sake, however. Moreover, even if the entire 

state of the protection machinery is visible (which can itself 

raise serious questions of privacy), the full significance of that 

state cannot be assessed without knowledge of the levels of trust 
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and suspicion between the various possessors of access privileges. 

This appears to be a very fundamental problem, and it is not clear 

what approach (if any) will prove fruitful in dealing with it. 

5.3 The Future of Protection 

Much work remains to be done in the area of protection. In 

the long run, protection will contribute to the development of 

generally available computer utilities in at least three ways: 

a) By facilitating the development of extremely large soft-

ware systems, such as sophisticated service programs, 

and the operating system of the computer utility itself. 

b) By protecting the investments of users who develop large 

proprietary programs and/or data bases, thus providing a 

suitable marketplace for such services. 

c) By enforcing social controls on the dissemination of 

stored information. 

Given the difficulty and importance of the problems to be solved 

protection promises to be an active area of research for many 

years to come. 

--,, 
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