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ABSTRACT: CAl is an operating system based on the concepts
of capatilities and of iwplementation via machine extension.
We first rresent some brief comments on our design
philosophy and our experience with this approach.
Extensions tc the capability (descrirtor) mechanism are
described. The remainder of the paper concerns the control
structure for (a)intra-process communication: creation and
display of processes, domains and gates, various forms of
domain activation, and the fielding c¢f traps; and (b)in
process ccmmunicaticn: messages, events, interrupts, and
locks.
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MCTHERHOOD

The CAl operating system was begun in the fall of 1968,
Within nine months the tasic <system had been implemented on
an off-the-shelf CLC 6400 with extended core storage. Since
that time it has been in daily use for further development
and experimentation. Since the fall of 1970 it has been
available to the Berkeley campus comrmunity. During this
time we have had consideratle experience with the system and
are now in a position to judge its virtues and flaws. One
of the richest aspects of CAL is its control structure.
This paper describes those aspects of the control structure
which we have found tc be rparticularly useful, In doing
this we have freely done vioclence to the realities of CAL.
Cbvious (tut unimplemented) dgeneralizations have been
included. Mistakes made in the inpplementation are not
repeated here, Concessions made to the hardware are

obscured.

The design of an operating system is like a Chinese
puzzle spread out on a tatle: Recause of 1its size it is
impossitle to tell what it will Lke when assembled and
whether there are too many pieces o¢r too few. For this
reason we have been careful not to depart too far from
reality for fear of loosing a piece or two. We have simply

shaved off a few rough edges.
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A reasonalble way to design cr model a complex system is
to define the okijects manipulated ty the system and to

define the orerations which may be performed on these
objects., This aprproach is usually called machine extension
since it avuvgments the universe of okjects manipulated by the
machine and the operaticns which can te performed. To give
a trivial example, objects called stacks may be added to a
machine Ly adding the operaticns CREATE.STACK (N),
DELFIE.STACK (NAME), ©FPUSH(NAME, TITE¥), ECP(NAME), and the
predicates EMPTY.,STACK (NANMF) and FUIL.STACK (NAME). This

example pcints out two important asgects of design via

machine extension:

¢ The design is modular and gives a functional
specification fcr modular implementation. It
ignores questions such as resource allocation

which are fprcrerly implementation questions.

¢ The operations on an okject completely define
the ckject. Nc <cther form of access to the
cbiject is allcwed. This permits great
flexitility in implementation of the object
(for example, the stacks above could be
implemented as arrays or lists or functions).

Such variations are functionally invisible.
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The adcption of the extended machine approach is
mitigated ty two concessions tc the lirmitations of the human

brain and rsyche:

¢ Cperations must be conceptually simple and have
a uniform interface to one another so that the
validity of an inplementation can ke verified,
and so that their use may be easily documented

and explained.

c Each extension must ke small enough to be
completed in a time less than the attention
span of the designers - irplementors (typically
cne year) and less than the Ultimate Deadline
set ty the manager, customer, or finance

ccmpany.

Extending a simple machine to a ccmplex one may require
several extencion steps. This will give the implementation
a layered aprearance., The particular extension steps we
chose are dericted in Fiqgure 1. A tare machine was extended
to a class of simple virtual machines, each with a virtual
memory. These virtual wmachines are extended to have
operaticns cn a global file system. The file system machine
is extended to accert commands, contrcl the actions of the
virtual machine, and to interrret file system naming. Most
programs run "on top of" this machine, eitending it in

various ways.



PAGE 7
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Figure 1

The layers of CAI

Figure 1 may te misleading <cince it seems to suggest
that higher layers are unaware of the lower layers. Not so.
In an extended gwmachine a layer may invoke operations
implemented at any 1level telow it. 1In particular, a layer
often executes hardware instructions directly. The 1lower
layers aprear to ke a single machine with some very powerful

cp-ccdes,

Except fcr differences in scale and generality, thkis is
essentially the apprcach taken ty TrCijkstra and bhis

colleagues in designing and implementing the "THE" systenm
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[E.D.Js. In following this arproach we have observed two
J .

phenomena which are not pointed out ty Lijkstra:

Although it is indeed possikle to ke confident abcut
the correctness of any fparticular mcdule (operation), it is
much more difficult to analyze the interaction of a group of
modules. Similarly, it tyrically invclves one man working
one day to fix a bug inside a module. Cn the other hanéd, our
entire grougr often spent weeks just discussing how to fix
some flaw in the interacticns among a modules., The most
common and difficult faults we enccuntered were either
errcrs or deficiencies in the design cf the interfaces. It
is difficult tc foresee such errcrs sirce they are typically
of a dyramic nature or they exploit some facility in an
unforeseen way. BAs a corollary to this, the lower levels of
the system tend to grow and <change with time to accommodate
these difficulties. In thecry this is not necessary. B21l1l
deficiencies in the lower levels wmay ke «corrected hy
appropriately extending the given machine. In practice a

certain nurker of such extensicns are done at a lower level,.

This 1last point is a consequence of a second
phenomenon: as the layers rile up, the cost of gate-crossing
becomes significant. Cperaticns which seem simple at a high
level may unleash a flurry cf activity at lower 1levels.
This is rrimarily because of the rigidly enforced
independence of orerations, and tecause each operation at
each level tyrically calls two c¢cr mcre cperations at a lower
level. Cne need cnly examine the function of 2 tc the rower

N for small N to see the ccnsequence of this. Invoking a
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theorem which 1invokes all <c¢f set theory costs nothing --
invcking ar creration which invokes the rest of a computer

system is not cheap.

We tried various validation and debugging procedures.
Having a second rperson check all code {Feer group
programmincg) was the wmost effective. It had a positive
effect on style, ccntributed tc the general understanding of
the system, and unearthed wany bugs. Fxercisers for modules
proved to Lke rather difficult to ccnstruct and had to be
maintained as the mcdules changed., They did serve as good
tests c¢f ckscure <cases but 1in general were probably not
worth the effort. Manual ccnstruction of formal proofs of
the correctness of modules was tried cnly once. It was not

cost effective.

Desgpite these caveats, risgivings, and scars we remain
enthusjijastic atout the extended machine approach to design.
Given the adoption of +the extended rwachine approach, the

important issues teccnme:

¢ W®hat are the okjects that an operating system
pust implement and manipulate?

c W%hat is a sranning set of operations on these
okjects?

¢ How can these cltijects and operations be glued

together in a uniform way?
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CAl propcses one answer tc these cuestions., This paper
discusses the nucleus of CAl. This layer contains the
primitive cktijects ¢f the system and the operations on themn.
It also contains a control structure and a naming structure
which provide powerful extensicn facilities., Great care has

been taken to allow for sharing and prctection of objects.

An orerating system may be viewed as a programming
system. As such it must have a name structure, a control
structure, and a syntax. We refer to lampson [{B.Ll. 1, 2, 3]
for a discussion of naming and of tte related issues of
protecticn and sharing. The issue of syntax seems to us to
be a matter c¢f taste and ccnvenience. Our taste leans
toward making the orerating =system interface a functional
extension cf a programming language 1like ECPL, The focus of
this paper will tte the control structure of CAL. Llater

papers will describte cther aspects of (RI.
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OEJECIS

The nucleus of CAIl implements the following objects:
1. files
2, prccesses
3, domains
4., gates
€. banks
€. event queues
7. capatility lists.

A file 1is a sequence of words c¢f data numbered from
zero to scme dynamic wupper Pkound. Cperations exist to
create, destrcy, read, vwrite, 1lengthen, and copy files.
Files are variously known as segments and data sets in other

systems.

Frocesses, domains, and gates will be discussed 1in
greater detail belcw. A gate 1is an entry point into a
domain. A dcrain is a srhere of protection (or a name
space) within a ©process., A ©process is a scheduling and

accounting entity. It may Le thought of as the envelope

containing a virtual prccesscr.

Eanks are the funding elements of the systen. All
resource use is charged against scre bank. Banks also
participate in rescurce allccation by limiting the resources

of each category that a process may consume., When a bank is
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exhausted, any process charging against it 1is tragped.
Operations exist which create and destroy tanks and which

transfer funds frem cne tank tc another.

Event queues provide convenient communication and
synchronizaticn amcng frocesses as well as fketween processes

and external devices. They are discussed at length below.

If an orperating system 1is tc irplement objects, and
oprerations on these objects, then there must be some way to
name the oljects. <Clearly such names wrust be manipulated by
the operating syster and hence gqualify as objects. This
circular (recursive) reasoning has =several fixed points
variously called descriptcrs, capatilities, and control
blocks., The particular fixed pcint cne chooses depends on

the issues cf protection and scope.

If no srecial care is taken about protection, then any
program may create a name and rpass it to the operating
system. Although such a decisicn has the virtue of
convenience, it allows any program tc rame any object in the
system., If the system intends to maintain critical tables,
accounting information, sensitive data, or 1if the system
intends to provide any form of protection among users, then

creation or artitrary names is not accertable,

Hence names are made cbjects which only the system may
manufacture., There are several pcssitle implementations of
such a scheme [B.L.27. CAl adcpts the scheme used by

Burroughs [E.C,] and ty Tennis and Van Hornmn ([D.V.] of
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maintaining mnames 1in special otjects called capability

lists, C-lists for short. These <ctjects are variously

called seqgument dicticnaries, descriptor segments, or progranm
reference takles in other systems. Associated with each
domain of each process is a (C-list. When executing in a

particular dowmain, a process refers to objects by presenting
and index intc this list., Thus unprctected names (integer
indices) are converted +tc prctected names. By supplying
each domair of each prccess with a distinct C-1list, a very
flexitle system of protection and =sharing is possible. A
particular domain of a process can c¢nly refer to objects
named directly or indirectly ky its C-1list., However,
different capatilities for the same ctject may appear in
several C-1lists and so sharing of okjects among domains is

straight fcrward.

An exarple of this may ke helpful. Suppose that each
of three dcmains must share twc of three mail boxes with its
two neightcrs and further that these mailboxes must be
pairwise [frivate. Figure 2,A depicts a soluticn to this
problem using capabilities. The caratilities are presumed
to ke allocated tc thcse dcmains by some fourth domain which
'manages® the names cf the mailboxes. This name manager may
write directly intc the C-lists of the domains <TLC1, L2, and
D2 or it wmay use the rarameter binding mechanism of domain
call. Sclving this simgple prcblem with the naming structure
of most prcgramming languages is non-trivial. One can prove
that 1t is impossitle with the static name structure of
AIGCl. The 1issue is vfreventing M(i) from keing glokal to

D(i). In AIGCL the soluticn is to use the parameter binding
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mechanisms (call-by-name) and to eliminate free variatle
resoluticn and hence free variable "capture'. Figure 2.B
displays this idea implemented in 'AICGOI', A similar trick

works for the Multics ring structure [F.G.] [S.S.].

C-list of DI C-list of D2

Fiqure 2.A
Three dcmains pairwise sharing twc mailtoxes via
caratilities,

——
—_—_——mmasmaS L=

—— s iy e

M1 , MZ or M3 Ly DOMAIN;
MATLECX M1 , M2 , M3;

e m E -l

L1: TCMAIN(MZ,M3);
D2: TCOMAIN(M1,M3);
D3: LECMAIN(M1,M2);

Figure 2.E
An 'AIGCI' implementation of fiqure 2.A.
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The decision not to impose a particular naming
structure cn CAL derives frcm the experience with the B5000
stack mechanism and the Multics ring structure which make
structures similar than thcse in Fiqure 2 difficult to

construct.

CAL has =<some interesting extensicns to the capatility
mechanismss descrited by Burroughs [B.C.], ty Dennis and Van
Horn, {D.V.] and Lty Ackerman and Plummer [A.P.] The reader
unfamiliar with the concept of capatilities should consult
cne of the akcve references tefor attempting to read the
remainder of this section. 1In CAL a capability is

represented ry at least three fields:

TYEE
CETIONS

CBJECT.NAME

and in the case of carabilities for files and for C-lists by

two additicnal fields:

BASE

LENGTH

The generalizations cf cafpabilities are as follows:

{C.1) Tke ccnceprt that a capability is a protected name

fcr the okject it refers to has been generalized to

allovw other layers (e€.g., users) to exploit this



PAGE 16
naming scheme for the neﬁ ctjects that they may
inplement. Crly a few of the (2*%18) different
types of capatilities are reserved by the nucleus
{cee the first paragraph cf this section for a
ccrplete list.) 1The remaining types of objects are

made availakle to users as follows:

(a) The nucleus has an operaticn which will return a
license to manufacture a particular type of
okject. This license is actually a gate to the
system (a new coperation) which will make new
capabilities of a certain TYFE. The <call looks
like

GET.LICENSE () (MY.LICENSE)
where GET.LICENSF is a gate to the system. This
gate returns a capability for a new gate
(lLicense) which makes capatilities of a fixed,

unique tyre. MY.IICENSE is a C-list index to

receive the gate returned ty GET.LICENSE,

(b) Suppose that this call 1returns a gate which
makes licenses cf TYPE=93Z, Then we are assured
ky the nucleus that the 1license to make
capabilities of this type will never again be
given to a domain Lty the GET.LICENSE operation.
Thus MY.IICENSE tecomes a trademark of the
Frccess which c¢wns MY.LICENSE and of any other

domains that scmehow have shared access to it.
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{c) The CBJECT.NAME of a capability ~created by
MY.LICENSE is srecified Lty the caller. So for
€xample
MY.LICENSE (VEASSWCKD") (KEY)
creates and returns a caratility of
TYPE=SG32,
OETICNS=11... 11
OEJECT.NAME="EASSWCEKD",
where:
MY.LICENSE is the gate described above.
"EASSWOED" is a string parameter specify-
ing the new UNIQUE.NAME.
KEY is an index into the callers
C-list tc receive the resulting

key.

{d) Instances of capatilities created by 1license
(i.e., TYPE > 7) are called keys. Keys are like
any other carpatility. They may be copied,
displayed, passed, and returned. Hence names
manufactured by users come under the protection
urkrella of the system. Note that no c¢ne may
mcdify the OEJECT.NAME cf a key; no such
ofreration exists. So a dcmain may manufacture
keys and pass them out tc cther domains as the
names of the oljects izplemented by the
licenscr. Since the licensor has exclasive
rights tc make keys of a certain type, it can be

ascsured that whenever it sees a key of that type



(C.2)

(C.3)
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(as a parameter tc some request made by sonme
other domain), then that Xkey was originally
manufactured ky a dcmain possessing the
arrrorriate license., Thus, if a domain protects
its license (or shares it selectively) then the
dcmain can be assured that such keys contain

valid (unmodified) informaticn.

Tc give a ccncrete example: the disk systenm
is licensed to make keys <c¢f TYPE=9, Any key of
TYPE=9 in the system is manufactured by the disk
system. The CEJECTI.NAME cf such a key has a
disk address in‘it (by a convention established
within the disk system). Fossession of such a
key is rroof of the 1right to access the named
section of disk subject tc the constraints of

the orticns of the key.

The capatility mechaniswm was extended to allow
dcmains to share files and C(C-lists on a per-itenm
ard cn a sut-file or sub-C-list basis. This is the
purpcse of the BCUNT and IENGTIH fields of these two
capalkility types. This simple extension is
transitive and allows for even tighter

FIctecticn/sharing.

Indirection through C-lists (i.e., path names in
the directed graph defined ky C-lists) was found to
dramatically reduce C-1list sizes, for example

dcrmains typically share a glotal pool of gates.
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(C.4) BAlmcst all naming mechanisms have gqualifiers
which describe the type of operations which the
capatility allows (e.g., files are read, write,
execute,....) In CAI this has been generalized in
twe ways. The <class of opticns has been expanded
tc allow for more diversity. This is then exploited
by having the system gate keeper check the types
ard cpticns of all actual parameters against the
fcrral parameter list of a gate. The gate keeper
traps the caller if the actual parameters are not

ccnsistent with the fcrmals.

(C.5) CAL allcws capabilities +tc te passed Letween

dcmains as events,

The altility tc ccpy a capatility and +to reduce the
options of a capatility is distributed freely. Only the
syster manipulates the cther fields cf a capability. In the
case of a key, any dcmain 1licensed to manufacture a key may
manufacture one with OBEJECT.NAME and CETICNS specified by
the domain. The key TYPE is fixed ty the license. Once
created, the CEJECT.NAME field of a key cannot be changed;
although, anycme with the licerse cap create a new key with

the desireé CEJECT.NAME.

Cperations on C-lists include <creation and destruction
of lists, <ccpy a capaltility frcm cmne list sliot tc another
list slot (while pcssitly reducing the options), delete a

capatility, send c¢r get a carability via an event queue,
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pass a carability as a parameter or result, and receive a
capability as a result. Ferhaps the most interesting
operation 1is t*display-capatility' which returns the bit
pattern rerresenting the carpatility tc ke displayed. Since
there is such an emphasis on tprivacy and security,
protection within the syster is nct based on secrecy.
Rather, it 1is based on a tight «ccntrol on who may
manufacture and reference names. Frivacy 1is obtained by
limiting access, by judiciously using options on
capakilities, (e.g., execute- cnly files) and by ccntrolling

the distrituticn of carabilities.

A general rule we have followed is that all the systenm
tables (with the exception cf the password file) should be
open to pultlic inspection. This strategy results in some
minor viclaticns of privacy (e.g., one can find out how much
computer time scme cther user has consumed) but not in any

violaticns cf protection,

Further details c¢n these topics can be found 1in

(B.L.17.
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CCMAINS ANL PRCCESSES

A domain defines an executicn environment, all
non-local names generated Lty a process executing in a
particular dcmain are intergrreted with respect to the
capability list of +that domain. Iccal names refer to names
in the «current <stack frame (activaticn record) of the
process. Comains are 1intended tc rrovide fine grain
protection and to ©fprovide for sharing of objects. When
designing a process, one design goal is to separate the
processes 1intc several dcmains and thus to 1limit the
instantanecus name space of the process to the objects of
immediate interest, This facilitates verification and
debugging and limits error progpagaticn., The scope rules and
block structure of most programming lanquages have similar
motivaticns, However an example was given above which
demonstrated that exclusive sharing is difficult to oktain
in most languages. Inp this sense, domains are a

generalization of common sccpe rules.

The dcmains c¢f a process are organized into a rooted
tree called the process tree, The purpose of this tree is
to direct the flow c¢f trap (error) preccessing and to define
a pricrity fcr interrurpts. The parent of a domain will be
passed any traps nct accepted ty the domain. Any interrupts
directed tc the parent domain will interrupt the execution
of any c¢f its descendants. This will te explained in more

detail Lkelcw.
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There is no concurrency within a process, Only one
domain ¢f a r[rocess is active at any instant. Ccncurrency
can ke ottained by spawning new processes or communicating

with existing ones. See Figure 3 fcr arn example of this.

A domain consists* of a capability list which defines
its name space, a trap-gate which is an entry point to
accept traps, a trap-accept vector which indicates which
traps are acceptalle and which are to te passed to the
parent, a capabtility for the parent domain, and an interrupt
inhibit flag, an ipnterrupt tuffer, and an interrupt lockout
timer. Assuming that the C-list fci the domain has Leen
created, the fcllowing operaticn creates a new domain in the

process cortaining EARENT ** :

* In fact each domain alsc has a swvapping directive
associated with it. Since the CIC-6000 machines have
only a relocation and kcunds register, no attempt was
made tc prcvide virtual memory for the processor. Each
process must explicitly allocate its memory. In this
paper we will assume a segmented memory space and a
process stack in the style of the E5000 [B.C.] and thus
igncre these shcrtccmmings.,

**%* The existence cf ocfpticns ¢n carpatilities means that a
capability does not necessarily grant complete access to

the o¢biect it descrites, In this paper we will
implicitly assume that all capatilities carry oftions
which allow the specified access, Here for example we

assume that the capakility for the C-list allows it to be
added tc a domain, that the <carpalility for the parent
allows the addition of a descendant to the fparent, and
that the capability for the trap is a file capability
which @allows execution c¢f the file. If any of these
assumpticns are violated, the gatekeeper will trap the
caller,



PAGE 23

CREATE.LOMAIN (C.LIST,PARENT,TRAP,TRAPOK) (RESULT)

where:
C.1IST is a capatility for the C-1list of the new
domain.

PAREN1T is a capability for the parent domain.

TEAP is an index of a carpatility for a file in
C-list and a displacewent in that file (a
file address). In the event of an accepted
trap cr interrugpt, control will pass to this
location.

TRFAEOR is a toolean vector such that TRAFOK[ I}=TRUE
indicates that the domain will accept the
I'th trarg.

RESUL1T is the result of the operation. It is a

capatkility fcr the newly created domain with
all options allcwed. Tte name RESULT refers
to some C-list slct to receive this

carability.

Most commcnly, the caratilities needed by a domain are
planted in its C-1list whem it is created. While executing,
a dowmain may <cbtain a capatility by creating an object, by
receiving it as a parameter or as an e€vent, or Lty receiving

it as a result returned by scme called dcmain.

The atocve oreration simply creates a domain. This
correspends toc declaring a block in a pregramming language.
Below we will descrite how gates are declared, they

correspond to procedure entry peints tc dcomains. Then we
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will descrikte how such procedure entry points are used to

construct dcmain activations,

Frocesses are extended virtual computers. When
assigned tc physical processors they execute instructions.
CAl considers processes tc ke cbjects., Viewed in this 1light
a process is a scheduling and accounting entity. A Erocess
is composed c¢f a directory of 1its ccnstituent domains, a
stack cf activaticn records cf domains visited Lut not yet
returned froem (the call stack), the current processor state,
a collecticn of clocks (user, system, swap), a collection of
flags (active,...), and a bPbank which will fund the
activities of this process, The follcwing operation creates
a FIOCESS:

CREATE.FROCESS(C.LIST,EFARENT, TRAF,TRAF.CK,BANK,START) (RESULT)
where:

C.1IS1, EARENT, TEAP, TRAF,O0OK srecify the root domain

of the new process as alkove.

EANK is a capability fcr a tank which will fund the

activities of the fprocess.

START is the 1initial state of the process executing

in the root domain.

RESUIT is a C-list slot +to receive a capability for

the newly created result.

The dcmain created above is called the root domain of
the process since it is the rcot of the process tree. The
process is created 1in a susprended state. When activated by
the ACTIVATE (FEROCESS) oreration it will begin execution with

state START. Any traps which the root refuses to accept are
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passed as an interrupt to its parent dcmain which is in some

other prccess.

Frocess and domain destruction are somewhat simpler and
are the samne cperaticn:
DESTRCY (CLOMAIN)
If the dowmain has no descendants and has no activation
records turied in the process stack it is deleted, and if it
is the rcot of some process, that process 1is deleted;

otherwise, the caller is trapped with an error.

DESTEKCY is a generic function which, given a capability
for any ctiect, will attempt to delete it from the systen.
It will trap the caller if the capakility does not have the

destroy opticn enakled.

To sumwarize, a process embodies a virtual computer.
It is a scheduling and accounting entity. Its execution is
interpreted in the context of an activation of one of its
constituent dcmains. Fach cf these dowmains provides an error
and interrupt handling context as well as providing a name
space: the local variakles in the current stack frame plus
the set of all objects pointed to directly or indirectly by

the C-1list cf the domain.
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Centrasting this to other systems, chbserve that:
CA1 has several domains fper rrocess,
PIGC1I has a hierarchy of domains (tlocks) per
Frccess,
Fultics [S.S.] has eight frogressively smaller
dcmains (rings) fper rrocess,
EECC0 [E.C.] has one domain (program reference
table) per rrocess, and
[ennis and Van Horn [D.V.] and B€ES00 [H.D.] have
several rrccesses rer dcmain (C-list or
segment dictionary)
We chose to have several dcmains per process Lecause each
other scheme may te emulated by the first by appropriate
indirectior and sharing C-lists among domains and processes.
Also we wanted to have several protected modules fper process
since the cverhead «cf a rrocess switch (scheduling,
accounting, status, stack) is necessarily greater than that

of a deomair call.



e
v ————
——
———————
—————

MESSAGE QUEUE
STATUS QUEUE

Y

DEBUGGER @ @

COMMAND
PROCESSOH

PROCESS
ROOT

- SdV¥1 40 MOTd
GNV ALIHORd LdNHYILN

Fiqure 3.
g a new versicn of the BROOT

-« debuggin ] I
1e¥ s craw T se ccncurrently primnts a file.

while a spawned fprLoce



PAGE 28

GATES, PARAMETFERS, ANL RESUITS

As described above, Tfrocesses are dJecomposed into
domains. Fach domain may ke viewed as a mcde of executior
having a different memcry space and a different set of
orerations that it can perform, For example the master-mode
slave-mode dichotcmy of many systems can ke emulated by
creating two domains, cne (the master) containing a
capability for the C-list of the other (the slave) and also

centaining scre privileqed files and cperations.

When a process 1is created and activated, it tegins
execution in its root domain withk a rprocessor state
specified ty the «creaticn creraticn. Clearly there must be
some way fcr the rfrrocesscr tc move from one domain to
another, €ince dcmains are spheres of protection, this
movement must be contrclled by the prctection system, In
the example atove it shculd nct be fpossiktle for a processor
in the slave mcde dcmain tc¢ enter the master mode domain at

an artitrary lccaticn cr with an arbitrary parameter list,

These consideraticns motivate the introduction of
objects cf type gate. In its simplest form, a gate is an
entry rpcirt tc a dcmain plus a recire for creating an
activation reccrd for the called domain. If one domain, 2,
has a gate tc a dcmain E then A may call E by wusing this

gate and once called B may return to B through this gate.
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As menticned in the intrcduction, we are 1looking for
the set of olkjects that an crerating csystem should implement
and for a srpanning set cf operators cn these ckjects. It
should come as no surprise that the orerators are themselves
otjects (gates), This has ceveral <catisfying ccnsequences.
The 1identification of creratcers and gates makes it
irmpossitle fcr a program tc distinquish tetween a ‘"user
created"™ orerator and a "system" orerator. This property is
vital tc a layered systenm. After each extension, all the
operatcrs in existerce have the same interface independent
of the 1layer at which they are imrlemented. In fact the
layers are «ccrrletely invisibkle. Ancther virtue of making
operators ckjects is that they come under the protectior
umhrella of the system. Thus tte gates to the FL/1 compiler
can be pubhlic and the gates tc the directory system can he
prctected. Since this prctecticn is dynamic, it is possible
for any dcmain of a process tc «call any other domain of the
process sc lecng as the caller has the appropriate gate
carability. This is another example cf the flexitle scope

rules allowed ty capabilities,

In wmany cases the caller wants tco specify some
parameters for the callee, and the callee wants to return
some resylts to the caller. Since dcrains wmay share files
and capakility lists, this sharing is a simple but sosetimes
inccnveniert matter fcr reascns analogonus tC the
difficulties ¢f CCMMCN stcorage in FCETFRN. It 1s soxctimes
desirabtle tc be able tc Fass and returz objects as

parameters and results and make such tinding dyraxis. This,
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however, involves tinkering with the C-list of the caller
and callee. A <capaltility fcr a gate +to a domain is not a
capability fcr the dcomain: they are different objects.
Hence the cystem gatekeeper must transfer the parameters and

results tetween the dcmains when a gate is invoked.

In crder to do this, a formal parameter and result list
is associated with each gate when the gate is created. This
list constrains the allowed tyres c¢f each parameter and the
required cgticns fcr each tyre acs follcws:

o} If the item must ke @a capalkility then the gate may
ccnstrain the allcwed types of capabilities arnd for
each type it may require «certain options tc Dbe
enatled.

c If the item must te data then the gate can specify
tte maximun amcunt of data to te passed or

returned.

When a call 1is made tc a dcmain, the caller specifies
the actual rarameters to te rassed tc the <callee and gives
the destinaticns of the results to e returned by the
callee. The gate-keeprer <checks the +types of the actual
parameters against the forrmal parameter 1list. If they do
not agree, then the caller is given a trap. On the other
hand, if the parameters are ccnsistent, then the
capabilities are transferred to the lcw crdér slcts of the
callee's C-1list and the data are stacked in the callee's
lccal nare srace. The caller is suspended and the callee is
activated at the eptry roint (file address) specified by the

gate. All rarameters and results are passed by value. The
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extensions of the capability mechanism descriked earlier
(see the éiscussicn cf cltjects, (C.2)) allows contiguous
blocks of data and capabilities to te passed ty reference.
The <callee is ncw assured that +the numker and type of

parameters he requested were passed,

Ccnversely, when the callee returns some results the
gate keeper checks them against the fcrmal result 1list of
the gate and traps the callee if they are not consistent.
Otherwise the results are distributed in the caller's name

space as specified ty the actual result list of the call.

To give an example to create a gate into a domain:
CREATE.GATEF (COMAIN,ENTEKY,FOFMALS,KESULTS,EANK) (RESULT)
where:

COMAIXK is a cafpatility fcr the dcmain to be gated. The
gate crtion on this carpability must be
allowed.

ENTEY is a file address interpreted with respect to
the gated dcmain's C-list. This address will
ke the entry pcint fcr the gate. The file
capatility nrust have the execute option
enatled,

FOFMAIS 1is a list of the required parameter types and
their required ortions.

RESULT1S 1is a list of the required result types and
their reguired ortions.

EANK is a capability for a bank to fund the
existerce of the gate.

RESUIL1 is a slot in the C-list o7 +the caller tc
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receive the carakility fcr the new gate.

The «cperation CREATE.GRATE is in fact a gate to the
system. It has four parameters and cne result. The types
and options on these parameters and results are ccnstrained

as indicated atove.

The function of CREATE.GATE is declarative, . It
corresgonds tc a rrccedure declaraticn in ALGCL, or more
clcsely to the DEFINE function of SNCECL4, It constructs
and returns an object cf type gate which contains all the
information needed to ccnstruct and bind a new activation of
the domain to be called. It also =stecifies constraints on
the actual rarameters and results of each invocation of the

gate,

It would ke possitle tc merge the ccncepts of gate and
domain ty allcwing a dcrain to have exactly one gate. There
are few acvantages to this and it makes the handling of
constructs like multiple entry poin&s in FORTRAN and PL/1
difficuit. Not uncommonly all routines which work on a
particular name srace are grouped together in one domain,
each with a separate entry pcint., For example, the directory
system routines I1CCKUF, ENTER, and LFIETE coexist in one

domain.

Gates are prctected entry points into domains. They
declare ar interface definition and constraint which is
interpreted ty the system gate keerger. System gates and

user gates are indistinquishaltle., This provides an elegant
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machine extension facility. Since gates are objects, they
come under the prctection/sharing umkrella of the system.
The wechanisrs for sharing gates are the same as those
available for sharing files, C-lists, and other objects.
Fassage of the execution cf a fprccess from o¢cne of its
constituent dcmains tc ancther is always via a gate. This

passage is carefully regulated by the system gatekeeper.

We conclude this secticn with twc examples <c¢f how the
return result mechaniset can te replaced ty appropriately
passed input rparawmeters., Suppose a dcmain wants the file
"FCC" from the file =systenm. The most direct way of
obtaining it is by executing:

FINL ("FCC",KEY) (FOC.SIOT)
where:

WECCH is the file name.

KEY is the access key which the domain presents

to identify itself.

FCC.SICT 1is a C-list slct for the returned capability.

A second strategy would ke to prass a C-list slot as a
paraieter. Then the callee can £ill it and no items need by
returned. Cne creates the gate FINLC.1 which may be called
ky:

FIND.1("FOC",KEY,PY.CLIST.FCC.SIQT)
vhere:

MY.CIIST.FOO.SICT is a capatility for the subsegment

of the C-1list of the calling domain
which will receive FQO, This

sukcegment is ore 2ntry long.
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The akove technigue 1is flawed ty the fact that the
caller cannct insure that a file will te rlaced in F0O,.SLOT.
That is, the type and opticon kit checking afforded b}y the
gate keerer has teen lost. B rartial soluticn to this is to
pass a gate tc the caller which writes ¥00.SLOT rather than
passing the slct itself. 1This gate can test the type of

object tefcre placing it in the C-list,

First a gate called WRITE.FOO.SICT is created:

CREATE.GATE(CALLER,WRITE.FCC, (*FILE','¥CVE") ,,EANK) (WRITE.FOO.SLOT)

where: CAIIER is a carability for the calling domain.
WRITE.FOQO is a  file address which contains the
code:

WRITE.FOC: MCVE(0O,MY.CLIST.FOO.SLOT)
FETUEN
which nmoves the rassed capatbtility to
FCC.SLCT in the dcrmain C-list.
'FILE','MCVE! constrain the rarameters to the gate
WRITE.FCC,SICT to ke files which can be
moved arcund in C-lists.
Given the €existence of the WERITE,FCO0.SICT operator, the FIND
operaticon may ke redcne as:

FINL.Z2('FOC',KEY,WRITE.FCO.SLCT).

This example generalizes tc mcre complex situations,
If the <caller has an intricate data structure and the
ccnstraints on it are very suttle, he may pass ofrerations to
read and write it rather than pass the structure itself,

Extremely tight prctection is possible using this mechanism.
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COMAIN ACTIVATION ANL BINDING

The previcus secticn described hcw objects of type gate
are constructed and gave some simple examples of their use.
This section explains the set of cperations that may be

performed cr gates,

It is possible to view gates as prccedure entry points
a la EL/1 cr RALGOL 68, All parameters and results are rpassed
by-value. The value of a carpakility parameter is a copy of
the «capatility. This prcvides call-ty-reference and is
fairly corvenient when ccmbined with the sut-file and
sub-C-list mechanisr described in (C.Z) of the OEJECTS

section.

This atstraction «c¢f gates will =satisfactorily explairn
almost all uses of the gate mechanism and is all the naive
user need know akout the sutiject. Hewever, to explain the
operations JUME.CAI1, JUME.FETUEN, and TRAP.RETURN as well
as the rprccess TISFIAY cfrerators it 1is necessary to

introduce the concert of a domain activation record.

As descrited akove, invoking a gate 1is a request to
switch the executicn <c¢f the process from one domain to
another, and returning is a request tc resume the execution
of the <caller. The =system has a ratter different view of
this situation., Dcmain CALL and FETUEN are simply operations
on the prccess stack, Calls construct domain activation

records frcm a gate, a rarameter list, ard a result list and
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place this activation on top of the fprocess stack. Given an
actual result list, the FKRETURN operation intergrets the
togmcst dcrain activaticn tc tind the actual results tc the
formal result nawmes in the callers domain., Then the

returning dcmain activation is erased from the stack.

A domain activation record contains all the information
necessary to resume the execution <c¢f the domain on sonme
processor, In particular it contains:

A pcinter (perhaps implicit) to the activation of
the caller,

The formal result 1ist sgtecified bty the gate and
the bindings cn  the actual results as
specified ty the caller.

The processor state (registers),

An interrupt disarle flag.

The actual parameters,

Scme local storage.

Fiqure U4 gives a mcre complete picture of the relaticnships
among gates, domain activations, domains and processes. It

also displays the structure cf each ctiject.



PROCESS

STATE FLAGS

O] [m]

CLOCKS

TREE /
/

/
I
- |

[oomi] 1[pom3}; /

pom2} [pom4| {poMS5]

STACK

DO &)

~~
?
C
72}
-

PAGE 37

C-LIST

DOMAIN

ENTRY POINT
FORMALS

RESULTS

PARAMETERS

EEZDD SE

/

ACTIVATION RECORD

DOMAIN
STATE

j

DOM3

-

LOCAL STORAGE

INSTRUCTIONS —
REGISTERS

RESULT BINDINGS

ACTUAL DATA PARAMETERS

PROCEDURE FiLE
ENTRY

INVOCATION

Fiqure &4

The structure and interrelaticnships abmong processes,

domains, gates and C-lists,



PAGE 38
When a domain executes a CAIL oreration such as
<gate> (<actual parameter list>) (Kresult tinding listD)
the system gatekeeprer first checks the numkter and types of
the actual rarameters and the actual results against the
number and tyres specified by the gate, If +they d¢ not
agree, the caller is trapped. Ctherwise, using the gate and
the parameter and result lists, the gatekeeper ccnstructs a
new activaticn reccrd for the «called domain and rpushes it
onto the f[rocess stack, thus making it the active domain.
Each of the actual data rarameters is then copied onto the
process stack and e€ach of the carakility parameters 1is
copied intc the called domain's C-list starting at index
Zero. {(Note: This rrecludes domains <calling one another
recursively with capability rarameters, a flaw in the system
design.) 1Then the prccesscr state is set to begin execution

at the entry pcint sgecified by the gate.

In order to implement cascade rcutines a form of JUMP

is intrcduced:
JUME.CALL gate(<actual parameter listd>)

The effect of a JUME.CAIL oreration is exactly the same as
that of a (ALl operation excert that the activation of the
callee rerlaces the activation of the caller in the process
stack rather than being pushed cnto the process stack. The
activation of the caller is ccmpletely lost. This mechanism
can be used tc construct cc-rotines and other barcuque
control structures. Since the caller's activation is lost

it cannot be returned to, so the <callee's activation

inherits the result tindings and constraints imposed on the
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caller (i.e., these ccnstraints are «c¢cried over to the new

activaticn.)

The sirplest feocrm ¢f return is tc invoke the operation:
RETUEN (<actual result listd).

The RETURN cperaticn first checks the number and type of the
actual results against the formal result list saved in the
activaticn record., If there is an error the returning
routine is trapped. Ctherwise the gate keeper binds the
actual resclts toc the caller's domain as specified in the
call (and =<csaved in the activation reccrd c¢f the returning
domain) . Feturned data is coried 1intoc the process stack,
returned caratilities are copied 1intc the designated C-list
slots. Then the activation of the returning domain is
erased from the tcr «c¢f the =stack This has the effect of
making the returned-to-activation the topmost activation and
hence it is assigned the prccessor. Ncte that if jumps are
used then the returned-to-activaticn is not necessarily the
activaticn cf the <caller cf the returning domain. However,
as descrited earlier, the jumpr mechanism preserves the
result tindings of the returned-to-dceain activation. The
actual result list of the returning domain must <satisfy

these constraints.

It is sometimes convenient to return a trap rather than
a result (see the secticn cn TFEAPS.) The operation:
TEAF.KETUEN (TRAF.NAME)
erases the activaticn of the domain which invokes it and
generates the designated trar in the returned-to-domain

activation.
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The return mechanism is also generalized. It is cocmmon
to want to flush the stack, that is to delete some number of
domain activations frcm it, The JUMP.RETUEN mechanism
allows this if +the returning domain can present the
appropriate capabilities for each domain to ke deactivated.

JUME.EETUERN (<result 1ist>,C.1IST,N)
where:

C.IIST is a caralkility for a list of capabilities
fcr all dcmains tc te flushed from the
stack.

X is a numter giving the depth of stack to be
flushed.

A similar operation exists tc return a trap to a domain
activaticn:

JUME.TRAP. RETURN(C.ITIST,N,TYEE)
where:

C-11ST,N are as albove.

TYEE is the type cf trap to ke returned.
These operations first check to make sure that the C,LIST
spans the N-1 domains which will have activations erased
from the stack. If not the returning domain activaticn is
trapped. Ttey then examine the returned result constraints
for the activation N-1 deep in the stack, if they are not
consistent with the actual returned results, the returning
domain is trapped. Ctherwise, the gate keeper erases N-1
activations from the stack and then tehaves as though it
were an ordinary return cr trap return operating from the

activaticn N-1 activaticns intc the stack.
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TEAES

The hardware and scftware continually make tests on the
validity cf the operaticns of each rfrccess in an attempt to
detect errcrs as scon as possitle and thus to prevent their
propagation. Arithmetic faults, address faults, 1invalid
system requests, and tad parameter lists are the most ccmmon
examples of the gereral rhenomena called traps. When a trap
occurs there must ke a mechanism which allows the process to
recover an¢ centinuve executicn, Such a mechanism has strong
ties with the prctection =structure of a system, as 1is

pointed cut ky Lamgscn [B.1.].

When a trar occurs, the executicn cf the tragpped domain
is interrurted and a new domain is newly activated at its
trap-entry-foint. The central issue is the selection of
this new dcmain. Cne must srecify an crdering on the set of
domains of each ©process which will direct the flow cf trap

processing.

The mcst ckvicus choice c¢f an crdering 1is the process
call stack. However, it often harrers that the caller is
less privileged than the «callee or that the two are
completely unrelated (e.g., written ty different authocrs).
Hence the «caller cannot in general te expected to correct
the protlems of the callee., The <caller merely has a
capability for a gate to the called dcrain, not a capability
for the domain itself. YThis rules cut the use of the call

stack as an orderirng. (Ncte that PIL/1 CWN conditions dc¢ use
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the stack and so violate this simple 1lcgic.)

The ordering clearly nust take the form of increasing
responsitility. If one domain refuses to accept a trap,
then the +trar is vrpassed cn tc a more responsible domain.
The EIccess tree is ccnstructed with exactly this
relationship in wmind. Fach node 1is considered to be
responsiktle for its descendants and, ccnversely, interrurts
to a parent are considered tc aprly tc the descendants as
well, If cne thinks of each dcmain as an ALGOL block and of
the process as an AIGCL program, then the ©process tree can
e viewed as the static blcck nesting of the program. The
choice cf rrcragating traps up the prccess tree is analagous
to the decisicn tc use the =static rather than the dynamic
block structure to solve the free variatle protlem. Lest
the reader «carry this analcqgy too far we point out that,
unlike the ALGCL name structure, the capatbtility mechanism is
orthogcnal tc the process tree and that the nesting does not
have any name scope rules asscciated with it. In
particular, it is possikle fcr any dcrain to kncw about any

cther dcmain and tc share cltjects with it.

Having decided on an crder for trap processing we now
define the trar operators. Ccnceptually each trap is given
a name and each domain may execute a ccmmand:

CN(TRAE.NAME,ENTEK)
which will cause the dcmain to accept the +trap named
TRAP.NAME and to ke entered at ENTEF with information about
the trapped domain in its fprccess stack. If a particular

domain traps then the trapred domain's activation is saved
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and the syster searches up the prccess +tree, starting with
the trapred domain, until a domain is fcund which is willing
to accept the trap. The accepting dcmain is newly activated
at its trap-gate entry point with parameters describing the
trap. To make loops less likely, this trap-accept is turned
off. The domain must explicitly reset the trap-accept

conditicn in crder tc catch a re-occcurrence of that trarg.

Several trap names were left undefined to allow users

to exgploit the trar mechanissm within their subsystenms.

To disarm a trap for a domain anrd thus default it to
the parent dorain invcke the creraticn:

CFF (TRAF.NAME).

In the course of debugging and testing it was found to
be useful to ke able to generate tragps. This is especially
important in testing tiwme dependent code. Hence the
operaticn:

TRAF (TRAE.NAME) .

Also, some <cases reguire the atility to report traps
kack to the caller. Thus ap cperaticrp exists which returns
a particuler trap to the caller. This erases the callee
from the =stack and traps the caller at the 1ccation from
which he made the call:

TEAF.RETURN (TEAE,. NAME) .
Lamgson [P.1.1] gives a detailed example of the use of these

facilities.
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Twc ancmalies remain. First, it is possitle that the
ancestcr dcmain has a tug and that the trap processing will
loop. Needham [EK.N.] prorcses a <scheme which solves this
problem: never allcw an errcr to rereat and put a tight time
limit c¢cn each domain respcrding tc a trap. Within this
context it is Qdifficult tc write a fault tolerant monitor.
Tor example, it is ncw ccmmon to use the hardware to detect
arithmetic errcrs and alsc to allcw @a program a quotum of
errors greater than one. Needham's scheme would forcefully
exit any program which produced an overflow twice. Such a
mechanism stculd nct be welded intc an operating =sycstem;
although such a strategy cculd be inrlemented within CAL by
suitatly coding the rcot and by clearing the
trar-accept-vector <c¢f any cther dcmain, In fairness to
Needham, it should bte mentioned that he rropcsed a more
general scteme that dces allcw a fault tclerant monitor, bhut

it does nct =clve the 1lcop rrotlem.

CAI treats the lcop rfprchklem Ly faith in the trap
processcrs, ty disarming the trap accept flag ¢f a domain
when it is wused tc catch a trap, ty strict accounting and,

in the interactive case, by user console interrupts.,

The seccrd ancmaly ccncerns the case in which the root
is unwillirg to accept a trap. In this situation, the
process is suspended and an interrupt (of the appropriate
type) is sent tc the parent of the roct domain. This parent
is in a different rfrocess and gpresumakly is in a tetter

\

position tc handle the trar. This gives an exanmple of how
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convenient it is tc identify traps witlk interrupts.

Ey far the mcst ccomon example cf a free trap (i.e. not
accepted ty the rcct) cccurs when the tank of a process is
exhausted sc that the rcot domain cannot execute because it
cannot pay fcr any resources. In this case the bankrupt
process 1is susgended and an interrupt (of the approrriate
tyre) is sent tc the rarent cf the rcct domain. In order to
extricate the destitute process, this rarent must replenish
its tank and reactivate the grrocess. That will allow the
root to run. Cf ccurse the parent may cpt to destroy the

descendant rrccess.

The discussion above has teen idealized. 1In fact, CAL
is not prerared to handle symtolic nares and multiple trap
entry points., Each trap is cataloqued and given an index.
A trap-accert-vector and a trap entry fpoint 1is associated
with e€ach dcrain. When +tragp I cccurs inr process P the
follcwing algcrithm is invcked:

EECIN
TREAEEEER := CUEREKENT;
REPFA]
EECIN
IF TRAF.ACCEFT (TKAPFER)[I] = TERUE
JIHEN EEGIN
TRAE.ACCEFT (TFAFFEERE)[{I] := FALSE;
JUMF.CALTI TFAP.ENTEKY (TRAFPER)[I];
ENL;
1F TRAPFER = EKOCT
THEN EEGIN
INTEERUET (PARENT (ROCT) ,*TIRAP® | P | 1) ;
ENL s
FFER := FARENT(IRAFPEE) ;
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To sumrarize, the orerating <cystem provides an error
handling mechanism which is tcth flexikle and yet consistent
with the rrctection rphilcsphy of the systenm. Errors
propagate upr the process tree until a responsitbtle domain is

enccunterec.
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DISFLAY AND MANIFUIATICN CF PROCESSES

The handling cf traps requires that one domain be able
to examine the state of another. Cn the other hand
protecticn requires that such examination ke regulated by

the caparkility mechanisr.

The (C-list of a domain may te recovered by the
operaticn
LISFIAY.CCMAIN.CITIST (DCMAIN) (FESULT)
where:
LCMAIN 1s a capalkility fcr the domain of interest
with the display cpticn enatled on the capatility.
FEESUIT 1is a returned capatility for the domain

C-1list (with all cpticns allowed).

Exarining the activaticn Trecords of a domain 1is
somewhat mcre complex. 7To disrlay +the names of the domains
active in the stack invoke the ofperaticn:

LISEIAY.STACK.SKELETCN {PEQCESS) (RESULT)
where:
PFCCESS 1is a capalbility for the process owning the
stack.
FESUIT is a data area to bcld the UNICUE.NAMEs of
the domains associat<d with the successive

activaticne in the process stack.

To display a particular activaticn of a2 Adomain in the

stack invcke the ofperaticn:
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LISPIAY.ACTIVATICN(PFOCESS,CCMAIN,I) (RESULT)
where:

EFCCESS is a capatility for the process owning the
stack,

ICMAIN is a capatility for the domain associated
with the activaticn record.

1 is the index 1in the stack of the
activation record.

FESUIT is a data area (stack) to receive the

returned activaticn record.

To write into an activaticn reccrd:
WEKITE,ACTIVATION (FFROCESS,DCMRAIN,I,TARGET,VALUE)
where:
FFCCESS,LOMAIN,I are as akove.
TAEGET is an index into the activation record.
VAIUE 1is a (tlock cf) value(s) to be written into
the activaticn record.
Only the processor state and lccal stcrage may be changed in

this way, all other informaticn is rrotected by the nucleus.

Since caraltilities are used to regqulate these
operations, the protection 1is nct viclated and yet one
domain may exercise complete surveillance and control over

ancther.

Since a domain may nct te destroyed wuntil all its
descendents are destroyed, it 1is impcrtant to be able to
reconstruct the process tree. The orerations to do this

are:
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FCCT (PROCESS) (RESULT)

where:
EFOCESS 1is a ~caratility for the process of
interest.
FESULT is a capalkility for the root domain.
and
SCN(CCMAIN,T) (RESULT)
where:

[CMAIN is a capatility for the domain of interest.

1 is an index of the desired son.

FESUIT is a capatility for the I'th immediate
descendant cf the dcmain if such a

descendant exists.

lastly there are operations to susgpend the execution of
a prccess and to activate a prccess. Wken created, a process
is in a suspended state. Processes waiting on an event queue
are alsc suspended. ACTIIVATE enters a suspended process into
the scheduler's queue and SUSEEND remcves the process from
the scheduler's queue,
SUSEEND (ERCCESS)

ACTIVATE (EREOCESS)
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INTERFFOCESS COMMUNICATION

CAL dichctorizes communicaticn between processes as either
synchroncus o¢r asynchronous. Synchronous messages are
called events and asynchrcnous ressages are called
interrupts. Although events may be <sent at any time, they
arrive only when requested ty the receiving domain. They
are thus <cynchroncus with the executicn of the receiver,
Interrupts may strike the receiver at (almost) any time and

therefore appear asynchronous with its execution,

EVENT (CUEUES

Event queues are cbjects implemented ty the nucleus.
When created, a queue 1is designated as containing either
capatilities or =segments cf data. B capatility queue may
only handle capabilities, and a data queue may only handle
segments of data.* Asscciated with éach event in a queue is
the name «¢f the domain which sent the event. Any process

willing to surply a tank which will fund a queue may create

a queuve, Tle creation is dcne as fcllcwus:

* This is a restrictico implied by +the gate type
constraints,



CREATE (('C~-QUEUE' !
where:
C-QUEUE
L-QUEUE

EANK

CAPACITY

RESUIT

The operaticns on que
exist to add an event t
a queue or a set of que
empty and a fprocess tr
suspended and its stack
an event arrives at cne
a gueue may hold mcre
events are queued in a
queue is full then the
and chains its stack tc
event queue, If several
event, only the first
processes <cntinue to
be complicated Ly keye
actior may ke modified
queued fcr mcre than
given @ trap return, C

may Le asscciated with
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C-QUEUE') ,BANK,CAEACITY) (KESULT)

says make a capalkility queue.

csays make a data queue.

is a carpability for a bank that will
ray for space cccupied by the queue.
is the maximum number of words that
the mescsages in the queue may occupy.
is a carability-list slot to receive

the capatility fcr the created queue,

ves are extremely simple. Operations
c a queve and tc remove an event fronm
ues, If the queuve or set of queues is
ies t¢c get an event, the process is
is chained tc each such queue until
of thewm. As the name queuve suggests
than cne event in which case the
first-in first-cut sequence. If the
put ofperaticn suspenrds the process
the queve pending more space in the
prccesses are queued waiting for an
rocess receives the event, The other
wait. (The definition of "first" may
d events. See lelow.} The suspense
ky a wait time; if the process is
this time, it «ill te de-queued and
ne cther modifier is possiktle: a key

a message by the sender. In this case
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a process must present the appropriate key to get this
message. I1f the key 1is inccrrect, the message will be
invisible. As mentioned in (C. 1) above, keys are an
extension of the caratbtility mechanism, they prcvide

Frctected rames.

The fcrmat of messages is:
UNIQUE.NAME of sender
KEY opticnal
MESSAGE capatility or block of data

The operations on queues are:

PUTC (QUEUE ,MESSAGE,WAITTIME, KEY)

PUTC (QUEUE ,MESSAGE,WAITTIME, KEY)
and

GETL (CUEUE,WAITTIME,KEY) (MESSAGE)

GETC (QUEUE ,WAITTIME,KEY) (MESSAGE)

where:
C implies the message is a capalbility.
T implies the message is a data segment.
CGEUE is a carpatility cr list of capabilities

for the relevant queve or queues.
MESSAGE is either a data <segment descriptor or a
capatility to te sent or olktained.
WAITTIME is the maximum real time, in micrcseconds,

that the prccess will wait in a queue.

KEY is a (cpticnal to the sender) key which
is asscciated with the message, If
Fresent, the receiving process must

present the key tc cktain the message.
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The gueue mechapnisr is designed tc facilitate convenient
communicaticn among rroducers and ccnsumers of data and
capakilities, For example, all external devices (terminals,
tapes, card readers, rrinters<,...) are either producers or
consumers ¢r tcth. In CA1l each of them <ccmnunicates with

internal prccesses via €vent gqueues.

The teletype ccommunication facility exploits most of the
features c¢f queves. There is a frccess which listens tc all
the teletyres (it 1is actually run on a peripheral
processcr) . The listener sends and receives characters from
these external devices. For full duplex devices it echos

many of the characters that are sent.

The listener comrunicates with intermal processes by using
two L[-queuves, cne fcr input ard one fcx output. Whenever a
special character arrives cr whenever the teletype has sent
a ccrplete line, the listerer puts the message into the
input queue alcng with a key identifying the teletype. These
keys allcw all teletypes tc <=hare tte same tbuffer without
fear of cne frccess intercepting ancthers input or output,
This sharing reduces the srace cverhead since almost all

tuffers are almost always ergty.

Whenever a prccess wants an infut message froe 1its
teletype it executes:
GETL (INEUT,1CE¥7,KEY) {MESSALE)

which will get a message, if there ics cne, Zrom the teletvpe
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specified ty KEY. The process will wait at most 10 seconds
for such a message and if ncne arrives it will trap return.
At this poirt the ©process may assume the user is in "think
mode" and cut tack its working set in the swapping mediunm.
Cn  the ctker hand, 1if a wmessage is returned, then the
process will prcbatly respcnd with a message to the output
queue which srecifies the echc for the nmessage and <some
control infcrration fcr the listener. Note that a message
sender need not have the key as a protected name but that
the receiver must possess the arprorriate access key to get

a keyed message.

This example shcws hcw queues prcvide protected-pooled-
buffered stream and tlock ccmrunicaticn among processes. It
is in sharp contrast witk the tuffer womping and flag
setting interfaces presented ty most operating systems as
the I/C irterface. Cueves trovide a complete 1interface to
all external devices (e.g. terminals, disks,...) and among

the active frccesses.

It skculd be clear that keyed messages make a
multiplicity of event queues almcst unnecessary. It would be
possikle tc¢ have <c¢ne queue glcbal to the system and to use
the keys as proxies for event gqueuve capabilities. The
central rrctlem 1is that scrme malicicus or errant process
cculd clcqg or £ill the queuve and thus lock-up the system,.
The choice o¢f having wmany disjoint queues stems from our
ideas on accounting and on the isolaticn of one process fronm
another. There is nothing tc rrevent an implementation fronm

using only a sincle storage ©pcol fcr the event tuffers.
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Certainly at the user level this can ke done. 1In fact each
class c¢f input-cutput driver has a pair of queues for

communicating with all instances of that device.

The examrle aktove presumes that the fprocesses cooperate to
the extent that they collect their messages so that the
teletype queue does not teccme cluttered. In reality this
assumption is violated and so when a frrccess 1is akorted or
when a terrinal is re-allccated, +the terminal allccator
selectively flushes the tuffer by wusing the following
Oferaticns:

TISFIAY.EVENTS (CUEGE) (LIST)
IISPIAY.GET.PEOCESSES(QUEUE)(IIST)
ITISFIAY.FUT.FROCESSES (QUEUE) (1IST)
where:
QUEFUE is a capalkility for an event queue,
IT€T is a data area to receive a list of events
waiting, processes waiting for amn event or

Frocesses wvaiting for mcre room in the queue.

These display operaticns produce a =keleton of the queue.
If the list descrites one of the waiting process chains then
it gives tle UNIQUE.NRAME cf e€each ©fprccess (these are used as
identifiers Ytelow). When displaying the contents of the
queue, the list ccrtains an entry for each event. This entry
has an 1identifier for the event, the name of the sending
process, the key on the event if there is one, and the first

word of the event.
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Using these identifiers, the queue may be selectively
flushed Ly erasing wunwanted events, and trapping waiting
Frocesses:
PUORCE.EVENT (QUEUE, 1ID)
FURGE.CET.EFROCESS (CUEUE, 1IL)
FUKGE.IUT.FROCESS (CUEUE, 1L)
where: C(CUEFUE is the queue tc te affected.
ir is the identifier of +the message or process to
ke removed from the queue.
Of course the privilege tc 1@manirulate a queue with such
oreraticns is contrclled ty the «cpticns of the capability
for the queue and is nct rassed out tc the general public.
For example only the terminal allocatcr has a capability for
the 1lcw speed 170 queuves with all cpticns enabled. All other
capakilities fcr these queuves allow cnly the operations GETD

and PUIL.

The rprcducer~-ccnsumer relaticnshig is not universal.,
Processes are often related ty mutual exclusion. A common
constraint is that at mncst cne of a community of processes
may Lte in a certain mode at a time (critical section);
however, there may te artitrarily ccmplex ccnstraints on the
concurrent executicn ct a ccmmunity of processes.
Semarhcres are often rrcpcsed as a solution to these
protlems, Einary semaphcres may be simulated by creating a
C-queue of cne element., If C is any C-list slot and ¢ is a
capability fcr the gqueue, then SET(C) is equivalent to
GETC(¢) (C) and CIFARK(C) is egquivalent to FPUIC(C,C). N-ary

semaphores are obtained Ly a simple generalization of this.
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Unlike requests fcr conventional <semaphores, which are
granted in an artitrary way (fcr artitrary 1large epsilon,
there exists a ncn-zero rrotability delta such that a
process will have to wait fcr at least epsilon changes in
state of the semapbore tefore the request of the process is
granted), cemaphcres <simulated ty queuves allocate the lock
on a first-ccme first-served tasis (there exists an epsilon
such that delta is zerc: namely any epsilcn greater than the
number of frocesses waiting for the lcck when the request is

nmade.)

If the constraints cn ccncurrent execution are actually
arbitrarily complex, then the interlccking is best done Ly a
lock scheduler [J.G.]. This affcrds simpler lcgic,

protecticn, interlcck avoidance and reccvery.

In the simpler case, cne mpay rerlace the semaphore by a
protected lcck on the object. Father than let the capalility
C above te a dummy capaltility, 1let C te the only capability
for the obiect. Then GEIC(C) (C) gets exclusive access to the
object and FUTC(C,C) ;FORGET(C) relinguishes this access.
Similarly a pccl <cf =scratch storage for a community of
domains may ke allccated on a first-ccme first-served rFasis

by placing a capalkility fcr each scratch area in Q.

In the interest of ccmpleteness the operations:
ICCK(CBJECT)

UNLCCK (CEJECT) could be included Ly asscoiating a
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semaphore with each ctject.

Yet a third way c¢f lccking at queues is that they provide
an alternative form inter-dcmain call. Sending an event can
ke viewed as <calling =sore domain with one parameter
(forking), cr returning a result to scme domain (quitting).
Requesting an event is analogous to recuesting a result from
a functicn (jcining), «cr teing called with that event as a
parameter. It is <sometimes the case that this organization
of havirg «c¢ne process perfcrm acticns for a comnmunity of
Frocesses is either simpler «c¢r more economic than having
many copies of the active prccess imktedded in each memker of
the community. Tts possilkle advantages are ccncurrency,
lower overhead due to domain <creaticn and private memory,

immunity frcm interrugts, and simpler access to data.

For example, it may te more <efficient to have a rhantonm
process which drives the printers and which is driven by a
queue of file caratilities than to have distinct copies of
such a driver as a domain within each process. The printer
driver when it needs a new Jjcb can atsorb all pending
events, add them to its schedule in sore priority order, and
then execute the rost impcrtant one. K¢ 1lccks are required

because cnly cne process is manirulating the data.

This incidentally rrovides a convenient example of the
need to =send structured messages., We need to send the
printer driver a message which contains a carability for the
file tc te printed, a carpatility for a bank to fund the

printing, the priority of the print jct, the format of the
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file, and the format and destinaticn of the output (e.q.

font, tyre c¢f fpaper,....)

As with the parameter passing mechanism descrited earlier,
it is clearly desiratle . to be able to pass complex data
structures as events. CAL has neither the hardware nor the
language support to specify such data structures. We view
this as a flaw in the system. It is desiratle to te able to

transmit arkitrary EFl/1 structures via queues,

Wirth [N.W.] gives ancther examrle in which it is
logically much simpler to have a flcating process driving
the oreratcr's conscle thén to have a dcmain (routine)
private to each process which fperforms this function. The

listener descrited atove is a third examrle of this.

One may generalize these <cltservaticnse and characterize the

control structures of systems as being primarily:

E-driven: most acticns are imprlemented as grocedure
calls synchronous with the executicn of
the frocess.

Q-driven: mcst acticns are implemented as queued

requests to floating processes.

T-driven: ccntrol infcrmaticn resides in tables and

and prccesses 'execute' these tables
{shared files).
I-driven: The flow cf ccntrcl is directed by

external interrugts,
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Multics ard CAL are ccnsidered to te primarily P-driven
althougb many mcdules «cf Multics and CAL are Q-driven. In
particular the 1I/C handlers, schedulers, and the phantoms
feed on queues. The ccres of most <crerating systems are
I-driven. Transaction oriented systers such as TSS/360 and
CIcs [I.B.M.1,I.E.M.2) are primarily Q-driven. Syntax
directed ccmpilers and decision takle lanquages are exanmples

of T-driver systems.
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pcssitle advantages of a (-structure over a

F—structure are:

(q.a)

(g.b)

(g.c)

(g.d)

Concurrency is exploited.
The overhead of a single flcating process may be
less than that cf many private domains.

The floating rrocess 1is ¢frotected from user
errcrs and interrurts,

Access to data may be siwrplified, thus easing

the interlcck fprctlem.

On the cther hand:

(p.a)

{c.L)

(r.c)

(r.d)

In order to fully exrlcit (q.a) it may bhe
necessary to have several servers. This wmay
vitiate (g.k) and (q.d).

In all known <systems which do accountina and
priority scheduling, the ccst of a domain switch
is much less than the cost of a process switch.

Mcre importantly, the space overhead for a
single process 1is consideratly higher than the
space overhead for a csincle domain because a
Frccess has a stack, and accounting and
scheduling infcrmaticn.

If one considers the possitility of errors, the
messadge discipline tetvween processes may have to
ke very complex, The trap wmwechanisms descrited
previously do nct extend tc a Q-driven system in
an cbviocus way. If the Frccess must wait for a
resgonce to each request then (g.a) is vitiated;
if nct, then ccrrlex Fcst-analysis may be

required vitiating (q.d).
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The virtues of the wvaricus «ccntrol structures are
cataloged in Figure 5, TIdeally cne wculd like to merge the
concepts of proccedure call, =send event, and send interrupt.

We have nct teen alkle tc dc this.

F-driven ¢-driven T-driven I-driven

CCNCUFFENCY * * *
MCCUIAFRTITY * % *
CUICK FESECNSE * * *
TIGET CCMNIRCIT * * *
ERKCE BHANILIIING * ? *
CLEAN INTEFFRCE * *
CCNCEFFTUR2I1Y SIMELIE * *
Fiqure 5.

THE VIETUES CF FCUE CCNTRCI STRUCTURES

1o summarize, event queues are rprovided to allow
interprocess communication. Mcst ccmpunication with other
prccesses and with "the outside world" is through message
queues (shared files, 1locks, and interrupts provide nmore
primitive communication). The queues «can pass either blocks
of data «cr they «can pass entire «ctjects by passing a
capaltility. The syster will =susrend a rprocess until the
message arrives (cr is sent) unless the process overrides
this suspense., Keys can ke attached toc messages so that they

can be directed to a particular receiver.
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INTERRUPTIS

At least one author has suggested +the akoliticn of
interrupts tecause they create so mruch grief [N.W.]. Most
theoretical mcdels «cf contrcl <structure seem to lack the
concept of interrupt for this reacson., Powever, real systems
are not at literty to ignore the issue of what «can be done
in case the event queuing mechanism treaks down or in case
continucus fpclling of an event queue is too expensive. The
otvious answer is that it must be fpossitle to interrupt the
executicn c¢f a dcmain in <scmre process externally and to

cause the invccaticn of some new domain cf the prccess.

Any dcmain may interrupt any other domain (including
itself) so long as it has the aprrorriate capability for the
interrugted dcmain, An interrupt is addressed to a
particular dcmain cf a particular process, If that domain or
cne of its descendants is active then the interrupt strikes,
causing a new activation of the dcerain to which the
interrupt was directed. Otherwise the interrupt is arrested
until its tarqet domain is active o¢r is a parent of the
active dcrain of +the ©prccess (see Figqure 3.) The
interrupting domain may =specify a datum describing the
interrugt. This datum along with +the UNIQUE.NAME of the
interruptor is placed in the call stack of the interrupted
prccess. As mentioned earlier, interrupts are much 1like

traps. The interrurted domain is activated as though a trap

has cccurred (i.e. at the trap gate entry point.)
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Interrupts and events may interact with each other in a
tad way: if the interrupted dcmain is waiting for an event
it is de~-queued and its process state is modified so that
when the irterrupted dcmain is resumed it will immediately
re-execute the call tc get an event (i.e., the instruction

counter is 'tacked ur').

The interrupt operators are:
INTEFEKUEFT (LCMAIN,CATUM)
CISABIE.INTERRUETS (LCMAIN)
ENAELE.INTERKUETS (LCMRAIN)
where: DOPFAIN is a carpatility for the domain to be

interrugted.

CATGM is any datunm.
The wmotive for using the prccess tree to moderate
interrupt handling stenms from the olservation that

interrupts are very much like trars. A domain should only
te expected tc ctserve interrupts directed tc its ancestors.
This corresponds tc a priority interrcpt system except that
it puts a rartial order rather than a linear order on the
interrupt =structure. This generalization was fcund tc be

Foth inexpensive and valuatle.

The newly activated interrupt domain may perform any
operations it desires, sulject tc the limitaticns of its
C-list. In particular, it will examine the interrupt datum
and the fprccess state (ty disgrlaying the process stack) and

it may interrcgate the user if be is cn-line.
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Consider the example c¢f a user sending an interrupt to his
command prccessor domain frcm a terminal. The command
processor will ask the user what acticn is desired. "“LEEUG,"
"PURGE," and "EETUEN" are cCcmmon re€sponses. CEBUG causes
the «ccmrmard rfprocessor tc¢ Jjump-call the detugger. The
YPETURNY request directs the ccmmand frocessor to return to

the interrupted domain as though nothirg had happened.

The “"PURCGE"™ command is wcst interesting. Presuming that
the command [fprocessor is powerful enough to have
capabilities for all dowmains belcw its first stack
activation, the command processor may simply jump-return to
its first activation. This wculd destrcy all the intervening
domain activaticns., Tt is cften the case that intervening
domains would 1like tc make a more graceful exit. They may
want to <clcse their files and write a suicide note to the
user. Hence tte PURGE ccmmand directs the command processor
to RETUEN.TFAF(INTERRKUET) +tc the interrupted domain. This
initiates the trap processing pmechanism mentioned earlier
and allows the active dcmains to flush themselves out of the

stack in ar crderly manner.

If this fails, the user may interrugt the errant process
and type FUKGE N fcr any integer N. This will erase the top
N activaticns off the stack and RETUEN.TRAP (INTERRUPT) to
the domain N+1 activations deep in the stack. ("BPURGE" is

an atkreviaticn fcr "PUERGE C%).
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There are times when one must abolish (disable) interrupts
temporarily. Certain critical secticns cf code manipulating
shared data must e executed withcut interruption. If such
modificaticns are interrupted 1in mid-flight and another
computatior is scheduled, then the shared data will remain
locked for a prohitkitively lcng time. If the data is shared
with the interruptor, this raises the specter of a deadly
emtrace., These protlems occur at bcth the system and at the

user level.

Two solutions are possible, Cne 1is tc place the

noninterrugptaktle ccmplex very high in the process tree so

that only very high ©[priority interrugts can strike. The
second is to disatle interrupts. The first solution is
illuscry. For pragmatic reasons it must be possible to

interrupt any domain of any process, The fact that the

interrupt is powerful will te seen tc te irrelevant.

Cnly the second scluticon is tenatle. Since it must be
possible tc invoke any other dcmain withcut fear of losing
control, the =<score c¢f interrupt disakle 1is glokal tc the

prccess.,

The solution abcve has a flaw: it is now rossible to
construct a prccess which can never ke interrupted., Hence
interrupt disable has a real time 1limit., Associated with
each dorain (not each activation of that domain) is a
timer. Cisaltling interrupts in a dcmain sets its timer to

some quantum (. At each instant that interrupts are
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disabled, some domain's timer is running down. It is now
possilkle fcr each dcmain tc ke assured cf at 1least Q units
of real time executicn. Only the timer cf the topmost domain
in the stack with interrupts disabled is decremented. 1If
this timer 1larses tefore interrupts are enabled then the
active domain is given a trafp, interrupts for the entire
process are enabled, and the highest pricrity interrupt

strikes.

If a domain tries to return while it still has its
interrupts disabled the caller will get an interrupt
time-out trar. Tc prevent this wmis-directed trap, a
returning frocess is trapped if the interrupt disable of the

returning dcmain is set,

We want tc ke able tc say that the naximum time for a
process of N dcmains to respomd toc an interrupt is NxQ. To
insure this we must add the constraints that a domain cannot
reset its timer while the frccess continues in interrupt
disable mode (i.e. all clocks clear at once) and that nc new
domains can te created while interrupts are disabled
(ctherwise N gives 'nc bcund). If ttese constraints are
enforced +then one wmay show that the maximum interrupt

response tiwme cf a process is kxC.

This treatment cf interrupts differs from that descrited
by Lampson [EB.IL.1] in two ways. We decrement only one timer
at any instant. When a dcmaip calls ancther domain it really
has no idea what pay transpire. For example, a request to

get a line from a teletype may actually te a request for a
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line from a file cr a program. This dyramic 1linking means
that a domair is cnly aware cf its cwn execution and the
interfaces and shared data it sees. This requires that the
called dowain be akle tc extend the interrupt disatle
gquantum and that it te altle tc do this without subtracting
from the quantunm of some cther dcmain. The second
difference 1is prcbably pedantic. We fix the number of
domains and asscciate timers with domains rather than with
their activaticns., This prevents a process from getting into
a locp of a dcmain calling itself and disatling interrupts
or a locp «cf creating a domain, calling it, and disalkling
interrupts. Frocess stack cverflow is the only limit on such

a situvaticr in the ECC system descrited [B.Ll.1.].
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CCNCIUSICN

The inplementation of CAI was undertaken because it was
felt that the manufacturer-surrlied «cperating systems did
not allow +the functions that were needed ty a university
computing ccmounity. After titter exreriences with other
operating systems, we set generality, extensibility,
rationality, and reliability as our design goals. The tasic
system which we have descrited was designed in two man
years, implemented in three man years, and required four man
years of polishing and redesign. It (the lowest level)
consists cf seven kinds of ctjects and cf aktout seventy-five
oreraticns cn these clkjects. The entire system (i.e., all
the levels <cf Figure 1) has about twenty five man years

invested ir it.

The ccntrcl structure consists of domain call and
return, trar prccessing, interrugt send, event get and put,
and process create and destrcy. As it turns out, six of the
seventy-five cperations acccunt for 90% of the calls on the
lowest level. The six most ffequent cperations are file
read-write, dcmain call-return, and event get-put. Thus it
is seen tltat the gate keeper and the call-return and the
get-put operations are the mcst heavily used aspects of the

sycstem.

The system has been in cperaticn for three years and
currently averages one crash per fcrty hours of operation.

Nine out of ten such <crashes are éue to unrecoverable
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hardware errors. The software is an crder of magnitude more

reliatle ttan the hardware.

In a <ense, CAI is a textlook system. It is easy to
explain to a class. It is also fairly easy to use. For
example, tlte SCCPE <crerating systemr was implemented c¢n top
of CAI bty writing a dcmain which <simulated the CDC SCOPE
operating system using the orerations c¢cf CAL quite heavily.
This required atout S500C machine langquage instructions. The
converse, running CAL on SCCFE, would te much more

difficult.

The reader is probably ccnvinced at this point that CAL
is indeed cgeneral, extensible, rational, and even reliable,
Eut hcw much does it ccst? The answer of course derpends.
Wwe shall simply compare the <CPU time of CAL and SCOPE.
SCOFE 1is a reasonaltly efficient efficient system. Cn a
computation-kcund katch jct, SCCFE and CAL deliver
approximately the same fraction cf +tke CPU to the |user.
However, a student tatch jct runm cn CAI requires six times
the CPU recuired &Ly SCCEFE. Clearly one must pay something
for generality and extensibility (reliability and
rationality should come fcr free (tut they seldom do)).
Whether a factor of three cr six is an acceptable price

remains tc ke seen.
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