
CAMBRIDGE

MAC TR-140

NAMING AND PROTECTION IN

EXTENDIBLE OPERATING SYSTEMS

David D. Redell

November 1974

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC MASSACHUSETTS 02139

-------··---&------···------------Ui-. 11191111!111111111l111111111191111111111111111lll!llillillllliiiiii..Wili1'""

MAC TR-140

NAMING AND PROTECTION IN EXTENDIBLE

OPERATING SYSTEMS

David D. Redell

This report reproduces a thesis submitted to the
University of California, Berkeley, on September
23, 1974 in partial satisfaction of the require
ments for the degree of Doctor of Philosophy in
Computer Science

Publication of this report was sponsored by the Com
puter Systems Research Division of Project MAC, an
M.I.T. Interdepartmental Laboratory and was supported
in part by the Air Force Information Systems Technology
Applications Office (ISTAO) and by the Advanced Research
Project Agency (ARPA) of the Department of Defense under
ARPA order No. 2641 which was monitored by ISTAO under
contract No. Fl9628-74-C-0198; and in part by Honeywell
Information Systems Inc.

CAMBRIDGE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

MASSACHUSETTS 02139

i

NAMING AND PROTECTION IN EXTENDIBLE OPERATING SYSTEMS

David Day Redell

Abstract

The properties of capability-based extendible operating systems

are described, and various aspects of such systems are discussed,

with emphasis on the conflict between free distribution of access

privileges and later revocation of those privileges. The discussion

culminates in a set of goals for a new capability scheme.

A new <Jc.sign is then proposed, which provides both type exten

sion and revocation through the definition of generalized sealing

of capabilities. The implementation of this design is discussed

in sufficient detail to demonstrate that it would be workable and

acceptably economical.

The utility of the proposed capability mechanism is demon

strated by describing two facilities implementable in terms of it.

These are: (a) revocable parameters for calls between mutually

suspicious subsystems, and (b) directories providing a civilized

medium for the storage and distribution of revocable capabilities.

ii

Acknowledgments

First, I would like to thank my thesis advisor, Professor

R.S. Fabry, for providing that skillful blend of encouragement

and constructive criticism which constitutes good advice. I am

also indebted to the other members of my committee, Professor

James H. Morris and Professor Martin Graham, for reading and

commenting on earlier versions of this thesis.

It is a pleasure to thank the others who read and commented

on earlier drafts, including Dr. James Gray, Dr. Butler Lampson,

Gene McDaniel, Dr. Bernard Peuto, Dr. Howard Sturgis, and espe

cially Paul McJones. Earlier conversations with Bruce Lindsay also

underlie much of the work described here.

Ruth Suzuki deserves the credit for the extremely fast and

accurate typing of the final draft of this thesis.

Most of all, I thank my wife Connie, not only for her

patience and understanding, but for typing the rough draft as well.

Abstract . . . •

Acknowledgments

Chapter 1: Introduction ..

1.1 Overview.

1. 2 Protection ,

Contents

1.3 Framework for Discussion •.

1.4 The Computer Utility.

1.5 Extendibility

1.6 Thesis Plan

Chapter 2: A Typical Capability System

2.1 A Typical Capability System

2.2 Implementation of Capabilities in TCS

2.3 Revocation of Access Privileges

2.4 Indirection Through Link Segments

2.5 Type Extension

2.6 Hierarchies of Objects and Types.

2.7 Type Extension Using Sealed Capabilities .

2.8 Goals for a New Capability System

Chapter 3: A New Capability System

3.1 A New Capability System

3.2 Design Considerations for Revocation.

3.3 Interactions with Type Extension

3.4 Generalized Sealing

3.5 Examples of Generalized Sealing

3.6 Implementation of Generalized Sealing in NCS

i

ii

1

1

2

4

6

8

9

11

11

21

38

54

61

71

77

82

83

83

83

96

97

106

113

3.7 Some Implementation Details

3.8 Possible Elaborations on the Design

Chapter 4: Two Facilities Using the New Capability System.

4.1 Possible Facilities Using Generalized Sealing

4.2 Revocable Parameters.

4.3 Directories

Chapter 5: Summary and Conclusions

5.1 Summary

5.2 An Area for Further Research.

5.3 The Future of Protection.

References ..•..•

-~age

130

134

137

137

138

143

154

154

154

157

158

r=

1.1 Overview

1

Chapter 1

Introduction

Computers have been with us now for just over a quarter of a

century. Although their ultimate potential impact on society is

still hard to predict, it seems safe to say that they will rank

with such transforming inventions as the printing press and tele

vision in their effect not only on the way we live, but also on

the way we think. Already their role has Hhifted from that of

simply high speed calculating tools to a more fundamental function

as the natural repository for an increasing amount of society's

body of information. The near future should see the development

of computer utilities bringing reliable and economical computer

access to the general public, in the form of services of unpre

cedented scope and power [Fr 74].

These new roles of computers raise many serious social ques

tions which are far from being answered [Ro 74, DF 65, HEW 73].

Moreover, even if these questions are satisfactorily answered, the

resulting policies will require an appropriate technological frame

work within which they can be expressed and enforced [Po 74, Pe 74].

Thus, such social and legal issues as privacy, secrecy, confiden

tiality, and accountability generate a technological problem which

could be called the "total system security problem."

The main subject of this thesis is protection. Protection is

that aspect of the total system security problem which deals with

the control of access by programs running within a computer system

2

to information stored within the system [La 71, Jo 73). It is thus

concerned with prevention of undesired accesses, whether accidental

or malicious. Protection is intimately involved with the naming

mechanisms used by programs to specify which items of information

they wish to access. We will discuss system designs which provide

both naming and protection in a single integrated mechanism [DVH 66,

Fa 74). We also emphasize the notion of freely distributable

access privileges, in the sense that any possessor of a privilege

may pass it on as he sees fit [La 69). On the other hand, we recog

nize the importance of allowing later revocation of such privileges.

The main result of the thesis is the description of a naming and

protection mechanism allowing both free distribution of privileges

and subsequent revocation in an orderly way.

Another desirable characteristic of naming and protection

mechanisms is extendibility [La 69b, Wu 74). This property allows

the construction of the system in layers or "levels of abstraction"

[Di 68b], thus increasing reliability and allowing user-written

extensions to augment the system with new services in a uniform

way. The extendibility of the proposed mechanisms will be discussed

in some detail.

1. 2 Protection

The protection problem is only one aspect of the total system

security problem. Thus, in discussing the protection problem, it

is important to delimit the scope of the discussion by distinguish

ing several other closely related problems, including:

F
i

3

a) Hardware reliability

b) Physical security

c) User authentication

d) Personnel certification

All of the above problems exhibit two rather unfortunate properties:

1) They do not admit of complete solutions, but only of solu-

ions quantitatively comparable in terms of cost-effective

prevention of trouble (e.g. high penetration cost, long

mean-time-between-failures, etc.)

2) The failure of a solution to any one of them can under-

mine the entire protection system.

On the other hand, if we hypothesize a situation in which problems

(a) through (d) have been completely solved, we can consider the

protection problem as occurring in a self-contained artificial

universe, free of such real-world distractions as locks which can

be picked and circuits which can burn out. Within this idealized

framework, the protection problem does admit of complete solutions·

in many important situations [La 74]. This is not to say, of

course, that all solutions constructed within such a framework

are automatically complete. For example, one can protect data by

requiring accessing programs to provide a password or key authorizing

the access [La 69]. Internal passwords, like external passwords,

are vulnerable to guessing, and are thus not a complete solution.

On the other hand, one can implement internal keys which are

unforgeable, opening locks which are unpickable, thus providing

a complete solution to the problem. The significance of this lies

not primarily in the reduction of the probability of failure (from

,
)

4

negligible to zero) but in the conceptual shift in how one views

the mechanism (with absolute confidence, rather than quantitative

optimism).

It can be argued that the above viewpoint is unrealistic,

since problems (a) through (d) do not admit of complete solutions

as hypothesized. The point, however, is that this factorization

of the total security problem allows one to take a very rigorous

approach to the situation in which malicious intent manifests

itself in the behavior of high speed internal computations. This

is precisely the situation in which our intuitions are least likely

to prove reliable in assessing the quantitative adequacy of incom

plete solutions.

1.3 Framework for Discussion

For our purposes, we can regard the function of the operating

system as being the transformation of the basic hardware resources

of the computer into a universe of abstract resources or objects,

and a set of operations for manipulating those objects. This point

of view is often referred to as the object-oriented approach, and

the collection of operations as the abstract machine. Each object

has an attribute called its~. which determines the set of

operations which can meaningfully be applied to the object. Various

types of objects are provided, most notably processes. Processes

are the active entities in the system, capturing the intuitive.

notion of a "locus of control" or "execution point." Processes

can attempt to access other objects in the system by performing

I 5
I

various operations on them, and it is these accesses which are

checked and allowed or disallowed by the protection mechanisms of

the system. At any given time, a process has some set of privileges,

specifying which operations it may perform on which objects. This

set of privileges is called the domain in which the process is

executing. The privileges available to a process can change as a

result of either:

a) addition or removal of privileges in its domain of

execution, or

b) switching to a different domain of execution.

Thus, domains themselves have an independent existence and are

objects in. their own right. (The reasons for taking this point of

view will become clear in Chapter 2.) A domain can be characterized

as a passive object, serving to control the execution of an active

process. It will often be convenient, however, to refer to the

actions of a process executing in a domain as being performed by

the domain itself, and we will use this active characterization

when there is no danger of ambiguity.

The domain model is general enough to describe most protection

schemes found in existing systems [La 71]. We are interested in

a particular class of such schemes in which a domain consists of

a set of capabilities [DVH 66, La 69, Fa 74]. A capability serves

both as the name of an object and as a set of privileges to access

that object. Thus, in a capability system, a domain is able to

name only those objects to which it has access via its capabilities.

Those capabilities are stored in the memory of the domain, which

w,· wi 11 :1:-Hmmc• com;lsts of a number of segments [De 65, BCD 72],

6

each of which comprises a variable length array of addressable

items. A domain may copy its capabilities and distribute them as

it sees fit, although it may not, of course, make arbitrary modi

fications to them. Thus, capabilities are like data "sealed in a

box," a characterization which we will pursue in some detail later.

1.4 The Computer Utility

The mechanisms discussed in this thesis would be useful in

any computer system. The context which maximizes their importance,

however, is that of the computer utility. The notion of a computer

utility has received considerable attention in the literature [CV 65,

Sa 66, Sc 72, Fr 74] and seems likely to play an increasingly

important role in the future. In such a utility, a large user

community shares an appropriately large information storage and

processing facility in much the same manner that the users of elec

trical and telephone utilities share the corresponding power genera

tion and communication facilities. Such physical sharing (i.e.,

sharing of physical resources) provided the original motive for

developing multi-user computer systems. That motive was the desire

to lower the cost of hardware resources through economies of scale

and statistical smoothing of load fluctuations. This is gradually

being rendered less important by the continual decline in hardware

costs. A much more fundamental motive remains, however, which is

in itself more than adequate justification for building a computer

utility. This is the desire for flexible logical sharing (sharing

of information) between users, so that they may build upon each

7

other's work [Sa 66, De 68].

Since the user community of a computer utility consists of the

public at large, the logical sharing within that community takes

on more the character of transactions in a marketplace than of

informal friendly cooperation [Fr 74]. In particular:

a)

b)

Sharing is often financially motivated.

The parties involved may not trust each other.

.,·;'

Point (a) implies that sharing often represents sale or rental of

the shared objects. The rental case is a strong test of the pro

tection and accounting mechanism of the computer utility. This is

particularly true in the case of subletting, in which access to a

rented object passes through several hands before reaching the end

user. Point (b), which is in part a result of (a), reflects the

fact that the standard attitude of the parties involved in a trans

action in any market place is usually some degree of mutual suspi

cion. Since programs in the system serve as the agents of users

on the outside, the programs themselves also exhibit mutual suspi

cion. More detailed discussion and examples of mutual suspicion

can be found in Lampson [La 69] and Schroeder [Sc 72].

One aspect of the mutual suspicion problem which can be awk

ward to handle is the fact that the degree of suspicion between two

users may change with time. For example, an employee may join or

leave a company, or a renter may be late in paying his bill. Thus,

it is important that the privileges of a given user or program to

access a given object be able to change with time. Moreover, it

is very desirable that these adjustments of privileges be as pain

ll•:-H; nH pnHH lb le. We will address this issue at some length,

8

particularly in the case of increasing suspicion where previously

granted privileges are to be revoked.

1.5 Extendibility

The construction of a large operating system is a formidable

task. As the richness of the user environment provided is increased,

so also is the size and complexity of the system which provides it.

In fact, unless controlled by a suitable design methodology, the

complexity of a large operating system may preclude its ever being

completely debugged. One of the most promising such methodologies

is that of layering, in which the system is constructed as a base

level* and a series of extensions. Each layer extends the environ

ment in which it runs, thus presenting a richer environment for

higher layers. The key assumption in such a system is that no layer

has embedded in it any knowledge of the functioning of higher

layers. This, combined with the obvious precaution of protecting

lower layers from irterference by higher layers, yields a structure

in which changes to and malfunctions of higher layers cannot affect

the correct functioning of lower layers in any way.

The construction of a layered system can be viewed in two ways.

From a top-down point of view, the task is one of appropriately

dividing the desired set of functions into a sequence of layers.

From a bottom-up point of view, the task is to transform some pre

existing system into a more complete environment by adding useful

new features. The latter point of view is most appropriate in the

* Sometimes called the "kernel" [Wu 74] or "nucleus" [Ha 70].

9

case of user-written extensions, although to a large extent, the

exact distinction between system programs and user programs becomes

unimportant in a layered design.

Given the object-oriented point of view discussed above, the

appropriate way to view extensions is as defining new types of

objects and providing the appropriate operations on them. This

immediately raises the question of how such objects are named and

how access to them is controlled. It is IIPSt desirable for the base

level naming and protection mechanisms to provide these functions

for all higher level objects in the system. We will describe

various~ extension features which allow this.

1.6 Thesis Plan

Since the mechanisms described in this thesis represent fur

ther developments of ideas found in several existing or proposed

computer systems, it is appropriate to summarize those ideas.

Therefore, Chapter 2 begins by describing a hypothetical system

exemplifying the relevant features of those systems, and goes on

to discuss the use of those features in various situations, placing

special emphasis on revocation of privileges and on type extension.

The chapter concludes with a list of goals derived from these

discussions.

The central portion of the thesis is Chapter 3, which proposes

a new system design satisfying the goals derived in Chapter 2, and

discusses the implementation of that design in some detail. Some

possihilities for further elaboration of the design are also

10

discussed briefly.

Chapter 4 examines the use of the mechanisms.of Chapter 3 in

providing two facilities helpful in counnon situations: revocable

parameters for mutually suspicious subsystem calls, and directories,

for storage and distribution of capabilities.

Finally, Chapter 5 suunnarizes the results of the thesis and

briefly evaluates their significance.

11

Chapter 2

A Typical Capability System

2.1 A Typical Capability System

The central goal of this thesis is the detailed specification

of a proposed behavior for capabilities, and the description of an

efficient implementation of capabilities exhibiting such behavior.

The main aspects of capability behavior to be examined are the

distribution and revocation of privileges, and type extension. To

bring the issues into focus, we sketch a hypothetical system called

"TCS" (for "Typical Capability System") to serve as a context for

discussion and as a starting point from which various improvements

can be explored. This typical system as described below is not

identical to any existing or proposed system but contains features

found in many previous systems, including CAL-TSS [La 69, St 73],

Magnum [Fa 68], Plessy 250 [En 72, Co 72], HYDRA [Jo 73, Wu 74],

Project SUE [Gr 71], BCC 500 [La 69], and Multics [BCD 72, CV 65,

Sa 74].

In the definition of TCS, two conflicting considerations

influence the level of detail at which the various features should

be described. On the one hand, it is important that the definition

be specific enough to make subsequent discussions clear and unam

biguous. On the other hand, the inclusion of extraneous detail

would not only cloud the issue, but might also falsely appear to

restrict the class of systems to which our subsequent improvements

are applicable.

For these reasons, the definition that follows tends to pin

12

down only those details which are relevant to the later discussion.

In other cases, several alternatives may be sketched, or the fine

points may be glossed over entirely when not sufficiently

interesting.

In defining TCS, a logical place to begin is with the capa-

bilities themselves. As stated previously, a capability serves

both as the name of an object and as a package of privileges allow-

ing the object to be accessed in various ways. It is also desirable

to distinguish between objects of different types; in TCS this

distinction is carried in the capability, rather than in the object

itself, for reasons which will become clear during the discussion

of type extension. Thus, a capability for an object contains:

a) the unique identifier or "ID" of the object~

b) the~ of the object,

c) a set of privileges to access the object.

Each domain in TCS has its own segmented address space. (As

pointed out by Fabry [Fa 74], freely copyable capabilities elimi-

nate the need for communicating domains to share a common address

space.) The capabilities possessed by a given domain are stored

within the segments of its address space. At the same time, those

capabilities serve as the skeleton which defines and structures

that address space. (It is worth emphasizing that an address space

defined by freely copyable capabilities tends to be a much more

fluid structure than a more conventional address space defined by

system data structures.) Associated with each domain is a single

* The object ID has sometimes been referred to as the "unique name"
or "global name" of the object. We wish to avoid this terminology
to emphasize the fact that it is the capability itself which
should be thought of as the global name of the object.

13

implicit segment, which serves as the "root" of its address space.*

A capability for the implicit segment is part of the definition of

the domain. All other segments (or objects of other types) are

addressed via capabilities in this implicit segment. There is no

fundamental reason, however, to restrict capabilities to appear

only in this implicit segment; in fact, it will be assumed here

that capabilities and "normal" data can be freely intermixed in

any segment. (Ways of implementing this without compromising the

integrity of the capabilities will be discussed later.)

Outside the context of any particular address space, we can

define the absolute address of an item (capability or datum) to be

a pair <C,d>, where C is a capability (for a segment) and d

is a displacement (word, byte, or bit number). Let (C,d) denote

the contents of address <C,d>. Then if CI is a capability for

some domain's implicit segment, a simple address w issued by

that domain corresponds to the absolute address <CI,w> (i.e.,

word w of the implicit segment). Similarly, the standard notion

of the two part address slw of word w in segment s is equi-

valent to <(CI,s),w>. When capabilities can be stored anywhere

in the address space, addresses involving them can become more com-

plicated, such as slw1 !w2 = <((CI,s),w1)w2> (where both <CI,s>

and <(CI,s),w1> must contain segment capabilities). This suggests

the provision of direct hardware implementation of these multi-

level addresses and/or programmable capability registers to hold

* This is similar to the Multics descriptor segment [BCD 72] or the
CAL-TSS working C-list [St 73]. In the MAGNUM [Fa 68] and
Plessy 250 [En 72] machines, it is effectively implemented in hard
ware in the form of several capability registers. Lampson [La 74]
refers to the implicit segment as the "access point" of the domain.

"'kl ,"l<' _:() .l"'l,.,.t.,

·:i . •i•. \ • ; "

.,.){ s1"h<\s1

r

14

intermediate capabilities during the evaluation of such addresses.

Lacking these features, a domain could directly utilize only

capabilities in its implicit segment; all other capabilities would

have to be copied into the implicit segment before use. Various

forms of multi-level addressing have been provided in existing

systems [Ha 72, St 73, Ne 72, Wu 74].

Figure 2.1-1 depicts two domains D1 and D2 , whose implicit

segments are s1 and s2 respectively. The address space of D1

includes segments s1 , s3 , s4 and SS. The address space of D2

< includes s2 , s1 , SS' s6 , and s7 • Note that s1 and SS are

shared by both domains, and that the address space of o2 may in

fact include (indirectly) the entire address space of D1 , depend

ing upon the privileges in o2•s capability for s1 •

As mentioned in Chapter 1, domains can be characterized as

either active or passive objects. In its passive role as a collec-

tion of privileges, a domain in our typical capability system is

identical to its implicit segment; from this point of view, the

distinction between a domain and a segment is simply a question of

emphasis. On the other hand, in its active role as an exerciser

of privileges, a domain is sure to require additional information

in its representation, relating to control structures, error handling,

entry points and so on, which we will call its domain-descriptor.

While the exact details of this extra information are not relevant

to the current discussion, it will sometimes be useful to distin-

guish between the domain in this larger sense, and its implicit

segment.

15

s s

Figure 2.1-1: An example of two domains

16

The active characterization of domains is somewhat imprecise,

since, strictly speaking, nothing is ever done by a domain but

always by a process executing in or associated with the domain.

This raises the issue of the exact relationship between domains and

* processes. Since protection and scheduling are essentially inde-

pendent functions, it is tempting to define domains and processes

independently, and to allow processes (at least potentially) com-

plete freedom to choose their domain of execution. This implies

that

a) A given process may execute in various domains at

different times.

b) A given domain may have zero, one, or several processes

executing in it at any given time.

In such a scheme, two types of communication mechanisms are required.

One is interprocess communication, which allows two parallel pro-

cesses, in the same or different domains, to synchronize their

execution and exchange messages. The other is interdomain

communication, which occurs at the point in time when a process

crosses from one domain into another. This is generally viewed as

being much like a procedure call/return sequence, including the

passing of parameters, and is thus referred to as a domain-call.

This will be discussed in more detail later.

In actual systems, one or both of two simplifying restrictions

is often imposed. The first restriction is to force a given process

to always execute in the same domain. This eliminates the rather

complex machinery needed for domain-calls, and forces all

* Called "environment binding" by Jones [Jo 73).

17

inter-domain communication to be cast as inter-process communication.

While this is clearly a simplification of the base-level system,

in practice it often forces higher level software to essentially

simulate domain-calls using multiple processes, only one of which

is active at any given time. This is not only inefficient, but can 1

also be surprisingly clumsy, considering that parallel processes

seem to be such a powerful construct. Indeed, the unused potential

parallelism seems to cause much of the clumsiness.

The other restriction which is often applied is to allow only

one process at a time to execute in a given domain. This can be

done dynamically, treating the domain as a "critical section," but

is more often done statically, by associating each domain with a

single process, and allowing only that process to execute in it.

One reason for making this restriction is the previously mentioned

correspondence between domains and address spaces. As pointed out

by Lampson [La 69] this tends to result in address conflicts between

multiple processes executing in the same domain. One way to avoid

these conflicts is to equip each process with special base registers,

or a pushdown stack for working storage, but what such mechanisms

really provide is simply the ability for each of the processes

executing in a given domain to see the domain somewhat differently,

in a rather stylized way. A more straightforward and flexible

approach is to actually provide a different "copy" of the domain

for each process, and to use the standard sharing mechanisms to

avoid redundant storage of the identical components of these domains,

18

* (e.g. pure procedures, unchanging capabilities, etc.). In such a

scheme, each process has a private set of domains, and moves among

them using the domain-call mechanism. Such a scheme will be assumed

in subsequent discussions of TCS, although this is not essential

to the proper functioning of the improved capability mechanisms

proposed later.

Given that a domain possesses some capability, it is allowed

not only to use the capability to access the indicated object, but

also to manipulate the capability itself in certain carefully

constrained ways, including:

a) Copying: the capability may be freely copied at any time,

here denoted by a simple assignment

b) Reducing privileges: the privileges in the capability

may be reduced, here denoted by

where P

reduce(C ,P)
a

is a mask indicating the subset of

previous privileges which are. to be retained.

C's
a

In some systems [St 73] these two operations have been combined;

here, they are presented separately to ease the later transition

to an improved scheme.

*
One use of the mechanisms described so far would be the

We will assume that a domain is created by an explicit create-
domain operation, and remains in existence until destroyed [St 73].
A more complicated approach provides the automatic creation of a
domain whenever a call is directed to a global domain-prototype
object [Wu 74].

19

passing of capabilities between domains via shared segments. In

one sense, this is a very powerful feature, since it allows any

possessor of a privilege to pass it on without requiring any sort

of approval by the original donor of that privilege (except in the

special case in which the donor is empowered to disallow all such

sharing; .e.g. in the case of a "confined" subsystem [La 73]). In

't
·'· - .__;

--~~ v

another sense, however, this feature is very weak, since it pro-

vides only a relatively costly, clumsy and unstructured method of

inter-domain communication. This weakness would be particularly

evident in the case of mistrust between domains (e.g. "mutually

suspicious" subsystems). Both of these considerations suggest that

the domain-call mechanism should provide for the passing of capa- ,,,
..,

-
bilities, as well as data, as parameters. The latter consideration ... s:

v1

suggests the utility of such a feature, while the former shows

that the ability to keep a domain from giving away its privileges

is already eliminated by freely copyable capabilities and is not

further compromised by allowing the passing of capabilities as

parameters.

We assume that TCS allows the passing of capability parameters

and implements this by copying the indicated capabilities from the

calling domain (or caller) to the called domain (or callee) at the

time of the call, and copying back any result capabilities at the

time of the return. A domain-call thus takes the form

' . '.

where the Pi are parameters (data or capabilities) and CG is

20

a gate capability for the callee, allowing activation at a particular

entry point. Similarly, a domain-return takes the form

where the Ri are the results and the return gate is implicitly

the site of the original call. We leave unspecified here such

details as static vs. dynamic allocation of space for capability

parameters in the receiver's address space, automatic type checking

of capability parameters, and so on.

In addition to making unwanted accesses to objects, domains

can misbehave by making unreasonable demands on the resources of the

system [La 71]. Some mechanism must be provided to prevent them

from interfering with each other in this manner. Since the details

of accounting and resource allocation are beyond the scope of this

thesis, we will simply assume that each domain is funded by an

account, which limits its resource consumption.

One particularly tricky problem which occurs in capability

systems is the "lost object problem," which arises when all capa

bilities for a given object are inadvertantly discarded, making

explicit destruction of the object impossible, and the space occu

pied thus unrecoverable. Given our attitude about accounting, this

is really an opportunity for self-inflicted harm, rather than mali

cious sabotage. Nevertheless, recovery from such situations must

be possible, hence several possible solutions to the lost object

problem will be discussed at appropriate points.

-

r

21

2.2 Implementation of Capabilities in TCS

In this section we discuss, in a fair amount of detail, cer-

tain aspects of the implementation of a system like TCS. Three

considerations influence the choice of the particular mechanisms

described in this section. For one thing, various systems similar

to TCS have been constructed, and their implementations, although

varying in many ways, have shown some conunon features whose advan

tages have become generally accepted. In addition, certain facilities

not included in any existing capability system are widely regarded

as desirable, hence their implementation implications are of interest.

Finally, discussion of implementation of TCS is intended to set

the stage for the corresponding discussion in Chapter 3 concerning

the implementation of a more sophisticated capability scheme.

The most obvious necessity in implementing a capability system

is some mechanism to protect the representations of the capabilities

themselves from unauthorized alteration. The proper functioning

of the entire system is based upon the integrity of capabilities,

hence this mechanism should be simple, to maximize not only its

reliability, but also its understandability, and thus inspire user

confidence. Two mechanisms have been proposed, which we will call

"partitioned memory" and "tagged memory."

All capability systems which have actually been constructed

have used partitioned memory. As its name suggests, this scheme

involves partitioning the segments in the system into two classes:

capability segments which contain only capabilities, and data seg

ments, which never contain capabilities. One obvious advantage

of this mechanism is that the cost of distinguishing between

-

22

capabilities and data is distributed over an entire segment, reduc

ing the overhead per item, but the main advantage of partitioned

memory is more subtle; it involves the avoidance of certain address

ing complications which arise in the tagged memory approach, as we

shall see shortly. The main disadvantage of partitioned memory is

that the artificial division of a user's memory into two parts is

inconvenient. It is often quite natural for information structures

(e.g. entries in a table) to contain both data and capabilities.

While such intermixing can be simulated using a pair of segments,

this is a fairly clumsy procedure. For this and other reasons,

discussed in detail by Fabry [Fa 74], we reject partitioned memory,

as indicated by our specification of TCS as allowing free inter

mixture of capabilities and data in any segment.

The tagged memory approach allows such intermixture by attach

ing one or more extra "tag" bits to each information item in each

segment. The term "item" is used here to denote the basic address

ible unit of memory (word, byte, etc.). These tag bits are unmodi

fiable by any software except the most central routine of the base

level system. Each item's tag indicates its status as 'data' or

'capability.' An item must be tagged as a capability to be used

as one. An item so tagged can be generated only by copying another

such item, or by the base-level capability-creation routine. On

the other hand, a tagged capability can be erased by overwriting

it, either with data or with another capability. (The system could

require that capabilities always be explicitly erased before their

storage is reused. We reject this as too inconvenient for the user,

-

23

although there are cases in which it would make things slightly

easier for the system.)

The only production computers which use tagged memory are

the Burroughs B5000 [Bu 61] and its descendants.* The protected

items in these machines are "descriptors" rather than capabilities.

The differences between the two do not concern us here, except for

one: descriptors are considerably smaller than capabilities. A

Burroughs descriptor is 48 bits long, while many extendible capa-

bility systems have allowed in excess of 100 bits for each capa-

bility. The impact of this will become clear in a moment.

While the advantages of tagged memory have been slowly gain-

ing acceptance, another trend which has had even more impact is

the reduction of the size of the addressable items in memory.

While machines with items of 36, 48, or even 60 bits were comm.on

in the past, the byte (8 bit character) is rapidly becoming a

universal standard, and strong arguments can be made for the ulti-

mate reduction to bit addressable memories. In such schemes, a

larger unit of information (e.g. a capability) is represented by

a contiguous sequence of items and named by the address of its

first item plus its length (implicit or explicit) in items.

There is a very real conflict between these two features.

Two problems arise when the representation of a tagged capability

is a sequence of addressable items in memory. One is the obvious

increase in cost of associating a tag with each item as the items

get smaller. The other is the possibility in such a scheme of

* Various experimental machines have used tagged memory, including
the Rice computers and Iliffe's BLM. A general discussion of
tagged memory is given by Feustal [Fe 73].

24

addressing the middle of a capability.

If we assume that each item has a one bit tag, we are faced

with the question of which of the items in a capability should have

their tags on (i.e., set to 'capability'). If all of their tags

are on, there is no convenient way for the system to distinguish

between a valid capability address, and one which points to the

middle of a capability. The latter case could lead to the recog

nition of the last few items of one capability, together with the

first few items of an ilillllediately following capability, as con

stituting a valid capability, hence this ambiguity must be avoided.

One way of doing this is to turn on only the tag of the first item

in each capability, and require that the first (and only the first)

item located by a capability address be so tagged. This makes the

other items in a capability indistinguishable from data, however,

and leaves them open to alteration unless every store operation

scans the tags of the appropriate number of preceding items and

turns them off to insure invalidation of any capability which con

tains the item(s) being modified.

It is clear, then, that an address pointing into the middle

of a capability must be distinguished both from a valid capability

address and from an address of untagged data. This suggests the

need for two tag bits on each item, one indicating whether the

item is part of a capability at all, and the other indicating whe

ther it is the first item of a capability. Since the second tag

is necessary only when the first one is on, it could be "stolen"

from the bits of the item only when needed (although this obviously

doesn't work on a bit-addressable memory, since the item would then

ha

ex

in

to

de

li

ta

it

st

ca

da

mi

th

ad

no

th

ci,

ti,

at

ca:

in

th1

fr,

th1

'
l

25

have no bits left at all!).

The other problem, the high cost of tagging small items,

exerts a strong pressure to increase the size of items. Arguments

in favor of small items generally cite the fact that, for a given

total bit capacity, address size grows only logarithmically with

decreasing item size. Unfortunately, the cost of tagging grows

linearly, reaching a maximum in the bit-addressable case of two

tag bits per information bit, which is clearly out of the question.

One alternative tagging scheme which we reject allows small

items but imposes the restriction that capabilities can only be

stored at addresses which are an even multiple of the length of a

capability. In such a scheme, memory is item-addressable for normal

data, while capability addresses must locate one of the predeter

mined "capability frames." Such restrictions tend to complicate

the software and sacrifice many of the advantages ,of item

addressability.

A much more sophisticated scheme, which also involves the

notion of a capability frame, attempts to exploit the fact that

the assignment of tag bits to each item is a relatively ineffi

cient encoding of the set of possible data/capability configura

tions in a given region of memory. Even if capabilities can begin

at any address, the number of different arrangements in a given

capability frame is not large. At most one capability can begin

in a frame, and can be preceded by one or more data items and/or

the trailing items of a capability which began in the previous

frame. By associating with each frame the integer displacement of

the capability, if any, beginning in the frame, it is possible to

26

simulate two bit tagging of each item. This is a somewhat compli-

cated approach, but may eventually prove to be the key to bit-

addressable tagged memories, since it allows the cost of tagging,

like that of addressing, to grow only logarithmically with decreas-

ing item size. This scheme also has the rather intriguing property

that reducing the size of capabilities does not always increase the

efficiency of memory utilization. For a given pattern of usage,

there is an optimum size for capabilities, such that deviation in

either direction increases the total overhead for capability

storage.* No existing system uses such a scheme, although it has

been tentatively investigated by Gray [Gr 73).

We thus conclude that our implementation of TCS should use one

of three tagged memory schemes:

*

a) Items should be single bits, and the scheme just described

should be used to simulate two bit tagging.

b) Items should be a substantial fraction of the size of a

capability, allowing a two bit tag per item at a reasonable

cost.

c) Items should be large enough to hold an entire capability,

allowing a simple one bit tag per item.

Assume, for example, a bit addressable memory in which the average
object is N bits long and is pointed to by k capabilities.
Then the overhead for capability storage is the fraction of memory
taken up by tags, plus the fraction holding the capabilities them
selves. As a function of the size c of capabilities, this is

F (c} = log c + kc
c+ log c N+kc

For instance, if N = 105 bits and k = 10, the storage of 64 bit
capabilities requires about 15% of memory, while reduction to 32
bits or expansion to 128 bits increases the overhead to about 17%,
and 16 bit or 256 bit capabilities require about 22%.

--

.e

27

To simplify subsequent discussions, we adopt alternative (c),

although it would probably not be feasible for TCS as described,

since capabilities are so large. In Chapter 3, however, we will

describe a scheme in which capabilities fit into more reasonable

sized tagged items.

The second major implementation aspect to be discussed is the

mechanism for mapping the IDs found in capabilities into physical

addresses of objects. The most obvious solution would be to simply

use the physical address as the ID, but that would imply updating

all the capabilities for an object whenever it was moved or deleted.

This is impractical due to the proliferation allowed by free copy

ability, especially in a system allowing intermixing of capabilities

and data in segments.

Most capability systems have solved this problem by localiz

ing changeable information about objects in a system data structure

and forcing all access to the object via capabilities to go indi

rectly through this structure, which has been referred to by such

terms as "Master Object Table" [St 73], "System Capability Table"

[En 72], and "Global Symbol Table" [Wu 74]. Here, we will refer

to it as simply "the map."

There is a one-to-one correspondence between objects and

entries in the map. An object and its map entry are created and

destroyed together. Since the capabilities for an object are not

updated when it is destroyed, it is not satisfactory to use the

location of an object's entry in the map as its ID, since that

would prevent re-use of map space freed by object destruction. In,

fact, the ID of a destroyed object must clearly never be re-used,

28

since capabilities for the old object could then be used to access

the new one. This suggests that IDs should be quite long, so that

the space of IDs can never be exhausted, even if objects are created

and destroyed at the maximum possible rate for the entire life of

the system. The alternative of occasionally stopping the system

and compacting the space of IDs is plausible, but less attractive.

Any generator of a sequence of unique long integers can be the

source of IDs. A counter of the total number of objects created,

or a real-time clock of sufficient length and resolution are the

common examples. In either case, provision must be made for

restarting the system after a failure without any possibility of

repeating a previously used ID.

As a first approximation, we can consider the map translating

such IDs into physical addresses as being implemented as a large

hash table in primary memory, keyed on IDs. Figure 2.2-1 shows

the representation of capabilities and map entries. (The field

labeled "address" is assumed to contain any extra information

necessary to distinguish between primary and secondary storage

addresses. The details are not relevant here.) Each exercise of

a capability involves:

1) checking the appropriateness of the action, given the

type and privileges in the capability (and signalling

an error otherwise),

2) hashing into the map to verify the existence of the map

entry, and hence the corresponding object (and signalling

an error otherwise),

--

ed

g

29

type

capability: privileges

object ID

object ID
map entry:

address

Figure 2.2-1: Format of capabilities
and map entries in TCS

30

3) checking the address in the map entry for the presence

of the object in primary memory (and signalling an excep

tion otherwise),

4) using the address to perform the access to the object.

These steps are simple enough to be implemented in hardware or

firmware, and would be used heavily enough to justify such imple

mentation.

As described so far, the mechanism does not deal adequately

with the two extreme cases of objects which are accessed very fre

quently, and those which are accessed very ipfrequently. Objects

in the former class, such as segments containing executing programs,

are so heavily used that hashing into the map in primary memory is

unlikely to be efficient enough. Thus, it is necessary to hold

the most active map entries in special hardware.

In our implementation of TCS, this hardware takes the form of

a special associative memory, each element of which can hold one

map entry. The association is on IDs. On each access, the ID in

the capability is first presented to the associative memory. If

a matching entry is found, no reference to the map in primary memory

is made. Otherwise, the standard map reference is done, and the

result replaces the least active (e.g. least recently used) entry

in the associative memory, as well as being used to perform the

access. The effectiveness of similar hardware has been clearly

demonstrated in existing systems [Sc 71].

Whenever an entry in the primary-memory copy of the map is

updated or deleted, any corresponding entry must be invalidated

in the associative memory. This can be done by selectively

....

31

clearing the matching entry (if any) or by totally flushing the asso

ciative memory. The cost of reloading the entire associative memory

on each such flush might be acceptable, but the extra complication

required to do selective clearing is so low that it would undoubtedly

be the method of choice. Note that total flushing of the associative

memory is never logically necessary, due to the use of context

independent names as association keys. Similar mechanisms involv

ing association on context-dependent names require total flushing

each time the context (domain, process, etc.) is switched. Of

course, the significance of this is entirely dependent upon the

frequency of such context switching.

One apparent alternative to.a special associative memory would

be the provision of a general purpose associative memory or "cache"

holding the most active items in primary memory, regardless of how

they are being used. Such a cache would naturally tend to capture

the most active entries in the map, and thus speed up the standard

machinery for accessing via the map in primary memory. In spite

of its appealing simplicity, we reject this scheme for several

reasons. For one thing, a cache which is large enough to be useful

for non-map items (e.g. instructions, data) is unlikely to be as

fast as we can afford to make special hardware which captures only

active map entries. Placing map entries in the same cache with

other data also sacrifices any opportunity to access the two in

parallel. In addition, the cache, by transpara:idy speeding up

primary memory, in no way bypasses the hashing necessary to locate

a map entry. This means that entire "collision chains" from the

map, rather than just active entries, would need to migrate into

32

the cache, and would have to be scanned on each access, thus further

degrading performance as compared with that of the special purpose

associative memory. A more general way of stating all of these

objections is to say that the cache simply makes the memory faster;

the relative overhead for accessing map entries in memory is thus

not reduced by the cache. Hence a cache, while valuable for other

purposes, is not optimal for capturing active map entries.

Another alternative which has been adopted in some systems

stems from the observation that active capabilities, as well as

active map entries, should be held in fast hardware. To this end,

programmable capability registers can be provided, into which an

executing program can load capabilities before use [Fa 69, En 72].

Moreover, the map entry corresponding to an active capability is

itself active, suggesting that space be provided in the register

for the map entry as well. An access via such a "smart" register

can then proceed directly to the object. Of course, it is still

necessary to automatically reload any registers holding copies of

a map entry which is updated, which adds a certain amount of com

plication to the mechanism. Also, the addition of progranunable

capability registers, whether smart or not, introduces the standard

problems of register allocation, save/restore sequences, and so

on, as well as the novel requirement that a calling domain expli

citly erase registers containing capabilities not being passed as

parameters. Other considerations in the use of capability regis

ters are discussed by Needham [Ne 72].

We adopt for our implementation of TCS the associative memory

approach rather than smart capability registers, although the

l

(

d

c

t

111

d

s

e

i

E

i

S,

f

be

hE

2.

tl

at

33

preference is not a strong one. We assume that the overhead of

fetching the capabilities themselves from primary memory is suffi

ciently reduced by transparent mechanisms such as a program-counter

holding the current procedure capability, or hardware implementation

of all or part of the executing domain's implicit segment.

The success of the associative memory approach is completely

dependent upon the observed tendency for only a small number of

objects to be heavily accessed during any given small interval of

time (i.e., fraction of a second). On a coarser time scale (i.e.,

minutes), the same kind of behavior is observed in the sense that

during a given coarse time interval most of the objects in the

system will not be accessed at all. This suggests that the map

entries for such objects be kept in secondary memory, and be brought

into the hash table in primary memory only when needed [Fa 74].

Experience with a similar scheme (the "Active Segment Table" [BCD 72])

in Multics shows that this approach can be quite successful in

saving a large amount of primary memory without incurring a signi

ficant speed penalty.

Another aspect of TCS' implementation to be discussed is para

meter passing during domain calls. This is included mainly as

background for a more elaborate scheme developed in Chapter 4,

hence it omits details not relevant to that discussion. Figure

2.2-2 shows the workings of the domain call instruction. First,

the return gate must be retained, allowing re-entry into the caller

at the site of the call. This is saved in a pushdown stack of such

34.

call(CG,Pl,P2, •.• ,PN)
p

ENTER

I + 1

P + get_parameter(I,Caller)
put_parameter(I,Callee,P)

I+ I+l

CG+ get_parameter(O,caller)

EXIT thru G

Figure 2.2-2: TCS domain-call operation

g

a

1

T

a

T

c

a

1

t

t

r

8

d

t

t

b

b

i

]

35

* gates which is associated with the process. Then the parameters

are copied from the caller's address space into that of the callee.

We assume the existence of two sub-operations internal to the base-

level system:

P + get__parameter (l,D)

put_parameter (I,D,P)

These operations serve to fetch and store the th I parameter P

at the appropriate location in the address space of domain D.

The actual layout of the parameters in the address space need not

concern us here. We assume that NP, the number of parameters,

and GR, the return gate, are automatically available to each base

level operation. (Most operations finish by exiting through GR;

the exceptions are domain-call and domain-return.) To simplify

the discussion, we have omitted description of the copying of

results from the callee back to the caller when the return is done,

since this is virtually identical to the handling of the parameters

during the call. Thus, Figure 2.2-3 shows only the retrieval of

the return gate from the stack necessary to resume execution of

the caller.

In concluding our discussion of TCS' implementation, we

briefly consider two possible ways to attack the lost object pro-

blem, neither of which we regard as satisfactory. One approach

is to maintain with each object a reference count of existing

* A variant of the call operation, referred to as a "jump-call" is
obtained by omitting the saving of the return gate. This causes
the callee to return not to the current caller, but to the pre
vious caller. This is occasionally useful, as we shall see in
Chapter 4.

36

return()

ENTER

G+ pop()

EXIT thru G

Figure 2.2-3: TCS domain-return operation
(without results)

pa

37

capabilities, and to delete an object when it becomes lost, as well

as when it is explicitly deleted.* There are at least three draw-

backs to this approach:

a) The destruction of capabilities (e.g. through overwriting

or segment deletion) must be detected and the reference

counts maintained.

b) Lost self-referential structures are not deleted properly.

c) An object may be lost to the user who funds it, even

though capabilities exist elsewhere.

We therefore reject the reference count approach. (For a contrary

view, see Wulf, etaL [Wu 74]).

Another approach is to allow "un-losing" of lost objects by

allowing a suitably authorized domain (e.g. one which owns the

funding account) to request spontaneous generation of fully privi-

leged capabilities for funded objects [CC 69]. This is rather

inelegant and requires fairly complicated data structures which

may or may not be otherwise necessary.

Other approaches to a base-level solution to the lost object

problem can be envisioned (e.g. global garbage collection) but we

choose instead to postpone the solution until a higher level of the

system. Thus, the base-level system simply allows objects to

become lost, and the users depend upon the directory system, as

described in Chapter 4, to prevent this occurrence.

* We assume that explicit deletion is also available, since other-
wise, the user who funds the object may be unable to reclaim the
space occupied by it.

38

2.3 Revocation of Access Privileges

In the context of TCS, we now explore various approaches to the

distribution of capabilities and the revocation of access privileges.

As an example, we use the simple situation in which domain A

wishes to grant to domain B a set of privileges to access object

x.

The first approach which suggests itself is the simple copying

from A to B of a capability for X containing the desired

privileges, as shown in Figure 2.3-1. This is clearly the intended

use of copyable capabilities, and is quite satisfactory provided

that the amount of trust A has in B * remains constant. If,

however, A subsequently decides that some different set of privi-

leges is more appropriate for B, a second capability for X must

be passed as a replacement. This may be quite inconvenient for B,

who may have made various copies of the original capability, some

of which may have been passed on to other domains. Moreover,

unless the privileges in the new capability are a superset of those

in the original, A must pessimistically assume that B will

retain both capabilities, and thus possess the union of the privi-

leges in the two. In other words, privileges once granted can never

be revoked.

This simple example shows that the typical capability mechanism,

while useful, does not adequately cope with the difficult situation

of changing levels of trust, particularly when trust decreases and

revocation of privileges is desired. Before proposing any

* We will generally omit the phrase "the person who owns a domain"
and simply inpute feelings of "trust" and "suspicion" to the
domains themselves.

39

Note:

object name __,.
capability propagation

x

Figure 2.3-1: Passing a capability

40

fundamental changes to the behavior of capabilities, however, it

seems appropriate to explore the various approaches which have

been proposed for solving the revocation problem without making

any major modifications to the underlying capability mechanism.

Caretakers: A standard "escape hatch" in most protection

systems is the ability to interpose a "caretaker" domain between

an object and the domains which access it. The caretaker can

implement any access control protocol not provided by the system.

This situation is shown in Figure 2.3-2, in which A has created

a caretaker domain C, and given to B a capability to call C,

rather than a capability to access X directly. Two problems

are immediately evident. One is simply the inefficiency of

calling C each time B accesses X. For example X may be a seg

ment, in which case the extra domain-call is likely to cost much

more than the segment access itself. The other problem is that

B now receives a capability of type 'domain' rather than one

indicating the type of X. Unless the system provides facilities

for allowing domains to "masquerade" as objects, this will change

the interface seen by B when accessing X. For example, to

store into a segment, B must execute either a store-operation

or a domain-call-operation, depending on whether or not a care

taker has been interposed.

More generally, one can object that the caretaker mechanism

is not, in itself, a solution to the problem, but merely a frame

work within which a solution can be implemented. We have said

nothing so far about the basis upon which the caretaker C

to allow or refuse a given access request. In the simplest case,

p

41

A B

call-only

Figure 2.3-2: A caretaker domain

42

A specifies a single set of privileges and gives a corresponding

capability to C, who exercises it each time B (or any other

domain having a copy of B's capability) attempts an access. When

ever A's level of trust in B decreases, a weaker capability can

be given to C. On the other hand, if A wishes to confer inde

pendently revocable privileges to access X on various domains

by authorizing them all to call C, then C, given that it can

distinguish reliably between its various callers, finds itself in

the position of a process in Lampson's "message system" [La 71];

that is, C must essentially re-invent the system's protection

machinery. This can be avoided by defining multiple caretakers

for X, each allowing an independent set of privileges, as shown

in Figure 2.3-3. Since the caretakers in this situation are not

really making any decisions, but are merely using their privileges

whenever requested, one would hope that the overhead of an actual

domain call might be avoided. We will return to this point later.

Control: Most modern protection systems provide some mechanism

to capture the notion of one domain being subordinate to, or under

the control of, another domain. This is sometimes represented by

a static domain hierarchy [St 73], but we will treat control as

being a privilege which, when contained in a capability for a

domain, authorizes the possessor of the capability to control that

domain. (The distinction is not very important for the discussion

which follows.) In our typical system, much of the power of con

trol can be granted by giving one domain a suitably privileged

capability for another domain's implicit segment, as was suggested

in Figure 2.1-1, although complete control would require a

43

m

Figure 2.3-3: Multiple caretakers

44

capability of type 'domain' allowing access to the controlled

domain's domain-descriptor.

This facility for one domain to control another is applicable

to a subset of our problem of changing degrees of trust; domain A can

attempt to enforce any reduction in its degree of trust of B by retain·,

ing control over B, although this requires that B have total

and unconditional trust in A. The latter condition clearly limits

the class of situations in which control of B by A is appro

priate.

Even when the control facility is applicable, there are still

problems with its use. It would appear that A, having given a

capability for X to controlled domain B, could later search

the entire address space of B, reducing the privileges in all

copies of the capability to match its revised intentions. The

success of this search, however, can be compromised if B is

allowed to execute concurrently, making the capabilities in ques

tion "moving targets." Thus, concurrent execution by B (or any

other domain able to manipulate B's address space) must be pre

vented, either implicitly by placement in the same process with

A, or explicitly by being "stopped" by A, using its control

privilege.

Even if. A manages to successfully weaken the capabilities

in B's address space, there remains the possibility that copies

may have escaped to other domains which are not under A's control.

To prevent this, A must carefully limit B's conununication with

other domains via shared segments, domain-call parameters, and so

on. In short, B must be "confined," which, as noted by Lampson

p

Lin

45

[La 73] can be both very restrictive for B and very difficult

for A. In the latter regard, however, it is worth noting that

the problem of "covert channels" does not exist for capabilities,

since transmission of the bits of a capability is not the same as

transmission of the capability itself.

A simpler mechanism which has been proposed [La 71, Gr 72]

to deal with the above problems uses a "copy-flag" contained in

each capability. Originally, the flag is on to allow copying, but

once it is turned off, it can never be turned back on, and all

copying of the capability is disallowed. Thus, A can place a

non-copyable capability for X in B's address space, and later

revoke any desired privileges from that capability, confident that

no other copies exist. This is even more of a restriction on B

than confinement, however, since free copyability is one of the

fundamental properties of capabilities. If one assumes that the

passing of capabilities as domain-call parameters is done by copy

ing, then non-copyable capabilities cannot even be passed as para

meters, making them virtually useless. The scheme can be salvaged

by introducing "indirect capabilities" which point to the non

copyable capability and are themselves copyable, but, as we will

see later, such an indirection feature is powerful enough to com

pletely eliminate the need for A to control B in the first

place.

Ownership: The idea of one user or domain "owning" a shared

object has appeared in many systems, for such purposes as account

ing and resource allocation, as well as for protection. In the

context of protection, the owner of an object is thought of as

46

retaining ultimate control over the object, in the sense that any

other domain's capability for the object should be subject to revo

cation by the owner. Ownership, like control, could be defined

as a static relationship between each object and its owning domain,

but again, we assume instead that 'ownership' is simply a privilege

which confers 'owner' status on any possessor of a capability con

taining it.

As described thus far, ownership avoids the problems which

limit the applicability of the control scheme. In particular, it

is usable in the case of mutual suspicion, since it makes no assump

tions about the relationships between domains. However, several

issues have been left unresolved.

If the owner of an object wishes to revoke a given set of

privileges from all outstanding capabilities for the object then

the desired action is clear, if somewhat impractical. The base

level system must suspend all other activity and search the address

space of every domain in the system, performing the appropriate

reduction on each capability for the object in question. It is

worth noting that one case of such uniform revocation has a much

more reasonable interpretation; if all privileges are to be

revoked from all capabilities for the object, the owner can simply

make a copy of the object and destroy the original. An even more

efficient mechanism to produce the same effect can be provided in

the context of the implementation in section 2.2 by simply allow

ing the owner of an object to change its ID, thereby invalidating

all outstanding capabilities [CC 69]. (Of course, the operation

must return to the owner a new capability containing the new ID.)

47

If the owner of an object wishes to revoke individual privi

leges, a global search is implied, as indicated above. If, how

ever, the owner wishes to revoke these privileges from some but

not all of the capabilities for the object, even more fundamental

problems arise. The central question is how the owner should

specify the set of capabilities on which the revocation is to take

effect. In the context of TCS, the only obvious possibility is

the specification of a set of domains in which the revocation

should occur, either by listing the set, or by listing the comple

mentary set of domains which should remain unaffected. The pro

blem is that in a system providing freely copyable capabilities,

the owner of an object is unlikely to have complete knowledge of

the propagation of capabilities for that object throughout the

system, and is therefore not in a position to provide either type

of domain list. Figure 2.3-4 depicts the situation in which A

has given capabilities for owned object X to B and C. Sub

sequently, B and C have passed copies of their capabilities

to D and E, respectively. If A now decides to revoke some

privileges from B's capability, the revocation should clearly

effect D's capability, but not C's or E's. A domain list pro

vided by A to control the revocation would specify either revo

cation from B, allowing D to escape, or exemption of C,

incorrectly affecting E.

There are other relatively simple situations in which no

correct domain list can be prepared, regardless of A's global

knowledge of the distribution of capabilities among domains.

Figure 2.3-5 depicts such a situation, in which domain D has

I
I

___ /~

48

x

\
\

~(~

Figure 2.3-4: Ownership

E

I
f

~,'~
I

49

/
/

x

A

/
/

/

I
/

I

Figure 2.3-5: Multiple sources of capabilities

50

received capabilities for X from both B and C. Ideally, revo

cation of B's privileges should affect the capability which D

received from B, but not the one received from C. Such distinc

tions clearly cannot be expressed in a domain list, and require

of A a completely unreasonable amount of knowledge of the inter

nal structure of other domains.

Yet another fundamental problem involves the authorization

of revocation by domains other than the original owner. In

Figure 2.3-4, for example, B stands in much the same relationship

to D as A does to B, hence it would seem reasonable to allow

B to revoke the privileges it granted to D. Since ownership is

a normal privilege, A could authorize this by simply including

'ownership' among B's privileges, but this clearly gives B too

much power (e.g. the ability to interfere with C and E). Simi

larly, in Figure 2.3-5, B should be authorized to revoke the

privileges of the capability it has passed to D, but not the one

D has received from C.

Thus, the privilege of ownership, while sufficient to author

ize the total revocation of all capabilities for an object, is

insufficient to deal with more general situations.

Indirection: Most of the problems with revocation in capa

bility systems seem to be caused by the propagation of capabilities

throughout the system. This suggests that domain A in our exam

ple should never give to B a capability for X whose privileges

it may subsequently wish to revoke, but should retain the capability

and give B a "pointer" to it. The success of this approach is

very sensitive to the exact nature of the "pointer."

p

51

ro- From domain A's point of view, the most obvious kind of

pointer to the capability is simply its address in A's address

IC-
space, but this address by itself is meaningless to B. To use

the address, B needs to specify that it should be interpreted

relative to A's address space, an action which clearly requires

authorization in the form of a capability for A (or for A's

implicit segment) allowing capabilities in A's address space to

be exercised, but not fetched or stored. Giving such a capability

ip to B clearly compromises A, however, since B may use it not

w only in conjunction with the pointer provided by A, but also

with any other pointer B may invent. Moreover, this scheme

also causes problems for B, since instead of a single capability

for X, a capability for A and a pointer must be used. Thus,

B effectively receives the absolute address where ~

is the multi-level address of X in A's address space. These

problems can be reduced somewhat by the obvious expedient of always

passing the simple absolute address <C,d> of A's capability

for X, thus limiting A's vulnerability to a single segment, and

guaranteeing that the pointer which B must handle will always

be a simple displacement. Moreover, if this simple absolute address

can itself somehow be squeezed into a single capability, both

!S
problems have been solved, since only the single "slot" in A's

address space which contains the capability for X is usable by

B, who need only keep track of the slot capability, rather than

.ty a capability and a pointer. Of course, care must still be taken

to allow B to ignore the difference between a slot capability

and a capability for the desired object.

52

Even ignoring the problem of squeezing so much information

into a single capability, there are still restrictions on the use

of indirection through capability slots. The problem is that such

slots can never be reused. For example, suppose that A passes

to B a capability for the slot containing one of A's own capa

bilities for X, as shown in Figure 2.3-6. If A later decides

to revoke all of B's privileges to access X by erasing the capa

bility from the slot, B still retains its slot capability. There

fore, A must be very careful never to place another capability

in that slot.

One way of attacking the non-reusability problem is to squeeze

still more information into the slot capability, namely the ID of

X, and to check on each access that this ID matches the one in

the slot. This eases the restriction somewhat: a slot may be

used any number of times, but only once for any given object. Com

plete reusability of slots requires the inclusion of a "slot ID"

in both the slot capability and the capability in the slot, to be

compared on each access. This essentially amounts to re-invention

of the unique ID mechanism of the base-level system, and is likely

to be very cumbersome, for both user and implementor.

The non-reusability of slots in the indirection scheme is not

really a fatal flaw. It simply forces the mechanism to be used

in a rather stylized way. For example, domain A, rather than

giving B a capability for some location in its own data struc

tures containing a capability for X, must copy the capability

for X to some spot which will never be used for anything except

indirection via B's slot capability. Actually, A would

p

53

:h

>a-

~re-

x

m-

Figure 2.3-6: Indirection through a "slot"

n

y

t

54

undoubtedly have made an extra copy for B's use in any case, so

that subsequent revocation of B's privileges would not interfere

with A's own accessing of X. Thus, the only real burden on A

is the careful allocation of slots so that they will never be

reused. One approach would be to set aside one segment of A's

address space and allocate slots in it sequentially. A much more

attractive, if rather more expensive, scheme is the creation of a

tiny new segment to hold each slot. This not only takes advantage

of the base-level allocation machinery, but also implies that the

displacement which we squeezed into the slot capability is always

zero, and hence may be omitted.

Privilege revocation by indirection through such "link" seg

ments is actually a fairly attractive scheme, which we pursue in

some detail in the next section. It is conceptually related to

both the caretaker and control schemes discussed above. If one

thinks of the link segments as domains, in the passive sense, then

indirection through such a link domain is much like calling a

simple caretaker which merely exercises its capability on demand.

(Note, however, that the cost of an actual domain-call has been

avoided.) On the other hand, from the point of view of its

creator, this passive caretaker is a very well-behaved controlled

domain, since there is no possibility of its capability being

copied or moved.

2.4 Indirection Through Link Segments

Since indirection through link segments created especially

f

c

d

t

t

w

i

e

d

b

1

h

f

t,

a

s

ti

C,

r,

Tl

s:

t4

e

55

for that purpose seems to provide many desirable features for revo

cation, we now pursue this approach somewhat more vigorously. The

discussion is still in terms of TCS, in the sense that we attempt

to minimize modifications to the base-level system and construct

the revocation machinery "on top of" that system. Although we

will later argue that a fairly complex revocation facility should

instead be included in the base-level system, it is useful to

explore this higher level implementation as a first step.

As mentioned during the discussion of ownership, it is

desirable for any possessor of a capability to be able to distri

bute copies of it while retaining the power to revoke the privi

leges thus conferred. Thus, if access privileges pass through the

hands of several distributors, the corresponding link segments

form a chain. Capabilities accessing via that chain are subject

to revocation by any of the distributors. Any possessor of such

a capability may extend the chain by creating a link segment and

storing the capability in it. Retaining a powerful capability for

the link segment allows later reduction of the privileges in the

capability stored there. If and when all privileges are to be

revoked, the link segment can be destroyed.

Thus far, we have made no changes at all to the TCS base

level capability mechanism, but neither have we provided any way

for the indirection chains to be used to access the target object.

This will require a fairly simple modification of the base-level

system, but before describing that modification, it is instructive

to observe precisely what goes wrong in attempting to do without it.

In terms of our standard example of A giving B privileges

56

to access X, we find that A, in Figure 2.4-1, having created

link segment SL and stored its capability c x for x there,

must now give to B a capability CL for SL. Clearly, B's

capability CL must not allow B to tamper with the capability

in SL, but only to use it as a component of a multi-level

address for X. (For example, if X is a segment, B's address

for its 5th word, given that CL is located at location 3 of B's

implicit segment s1 , is

<C ,5>
x

.)

There are four interdependent problems with this attempt to

implement link segments on an unmodified capability system:

1) Non-transparency: A domain accessing an object must

know how many links are present in the chain leading

from its capability to the object (i.e. how many O's

to insert in its multi-level address, as in "3IOl5"

above).

2) Ambiguity: A link in the chain is indistinguishable

from a target object which happens to be a segment con-

taining a capability in location 0.

3) Subvertability: This is really implied by problems (1)

and (2); if the accessing domain accidentally or mali-

ciously specifies a multi-level address which is too

short, it can obtain a copy of a capability stored in

the chain, thus circumventing subsequent revocation.

4) Loss of selective adjustment in long chains: Only the

last link in the chain contains a capability whose

57

x

r
5
J_

Figures 2.4-1: Example of indirection
through a "link" segment

58

privileges apply to the target object. Each earlier

link contains a capability whose privileges apply to the

next link in the chain. The only revocation allowed by

such a link is total revocation by breaking the chain.

All of these difficulties are avoided by a simple modifica

tion to the base-level system, which introduces a new operation

on capabilities, and changes the behavior of the base-level system

slightly when a capability is encountered to which this operation

has been applied.

The new operation allows a capability of type 'segment' to

be converted into a capability of type 'indirect' in which all pri

vileges are 'on. 1 (As we shall see later, this is just a specific

instance of a more general mechanism useful for type extension.)

The intention is that such indirect capabilities for link segments

should be handed out to domains which are being given revocable

privileges. For example, in Figure 2.4-1, the capability CL

which A gives to B must be of type 'indirect,' although A's

own capability for SL is of type 'segment.'

Whenever an operation which expects a capability for some

object encounters instead a capability of type 'indirect,' the

indirect capability is followed; that is, it is replaced by a copy

of the capability in (location O of) the segment to which it points,

with any privileges deleted which did not also occur in the ori

ginal indirect capability. This step is iterated, as necessary,

until the resultant capability is not of type 'indirect,' at which

point the operation proceeds as usual.

Thus, each time an object is accessed via a chain of link

p

.-

s,

59

segments, that chain is automatically followed to the target object

unambiguously indicated by the first non-indirect capability

encountered. The resultant capability is exercised, but is not

otherwise available to the accessing domain, hence the chain cannot

be circumvented. The privileges conferred are the intersection of

those found during the entire scan of the chain, thus allowing

independent revocation by each intermediary domain controlling

a link in the chain. In other words, problems (1) through (4)

above have been avoided.

It is important to note that an indirect capability is

followed only when it is used to access its target object; follow

ing is not performed when the capability itself is manipulated

(e.g. by the copy or reduce operations).

The indirection feature being described is fundamentally

different, not only in design, but in intention, from the multi

level addressing feature of TCS. In some systems, such addressing

has also been referred to as "capability indirection." A system

in which both of these features were desired would require two

separate mechanisms.

Distribution of revocable capabilities using this scheme

involves five steps:

1. Creation of a link segment.

2. Conversion of a capability for that segment into an

indirect capability.

3. Copying of the distributor's own powerful capability

for the object into the link.

60

4. Reduction of the privileges of the capability in the

link to an appropriate level.

5. Distribution to the receiving domain(s) of copies of

the indirect capability produced in step 2.

Any later reduction in level of trust can be enforced by re-execut

ing step 4, specifying some reduced set of privileges.

Although this indirection scheme does a reasonable job of

capturing the notion that a distributor of a capability should

retain the power to revoke the privileges it confers, it gives

one the feeling that the desired mechanism is being "simulated,"

in the sense that the basic action of distributing a capability

is provided by a particular non-atomic sequence of operations,

rather than being an atomic operation. This has two consequences:

a) It is inconvenient for the user.

b) It may allow other sequences of operations to produce

a non-meaningful state.

The former problem can be easily dealt with by providing a simple

library procedure to perform the actions required for capability

distribution. The latter problem, however, is not so easily dis

posed of. Suppose, for example, that by accident or design, a

domain, in performing step 3 of the procedure, stores not the

appropriate object capability, but the indirect capability created

in step 2. This is just one way in which circular indirection

chains can be created. Such chains, when followed, will cause an

endless loop in the base-level system. Of course, one could deal

with such a situation by placing an arbitrary limit on the length

of an indirection chain to be followed before it is abandoned and

p

61

an error is signalled, but this is rather ad hoc and inelegant.

An atomic operation producing only well formed chains would be

much more attractive.

Another problem with this scheme is its relative inefficiency.

For one thing, it would generate large numbers of small segments.

This could be extremely costly in terms of both space and time,

especially in a system using block-oriented rotating magnetic

storage and a corresponding paged primary memory. For another

thing, the scheme requires the following of a chain of links each

time an indirect capability is exercised. This overhead could

prove prohibitive, particularly in the case of indirect access to

segments. Moreover, any mechanism attempting to capture a compu

tation's set of recently used chains and retain them in fast hard

ware would be complicated by the fact that every store instruction

would have to be regarded as potentially invalidating this "look

back" information by overwriting a link in some chain.

By comparison, if equivalent revocation features were built

into the base-level system, they would probably be easier to use,

harder to misuse, and more amenable to optimization. This approach

is explored in detail in Chapter 3.

2.5 Type Extension

The definition of a large complex system as a sequence of

"layers" has been found to be a valuable technique, aiding all

stages of design, implementation, testing, and documentation

[Di 68b, Pa 72, La 69]. In an object-oriented system, this implies

62

that not all of the various types of objects provided will be imple-

mented, or even known about, by the base-level system. On the

other hand, it would be most inconvenient if the naming and pro-

tection machinery provided by the base-level system (i.e. capabil-

ities) had to be reinvented by each new layer of the system; this

would not only raise serious problems for the implementation, but

would also force the users to interface with several parallel

mechanisms for storing privileges, passing privileges to other

domains, and so on. It is therefore very desirable for the base-

level capability machinery to provide capabilities for objects

of which the base-level system has no knowledge.

The various base-level facilities involving capabilities can

be divided into two categories. In the first category are the

facilities involving capabilities themselves: their creation,

integrity while stored, copying, erasure, and so on. In the second

are the facilities for manipulating base-level objects named by

capabilities: fetching from a segment or calling a domain, for

example. It is the facilities in the first category which can and

should be provided for higher-level objects unknown to the base-

level system.

As indicated in section 2.1, a capability provided by TCS con-

tains the~ of its corresponding object. The division of the

set of all objects into types is a well known and intuitive idea

(although, as pointed out by Morris [Mo 72], the difference between

the type of an object and the privileges allowing access to it is

p

t

!
~
t

l
I

i The set of objects provided by the base-level I

I
somewhat indistinct).

system falls into some small fixed number of types. The question

le-

d

l

~1

63

is: what type of capability is used to name a higher-level

("extended") object? Various answers have been proposed, four of

which we will explore.

Approach 1: Representation capabilities. Any given layer of

the system runs in an environment provided by the lower layers,

hence any object it defines must be represented in terms of lower

level objects. We will assume that the representation of each

extended object is a single lower level object, since that single

object can be a segment containing capabilities for any other ob

jects which are necessary. Thus the most obvious candidate for

the capability for an extended object is simply a capability for

the representing object. A possessor of that capability could

call the layer implementing that extended type to request some

operation, and pass the capability to indicate the extended object

to which the operation should be applied. Having been passed this

capability, the domain implementing the extended operation would

automatically have access to the representation .of the object.

There are at least three problems with this approach. The

first and most important concerns the selection of an appropriate

set of privileges to appear in the capability. The difficulty is

that the domain implementing the extended object requires essen

tially complete power to manipulate the representation, while

wishing to deny such power to the using domain(s) in order to

prevent tampering with the representation. If the same capability

is used by both, this is clearly not possible. Hence, the imple

menting domain, having upon request, created the representation

of a new extended object, and thus obtained a fully privileged

I

64

capability for that representation, must appropriately weaken that

capability before returning it to the calling user domain. However,

in order to guarantee its own future access to the representation,

the implementing domain must do one of two things. Either it must

save a copy of the original fully privileged capability for later

use, or it must make arrangements allowing it to convert the weaker

capability back into the fully privileged one when it later receives

it as a parameter to some operation on the extended object.

The first method obliges the implementing domain to maintain

a global table containing privileged capabilities for all existing

extended objects which its layer has created, and to locate the

corresponding entry whenever it receives a weak user capability.

This method is reasonable, if somewhat clumsy.

The second method requires some facility similar to Jones'

"amplication" [Jo 73], allowing the implementing domain to add

specified privileges to capabilities of the type of the represent

ing object. Clearly, the power to amplify capabilities of a given

type is a very dangerous power, and must be tightly controlled,

since it can completely subvert the inter-user protection of

objects of that type if misused. While this is an incomplete sub

version of the objects in question, in the sense that they still

follow the semantic rules which define their type, it must be

regarded as a failure of the corresponding layer, since the correct

functioning of a layer includes the protection of its users from

each other. Thus, the authorization of amplication must be the

responsibility of the layer implementing the type whose capabilities

are being amplified. One of the main criteria of layering, however,

p

s

65

is that a given layer should have no knowledge of higher layers.

Thus, it is not possible for a layer to distinguish between "legi

timate" higher layers which need amplification, and untrustworthy

domains which would use amplification to gain undesired access to

other domains' objects. We thus conclude that privilege amplifi

cation by itself is insufficient to solve the problem of assigning

appropriate privileges to the using and implementing domains of

an extended object, given that the same type of capability is used

by both domains. (In conjunction with another complementary

mechanism ("constituent rights" [Jo 73)), however, amplification

can provide a very powerful type extension facility which is equi

valent to one which we will describe later.)

The second problem with the representation-capability approach

involves the control of access to the extended object, as op.posed

to its representation. Privileges are needed in each capability

to specify which of the operations on the extended type are author

rized to possessors of that capability. This certainly cannot be

done by assigning new meanings to the existing privileges, since

granting the use of some operation on the extended object would

then imply granting some unrelated access to the representation.

Hence, multiple sets of privileges are needed. On the one hand,

this tends to make capabilities undesirably large. On the other

hand, the number of sets of privileges provided places a fixed

upper bound on the number of times a base level type can be extended.

This situation is especially frustrating since in most capabilities,

only one of the sets of privileges will be non-empty.

The third problem with the representation-capability approach

66

is the difficulty of determining, given some capability, the type

of the corresponding object. This is caU3e:i by the "unofficial"

status of extended types in this approach. A given base-level

object may have been extended one or more times, but the type

fields of all capabilities for it still contain its base-level

type. The only indication that the capability is of a given

extended type is the presence of a matching fully privileged capa-

bility in the previously mentioned table kept by the domain imple-

menting that extended type. Thus, one is not able to ask of a

given capability "what is its type?" but only "is it of type T?"

for some list of types T. This is a clumsy and costly substitute.

Approach 2: Domain capabilities. This approach is, in some

sense, a variant of the previous approach, in which the represen-

tation of each extended object is a domain. A using domain has

only one privilege in its capability for this representation domain:

the privilege of calling it. To perform an extended operation,

the user performs such a call, indicating only the operation to be

performed; the object to which the operation applies is implicit

in the identity of the called domain. Actually, this approach

falls outside the framework of our discussion, since it requires

independent domains callable by any process (at least if extended

objects are to be shared). It deserves mention, however, since

it has been used in at least two systems [En 72, Fa 68], and

because it attacks the three problems of the representation-

capability approach, with somewhat mixed results.

The first problem, that of easily allowing only the imple-

plementing domain full access to the object's representation, is

p

I
!
I
!

I
i

l

67

bypassed, since each object has, in effect, its own copy of that

domain, which can retain a privileged capability for the rest of

the representation in some convenient location in its address

space.

The second problem, that of controlling access to the extended

object, is solved by embedding in the domain information about the

operations it is willing to perform. Thus, privileges for extended

objects are represented and controlled differently for base-level

and extended objects; whenever a less privileged capability for

an extended object is desired, a copy of the domain can be made,

which is then ordered never to perform the operations being denied

to receivers of the less privileged capabilities. This is not as

expensive a solution as it might appear, for two reasons. First,

the various copies of the domain representing a given extended

object can retain in their implicit segments the information spe

cifying the operations they are willing to perform, and can thus

share all the other identical components of their address spaces.

Second, the capabilities for a given object exhibit a strong ten

dency to fall into a small number of subsets, each containing capa

bilities with identical privileges (a tendency which we shall

exploit later). Thus, the number of copies of the domain repre

senting a given object tends to be much smaller than the number

of capabilities for the object.

The third problem, that of determining the type of a given

object, is handled in an interesting if somewhat clumsy way.

Clearly, examination of the capability will always indicate the

type to be 'domain.' One can establish a uniform convention,

68

however, for associating some arbitrarily chosen unique capability

with each extended type, and storing a copy of that capability in

some standardized location in each domain (e.g. location O of its

implicit segment) representing an object of that type. If users

are allowed to examine that location, they can then reliably deter

mine the type of each extended object. The main objection to this

scheme is that base-level types and extended types are represented

differently, which disallows any uniform type-checking mechanism.

There are some other problems peculiar to the domain-capability

scheme. Two difficulties arise from the fact that the domains

implementing the extended type are associated with the objects of

that type, rather than with the accessing processes. One reason

for wanting to associate a domain with each process as the "repre

sentative" of a given layer is that the local storage of the domain

provides a natural repository for information describing the status

of that process from the point of view of that layer. This "own"

storage is not provided by a scheme which associates domains with

extended objects instead of processes [Fa 74]. Some systems have

made heavy use of such own storage (e.g. CAL-TSS, Multics); it is

not clear to what extent this is intrinsically necessary.

Another minor difficulty with the domain-capability approach

is its implicit assumption that all operations on extended objects

are monadic. While this is undoubtedly the most connnon case,

examples abound of useful operations which apply to two or more

objects ("file-to-file copy"), to some large implicitly defined

set of objects ("close all open files") or even to no object at

all ("create a file"). Forcing such operations into the mold of a

p

lity

in

lts

·s

,ter-

his

ted

n.

llity

1f

e-

ain

tus

s

69

call on a particular object is not only artificial for the user,

but can be somewhat inconvenient for the implementor.

Approach 3: Sealed-data capabilities. This approach is moti-

vated by the following observation about the use of representation

capabilities in' Approach 1: If the using domains are not allowed

direct access to the representation,of an extended object, and if

the implementing domain always replaces the user's weak capability

with the corresponding strong one saved in its own table, then the

user's weak capability is never actually used to access the repre-

sentation. This suggests the possibility of changing the type

field in the user's capability to contain, not the type of the

representation, but some new value associated with the type of the

extended object. There are two distinct advantages to this change.

On the one hand, it provides an easily visible and unforgeable

(given mechanisms to be described shortly) indication of the type

of the extended object. On the other hand, it renders the capa-

bility useless for directly accessing the representation, thus elim-

inating the need for a separate set of privileges to control

such access, as was required in the representation-capability

approach.

From the implementing domain's viewpoint, the creation of a

new extended object using this approach could be done by:

1) creating a representation of the object

2) saving a fully privileged capability for the representa-

tion in a hash table keyed on IDs

3) constructing a new capability containing the extended

type, full privileges, and the ID of the representation,

!

1
l

70

and returning it to the caller.

When called to perform some operation, the implementing domain can

examine the passed capability:

1) checking the type to verify that the object is one that

it implements

2) checking the privileges to verify that the requested opera

tion is authorized

3) locating the representation capability in its table and

performing the operation on the representation

Clearly, the creation of capabilities for extended objects

must be carefully controlled, since a forged capability could deceive

not only the users, but also the implementing domain. The creation

of capabilities of a given type can itself be authorized by a capa

bility. When this capability and an arbitrary datum are presented

to an appropriate new base-level operation, a new capability is

returned with the authorized type, all privileges 'on,' and the

datum as its unique ID. (As suggested above, this might be the ID

of the representation, but could be any value desired by the imple

menting domain.) Section 2.6 will discuss how such authorizations

to create new capabilities can themselves be created and distri

buted.

The sealed-data approach as described is a quite acceptable

type extension mechanism, and has in fact been used in at least

one actual system [St 73]. It places each higher layer in much

the same position as the base-level system; a capability is regarded

as holding an ID sealed in a tamperproof box, which guarantees

that the name presented by a user is in fact a valid name given

p

ve

d

71

him by that layer. Furthermore, it allows this without forcing

re-invention of the sealing mechanism in each new layer. It does,

however, require that each new layer implement its own table for

converting an ID into a capability for the representation of the

corresponding object; this is a partial duplication of the function

of the base-level "map" of section 2.2. It is desirable to avoid

re-invention of the map, as well as of the capabilities themselves,

an advantage possessed by our fourth approach to type extension.

Approach 4: Sealed capabilities. The need for each layer to

maintain a table mapping extended object capabilities into repre

sentation capabilities can be eliminated if the system simply

allows each extended capability to contain the corresponding repre

sentation capability. The extended capability thus becomes a

tamperproof box holding another capability! On the surface, this

makes it appear inevitable for capabilities to grow larger and

larger as objects are extended repeatedly, a problem already dis

cussed in connection with our first approach to type extension.

A carefully designed implementation, however, can avoid this

phenomenon, allowing unlimited extension with fixed size capabil

ities, as we shall see in section 2.7, which discusses the sealed

capability approach in more detail. First, however, we digress

briefly to examine some more general questions about type extension.

2.6 Hierarchies of Objects and Types

In a non-extendible system, only a small fixed number of

predefined types are provided, hence types can be identified by

72 r
I

small integers. In an extendible SY,stem, a much larger set of

types is needed. Two conflicting considerations influence the

choice of the size. of this set. On the one hand, it is desirable

to minimize the size of type identifiers, since these appear in

capabilities, where compactness is a great virtue. On the other

hand, it is desirable to maximize the total number of types

available, to insure that the supply will never be exhausted,

especially since type identifiers, like object IDs', can never be

reused.

Emphasizing the first consideration results in a system in

which the number of types, while much larger than the number which

would ever be legitimately used, is still fairly modest (e.g. thou-

sands or millions of types) [St 73]. This leaves open the possibility

of a malicious program using up all available types within a few

minutes of determined computing. Types in such a system must

therefore be viewed as a finite resource, and must be allocated

as such. This is possible, but somewhat inconvenient.

Emphasizing the provision of an inexhaustible supply of types

results in a system design in which the space of type identifiers,

like the space of object IDs, is effectively infinite (i.e. too

large to be exhausted during the lifetime of the system). By

combining these two infinite name spaces, the HYDRA system [Wu 74,

Jo 73] provides an elegant conceptual framework in which types are

themselves objects. This is illustrated in Figure 2.6-1, which

depicts the set of all objects as forming a three-level tree. For

purposes of this figure, only two attributes of each object are

of interest. One is its ID. The other is its type, which is

73

An object:

l-

.ity

Figure 2.6-1: Three-level object hierarchy

74

simply the ID of some other object.* Insisting that the other

object so identified be of type 'type,' and providing a special

root-object with ID 'type' (which is also of type 'type') forces

all objects (except the root) to occupy either the second or third

level of the tree. The second level contains the types, while

the third level contains the non-type objects.

Creation of objects in such a scheme can be described concep-

tually as a single operation:

C bj + create object (Ct) o - ype

where the new object will be a type if c type

naming the root object, and a normal object if

is a capability

C is a capabil-type

ity naming a second level object. If C names a third level type

object, an error is signalled. In practice, of course, such a

unified base-level create_object operation cannot replace the

specific object-creation operations for the various extended types,

since only the corresponding layer has both the authority and the

knowledge needed to create and initialize the various components

of the representation of a given type of extended object.

The practical disadvantage of the viewpoint just described

is the large size of type IDs. Nevertheless, we adopt the HYDRA

view of types as being objects. In Chapter 3, we describe a scheme

which manages to adopt this point of view, and yet provides an

extremely compact representation for capabilities.

There is a second kind of hierarchy among the types in an

* Unique IDs, which are simply long integers, are shown as symbols
in Figure 2.6-1 for clarity.

r
I

75

extendible system, which has been described by Morris [Mo 72].

This second hierarchy involves only the types, rather than all

the objects, and attempts to characterize the layered nature of

the system. Figure 2.6-2 illustrates a simple example, in which

segments are assumed to be predefined, and various plausible

extended types are shown, each indicating the type of its imple-

mentation. This assumes that all objects of a given extended type
I-

have the same type of representation, which does not seem unreasonable.

One can find examples, however, of situations in which differing

characteristics of objects of the same extended type might make

different types of representations desirable. In Figure 2.6-2,

for example, one might wish to allow long documents composed of
il-

a collection of text files, which, according to our conventions,

would be represented by a segment containing several text file

capabilities. As another example, one might wish to represent a

customer list as a sorted file or as a linked list, depending on
s,

the frequency of insertions and deletions expected. In the general

case then, the types form not a simple tree, but a directed graph

I
f t

withoutcycles. The latter property expresses the partial order

induced on types by the layered structure of the system. Note that

for any given extended object, there is only one representing

object, hence for a given representing object, the extended objects i

me
it represents can form at most a tree. (Of course, in any realistic

situation, this tree is only a linear chain.)

I
I

I

I
I

76

/
/

/
/

/

/
/

/

Figure 2.6-2: A type tree

77

2.7 Type Extension Using Sealed Capabilities

We now return to the last of our four approaches to the naming

of extended objects, that using "sealed capabilities." As in the

sealed-data approach, the manufacture of extended capabilities

must be carefully controlled to prevent forgery. Given the view

that types are objects, the appropriate authorization to manufac-

~ ture a capability of a given type is a capability ill# that type.

A layer can obtain a new type T by executing

CT+ create_type ()

Subsequently, it can seal any capability C by executing

as illustrated in Figure 2.7-1. C will have type T, all privi
s

leges on, and a new unique ID assigned by the system.

Later, C can be recovered by executing

Note that CT must be presented to authorize unsealing, thus pre-

venting any random possessor of

C which is sealed inside.

c
s

from obtaining the capability

The implementation of capability sealing as just described

requires a fair amount of machinery, such as that to be described

in Chapter 3. However, a slightly restricted version of capability

sealing can be added to TCS in a surprisingly simple way. In the

description below, we assume that a layer wishes to implement

78

c
type

privileges

ID
type (T)

privileges (all)

ID (new)

"'!,-,-,-,---------,~--,,,,
,, ' '"-__ ___________________ ,,

Figure 2.7-1: Sealing a capability

extended objects of type

79

T whose representations are of type
x

The creation of type T
x is performed by the operation:

+ create_type (T ,P)
r r

Note that the type of the representation (T) must be specified.
r

This is one of the restrictions necessary for the implementation

described below, and forces the set of types to form a tree, as

T .
r

discussed in the previous section. Also, a set of privileges (P)
r

must be specified, whose significance will be explained below.

The resulting capability for the new type (CT) allows the crea
x

tion of new capabilities of type T, containing representation
x

capabilities of type T
r

sealed inside.

The creation of an extended object involves the creation of

its representation (which results in a capability c),
r

followed

by the creation of a capability C for the extended object, using
x

the operation:

This produces a sealed capability

the scheme is the requirement that

c .
x

c
r

The second restriction in

contain at least the privi-

leges in p •
r

(In practice, this is no problem, since sealing is

generally preceded by the creation of the representation, which

produces a fully privileged capability c .)
r

Later, whenever the implementing domain receives as a para-

meter a capability c
x

of the new type, it can recover the sealed

capability c
r

using the operation:

80

Cr+ unseal (Cx,CT)
x

Note that the recovered capability c
r

has exactly the privileges

P , which cannot be greater than the privileges in the capability
r

originally sealed. Thus, the layer which implements the repre-

senting type need not trust the layer implementing the extension,

since the latter can only recover privileges which it had previously.

The scheme just described can be implemented by representing

the extended type as shown in Figure 2.7-2. The implementation

of sealing now consists of merely changing the type field of c
r

from T to T and turning on all privileges to produce C, r x x

while unsealing simply changes it back and sets the privileges to

p ' r
thus recreating c

r

the same object ID as did

again.

c ' r

Note that C will thus contain
x

rather than a new ID provided by

the system. In practice this is not a serious problem.

This implementation clearly allows a given object to be extended

one or more times, and still be represented by a standard-sized

capability. Variations on this scheme which depend on short type

IDs are described by Sturgis [St 73] and Lindsay [Li 73]. Another

related scheme is the "constituent rights" approach discussed by

Jones (Jo 73], which is essentially equivalent to sealing a segment

containing several capabilities. Chapter 3 will describe a scheme

which eliminates the restrictions described above, allowing arbi-

trary sealing of capabilities.

T
r

81

Figure 2.7-2: Representation of a type

82

2.8 Goals for a New Capability System

This chapter has attempted to set the stage for the proposed

capability mechanism of Chapter 3 by sketching a typical capability

system, exploring the problems of revocation and type extension in

the context of that system, and discussing various relatively minor

modifications to such a system attempting to solve those problems.

In disucssing these modifications separately, examining both their

strengths and their weaknesses, a number of desirable properties

have been noted. These are listed below, and are adopted as the

goals to be met by the design p~oposed in Chapter 3.

Goals

1) Revocation should take effect inunediately.

2) It should be possible to revoke the various privileges

in a capability independently.

3) It should be possible to selectively revoke the privi

leges of a subset of the capabilities for an object, and

this should require no global knowledge of capability

propagation.

4) Any distributor of a capability (i.e. not just the "owner"

of the object) should be able to revoke its privileges.

5) The users of capabilities should not need to distinguish

between revocable and non-revocable capabilities.

6) The cost of revocability should not be excessive.

7) The mechanisms of revocation and type extension should

interact correctly.

83

Chapter 3

A New Capability System

3.1 A New Capability System

The goal of this chapter is the description of a new capa

bility system (called NCS for short) which meets all of the goals

listed at the end of Chapter 2. This requires a fairly substan-

tial departure from the TCS system of Chapter 2. After discussing

two abstractions of the "link segment" scheme of Chapter 2, we

adopt the family tree model to describe the revocation behavior

of capabilities. The mechanism of generalized sealing is then

proposed, to provide both revocation and type extension, and the

practicality of implementing the scheme is argued in some detail.

3.2 Design Considerations for Revocation

In the design of the NCS capability scheme presented in this

chapter, we wish to retain as many as possible of the advantages

of the indirection scheme of Chapter 2, while avoiding its pro-

blems. There are at least two approaches which can be taken in

attempting to capture the essence of the indirection scheme in a

base-level construct, as depicted in Figure 3.2-la. On the one

hand, as in Figure 3.2-lb, one can regard C as being merely
a

a part of the mapping from Cb to the object, and Cr as being

a special revoker capability which allows that mapping to be broken.

On the other hand, as in Figure 3.2-lc, one can regard both c
a

and as being capabilities for the object, with

somehow dependent on c
a

in the sense that revoking

being

84

object

(a) Indirection scheme

object

(b) Revoker-capability approach

Figure 3.2-1

object

(c) Dependent-capability
approach

85

automatically revokes Cb as well.

Taking the former point of view results in a scheme in which

the mapping from a capability to an object is itself viewed as

being essentially like an object, since one can have a capability

for it and thus be authorized to manipulate it. To allow indivi-

dual privileges to be revoked independently, one must define the

mapping as containing, or at least limiting, the privileges of the

capability. The establishing of one's future power to revoke a

capability should be an atomic operation, as discussed in Section

2.4. For example, the situation in Figure 3.2-lb can be produced

by executing

Subsequently, the possessor of c
r

can revoke the privileges in

Cb by executing

revoke (C ,P)
r

In its effect on Cb, this is equivalent to the TCS operation

The difference lies in the fact that, unlike reduction, revocation

also takes effect in any and all copies of Cb which may exist.

The interaction of revocation with copying is clarified in

Figure 3.2-2, which shows the situation resulting from executing

c
r

86

E

object

Figure 3.2-2: Interactions of copying
and revoker capabilities

c x

c
y

c
z

c + c
y z

87

C + revoker (C)
r Y

c + c
x y

This kind of interaction causes subsequent revocation of c
y

to

affect C but not C, which is clearly the desired behavior. x z

More complicated situations include "subletting," as shown in

Figure 3.2-3, in which both the _original owner (holding c)
0

and

an intermediate distributor (holding Cd) retain the power of

revocation over the user (holding c) ' u
and "bill collecting,"

as shown in Figure 3.2-4, in which the ability to revoke the access

of the user (holding ·c) is delegated to a "collection agency"
u

domain, with the owner (holding c)
0

retaining the option of later

disabling the collection agency if the contract with the user is

renegotiated. Note that the latter example takes advantage of the

fact that revocability, being authorized by a capability, is itself

thus revocable.

The revoker-capability approach just described has a good

deal to reconunend it, and has in fact been explored in some detail

in a system design project at Stanford Research Institute [Neu 74].

However, we pursue here the dependent-capability approach instead.

Investigation of the two approaches reveals the following advantages

of this choice:

a) It avoids the introduction of special capabilities

authorizing revocation, thus simplifying matters some-

what (although a certain amount of complication is

unavoidable, as we shall see shortly).

88

. cb i • c
u

Cd [~ J

.l I c • 0

object

Figure 3.2-3: Subletting using revoker capabilities

i] c
u

Cb

~ ~ ~ J~ c
0 u

object

Figure 3.2-4: Bill-collecting using revoker capabilities

89

b) It avoids treating the capability-to-object mapping as a

manipulable object, which significantly reduces imple-

mentation costs, but sacrifices the ability to make

revocability itself revocable.

c) It can be cast in terms of a mechanism (to be described

in Section 3.4) which unifies the notions of revocation

and type extension.

It must be admitted that the choice is not entirely clear-cut; in

particular, the opposite conclusion might be reached in a context

in which revocable revocability was considered important.

One motivation for the notion of dependent capabilities is

the observation that a weakened copy of a particular capability

can arrive in the possession a domain as a result of either of the

following sequences of actions:

a) The privileges in the original capability are reduced

to the desired set, and then a copy is passed to the

receiving domain.

b) A copy is passed to the receiving domain, and then the

extra privileges are revoked from the original.

The essence of sequence (b) is that the granting domain "has

second thoughts" and wishes it had used sequence (a) instead. This

suggests defining the revoke operation by simply changing the

reduce operation to be commutative with copying, in the sense that

and

Cb+ C ; revoke (C ,P) a a

90

produce the same net effect. Of course, revocation cannot be

expected to undo any intervening exercise of the affected capa

bilities hence this commutativity applies only to the state of the

protection structures, rather than to the state of the objects

being protected. Nevertheless, it is an attractive way of describ

ing the effect of revocation.

Exactly how the revoke operation manages to find all outstand

ing copies of the capability being revoked is, of course, the cen

tral implementation question concerning this scheme. At this

level of discussion, however, we simply imagine that a global

search is done to locate and revoke the appropriate capabilities.

Given that we require commutativity of copying and revocation

there are several possible schemes, corresponding to different

assignments of dependency among the various capabilities existing

for a given object. Clearly, the commutativity requirement con

strains the choice to assignments in which the dependency set of

any given capability includes all other capabilities which have

been derived from it through one or more levels of copying. We

examine three schemes, corresponding to three such assignments.

Scheme 1: The simplest scheme considers all capabilities

for a given object to be interdependent, so that revoking privi

leges from any of the capabilities affects them all. This approach

is clearly unsatisfactory in general, for two reasons:

a) All capabilities for a given object are forced to contain

the same set of privileges.

b) Any domain possessing a privilege can revoke it from

all other domains.

91

Nevertheless, this approach has one virtue which makes it worth

mentioning: it is possible to copy a capability and have the copy

retain the revocation powers of the original. This is desirable,

for example, when a domain simply wishes to move a capability

within its address space.

Scheme 2: A more appealing scheme considers the capabilities

for a given object as forming a 11 family tree" generated by the

copy operation as follows:

a) The initial capability (produced at object creation time)

occupies the root node of the tree.

b) Whenever an existing capability is copied, the copy occu

pies a new son node of the node containing the capability

being copied.

A typical family tree is shown in Figure 3.2-5. By defining a

capability to be dependent on each of its ancestors in the family

tree, we maintain at all times the condition that no capability

can have any privilege not possessed by all of its ancestors.

Thus, revocation affects entire subtrees of the family tree.

This tree-structured dependency solves the two problems

encountered with version 1 above. since it allows different

capabilities to contain different sets of privileges, and strictly

circumscribes the effect of revoking privileges from any given

capability. Thus domain A may pass capabilities to domains B

and C, such that

a) B and C have different privileges from each other,

ai;id from A,

b) A may revoke the privileges of B and C independently,

92

Figure 3.2-5: A typical family tree of capabilities

and c)

93

B and C may not interfere with each other, nor with

A, by revoking the privileges.

Unfortunately, by treating copying in this way, Scheme 2 sacrifices

the one advantage of Scheme 1: the ability to produce a copy with

identical revocation powers. A capability cannot be moved by copy

ing it and discarding the original, since the copy, being a son

of the original would lack the power of revocation over other

such sons, and would therefore be an inadequate replacement for

the original.

The problem is caused by two conflicting notions of what

copying is for, suggesting that two different operations are needed.

Scheme 3: By combining the notions of Scheme 1 and Scheme 2,

we define a "reduced family tree" of capabilities generated by a

pair of copy operations:

Cb+ Ca (as in Scheme 1)

Cb+ son (Ca) (as in Scheme 2)

The reduced family tree is generated as follows:

a) The initial capability occupies the root node.

b) The copy operation produces a new capability occupying

the same node as the capability being copied.

c) The son operation produces a new capability occupying

a new son node of the node containing the capability

being copied.

A reduced version of the family tree in Figure 3.2-5 is shown in

Figure 3.2-6, As in Scheme 2, revocation affects entire subtrees.

Thus, while Scheme 1 proposed a set of capabilities, and

94

Figure 3.2-6: A reduced family tree
corresponding to Figure 3.2-5

95

Scheme 2 proposed a tree of capabilities, Scheme 3 proposes a tree

of sets of capabilities. This is intended to capture the observed

tendency of the capabilities for a given object to fall naturally

into subsets containing equivalent capabilities (as mentioned in

Chapter 2). In this scheme, the capabilities in each family tree

node always contain the same privileges, since any change to one

of them affects them all. On the other hand, capabilities in

different nodes of the family tree can contain different privileges,

and interact according to the rules of descendant revocation. This

contrasts with a system like TCS, in which any two capabilities

may contain different privileges, and reducing the privileges in

one never affects the other.

One valid complaint about this scheme is that it forces an

early decision as to which capabilities one may eventually wish to

revoke. The recommended policy would be to use a revocable capa

bility whenever there was any doubt concerning the trustworthiness

of a receiving domain. Indeed, this is the justification for our

restriction that capabilities with the same revocation status may

not differ in their privileges. It seems intuitively reasonable

that a~y level of trust less than complete trust may be subject to

change, especially since incomplete trust is often based on incom

plete knowledge. Thus, the same reservations which prompt one to

pass a capability with restricted privileges should prompt one to

make that capability revocable.

We wish to adopt the reduced family tree as the model of

revocation behavior in NCS. The implementation described in

Section 3.6 produces exactly this behavior, in addition to a

96

sealed-capability type-extension mechanism. In the implementation,

these two mechanisms not only interact strongly, but also display

a striking similarity, despite their apparently dissimilar defini-

tions. We therefore present, in Section 3.4, a more general

mechanism which subsumes them both. It should be emphasized that

this generalized mechanism does not provide any additional privi-

lege revocation features, but functions rather as an interesting

descriptive device unifying two seemingly different constructs.

We will continue to use the family tree description as well, where

appropriate.

3.3 Interactions with Type-Extension

In the design of NCS, we wish to adopt the sealed-capability
f

approach to type extension, as described in Chapter 2. The minor

restrictions in the TCS capability sealing mechanism of Section 2.7

will be eliminated, but this is not a major improvement. What

is crucial, however, is the proper interaction of type-extension

with revor.ation.

One aspect of such proper interaction has already been men-

tioned: it must be possible to revoke access to extended objects,

as well as to base-level objects. Moreover, such revocation must

be handled through the normal base-level revoke operation, without,

for example, any need to explicitly notify the layer which imple-

ments the object that access is being revoked. Thus, no extra bur-

den is placed on the user of the extended object, although certain

mild constraints are placed on the implementing layer, as we shall

97

see in Section 3.5.

Another interaction which must be handled properly is the

revocation of capabilities for objects which are representations

of extended objects. Since such capabilities can be sealed inside

the extended object capabilities (to any depth), the revoke opera

tion, during its hypothetical global search, must be able to look

inside the extended object capabilities and remove the appropriate

privileges from any eligible representation capabilities it finds

there. This requirement rules out such implementations as that

described for TCS in Section 2.7, in which a sealed representation

capability has no explicit existence, but can be reconstructed on

the basis of certain assumptions, the key assumption being that

its privileges remain constant, which can be false in a system

providing revocation. The important point here is not that a

layer implementing an extended type would normally be in the posi

tion of having its representation capabilities revoked, but that

it must not be possible for the freely available type-extension

mechanism to be misused to "hide" capabilities from the revocation

mechanism.

3.4 Generalized Sealing

In discussing capabilities, we have sometimes referred to

them as being information "sealed in a box." This characteriza

tion has been used by Lampson [La 69], Morris [Mo 73] and others,

and suggests the obvious generalization of repeated sealing, i.e.

boxes within boxes. We have already seen one situation in which

98

such a construct was useful: the sealed capability approach to

type extension. In this section, we propose a much more general

capability sealing mechanism for NCS which not only allows type

extension without the restrictions imposed in Section 2.7, but

also provides for revocation which follows the reduced family tree

discipline of Section 3.2.

The act of sealing information in a box can have two conse

quences:

a) Reading of the information is prevented.

b) Modification of the information is prevented.

Morris [Mo 73] has referred to sealing as being transparent if

only restriction (b) holds, and opaque if both restrictions (a)

and (b) hold. We wish to generalize this distinction to allow

partially opaque sealing of capabilities. This is accomplished

by using boxes which are partly opaque and partly transparent.

The opaque parts of a box have information on them; they cover

and override the corresponding parts of the capability sealed

inside. The transparent parts of a box allow the corresponding

parts of the capability sealed inside to show through, and to thus

remain in effect. It is not surprising that this selective "fil

tering" action can be used to capture the notion of privilege

revocation, as we shall see.

The ability to seal things in boxes is carefully controlled,

as is the ability to unseal boxes and thus gain access to their

contents. Various kinds of boxes are available; the sealing and/or

unsealing of a given kind of box is itself authorized by an appro

priately privileged capability for a type. In this scheme, a type

99

is simply a template for making boxes. As we will shall see, such

templates, when used in a particular way, generate a HYDRA-style

3-level object hierarchy, but this is not an explicit part of our

definition of types. The association of boxes with types should

not be taken as meaning that boxes are themselves objects, which

they are not. A box is merely the "skin" of a capability, and has

no independent existence of its own.

The format of boxes is shown in Figure 3.4-1. A type is just

a template for making boxes, and a capability is just a box con

taining something, hence this can also be used as the format of

types and capabilities. One can think of the fields as being

written as "trit strings" where each digit takes its values from

{0,1,transparent}. The fields are all familiar from previous dis

cussions, with the exception of the "capability-ID" field. This

field identifies the capability, and serves to distinguish it

(and all copies of it) from other similar capabilities, even if

their type, privileges and object-ID fields are the same. This is

important, for example, during the hypothetical search which per

forms revocation of privileges.

In spite of the alarming size of these capabilities, we con

tinue to assume that each addressable location in memory is capable

of containing one. At the same time, we will take the apparently

paradoxical view that each of the four fields in a capability is

the full size of a data item which could be stored in the same

location as the entire capability. This kind of behavior should

come as no surprise in a system which allows capabilities to be

nested to any depth without increasing in size.

100

capability-ID

type

privileges

object-ID

Figure 3.4-1: Format of boxes,
types, and capabilities

~

101

The seal and unseal operations are fairly simple. Executing

creates capability CS by sealing C in a box specified by the

template contained in type T, as authorized by the privilege of

sealing in CT. The box produced is a verbatim copy of the tem

plate in type T, with the exception that the capability-ID and

object-ID fields, if opaque, will have the same new unique ID

written on them. Executing

reverses the process by removing one or more boxes from CS until

it suceeds in removing a box whose type field is opaque. The

value of its type field must match that of the template in type T·
'

otherwise, an error is signalled and no value is returned. The

capability CT must contain the privilege of unsealing.

Given the above mechanism, various kinds of templates can be

defined, of which we will use three.

The simplest kind of template is shown in Figure 3.4-2. It

is completely transparent, and generates boxes we will call

"lockers," since their only function is to prevent their possessors

from modifying their contents in any way. In particular, lockers

are used to control revocation, as will be discussed in the next

section. A type containing this template is provided by the system,

and a capability for the type, allowing sealing but not unsealing,

is publicly available.

102

' ... '
' :::~ '"""

'
-
I

'
I

I I
--, I I ' ' '

~

Figure 3.4-2: A "locker"

' capability-ID ~ -~ I
.......

I
I I
I I

',j I

"'- """-

Figure 3.4-3: A "revoker"

...
capability-ID ~"-..

type

privileges

object-ID
~-- ... J

~

Figure 3.4-4: An "extender"

103

A slightly more complicated template is shown in Figure 3.4-3.

It is transparent except for an opaque capability-ID field, and

generates boxes we will call "revokers." (Recall from the defini

tion of the seal operation that each new revoker will thus have

its own new capability-ID.) As will be seen in the next section,

sealing a capability in a revoker box is equivalent to generating

a new son-node in the reduced family tree. A type containing this

template is also publicly available for sealing, but not unsealing.

The third kind of template is shown in Figure 3.4-4. It is

completely opaque. The value of the type field is just the ID

of the type containing the template. Boxes generated by such tem

plates we will call "extenders." Extender boxes provide a sealed

capability type extension facility as described in Chapter 2.

Several types containing such templates are predefined by the system,

and an operation is provided for creating more such types on demand.

These types are not made publicly accessible.

There may be other kinds of templates which would prove

interesting or useful, but we will not pursue this here. Instead,

we turn to the relationship between the sealing mechanism and the

other operations of the base-level system.

As mentioned previously, the base-level operations taking capa

bilities as arguments can be divided into two groups. Most of

them simply "look at" the capabilities as the names of objects

which are their actual arguments. A few of them are directly con

cerned with the capabilities themselves. The treatment of capa

bilities by the former operations is quite simple: they always

rely on the external appe_arance of a capability, regardless of its

104

internal structure of nested boxes. For the latter operations,

the situation is more complex.

In addition to the seal and unseal operations described above,

there are four kinds of base-level operations which manipulate

capabilities themselves:

a) creation of base-level objects

b) copying of capabilities

c) erasing (overwriting) of capabilities

d) revocation of privileges

Each of these is now described in some detail.

Creation of base-level objects is involved with the capability

mechanism in two ways. On the one hand, each new object must be

named by an initial capability which is to be returned as the

value of the creation operation. The fabrication of this capability

can best be described as the sealing of an empty extender box,

using a type owned by the base-level system as a template. Thus,

base-level object creation depends on sealing.

On the other hand, sealing depends on the previous creation

of types, which are base-level objects. Types corresponding to

the various base level objects (segments, domains, etc.) are

created at system initialization time. At least the "root" type

(ID= 'type') must be created "out of thin air," and in fact, all

base-level types are presumably created this way (although concep

tually, one can think of the base-level system using its own

create_type operation, which would in turn use the seal operation

specifying the root type as a template).

Copying of ~apabilities is conceptually simple in this scheme.

105

The entire capability, including any number of nested boxes, is

reproduced exactly, so that the new capability is indistinguishable

from the original. Thus, executing

results in two identical capabilities.

The overwriting of a capability with data or with another

capability is also simple. The overwritten capability is destroyed,

with no particular side-effects except for the obvious possibility

that some previously allowable actions are now forbidden.

The most complicated operation in this scheme is revocation,

which is performed by executing

, revoke (C,P)

which revokes from C (and all copies of C) any privileges

which are zero in mask P. The outermost box of C is required

to be a revoker. Note that the revoke operation, like the TCS

reduce operation, is portrayed as modifying an existing capability,

rather than producing a new one (cf. seal, unseal). Generalizing

the discussions of Sections 3.2 and 3.3, we will hypothesize that

the underlying capability machinery performs a global search any-

time an existing capability is modified and reflects the changes

in all copies of the capability, even those which are sealed in

nested boxes.* (These copies are easily recognized by their

* In the design being described, this hypoth~tical search is exploit-
ed only by revocation. Section 3.8 will survey some possible ela
borations on the design, two of which would also depend on this
search. At risk of repetition, we again point out that this global
search is only a descriptive device, and is not actually implemented
as such.

106

capability-ID fields.) The particular modification performed by

the revoke operator is the writing of an opaque O at each posi

tion in the privilege field of C which corresponds to a O in

the mask P. This is only done, however, if the outermost box of

C is a revoker; the revoke operation refuses to write on any

other kind of box, and signals an error if this is attempted.

Operations must also be provided for testing the tag of a

memory location to see whether it contains a capability, and if it

does, for displaying the various fields of the capability. These

operations are straightforward and require no detailed discussion.

3.5 Examples of Generalized Sealing

This section outlines some intended uses of the NCS sealing

mechanism just described, and reviews the goals listed at the end

of Chapter 2, to assure that they have all been met. The descrip

tion of directories and other specific facilities which can be

implemented using NCS capability sealing is postponed until

Chapter 4.

There is more than one reasonable way to use the NCS sealing

mechanism for revocation, depending upon the exact situation (i.e.

the number of domains involved and their relationships to each

other). In the example situations below, it is assumed that

domain A possesses a capability and wishes to pass it to one or

more domains B. In choosing
1

a method of doing this, A controls

the possibility of later revocation of the various capabilities

passed.

107

To illustrate the various situations, the sealed capabilities

are shown as arranged in corresponding reduced family trees. Recall

that sealing a capability in a revoker box corresponds to generating

a new son node in the tree.

The simplest situation is one in which A completely trusts

B, and simply passes a copy (CB) of its own capability (CA), as

shown in Figure 3.5-1. The most important example of this is in

"system calls," in which A regards domain calls on B as being

operations of its "extended machine." As will be seen in Section 3.6,

the passing of such non-sealed capability parameters represents

a considerable saving. This is very significant, since experience

suggests that a great majority of domain calls executed are in

fact system calls [SS 72). There are also logical reasons for

passing non-sealed capabilities on certain kinds of system calls,

namely those which are part of extended mechanisms for capability

storage and/or transmission, such as directories or message

channels.

If A does not have complete trust in B, then before pass-

ing CA to B, A should seal it in a revoker box. By keeping

one copy (CR) of the sealed capability, and passing another (CB)

to B, A retains the power of later revoking B's privileges.

This situation is illustrated in Figure 3.5-2.

If A wishes to pass reyocable capabilities to the several

domains B1 ,B2, ••. ,Bn, one alternative would be the creation of

CR as above by sealing CA in a revoker, followed by the passing

of n copies of CR (denoted CB.) to the domains Bi, as
l.

shown in Figure 3.5-3. (Note that this is just the situation

108

Figure 3.5-1: Passing.a non-revocable capability

.
~

Figure 3.5-2: Passing a revocable capability

Figure 3.5-3: Passing simultaneously revocable capabilities

109

which would arise if A passed CB to B1 , and B1 , completely
1

trusting B • • ·B 2 n'
in turn passed copies to them.) There are two

limitations to this use of the mechanism. One is the non-selectivity

of A's power of revocation; revoking privileges from any of the

domains Bi requires revoking from all of them. The other limita

tion is the lack of isolation between the domains Bi; any of

them is capable of revoking the privileges of all of them, which

may be inappropriate.

Both of these limitations can be avoided by simply handling

each of the domains B. separately as in Figure 3.5-4. This
1

allows selective revocation from each of the B., and isolates
1

them from each other in case they are mutually suspicious. For

example, the various Bi may be the renters of a program owned

by A, in which case both of these considerations are important.

On the other.hand, there are situations in which A does
I

not need to revoke the privileges of the various Bi selectively,

but does wish to isolate them from each other. For example, a

professor may wish to grant access to a grading program to all of

the students in his class. He certainly wishes to prevent the

students from revoking this privilege from each other, but may

well have no desire to revoke their privileges independently,

especially since this is somewhat costly and requires that A

retain and use n different capabilities CR. In this situation,
i

A can produce a single CR by sealing CA in a revoker box, and

can then distribute the capabilities CB produced by in turn
i

sealing CR in a locker box, as shown in Figure 3.5-5. This not

only eases simultaneous revocation, but is significantly cheaper,

110

Figure 3.5-4: Passing independently
revocable capabilities

Figure 3.5-5: Passing isolated
simultaneously revocable capabilities

111

given the implementation to be described.

From this discussion, it should be clear that goals 2, 3, 4

and 5 of Section 2.8 are satisfied by the proposed design. Goal 6,

that of reasonable cost, will be treated in the next section,

which proposes an implementation for sealed capabilities and dis-

cusses its efficiency. This leaves only goal 1, that of immediate

revocation, and goal 7, that of proper interaction between revo-

cation and type extension. Between them, these two goals generate

one fairly subtle problem, which must be discussed before all the

goals can be considered satisfied.

It is clear that revocation as defined takes effect immediately

in the sense that the privileges of the appropriate capabilities

are immediately modified. This is only significant, however, to

the extent that the, corresponding operations on the object in ques
/

tion are immediately prohibited, which in turn depends on the

checking of the privileges by the operations. One can imagine the

following kind of scenario, in which revocation is effectively

delayed. Suppose that domain A in process PA passes to domain

B in process PB a capability to access X, which is an extended

object implemented by layer ·L. Suppose that layer L is repre-

sented by domain LA in PA and by domain LB in PB. Assuming

that we can say nothing about the relative execution speeds of PA

and PB [Di 68] the sequence shown in Figure 3.5-6 is one possible

outcome, and produces an effective delay in revocation which is

visible to A. Strictly speaking, the problem here is caused by

the occurrence of step Al between steps B2 and B3, which should be

executed together as a "critical section." Synchronization between

Al. A revokes B's privilege

to modify x

A2. A calls LA to examine x

A3. LA returns to A the

original state of X

A4. A palls LA to examine X
/

A5. LA returns to A the

modified state of X

112

Bl. B calls LB to modify X

B2. LB verifies that Bis

authorized to modify X

B3. LB performs the previously

checked modification of X

and returns to B

Figure 3.5-6

113

the base-level system and higher layers is fraught with difficulties,

however, hence the following alternative seems preferable: when a

layer is about to access the representation of an object, it must

first lock all parts of the representation to be touched and then

check to see that the requested operation is authorized. In many

cases, this interlocking would be necessary anyway; the major

change due to revocation is the moving of privilege checking inside

of the critical section. (In particular this means that pre-check-

ing of privileges as an integral part of the domain call machinery

[St 73, Wu 74] is not very useful in a system in which privileges

are revocable.)

In the context of Figure 3.5-6, such checking would delay

step A3·un7il after step B3. The crucial point is that this

renders the situation indistinguishable* from one in which step B3

occurred before Al. Thus, although an access may occur slightly

after permission to perform it has been revoked, there is no way

for a properly written (i.e. timing independent) program to detect

this occurrence.

3.6 Implementation of Generalized Sealing in NCS

As in previous discussions, we begin by describing the repre-

sentations of capabilities themselves. A tagged memory location

holding a capability appears to the user to contain a rather large

amount of information, but in actuality it contains a short form

* Except for real-time delays.

114

of the capability, consisting of a "locker bit"* and the ID of the

capability as shown in Figure 3.6-1. The other fields are stored

elsewhere, and the ID is sufficient to locate them, allowing recon-

struction of the complete long form of the capability.

The most important advantage of this approach is that it

allows the changeable information (e.g. revocable privileges) in

all copies of a capability to be centralized and thus updated

without a global search. This is crucial to the practicality of

the scheme, and will be discussed in more detail shortly.

This approach also allows the effective storage of an entire

capability in a single practical-sized word of a tagged memory.

For example, on the terribly pessimistic assumption that a new

'
unique ID/ is generated every 10 microseconds, the use of 48 bit

words would allow the system to run continuously for about a cen-

tury without exhausting its supply of names. Using a name-space

compaction approach and a somewhat more realistic level of pessi-

mism would probably allow the use of 32 bit words without requiring

an objectionable frequency of system shutdowns to perform the

compactions (i.e. once every few weeks or months, at worst).

An attractive way to store the boxes which constitute the

actual substance of the capabilities would be in a global hash

table containing small fixed sized entries and keyed on unique IDs.

The map, as described in Section 2.2, is just such a structure,

which suggests implementing each box as a map entry. This approach

yields an integrated structure for the reconstruction and inter-

pretation of nested capabilities from their short forms. The

* This is not the same as the tag bit on the capability, and will
be discussed below.

\

I

capability
(short form)

115

capability-ID

capability-ID

type

privileges

contents

Figure 3.6-1: Format of (short-form)
capabilities and map entries

locker bit

I I

116

increase in size and complexity of the map machinery, while non

negligible, is not excessive.

The format of a map entry is shown in Figure 3.6-1. The

capability-ID, type and privileges fields of the corresponding

box are represented directly, while the object-ID field is replaced

by a new "contents" field which serves to locate the contents of

the box. Map entries for various particular kinds of boxes are

shown in Figure 3.6-2.

Base level capabilities, while conceptually the same as other

extenders, are represented in a special form. The contents field

contains the physical address of the object, hence these map

entries correspond to the map entries in a system like TCS. The

privilege field would always contain all l's since revocation

does not operate on extender boxes, hence its value can be implicit;

the space in the map entry is used to record the size of the base

level object instead.

Normal (i.e. user created) extender boxes are represented

similarly, but their contents are capabilities, rather than physical

addresses, and they make no use of their privilege fields.

Revoker boxes represent their transparent type and privilege

fields as all l's. In the case of the type field, this value is

a constant which is specially recognized by the capability recon

struction machinery. In the case of the privilege field, it is

used as a mask~ hence any O's written in it are effectively opaque,

as required for revocation.

Note that no map entry format is described for locker boxes.

Locker boxes are so simple that they may be implemented in a much

Initial capability
for base-level

object
(special extender)

Extender
(normal extender)

Revoker

117

I

T

size

address

I

T

c

I

111. •• 112

p

c

Figure 3.6-2: Map entries
representing various kinds of boxes

Cap

Type

Priv

Cont

Cap

Type

Priv

Cont

Cap

Type

Priv

Cont

118

cheaper way. As shown in Figure 3.6-1, a single locker-bit in the

short form capability, rather than a complete map entry, serves to

indicate the presence of one or more locker boxes. (Since they

are transparent and non-removable, multiple consecutive locker

boxes are indistinguishable from a single one.)

Given the described representations of the various kinds of

boxes, the seal and unseal operations may be implemented as shown

in Figures 3.6-3 and 3.6-4, respectively. The seal operation

creates a new map-entry representing the new box and stores in its

contents field the capability being sealed. Sealing in a locker

box is handled specially by simply turning on the locker bit in

the sealed capability. The unseal operation simply returns the

contents of the appropriate extender box. (Recall that revokers

and lockers can never be unsealed.) Figure 3.6-5 sununarizes the

various low-level facilities used in the description of these and

other operations. These are assumed to be clear from previous

discussions, with the exception of capability reconstruction

("Recap") and associative memory lookup ("Cap_find" and "Cont_find")

which will be described shortly.

The creation of each new base-level object includes the

construction of the "root" map entry representing its initial

capability. This map-entry is self sufficient, in the sense that

it does not depend on any other map entry for its proper interpre

tation. On the other hand, a map entry representing a revoker or

extender box contains another capability; its one-word contents

field holds the short form of the capability, hence its interpre

tation is dependent upon the other map entry holding the rest of

)

cs+ c
Locker(c)

s

ENTER

C + Recap(c)
CT+ Recap(cT)

119

No

No

No

ERROR

ERROR

I + New ID(.)
M + New=map_entry(I)

Yes No

Type(M) + 11 ... 12 Priv(M) + 11 ... 12
Type(M) + Obj(CT)

Cont(M) + c

Cap(c) + I
s

Return c ~~-otLocker(c) + 0
s s

EXIT

Figure 3.6-3: NCS seal operation

120

ENTER

C + Recap(c)
CT+ Recap(cT)

Return Cont(C)

EXIT

ERROR

ERROR

ERROR

Figure 3.6-4: NCS unseal operation

121

Fields in various data structures (see also corresponding figures)

Cap (x)

Type (x)

Priv (x)

Obj (x)

Size (x)

Cont (x)

Unique names

New ID ()

New_map_entry (I)

Map_entry (I)

Delete_map_entry (M)

Capability reconstruction

Recap (c)

Associative memory

Cap_find (I)

Cont find (x}

capability-ID

type

privileges

object-ID

size

contents

generates a new unique ID

creates map entry with capability-ID= I

finds map entry with capability-ID= I

deletes map entry M

reconstructs long form of c

find entry with capability-ID= I
(else LRU entry)

find entry with contents= x
(else LRU entry)

Figure 3.6-5 Low level facilities used by operations

122

that capability. Thus, repeated sealing of a base-level object

results in the generation of a tree of map entries, which combines

the functions of the type tree of Section 2.6 and the reduced

family tree of Section 3.2. An example of such a tree is shown in

Figure 3.6-6, in which a segment is used as the representation of

an extended object of type 'directory,' for which various capabilities

have been distributed.

It is important to note that while the seal operation

generates such tree structures, the unseal operation does not dis

mantle them. For example, in Figure 3.6-6, if the layer imple

menting directories unseals c3 to obtain c
5

, the map structure

remains unchanged. The mechanism for deletion of unneeded map

entries will be discussed later.

In order to reconstruct the long form of a capability, it is

necessary to examine the boxes which compose it, starting with the

outermost and working inward, until all fields are completely opaque.

Given the particular kinds of boxes used in our scheme, this simply

entails scanning down a chain of (zero or more) revokers until a

non-revoker box is encountered. This reconstruction procedure,

shown in Figure 3.6-7, is rather similar to the "following" proce

dure for indirection chains of Section 2.4. In other figures, the

capability reconstruction procedure is referred to in the form

C + Recap (c)

where c denotes the short form and C the reconstructed long

form of the capability. In addition to the visible long form, the

reconstruction process also recovers the representation pointer

Capabilities:

long: y

'dir'

pl

B

cl

short: y

Map:

Objects:

123

y B
'dir' 'dir'

pl 11. .. 12

B B

c2 c3

[: ::::w

y

'dir'

a O

a

'seg'

size

Segment

0

0

'dir'

p2

B

c4

11. .. 12

p2

Figure 3.6-6: A map entry tree

a

'seg'

11 ... 12

a

cs

li.::H

124

C + Recap(c)

ENTER

I+ Cap(c)
A+ Cap_find(I)

P + 11. .. 1

----~M + Map_entry(I)

Cap(A) + Cap(c)
Type(A) + Type(M)
Priv(A) + P
Obj(A) + Cap(M)

Size(A) + Priv(M)
Cont(A) + Cont(M)

Return A

EXIT

ERROR

Yes

Figure 3.6-7: Capability reconstruction

125

from the capability to the object, which consists of the short form

representation capability in the case of extended objects, and

the address and size for base-level objects. Thus, the result of

the reconstruction process is a mapping, as shown in Figure 3.6-8.

The cost of the reconstruction process is relatively high,

since it involves scanning a chain of map entries, each of which

must be located by hashing into the map. The retention of the most

active mappings in fast hardware thus becomes even more important

than in a system like TCS. The associative memory discussed in

Section 2.2 could be used without change to hold map entries from

active chains and thus speed up the scan. On the other hand, a

50% increase in the size of the associative memory entries allows

them to contain entire mappings, rather than single map entries.

On the average, this modification would probably not provide a very

dramatic improvement in speed (by bypassing the reconstruction

process entirely, rather than merely accelerating it) and might

even slightly reduce the efficiency of space utilization in the

associative memory (if the average chain length was less than 1.5

map entries). It is desirable, however, since it allows a fixed

amount of associative memory space to effectively contain a chain

of arbitrary length, thus preventing long chains from severely

degrading performance by filling up the associative memory. We

therefore specify the associative memory as containing the several

most recently used complete mappings. The exact number to be

retained would depend on several considerations, ranging from

available hardware components to expected usage patterns. Two

factors which favor maximizing the number are the relatively high

Capability

Representation
pointer

* Base-level objects only

126

** Address if base-level object

capability-ID

type

privileges

object-ID

I size*

contents**

Representation capability (short form) if extended object

Figure 3.6-8: A mapping
(as stored in the associative memory)

127

cost of initial loading(= capability reconstruction) and the fact

that the retained mappings remain valid through domain-calls and

process switching.

In the various figures, the associative memory facilities are

represented in the form:

A+ Cap_find (X)

A+ Cont find (X)

Each of these finds an associative memory entry whose appropriate

field (capability-ID or contents) contains the value X. If no

such entry is present, the least recently used entry is found.

The revoke operation is quite straightforward in terms of

its effect on the map. Since all copies of a given revoker box

are represented by a single map entry, the masking of the privilege

field of that map entry automatically revokes the corresponding

privileges from all the copies, including those sealed inside

other capabilities. The only problem is that some of these latter

capabilities may already have been reconstructed and saved in the

associative memory, necessitating their removal.

Unfortunately, the names of all such capabilities cannot be

determined from the name of the capability being revoked, except

by introducing a complicated and fragile backpointer structure

into the map-entry trees. One way of dealing with this problem is

to completely flush the associative memory on each revocation.

This will be satisfactory if the frequency of revocation is rela

tively low. If revocation is a sufficiently frequent occurrence,

however, this will drastically reduce the utility of the associative

128

memory by forcing heavy use of the expensive reloading procedure.

A quite satisfactory compromise between total flushing of the

associative memory and selective removal of only the affected

capabilities is the removal of all capabilities for the same

object. This is easily accomplished using the "Cont_find" feature

of the associative memory, as shown in Figure 3.6-9. (For sim-

plicity, we have assumed that O is not a valid value of the :cap

or Cont fields of a mapping, and can therefore be used to disable

an associative memory entry.) This semi-selective removal will

sometimes force unnecessary reloading of capabilities which were

not affected by the revocation, but this will only happen when a

capability is revoked and another capability for the same object

which is not its descendant in the family tree appears in the

* associative memory.

The storage of inactive map entries in secondary memory is

much the same in NCS as in TCS. Each TCS map entry corresponds to

a complete tree in NCS, but only the active paths in the complete

tree need be kept in primary memory. It seems likely that known

techniques for localizing list structures in secondary memory ·

[Bo 67] could contribute significantly to minimizing the overhead

incurred when an inactive path becomes active and must be brought

into primary memory.

* One possible frequent example of this would be revocation of~
domain-call parameter upon return from the call. Revocation of
the callee's capability would unnecessarily remove the caller's own
capability from the associative memory. This could be avoided us
ing a modification suggested by Peter Bishop of M.I.T., in which
the mapping produced by the capability reconstruction mechanism
would include the length of the chain scanned to produce it. By
comparing this value for the capability being revoked and the
capability being removed from the associative memory, one could
avoid removing tree-ancestors of the revoked capability.

129

revoke(C,P)

ENTER

C +- Recap(c)

No Yes
ERROR

M + Map_entry(Cap(c))
No ERROR

Priv(M) + Priv(M) /\ P

K + Cont(C)

---------.aA + Cont_find(K)

Cap(A) 0,_Y_e_s<
Cont(A) = 0

EXIT

Figure 3.6-9: NCS revoke operation

130

3.7 Some Implementation Details

In describing an implemented system, it is often desirable ·

to omit or simplify certain details which, while necessary in the

implementation, are of little intrinsic interest, and tend to

obscure the significant principles of the design. Unfortunately,

in arguing the practicality of an unimplemented system like NCS,

one is obliged to address such issues. This section is involved

with such details relating to the maintenance of the system data

structure we have called the map. Readers who find themselves

growing bored with the arguments can skip the remainder of this

section without significant loss of continuity.

The basic problem with the map as described thus far is the

lack of any mechanism to keep it from filling up. For example,

by repeatedly sealing a single capability at the relatively modest

average rate of once per millisecond, a malicious domain could

fill up a 1 million word map in a few minutes. In a system like

TCS in which each map entry corresponds to a different object,,one

might be able to depend on the limitation of other resource usage

for the object to limit usage of the map-space resource and pre

vent its exhaustion. This is clearly not the case in the new

scheme, in which creation of map entries does not imply any other

resource usage at all.

For this reason, it is necessary to treat map entries as an

allocatable resource and thus limit the amount of map space

available to each domain via its account. An account's reserve

of available map space must be decremented each time a domain it

funds creates a map entry, and incremented when the map entry is

131

deleted. This requires that each map entry contain an extra field

specifying the account which funds it since this may not be evident

at the time at which it is deleted. Since unused map space resides

on secondary storage, it is quite inexpensive, hence the allocation

given to each account can be sufficiently generous that no reasonable

program would ever exhaust it. The limit serves only to contain

the damage done by pathological programs.

From the system's point of view, the problem is now solved

since each user can harm only himself by extravagant use of map

space. This is not really sufficient however; the consequences of

such self-inflicted harm must not be too severe. A given account's

allocation of map space can be cluttered by an undebugged program,

hence some mechanism must be provided for prevention of and/or

recovery from such a situation. Prevention cannot reasonably be

expected of the base-level system, since it cannot distinguish

between legitimate and illegitimate use of map space, hence recovery

must be possible. We take the point of view, however, that this

recovery need not be particularly easy or graceful, since, as

mentioned previously, most use of the sealing mechanism is expected

to be made via more civilized facilities rather than directly. The

implementation of such facilities will be discussed in some detail

in Chapter 4. At this point we are only concerned that such faci

lities use sealing in an orderly way.

What constitutes orderly use of the sealing mechanism? So

far, no method has been described for removing unneeded map entries,

hence any use of sealing will eventually fill up the map. The

basic question is: when is a map entry no longer needed? There

132

are at least two circumstances in which this is true:

a) Its privilege field is empty.

b) Its contents field points to a non-existent map entry

or object.

If either of these conditions holds, the map entry is useless and

may be deleted. Condition (a) suggests the revoke operation, upon

reducing the privileges in a map entry, should check whether any

privileges remain, and if not, delete the entry from the map. Con

dition (b) suggests that the capability reconstruction mechanism,

upon encountering a map entry whose contents field contains such

a "dead-end" capability (which we will call an "isolated" entry)

should delete it from the map. A map entry whose contents field

contains the address of a base level object is deleted when the

object is deleted, thus isolating any map entries pointing to it.

In general, the deletion of a map entry can cause one or more

other map entries to become isolated, and thus be deleted the next

time they are exercised by the reconstruction process. In this

way, entire isolated subtrees can be gradually eliminated. (The

case in which such entries are never subsequently exercised will

be discussed shortly.)

Thus, in addition to its normal cleaning-up activities

(destroying unneeded objects, etc.), a well-behaved domain should

revoke any unneeded capabilities to clean up the map.

Similarly, the problem of cleaning up after the execution of

an undebugged domain involves deletion of unneeded objects and map

entries, followed by deletion of the domain itself. Problems can

arise if the faulty domain has discarded all capabilities for any

133

such object or map entry, which is then lost. A feature solving

the lost object problem will be described in Chapter 4, but it

would be expensive and cumbersome if used for every map entry. We

therefore allow map entries to become lost and require that recov

ery from this situation be possible. This requires the revocation

of all capabilities originally passed to the faulty domain, thus

isolating the subtrees of map entries produced by its execution.

The lost map_entries in these trees will never be exercised, how

ever, since by definition there are no capabilities for them.

For the reason just cited, some mechanism must be provided to

exercise lost map entries. Moreover, even for map entries which

are isolated but not lost, it would be helpful if their elimina

tion from the map was automatic, since it may be some time before

they are exercised. This can be accomplished by adding to the

base-level system a relatively simple operation of the form:

exercise (I)

which simply exercises the I-th map entry by reconstructing its

capability. A low-priority background process (sometimes called a

"daemon" or "phantom") can now be constructed which uses the new

operation to slowly sweep through the map eliminating isolated map

entries. The rate at which this is done is a tradeoff between

minimizing the extra load imposed on the map machinery and maxi

mizing the rate at which map space is recovered. Given generous

allocations of map space to the various accounts, the rate could

probably be quite low. The exercise operation is not available

to the users, since they have no use for it, but it is not at all

134

dangerous, hence the background process need not be trusted by

the base level system.

3.8 Possible Elaborations on the Design

There are several directions in which NCS as described in

this chapter could be elaborated. We here digress briefly to dis

cuss four examples, arranged in order of increasing difficulty

of adding them to the implementation described.

A simple feature which might well be included in an actual

system allows examination of the relationship of two capabilities,

to determine if one is a descendant of the other in the same map

tree. This would be useful:

a) To determine revocability of one capability by another.

b) To determine accountability for unauthorized distribu-

tion of a capability.

This checking could easily be provided by an operation which simply

scanned from the first capability's map entry to the root (base

level object) entry of the tree, watching for the second capability's

map entry.

Another feature, which has been mentioned previously, would

be the definition of other useful kinds of boxes in which to seal

capabilities. For example, a box in which two or more capabilities

could be sealed would eliminate the need for a small segment to

act as the root of a compound representation of an extended object.

This is similar to the scheme used in the HYDRA system [Wu 74].

On the other hand, its implementation would require variable-sized

135

map entries, thus significantly complicating the implementation of

the map.

A third rather interesting possibility is based on the obser

vation that the masking of privileges by the revoke operation is

not an intrinsically irreversible process. One could just as easily

provide an "unrevoke" operation for restoring previously revoked

privileges. Note that in this context, the use of locker boxes

takes on a new significance, since it not only prevents inter-user

interference, but also prevents the possessor of a capability from

restoring privileges which have been revoked from it. The only

major implementation difficulty with this feature is the impossi

bility of automatically deleting totally revoked entries from the

map, since they may later have their privileges restored. This

would require explicit deletions of map entries, making the appear

ance of the mechanism more complex. In addition, the whole notion

of unrevoking privileges cannot be described cleanly in terms of

the family tree model. Nevertheless, this feature could be quite

useful, since it allows increased levels of trust between domains

without necessitating the inconvenient repetition of the capability

distribution procedure. The whole notion of temporary revocation

could be quite useful, for example, in the debugging of locking

protocols in a complex multi-process data-base system.

The fourth possibility is similar to the previous one in the

sense that it attempts to preserve an established pattern of dis

tributed capabilities while changing the meaning of those capabil

ities. In this case, the change is to allow switching of the con

tents of an extender box. This would enable a layer implementing

136

an extended object to dynamically change the identity of its repre

sentation. Of course, care must be taken to avoid the possibility

of circularities in the map; this can easily be done by using the

first extension mentioned above to detect the case in which the

new representation is a descendant of the extender which is being

modified and signal an error.

The extensions described in this section could be added to

NCS without excessive difficulty, but for the sake of clarity, the

remainder of this thesis will assume that only the mechanisms ori

ginally described in Section 3.4 are provided. The facilities

described in Chapter 4 would require some modification if any or

all of the extensions were in fact included.

137

Chapter 4

Two Facilities Using the New Capability System

4.1 Possible Facilities Using Generalized Sealing

The purpose of this chapter is to briefly explore two examples

of helpful facilities which can be constructed using the NCS

generalized sealing mechanism described in Chapter 3. One is an

improvement to the base-level domain-call machinery providing

selective revocation of capability parameters passed on a call

when the corresponding return occurs. The other is an extension

providing a new type of object called a directory, which allows

storage and distribution of capabilities in a manner which is often

much more convenient than that provided by the base-level system.

Other useful facilities could also be defined in a similar

fashion. Plausible examples might include:

a) An interprocess connnunication facility providing extended

objects called message channels, capable of transmitting

messages containing capabilities valid only until the

next message is received.

b) A rental mediation service, guaranteeing to the lessor

that privileges will be revoked upon contract expiration,

and to the lessee that revocation cannot occur before

that time.

These and other possibilities will be left unexplored here. The

point is simply that the nested capability scheme allows the

construction of an open-ended set of extensions, many of which can

also make use of the revocation properties provided.

138

4.2 Revocable Parameters

There are certain events which constitute natural points at

which to distribute and revoke capabilities. The most obvious

examples are the occurrence of a domain-call and the subsequent

corresponding return. As discussed by Schroeder [Sc 72], the

temporary granting of access to parameter objects is a natural

and useful feature of calls between mutually suspicious domains.

There are other situations, however, in which it is unnecessary

or even inappropriate to revoke all capability parameters when a

return occurs. In particular, as previously noted, calls to trusted

machine-extension domains need not revoke their parameters, which

can result in substantial savings. We therefore propose a more

general mechanism in which the caller can specify, for each para

meter passed, whether it is to be revoked when the called domain

returns.

It would probably be possible to provide this improved domain

call as an extension rather than an integral part of the base

level system. This would require that all domain-calls and returns

(or at least all those which involved any revocable capability

parameters) be routed through this extension, which would be both

clumsy and costly. We therefore describe revocable parameters as

being included in the base-level domain-call mechanism.

In the previous discussion of parameter passing in Chapter 2,

we found it unnecessary to specify the details of the copying of

capabilities from the caller's address space to the callee's

address space. In discussing the modifications necessary to pro

vide revocable parameters, we continue in the same fashion,

139

describing the implementation of parameter passing in terms of the

get_J>arameter and put_J>arameter operations used in the discussion

of TCS in Section 2.2.

When a domain call occurs, the caller controls parameter

revocation by passing a Boolean vector R as an extra parameter,

each element of which specifies whether the corresponding parameter

should be revoked upon return. The call thus has the form:

where R[i] controls the revocation of Pi.

Revocation of parameters is implemented using the same push

down stack which saves the return gate used to reactivate the call

ing domain when the callee returns. Thus, instead of just a gate

capability, each domain-call corresponds to a packet of information

as shown in Figure 4.2-1. The first item is NR, which is the

number of capability parameters to be revoked, and the last item

is the return gate. Between them are the NR capabilities which

will be revoked when the return occurs. Figure 4.2-2 depicts the

domain-call operation, and resembles Figure 2.2-2 which shows the

TCS version. The differences comprise the steps necessary to save

the extra information in the stack. Each revocable capability

parameter is sealed in a revoker box; one copy of the sealed capa

bility C is passed to the callee, and another is retained in the

stack. The discipline followed is thus that of Figure 3.5-2; seal

ing of the callee's parameter in a locker is not necessary, since

it is riot received by any other domain. Figure 4.2-3 depicts the

domain-return operation, as compared with the TCS version in

Top of stack

Information for
one call

140

c

[
L

.....

NR

CN
R . • '

c2

cl

Return gate (GR)

......_ --'

Figure 4.2-1: Parameter revocation data in stack

J
J

l
l

l
I

141

call(CG,Pl,P2 , ... ,PN _1 ,R)

------- p
ENTER

I +- 1

R +- get_parameter(Np,Caller)

N +- 0
R

Yes

No
push NR

CG+- get_parameter(O,Caller)

EXIT thru

P +- get_parameter(I,Caller)

No

put_parameter(I,Callee,P)

I+- I+l

Yes

C +- seal(P,C k) revo er
put_parameter(I,Callee,C)

push(C)
NR +- NR+l

Figure 4.2-2: NCS domain-call operation

142

return()

ENTER

NR +- pop ()

No

c +- pop ()
revoke(C,O)
N +- N -1

R R

G +- pop()

EXIT thru G

Yes

Figure 4.2-3: NCS domain-return operation

1 143

Figure 2.2-3. The added steps use the information in the stack to

revoke the appropriate capabilities from the callee before retriev-

ing the return gate and returning control to the caller. Note that

the revocation is total, and thus-releases map entries in an orderly

way, as discussed in Section 3.7.

4.3 Directories

The notion of a directory, catalogue, or name-table mapping

symbolic object names into some form of internal object pointer

has appeared in most operating systems. The idea of a large

collection of directories arranged in a tree-structured hierarchy

originated mainly with the Multics system [Da 65], and has been

adopted in several other systems ance that time [St 73, Co 72,

Ri 74].

A directory consists of a variable number of entries, each

containing a different symbolic name and a pointer to an object

(plus other information to be discussed shortly). The assumption

* that a unique directory entry is created with each object, com-

bined with the fact that directories are themselves objects, induces

a tree-structured hierarchy on the set of all objects in existence

at any time. The internal nodes are the directories and the leaves

are the objects of other types. Concatenating the names of all

entries along the path from the root directory to a given object

yields the tree name of that object which uniquely identifies it.

The global tree-structured view of the universe of objects

* Except the pre-defined "root" directory.

-·

144

can be useful in several contexts, such as system backup and

recovery, accounting, and, as described below, in solving the

"lost object problem," but it is often more convenient in other

contexts to modify this view in two ways:

a) To allow the establishing of several directory entries

for the same object.

b) . To allow general path names which can be interpreted as

starting in any directory, rather than only the root

directory.

Both of these features can be added without disturbing the under

lying tree-structure, as long as the extra entries ("links") in

(a) can be distinguished from the original entries ("branches")

when this is desired. This treatment of links as being full

fledged directory entries, contrasts with the Multics approach

in which links are merely·a re-naming device and have no pro

tection significance. We choose this approach to facilitate sub

letting of rented objects.

In addition to naming, the directory system is useful for

purposes of access control. Attaching an access list to each

directory entry aids in the orderly distribution of privileges

to access shared objects. Each entry in the access list contains

a pair

(lock, privileges)

which allows any possessor of a key matching the lock to obtain

the corresponding privileges. (Of course, the specification of

the access list, like the creation and deletion of entries,

,
145

represents an access to the directory itself, and must also be

controlled.) The simplest example of a lock would be a user name.

A more sophisticated version of this is the "principle identifier"

used in Multics [Sa 74], which is a kind of three-dimensional user

name with more complicated rules for matching locks with keys.

An even more flexible scheme will be described below. Note that

in all such schemes, a user may not invent his own key(s), but

may invent any locks he chooses and apply them to his objects, as

discussed by Lampson [La 69].

In non-capability-based systems, directories are usually

implemented as base-level objects [Or 72, Ri 74], since their

access lists are generally used as the system's primary protection

facility. In a capability-based system, however, directories can

be implemented as a higher-level extension, providing symbolically

named "pigeon holes" for the storage and dissemination of capa

bilities [Fa 68]. This is an attractive organization, since it

removes from the base-level system all handling of symbolic names

and the corresponding variable-sized data structures. From the

point of view of the base-level system, the directory layer is

simply another user domain, although, of course, it must be regarded

as a trusted machine extension by normal user programs which store

their capabilities in directories. The desirability of providing

both directories and capabilities in the same system is convincingly

argued by Lampson [La 69].

The directory layer described below provides for storage of

any number of capabilities in each directory, one per entry.

Attached to each entry is an access list authorizing a domain to

146

obtain a sealed copy of the stored capability by executing

* C + lookup (CD, Name, CK)

where CD is a capability for the directory (authorizing lookup

access), Name is a character string, and CK is a key capability.

The unique ID of the key capability is matched against the locks

in the access list of the entry and the corresponding privileges

are returned in C. Subsequent reduction of the privileges

authorized to holders of key CK will retroactively reduce the

privileges in C, using the underlying revocation machinery.

(Various conditions, such as failure to find an entry with the

given name, or failure to find a lock in the access list which

matches the key CK cause errors to be signalled and no capability

to be returned.) The use of freely distributable capabilities as

the keys authorizing directory lookups allows the users to flexibly

and economically establish any group authorization scheme desired

by simply passing keys to each other. Neither the base-level

system nor the directory layer need take any explicit notice of

such gr0ups [La 69, St 73]. More complicated facilities such as

path name lookup [Da 65], multiple directory searching [Or 72, St 73]

and automatic lookup on first use of a symbolic name [Da 68]

could be implemented in terms of this basic lookup primitive;

these will not be discussed here.

In such a directory system, there is no intrinsic distinction

* In terms of base-level operations, this would be written

C + call (CG,CD,Name,CK)

where CG is a capability for a gate into the directory layer
corresponding to the lookup operation.

147

between the various directory entries containing capabilities for

a given object. For the reasons cited previously, however, it is

useful to distinguish one of the entries as a branch and consider

the others to be links. In particular, one can solve the lost

object problem by guaranteeing that the branch exists for at least

as long as the object. This is accomplished by creating the

object and the branch simultaneously, and having the directory

system, upon removing the branch from the directory, delete the

object (if it still exists).

The use of branches to solve the lost object problem is rela

tively straightforward in the case of base-level objects and

directories. By performing the creation of all such objects through

calls on the directory layer which also create a directory branch,

one can insure the existence of a branch for each new object.

When the branch is removed, the object can be destroyed by the

directory layer, either internally (in the case of directories) or

by calling the appropriate operation (in the case of base-level

objects).

In the case of extended objects, however, the situation is

more complicated, for two reasons:

a) It is inappropriate for the directory layer to have

embedded in it any knowledge of (e.g. calls on) higher

layers.

b) New higher level extended types can be defined at any

time.

These considerations render impossible the creation of such objects

via the directory layer, and necessitate a more circumspect

148

approach to their deletion when a branch is removed.

When a higher layer creates an extended object X and wishes

to take advantage of the directory system to keep X from becoming

lost, it can do so by executing

This creates an entry in the directory indicated by CD. The

entry has name Name and contains ex• a capability for the new

object. In addition, the entry holds CG, a capability for gate

G into the caller (i.e. the layer implementing the object). When

the branch is later removed from the directory, the directory sys-

tem guarantees to execute

The gate G should correspond to the deletion operation for objects

of the extended type, hence this is equivalent to

delete (CX)

Of course, it is the responsibility of the layer implementing X

to insure that this call does in fact result in the deletion of X.

The directory layer's only concern is that it must be prepared for

anything which may happen between the time it performs the call

* Repeated use of the make_branch operation specifying the same
object X would cause the directory structure to fail to be a
tree. This might be of concern to layers at or above the level
at which X was implemented (although it certainly would cause no
trouble for the directory layer). The layer implementing the ob
ject could protect itself from this situation if the make branch
operation were modified to require an extra parameter CT• a
capability for the type of X, as authorization to make a branch
for X.

149

and the time the callee returns. This could include various types

of errors, blocking of the process, and even further calls on the

directory layer. The straightforward way to handle this is simply

to have the directory layer complete its part of the branch removal

and then exit to the opject deletion operation via a jump-call as

* described in Section 2.2.

It might appear that the calling of the higher layer object

deletion operation by the directory layer violates the ordering

constraints of layered system construction. This is not really

the case, however, since this call does not represent any knowledge

of the higher layer embedded in the directory layer. Such "blind"

upward calls are quite similar to hardware "traps" or "exceptions."

The other directory layer operations of interest are:

make_link (CD,Name,CX)

remove_entry (CD,Name)

set_lock (CD,Name,L,P)

CK+ create_key ()

create_directory (CD,Name)

delete_directory (CD)

The make link operation establishes a new entry in directory D,

containing CX and named Name. The remove_entry operation

removes a link or a branch. In the latter case, it performs

object destruction as described above. The set lock operation

establishes a new lock on the named entry in directory D. The

lock is L (i.e. it can be opened using a key with capability-ID= L)

* We ignore the extra complications involved if object deletion is
allowed to fail.

~o

and it confers the set of privileges P. The create_key opera

tion simply returns a capability of type 'key' with a new unique

capability-ID. The create_directory operation establishes a new

empty directory as a son of directory D (i.e. pointed to by a

new branch in D with name Name). The delete_directory opera

tion deletes the directory D. This requires removal of all

entries from D, including any branches for other directories

which must thus be deleted, and so on. In other words, the entire

subtree rooted in D must be traversed and deleted. This compli

cation is best postponed until a higher level utility program,

hence the directory layer can simply refuse to delete a non

empty directory.

The implementation of directories as described is relatively

straightforward. Each directory is represented as a segment, con

taining entries formatted as in Figure 4.3-1. The original capa

bility C and the entry name are present when the entry is first

created, along with the deletion-gate capability in the case of a

branch. Subsequent use of the set lock operation proceeds as

shown in Figure 4.3-2. First the lock is added to the access list

if not already present, together with a capability to hold the

privileges corresponding to the lock. This capability is created

by sealing the original capability CX in a revoker box. Then

the privileges in the capability are revoked down to the desired

level. Note that in the case of applying the set lock operation

to an already existing lock, any outstanding capabilities previously

obtained via that lock using the lookup operation will also have

their privileges revoked. Finally, if the revocation was total

151

deletion gate capability* { ~'----------------c_G_, ________________ _

object capability { ~'----------------c_x ________________ __

symbolic name Name

11

cl

12
access list c2

• . .
1N I CN

*in branches only

Figure 4.3-1: A directory entry

152

set lock(C ,Name,L,P) - D

ENTER

I+ index of
Lin access list

bad
parameter

not found

No

ERROR

ERROR

I+ N + N+l

L + L
I

CI+ seal(C,C k) revo er

No

EXIT

Yes
remove <LI,CI>

from access list

Figure 4.3-2: The set lock operation

(i.e. P=O), the lock is deleted from the access list. (Such

total revocation is also performed on each lock in the access list

when the entire directory entry is removed. This is another exam

ple of orderly use of the underlying map lll8Chinery, as discussed

in Section 3.7.)

The lookup operation, upon finding the named entry, searches

the access list for a lock matching the proffered key. If one is

found, the corresponding capability is sealed in a locker box and

returned to the caller. Thus, the net result of the set lock

and lookup operations is distribution of capabilities following

the discipline of Figure 3.5-5.

The create_key operation is quite simple to implement. It

would be nicely captured by the simple sealing of an empty extender

box. Lacking this facility, the directory layer can simply seal

any handy capability, since only the external appearance of the

new key capability is significant.

The directory layer just described is probably the best exam

ple of the kind of useful extensions which can be constructed using

the NCS nested capability mechanism. It provides extremely useful

features for the users of the system, yet its implementation is

rendered relatively simple by the power of the underlying base

level naming and protection facilities.

5.1 Sunnnary

Chapter 5

Summary and Conclusions

This thesis has discussed integrated naming and protection

mechanisms for computer systems, providing protected names called

capabilities which both identify an object and authorize access

to it. A major advantage of capabilities is the flexibility pro

vided by their being freely copyable. A corresponding disadvantage

in existing capability systems has been the difficulty of revoking

previously distributed capabilities. The main result of this

thesis has been the design of a capability system providing both

free distribution and orderly revocation of capabilities. Various

approaches to this problem were discussed in Chapter 2, culminating

in a set of goals to be met by a new design. The generalized

capability sealing mechanism of Chapter 3 was shown to meet these

goals, providing selective revocation of capabilities, as well as

a flexible type extension facility. A possible implementation of

the design was discussed in sufficient detail to demonstrate its

practicality. Various possible elaborations on the design were

also discussed. Chapter 4 described two facilities applying

revocable capabilities to the needs of users in specific ways.

5.2 An Area for Further Research

In terms of the facilities provided, the naming and protection

mechanisms described in this thesis appear to be a sound basis

upon which to build a secure and flexible user environment. In

155

particular, the provision of revocable capabilities eliminates

one of the main objections often made to capability-based designs

[Sc 72], thus making the proposed design applicable in a wider

class of situations. One could thus characterize the thrust of

this thesis as an attack on the flexibility aspect of the pro

tection problem.

On the other hand, the thesis does not make any direct attack

on another more general aspect of the protection problem which one

might call the comprehensibility of protection mechanisms.

Experience indicates that protection mechanisms which are confusing

to users are likely to be misused, or even go unused [Sa 74, Sc· 72).

Even the user who correctly applies a confusing protection feature

may feel no great confidence that it enforces his intentions.

There are at least three ways in which protection systems can be

confusing:

a) They can be based on a disorderly set of separate but

interacting mechanisms.

b) The relevance of the mechanisms to specific situations

can be obscure.

c) The correspondence between global state of the protection

machinery and the desires of the users can be difficult

to assess.

A fair amount of progress has been made on problem (a). The

early proliferation of ad hoc protection mechanisms was a major

motivation for the original development of capabilities [DVH 66],

as well as later more abstract treatments by Lampson [La 71],

Jones [Jo 73], and others. On the other hand, strict minimization

of the set of primitives will not necessarily clarify the descrip

tion, especially since it may exacerbate problem (b). For example,

our unification of privilege revocation and type extension in a

single mechanism, while interesting in itself, may or may not repre

sent a net increase in the comprehensibility of the design.

Problem (b) is caused by the gap -- often quite broad

between the concerns of the human users and the mechanisms provided

by the protection system, in terms of which they must express

those concerns. Of course, the user need not deal only with the

protection primitives of the system; various extensions, such as

those mentioned in Chapter 4, can be provided. These do not go far,

however, in attempting to capture the interactions between users

seen in the larger social context. This is due in part to the

imprecision of many legal and social principles, resulting from

their implicit reliance on the reasonable judgement of the parties

involved, a characteristic sadly lacking in most computers. Much

work remains to be done in mapping such principles into the pro

tection primitives of computer systems [Ro 74, Pe 74, Tu 74].

Problem (c) is perhaps the most difficult of the three.

During our discussion of capability mechanisms, we emphasized

the desirability of allowing distribution and revocation of capa

bilities without requiring global knowledge of such propagation on

the part of the participants. Such global knowledge is sometimes

desirable for its own sake, however. Moreover, even if the entire

state of the protection machinery is visible (which can itself

raise serious questions of privacy), the full significance of that

state cannot be assessed without knowledge of the levels of trust

157

and suspicion between the various possessors of access privileges.

This appears to be a very fundamental problem, and it is not clear

what approach (if any) will prove fruitful in dealing with it.

5.3 The Future of Protection

Much work remains to be done in the area of protection. In

the long run, protection will contribute to the development of

generally available computer utilities in at least three ways:

a) By facilitating the development of extremely large soft-

ware systems, such as sophisticated service programs,

and the operating system of the computer utility itself.

b) By protecting the investments of users who develop large

proprietary programs and/or data bases, thus providing a

suitable marketplace for such services.

c) By enforcing social controls on the dissemination of

stored information.

Given the difficulty and importance of the problems to be solved

protection promises to be an active area of research for many

years to come.

--,,

[BCD 72]

[Bo 67]

[Bu 61]

[CC 69]

[CV 65]

[Co 72]

[Da 65]

[Da 68]

[DF 65]

[DVH 66]

[De 65]

158

References

Bensoussan, A., Cingen, C.T. and Daley, R.C., "The
MULTICS virtual memory: concepts and design," Communi
cations of the Association for Computing Machinery,
Vol. 15, No. 5 (May 1972), pp. 308-318.

Bobrow, D.G. and Murphy, D.L., "Structure of a LISP
system using two-level storage," Commurkations of the
Association for Computing Machinery, Vol. 10, No. 3
(March 1967), pp. 155-159.

Burroughs Corporation, "The descriptor -- a definition
of the B5000 information processing system," Detroit,
Michigan (1961).

Computer Center, University of California, Berkeley,
Cal-TSS Users Guide (1969).

Corbato, F.J. and Vyssotsky, V.A., "Introduction and
overview of the MULTICS system," AFIPS Conference
Proceedings 1965 Fall Joint Computer Conference, Vol. 27,
pp. 185-196.

Cosserat, D.C., "A capability oriented multiprocessor
system for real-time applications," ICC Conference,
Washington, D.C. (October 1972), 8 pp.

Daley, R.C. and Neumann, P.G., "A general purpose
file system for secondary storage," Proceedings AFIPS
1965 Fall Joint Computer Conference, Vol. 27, Pt. I,
AFIPS Press, Montvale, N.J., pp. 213-230.

Daley, R.C. and Dennis, J.B., "Virtual memory,processes,
and sharing in MULTICS," Communcations of the Associa
tion for Computing Machinery, Vol. 11, No. 5 (May 1968),
pp. 306-313.

David, E.E. and Fano, R.M., "Some thoughts about the
social implications of accessible computing," AFIPS
Conference Proceedin;'gs 1965 Fall Joint Computer
Conference, Vol. 27, pp. 243-247.

Dennis, J.B. and Van Horn, E.G., "Programming semantics
for multiprogrammed computations, 11 Communications of the
Association for Computing Machinery, Vol. 9, No. 3
(March 1966), pp. 143-155.

Dennis, J.B., "Segmentation and the design of multi
programmed computer systems," Journal of the Associa
tion for Computing Machinery, Vol. 12, No. 4 (October
1965), pp. 589-602.

159

[De 68] Dennis, J.B. , "Programming generality, parallelism, and
computer architecture," Proceedings IFIP 1968, North
Holland, Amsterdam, pp. Cl-7.

(Di 68) Dijkstra, E.W., "Cooperating Sequential Processes,"
in Programming Languages (F. Genuys, ed.), Academic
Press (1968), pp. 43-112.

[Di 68b] Dijkstra, E.W., "The structure of the THE multiprogramming
system," Communications of the Association for Computing
Machinery, Vol. 11, No. 5 (May 1968), pp. 341-346.

[En 72] England, D.M., "Architectural features of System 250,"
Infotech State of the Art Report on Operating Systems
(1972), 12 pp.

[Fa 68] Fabry, R.S., "Preliminary description of a supervisor
for a machine oriented around capabilities," ICR
Quarterly Report 18 (August 1968), ICR, University
of Chicago.

[Fa 74] Fabry, R. S., "Capability-based addressing, 11 Communications
of the Association for Computing Machinery, Vol. 17,
No. 7 (July 1974), pp. 403-412.

[Fe 73] Feustal, E.A., "On the advantages of tagged archi
tecture," IEEE Transactions on Computers, Vol. C-22,
No. 7 (July 1973), pp. 644-656.

[Fr 74] Frankston, R.M., "The computer utility as a marketplace
for computer services," Project MAC Report MAC-TR-128
(1974).

[Gr 71] Graham, G.S., "Protection structures in operating
systems," M.S. thesis, University of Toronto (1971).

[Gr 72] Graham, G.S. and Denning, P.J., "Protection - principles
and practice," Proceedings AFIPS 1972 Spring Joint
Computer Conference, Vol. 40, AFIPS Press, Montvale,
N.J., pp. 417-429.

[Gr 73] Gray, J.N., IBM San Jose Research Laboratory, private
communication.

[Ha 70] 3;1,.~, Hansen, P .~., 17The nucleus of a multiprogramming system,"
Communications of the Association for Computing
Machinery, Vol. 13, No. 4 (April 1970), pp. 238-250.

[HEW 73] U.S. Department of Health, Education, and Welfare,
"Records, computers and the rights of citizens," Report
of the Secretary's Advisory Committee on Automated
Personal Data Systems, Washington, D.C. (July 1973).

,.......

[HP 73]

[Jo 73]

[La 69]

[La 69b]

[La 71]

[La 73]

[La 74]

[Li 73]

[Mo 72]

[Mo 73]

[Ne 72J

[Neu 74]

[Or 72]

[Pa 72]

160

Hoare, C.A.R. and Perrott, R.H., Operating Systems
Techniques, Academic Press, New York, N.Y. (1973).

Jones, A.K., "Protection in programmed systems,"
Ph.D. thesis, Carnegie-Mellon University (1973).

Lampson, B.W., "Dynamic protection structures," Proceed
ings AFIPS 1969 Fall Joint Computer Conference, Vol. 35,
AFIPS Press, Montvale, N.J., pp. 27-38.

Lampson, B.W., "An overview of the CAL timesharing
system," Computer Center, University of California,
Berkeley (1969).

Lampson, B.W., "Protection," Proceedings 5th Annual
Princeton Conference, Princeton University (March 1971),
pp. 437-443.

Lampson, B.W., "A note on the confinement problem,"
Communications of the Association for Computing
Machinery, Vol. 16, No. 10 (October 1973), pp. 613-615.

Lampson, B.W., "Redundancy and robustness in memory
protection," Proceedings IFIP 1974, North Holland,
Amsterdam, pp. 128-132.

Lindsay, B.G., "Suggestions for an extensible capability
based machine architecture," International Workshop on
Computer Architecture, Grenoble, France (June 1973).

Morris, J.H., "Authentication tags: the proper division
of hardware/software responsibility" (1972), unpublished.

Morris, J.H., "Types are not sets," ACM Symposium on
Principles of Programming Languages, Boston, Mass.
(October 1973).

Needham, R.M., "Protection systems and protection
implementations," Proceedings AFIPS 1972 Fall Joint
Computer Conference, Vol. 41, AFIPS Press, Montvale, N.J.,
pp. 571-578.

Neumann, P.G. et al, "On the design of a provably
secure operating system," Working Paper, !RIA Inter
national Workshop on Protection in Operating Systems,
Paris (August 1974).

Organick, E.I., The MULTICS System: An Examination of
its Structure, The MIT Press, Cambridge, Mass. (1972).

Parnas, D.L., "On the criteria to be used in decomposing
systems into modules," Communications of the Association
for Computing Machinery, Vol. 15, No. 12 (December 1972),
pp. 1053-1058.

[Pe 74]

[Po 74]

[Ri 74]

[Ro 74]

[Sa 66]

[Sa 74]

[Sc 71]

[Sc 72]

[SS 72]

[St 73]

{Tu 74]

[Wu 74]

,........

161

Peuto, B.L., "Comparative study of real estate law
and protection systems," Ph.D. thesis, University of
California, Berkeley (1974).

Popek, G.J., "Protection structures," Computer, Vol. 7,
No. 6 (June 1974), pp. 22-33.

Ritchie, D.M. and Thompson, K., "The UNIX time-sharing
system," Communications of the Association for Computing
Machinery, Vol. 17, No. 7 (July 1974), pp. 365-375.

Rotenberg, Leo J., "Making computers keep secrets,"
Ph.D. thesis, M.I.T. (1974), Project MAC Report
MAC-TR-115.

Saltzer, J.H., "Traffic control in a multiplexed
computer system," Ph.D. thesis, M.I.T. (1966), Project
MAC Report MAC-TR-30.

Saltzer, J.H., "Protection and the control of infor
mation sharing in MULTICS," Communications of the
Association for Computing Machinery, Vol. 17, No. 7
(July 1974), pp. 388-402.

Schroeder, M.D., "Perfonnance of the GE-645 associative
memory while MULTICS is in operation," Proceedings
Workshop on System Performance Evaiuation, Cambridge,
Mass. (1971), pp. 227-245.

Schroeder, M.D., "Cooperation of mutually suspicious
subsystems in a computer utility," Ph.D. thesis, M.I.T.
(1972), Project MAC Report MAC-TR-104.

Schroeder, M.D. and Saltzer, J.H., "A hardware archi
tecture for implementing protection rings," Communica
tions of the Association for Computing Machinery,
Vol. 15, No. 3 (March 1972), pp. 157-170.

Sturgis, H.E., "A postmortem for a timesharing system,"
Ph.D. thesis, University of California, Berkeley (1973),
Xerox PARC Technical Report 74-1.

Turn, R., "Privacy and security in personal information
databank systems," Rand Report R-1044-NSF (1974),
Rand Corporation, Santa Monica, Calif.

Wulf, W. et al, "HYDRA: the kernel of a multiprocessor
operating system," Communications of the Association
for Computing Machinery, Vol. 17, No. 6 (June 1974),
pp. 337-345.

12&&1 UL. 1811 ZX&.lil &&&&IE.Ill! a am :::: 011• &4&&111 ~'

	Title
	Abstract
	Acknowledgments
	Contents
	1: Introduction
	2: A Typical Capability System
	3: A New Capability System
	4: Two Facilities Using the New Capability System
	5: Summary and Conclusions
	References

