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MC'IHERHOOD 

The CAI operating system was begun in the fall of 1968. 

Within nine months the tasic system haa been implementea on 

an off-the-shelf CCC 6400 with extenaea core storage. Since 

that time it has been in aaily use for further aevelopment 

ana experinentation. Since the fall of 1970 it has been 

available to the Berkeley campus community. During this 

time we have haa considerable experience with the system and 

are now in a position to juage its virtues and flaws. One 

of the richest aspects of CAL is its control structure. 

'Ibis paper describes those aspects of the control structure 

which we have found tc be particularly useful. In doing 

this we have freely done violence to the realities of CAL. 

Obvious ( tut unimplementea) generalizations have been 

includea. 

repeatea 

obscurea. 

Mistakes maae in the implementation are 

made to the hardware 

not 

here. 

'Ihe design 

puzzle spread 

impossirle to 

whether there 

reason we have 

Concessions are 

of an operating system is like a Chinese 

out on a tatle: Because of its size it is 

tell what it will be when assembled and 

are too many pieces er too few. For this 

been careful not to depart too far from 

reality for fear of loosing a piece or two. 

shaved off a few rough edges. 

We have simply 
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A reasonable way to design er model a complex system is 

to define the gtj~£!§ manipulated ty the system and to 

define the o~erations which may be performed on these 

objects. 'Ibis approach is usually called machine extension 

since it augments the universe of objects manipulated by the 

machine ano tbe operaticns ~hich can te performed. To give 

a trivial example, objects called stacks may be added to a 

•achine ty adding the operaticns CREATE.STACK(N), 

DELF'IE.S'IACK (NAME), PUSH (NAME, I'IE~), FOP (NAME), and the 

predicates EMP'IY.S'IACK(NAMF) and FUII.STACK(NAME). This 

example pcints out two imfortant asfects of design via 

•achine extension: 

c 'Ihe design is modular and gives a functional 

specification fer modular implementation. It 

ignores questions such as resource allocation 

which are frcperly implementation questions. 

0 'Ihe 

the 

operations on an object 

cbject. Ne ether form 

completely define 

of access to the 

cbject is allowed. 'Ibis permits great 

flexitility in implementation of the object 

(for exa•ple, the stacks above could be 

implemented as arrays or lists or functions). 

Such variations are functionally invisible. 

-
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approach is 

mitigated ty two concessions tc the lirritations of the human 

brain and fsyche: 

c Operations must be conceptually simple and have 

a uniform interface to one another so that the 

validity of an ioflementation can be verified, 

and so that their use may be easily documenteo 

and explained. 

c Each extension must be small enough to be 

completed in a time less than the attention 

span of the designers - irrflementors (typically 

cne year) and less than the Ultimate Deadline 

set ty the manager, customer, or finance 

ccmpany. 

Extending a simple machine to a ccmplex one may require 

several extension stefs. This will give the implementation 

a layered apfearance. The particular extension steps we 

chose are deficted in Figure 1. A tare machine was extendeo 

to a class of simfle virtual machines, each with a virtual 

memory. These virtual machines are extended to have 

operations en a global file system. The file system machine 

is extended to acceft commands, control the actions of the 

virtual machine, and to interfret file system naming. Most 

programs run ''on top of" this machine, extending it in 

various ways. 



• 

CDC 6400 
+ BULK CORE 
+ 1/0 PORTS 

Figure 1 
1hE layErS of CAI 
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• • 

FigurE 1 may be mislEadinq sincE it sEems to suggest 

that highEI layers are unaware of the lower layers. Not so. 

In an EXtEndEd 1achine a layer may invoke operations 

implemented at any lEvel below it. In particular, a layer 

often executes hardvarE instructions directly. The lower 

layers appEar to bE a single machinE with some very powerful 

cp-ccdes. 

Except fer differences in scale and generality, this is 

essentially the approach takEn ty :Cijkstra and his 

colleagues in designing and implemEnting the "THE" system 



PAGE 8 

[E.L. J. In following this arproach WE have observed two 

phEnomEna which arE not pointea out ty tijkstra: 

Although it is indeed possitlE tote confident abcut 

the corrEctnEss of any rarticular module (operation), it is 

much more difficult to analyze the interaction of a group of 

modules. Similarly, it typically invclves one man working 

one day to fix a bug insiae a module. en the other hana, our 

entire group often spent weeks just ciscussing how to fix 

some flaw in the interactions among a modules. The most 

common ana difficult faults we enccuntered were Either 

errors or deficiencies in thE design cf the interfaces. It 

is difficult tc foresee such errors sir.ce they are typically 

of a dyna[ic nature or they exploit some facility in an 

unforeseen way. As a corollary to this, the lower levels of 

the system tend to grow and change with time to accommodate 

these difficulties. In thEcry this is not necessary. All 

deficiEnciEs in the lower levels roay te corrected hy 

appropriatEly extending the given machine. In practice a 

certain nurrter of such extensicns are done at a lower level. 

'Ibis last point is a consEguence of a secona 

phenomenon: as the layers pile up, the cost of gate-crossing 

becomes significant. Cperaticns which seem simple at a high 

level 

'Ibis 

may unlEash a flurry 

is primarily because 

cf activity 

of the 

at lowEr levels. 

rigidly enforced 

independence of operations, and tecause each operation at 

each level typically calls two er mere operations at a lower 

level. CnE nEed only examine the function of 2 to the power 

N for small N to see the consequence of this. Invoking a 
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theorem which invokes all cf set thEory costs nothing 

invoking ar CfEration which invokEs the rest of a computer 

system is not cheap. 

we triEd various validation and debugging procedures. 

Having a second pErson check all code (feer group 

programming) was the roost effEctivE. It had a positive 

effect on style, ccntributed tc the general understanding of 

the system, and unEarthed many bugs. Exercisers for modules 

proved to be rather difficult to ccnstruct and had to be 

maintained as the modules changEd. ~hey did serve as good 

tests cf ctscure cases but in general were probably not 

worth the Effort. Manual ccnstruction of formal proofs of 

the correctness of modules was tried cnly once. It was not 

cost effective. 

DespitE these caveats, misgivings, and scars we remain 

enthusiastic atout the extended machine approach to design. 

Given the adoption of the extended rrachine approach, the 

important issues teccme: 

c What arE the otjects that an operating system 

~ust imflement and manifulate? 

c what is a Sfanning set of operations on these 

otjects? 

c How can these ctjects and operations be glued 

together in a uniform way? 
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CAI proposes one answer tc these questions. This paper 

discusses the nucleus of CAI. 1his layer contains the 

primitive ctjects cf the system and the operations on them. 

It also contains a control structure and a naming structure 

which provide powerful extensicn facilities. Great care has 

been taken to allow for sharing and prctection of objects. 

An operating system may be vie~ed as a programming 

system. As such it must have a name structure, a control 

structure, and a syntax. we refer to Iampson [B.L. 1, 2, 3] 

for a discussion of naming and of tr.E related issues of 

protecticn and sharing. The issue of syntax seems to us to 

be a matter cf taste and ccnvenience. Our taste leans 

toward making the operating system interface a functional 

extension cf a programming language 

this paper will te the control 

like ECPL. The focus of 

structure of CAL. later 

papers will describe other aspects of CAL. 
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OEJEC'IS 

'Ihe nuclEus of CAI imFlements the following objects: 

1. files 

2. precesses 

3. domains 

4. gates 

c: banks ~-
6. event queues 

7. capal:ility lists. 

A !11~ is a sequence of words cf data numbered from 

zero to scme dynamic upper J::ound. Cperations exist to 

create, dEstrcy, read, write, lengthen, and copy files. 

Files are variously known as segments and data sets in other 

systEms. 

Frocesses, domains, and gates will be discussed in 

greater detail belcw. A gate is an entry point into a 

domain. A dcmain is a sphere of protection (or a name 

space) within a process. A process is a scheduling and 

accounting entity. It may te thought of as the envelope 

containing a virtual prccesscr. 

]~~~§ are the funding elements of the system. All 

resource use is charged against sere bank. Banks also 

participate in resource allccation by limiting the resources 

of each category that a process may consume. When a bank is 



exhausted, 
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any process charging against it is trapped. 

Operations exist which create and destroy tanks and which 

transfer funds from cne tank tc anothEr. 

Event queues provide convEniEnt communication and 

synchronizaticn amcng frocesses as wEll as cetween processes 

and extErnal devicEs. 1hey are discussed at length below. 

If an opErating system is tc inplement objects, and 

operations on thesE objEcts, then thErE must be some way to 

name the otjects. Clearly such namEs must be manipulated by 

the operating systen and hEnce qualify as objects. 1his 

circular (recursive} reasoning has several fixed points 

variously called descriptors, capacilities, and control 

blocks. 1hE particular fixed pcint cne chooses depends on 

the issues cf protEction and scope. 

If no Sfecial care is 

program may creatE a name 

system. Although such a 

taken about protection, then any 

and pass it to the operating 

dEcisicn has the virtue of 

conveniencE, it allows any program tc r.ame any object in the 

system. If tbe system intends to maintain critical tables, 

accounting information, sensitive data, or if the system 

intEnds to provide any form of protection among users, then 

creation or artitrary names is not acceftable. 

Hence names are made objects which only the system may 

manufacturE. 1here are several pcssitle implementations of 

such a scheme [B.L.2]. CAl adepts the scheme used by 

Burroughs [ E.C.] and ty IEnnis and Van Horn [ D. v.] of 

-
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maintaining names in special otjEcts called £~E~Ei!i!..I 

1.i§!§, C-lists for short. 1hese ctjects are variously 

called segment dicticnaries, descriptor segments, or program 

reference tatles in other systems. Associated with each 

domain of each process is a C-list. When executing in a 

particular domain, a process refers to objects by presenting 

and index intc this list. 1hus unprctected names (integer 

indices) are converted tc frctected names. By supplying 

each doroair. of each precess with a distinct C-list, a very 

flexitle system of protection and sharing is possible. A 

particular domain of a process can cnly refer to objects 

named directly or indirectly ty its C-list. However, 

different capatilities for the same ctject may appear in 

several C-lists and so sharing of objects among domains is 

straight fcrward. 

An exarple of this may te helpful. Suppose that each 

of three dcmains must share twc of three mail boxes with its 

two neightcrs and further that these mailboxes must be 

pairwise private. Figure 2.A depicts a soluticn to this 

problem using capabilities. 1he capatilities are presumed 

tote allocated tc these dcmains by some fourth domain which 

•manages• the names cf the mailboxes. 1his name manager may 

write directly intc the C-lists of the domains t1, D2, and 

D3 or it ray use the parameter binding mechanism of domain 

call. Solving this simfle prcblem with the naming structure 

of most prcgramming languages is non-trivial. One can prove 

that it is impossible with the static name structure of 

AIGCL. 1he issue is preventing M(i) froa being global to 

D (i) • In AlGCl the soluticn is to use the parameter binding 
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mechanism (call-by-name) and to eliminate free variatle 

resolution and hence free variable "capture". Figure 2.B 

displays this idea implemented in 'AICOI'. A similar trick 

works for the Multics ring structure [F.G.] [S.S. J. 

C-list of DI C-list of 02 

Figure 2.A 
!hree dcmains Fairwise sharing twc mailboxes via 

caFatilities. 

£1~1] 
FFCCHUFE I:CMAIN (NEIGHBOR1, NEIGHEOli2); 

NEIGHBOR1,NEIGHEOli2; 1a11&~1 
£.f§1! 

0 

0 

0 

!].!;; 
]!.§1] 

fQ]]l]1 a new block to prevent free variable 
M1 , M2 or M~ ty DOMAIN; 

]A1!!f] M1 , M2 , M3; 
EA1!12l~1] 

r:1: r:CMAIN(M2,M3); 
D2: I:OMAI'N (M 1, M3) ; 
D3: r:CMAit(M1,M2); 

!:A]!.H; 
nm; 

!].!;; 
!]]; 

Figure 2.E 
An 'AIGCl' implementation of figure 2.A. 
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'Ihe decision not to 

structure en CAl derives frcm 

imfose a particttlar naming 

the €XfErience with the BSOOO 

stack mechanism and the Multics ring structure which make 

structures similar than these in Figure 2 difficult to 

con.struct. 

CAI ha.s .some interesting exten.sicns to the capatility 

mechanisms descrited by Burroughs [B.C. Jr 

Hornr [D.V.] and ty Ackerman and Plummer 

ty Dennis and Van 

[A.P.] The reader 

unfamiliar with the conceft of capatilities should consult 

cne of the atcve references tefor attempting to read the 

remainder of this section. In CAl a capability is 

represented ty at least three fields: 

'IYFE 

CF'IIONS 

CBJEC'I. liAfH 

and in the case of capabilities for files and for C-lists by 

two additicnal fields: 

BASE 

lENG'IH 

'Ihe generalizations cf capabilities are as follows: 

(C.1) Tle ccnceit that a capability is a protected name 

fer the object it refers to has been generalized to 

allow other layers (e.g., users) to exploit this 
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inflement. Cnly a few of 
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ctjects that they may 

the (2**18) different 

tyfes of capabilities are reserved by the nucleus 

(see the first paragraph cf this section for a 

ccmflete list.) The remaining types of objects are 

made available to users as follows: 

(a) The nucleus has an operaticn which will return a 

1if~TI§~ to manufacture a particular type of 

otject. This license is actually a gate to the 

system (a new operation) which will make new 

capabilities of a certain TYPE. The call looks 

like 

GE'I.lICENSE() (MY.LICENSE) 

where GET.IICENSE is a gate to the system. This 

gate returns a capability for a new gate 

(license) which makes cafatilities of a fixed, 

unique type. MY.LICENSE is a C-list index to 

receive the gate returned ty GET.LICENSE. 

(b) Suppose that this call returns a gate which 

makes licenses cf TYPE=932. Then we are assured 

by the nucleus that the license to make 

capabilities of this tyfe will never again be 

given to a domain by the GET.LICENSE operation. 

Thus MY.LICENSE tecomes a trademark of the 

precess which cwns MY.LICENSE and of any other 

domains that scmehow have shared access to it. 
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(c) !he CBJEC!.NAME of a capability created by 

MY.LICENSE is SFecified ty the caller. So for 

example 

MY.LICENSE (11FASSiCBD") (KEY) 

creates and returns a cafatility of 

TYPE=S32, 

where: 

OFTICNS= 11 ••• 11 

OEJEC!.NAME="FASSWCBD". 

MY.IICENSE is the gate described above. 

"FASSWOED" is a string parameter specify

ing the new UNIQOE.NAftE. 

KEY is an index into the callers 

C-list tc receive the resulting 

key. 

(d) Instances of capatilities created by license 

(i.e., TYPE> 7) are called keys. Keys are like 

any other caratility. !hey may be copied, 

displayed, passed, and returned. Hence names 

manufactured by users come 

umbrella of the system. 

mcdify the OEJEC!.NAME 

under the protection 

Note that no one may 

cf a key; no such 

oreration exists. So a dcmain may manufacture 

the• out tc ether domains as the keys and pass 

names of the otjects 

the 

i11:plemented by the 

licenser. Since licensor has exclusive 

rights tc make keys of a certain type, it can be 

assured that whenever it sees a key of that type 
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(as a parameter tc some request made by some 

other domain), then that key was originally 

manufactur€d l::y a dcmain possessing the 

affrofriate licensE. Thus, if a domain protects 

its license (or shares it selectively) then the 

dcmain can be assured that such keys contain 

valid (unmodified) informaticn. 

Tc give a ccncrete example: the disk system 

is licensed to rrake keys cf TYPE=9. Any key of 

TYPE=9 in the system is manufactured by the disk 

system. The CEJECT.NAME cf such a key has a 

disk address in it (by a convention established 

within the disk system). Fossession of such a 

key is froof of the right to access the named 

section of disk subject tc the constraints of 

the Ofticns of the key. 

The capatility mechanism was extended to allow 

dcmains to share files and C-lists on a per-item 

ard en a sul::-file or sub-C-list basis. This is the 

purpcse of the BCUNt and IENGTE fields of these two 

capatility 

transitive 

types. 

and 

fICt€cticn/sharing. 

This 

allows 

simple 

for 

extension is 

even tighter 

(C. 3) Indirection through C-lists (i.e., path names in 

the directed graph defined l::y C-lists) was found to 

dramatically reduce C-list sizes, for example 

dcmains tyfically share a glotal pool of gates. 
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Almcst 

which 

all naming 

describe the 
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mechanisms have qualifiers 

type of operations which the 

capatility aliows (e.g., files are read, write, 

execute, •••• } In CAI this has been generalized in 

twc ways. 1he class of opticns has been expanded 

tc allow for more diversity. 1his is then exploited 

by having the system gate keeper check the types 

ard Cfticns of all actual parameters 

fcrmal parameter list of a gate. 1he 

against the 

gate keeper 

traps the caller if the actual parameters are not 

ccnsistent with the fcrmals. 

CAI allcws capabilities tc te passed tetveen 

dcmains as events. 

1he atility tc ccpy a capatility and to reduce the 

options of a capatility is distributed freely. Only the 

system •anifulates the ether fields cf a capability. In the 

case of a ley, any dcmain licensed to manufacture a key may 

manufacture one with OEJEC1.NAME and CFTICNS specified by 

the domain. 1he key 1IFE is fixed ty the license. Once 

created, the CEJEC1.NAME field of a key cannot be changed; 

although, anycne with the license can create a new key with 

the desired CEJECT.NAME. 

Cperations on c-lists include creation and destruction 

of lists, ccfy a capatility frcm cne list slot tc another 

list slot (while pcssitly reducing the options), delete a 

capatility, send er get a capability via an event queue, 
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pass a cafability as a farameter or result, and receive a 

capability as a result. Ferhafs the most interesting 

operation is 'display-capatility• which returns the bit 

pattern refresenting the cafatility tc be displayed. Since 

there is such an emphasis on frivacy and security, 

protection within the systero is net based on secrecy. 

Bather, it is based on a tight central on who may 

manufacture and reference narees. Privacy is obtained by 

limiting access, by judiciously using options on 

capatilities, (e.g., execute- cnly files) and by ccntrolling 

the distrituticn of cafabilities. 

A general rule we have followed is that all the system 

tables (with the exception cf the password file) should be 

open to putlic inspection. This strategy results in some 

minor violaticns of frivacy (e.g., one can find out how much 

computer tiroe scme ether user has consumed) but not in any 

violaticns of frotection. 

Further details en these topics can be found in 

[E.1.1]. 
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tCMAINS ANt PROCESSES 

A domain defines an execution environment. All 

non-local names generated ty a process executing in a 

particular dcmain 

capability list of 

in the current 

are interfreted with 

that domain. Iccal names 

stack frame (act i vaticn 

respect to the 

refer to names 

record) of the 

process. 

protection 

designing 

Iomains are intended tc 

and to provide for sharing 

a process, one design goal 

provide fine 

of objects. 

grain 

When 

is to separate the 

processes intc several domains and thus to limit the 

instantanecus name space of the process to the objects of 

immediate interest. lhis facilitates verification and 

debugging and limits error propagation. The scope rules and 

block structure of most programming languages have similar 

motivaticns. However an example was given above which 

demonstratEd that exclusive sharing is difficult to attain 

in most languagEs. In this sense, domains are a 

generalization of cosmon sccpe rules. 

ihe dcmains cf a process are organized into a rooted 

tree calleo the process tree. ihe rurfose of this tree is 

to direct the flow cf trap (error) precessing and to define 

a pricrity fer interrupts. The parent of a domain will be 

passed any traps net accepted ty the domain. Any interrupts 

dirEcted tc the parent domain will interrupt the execution 

of any cf its descendants. This will te explained in more 

detail telcw. 
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There is no concurrency within a process. Only one 

domain cf a rroceEs is active at any instant. Ccncurrency 

can te attained by spawning new proceEses or communicating 

with existing ones. See Figure 3 fer au example of this. 

A domain consists* of a capability list which defines 

its name Eface, a trap-gate which iE an entry point to 

accept traps, a trap-accept vector which indicates which 

traps are acceptatle and which are to be passed to the 

parent, a capability for the parent dorrain, and an interrupt 

inhibit flag, an interrupt tuffer, and an interrupt lockout 

timer. AsEuming that the C-list fer the domain has been 

created, the following operaticn creates a new domain in the 

process cortaining FABENT ** : 

* In fact each domain alsc has a swapping directive 
associated with it. Since the crc-6000 machines have 
only a relocation and rounds register, no attempt was 
made tc rrcvide virtual memory for the processor. Each 
process must explicitly allocate its memory. In this 
paper we will assume a segmented memory space and a 
process stack in the style of the E5000 [B.C.] and thus 
igncre these shcrtccmmingE. 

** The existence cf cpticns en capatilities means that a 
capability does not necessarily grant complete access to 
the ob~ect it deEcribes. In this paper we will 
implicitly assume that all capatilities carry options 
which allow the specified access. Here for example we 
assume that the capability for the C-list allows it to be 
added tc a domain, that the capatility for the parent 
allows the addition of a descendant to the parent, and 
that the capability for the trap is a file capability 
which allows execution cf the file. If any of these 
assumpticns are violated, the gatekeeper will trap the 
caller. 
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CREATE.LOMAIN(C.LIS1,PAREN1,1RAP,1RAPOK) (RESULT) 

where: 

C.IISI 

PAREN1 

IBAP 

IBAFO~ 

RESU11 

is a capability for the C-list of the new 

domain. 

is a capability for the parent domain. 

is an index of a capatility for a file in 

C-list and a displacE«Ent in that file (a 

file address}. In the event of an accepted 

trap er interrupt, control will pass to this 

location. 

is a boolean vector such that TRAFOK[I]=TRUE 

indicates that thE domain will accept the 

I'th traf. 

is the result of the operation. It is a 

capability fer the newly created domain with 

all options allcwed. lte name RESULT refers 

to some C-list slct to receive this 

capability. 

Most commcnly, the capabilities needed by a domain are 

planted in its c-list when it is created. While executing, 

a domain may cbtain a capability by creating an object, by 

receiving it as a parameter or as an event, or ty receiving 

it as a result returned by scme called dcmain. 

1he atove operation simfly creates a domain. Ibis 

corresponds to declaring a block in a 

Eelow we will describe how gates 

programming language. 

are declared, they 

correspond to procedure entry points to domains. !hen we 
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will describe how such procedure entry points are used to 

construct ccmain activations. 

Frocesses are extended virtual computers. When 

assigned tc physical processors they execute instructions. 

CAI considers processes tote cbjects. Viewed in this light 

a process is a scheduling and accounting entity. A process 

is composed cf a directory of its ccnstituent domains, a 

stack cf activaticn records cf domains visited but not yet 

returned from (the call stack) , the current processor state, 

a collecticn of clocks (user, system, swap), a collection of 

flags (active, ••• ), and a bank wbich will fund the 

activities of this process. The follcwing operation creates 

a process: 

CFEATE.PROCESS(C.lIST,PARENT,TBAP,TRAF.CK,EANK,START) (RESULT) 

where: 

C.IIST, FARENT, TRAP, TRAP.OK specify the root domain 

of the new process as atove. 

EANK 

START 

is a capability fer a tank which will fund the 

activities of the process. 

is the initial state of the process executing 

in the root domain. 

RESUIT is a C-list slot to receive a capability for 

the newly created result. 

The dcmain created above is called the root domain of 

the process since it is the root of the process tree. The 

process is created in a suspended state. When activated by 

the ACTIVATE (PROCESS) operation it will begin execution with 

state START. Any traps which the root refuses to accept are 
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passed as an interrupt to its farent dcmain which is in some 

other rrccEss. 

Frocess and domain destruction arE somewhat simpler and 

are the sane creraticn: 

DES1BCY(COHAIN) 

If the donain has no descendants and has no activation 

records turied in the process stack it is deleted, and if it 

is the rcot of some process, that frocess is deleted; 

otherwise, the caller is trarped with an error. 

DES1ECY is a generic function which, given a capability 

for any crject, will attemft to delete it from the systEm. 

It will trar the caller if the capatility does not have the 

destroy option enatled. 

to sunmarize, a process embodies a virtual computer. 

It is a scheduling and accounting entity. Its execution is 

interpreted in the context of an activation of one of its 

constituent dcmains. Each cf these domains provides an error 

and interrurt handling context as well as providing a name 

space: the local variatles in the current stack frame plus 

the set of all objects rointed to directly or indirectly by 

the C-list cf the domain. 
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Ccntrasting this to othEr systems, cbserve that: 

CAI has several domains rer rrocess, 

HGCI has a hiErarchy of domains (clocks) per 

frCCESS, 

~ultics [ s. s. J has eight rrogressively smaller 

dcmains (rings) rer process, 

E:OCO [ E.C. J has one domain (program reference 

tablE) pEr procEss, and 

rennis and Van Born [D.V.J and Bt500 [H.D.] have 

several rrccessEs rer dcmain (C-list or 

segment dictionary) 

We chosE to have several dcmains per process tecause each 

other schenE may te emulated by the first by appropriate 

indirection and sharing C-lists among domains and processEs. 

Also we wanted to have several protected modules per process 

since the cverhead cf a rrocess switch (scheduling, 

accounting, status, stack) is necessarily greater than that 

of a domair call. 
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FigurE 3. 
A fICCESS dEbugqing a IlEW VEr~icn of the R001 

whi1E a srawned frocess ccncurrent1y prints a file. 
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GATES, PARAMETERS, ANI RESULTS 

As dEscribed above, rrocesses are decomposed into 

domains. Each domain may tE viewed as a mode of executioP 

having a oiffErent roenory srace and a different set of 

orerations that it can rerform. For example the master-mode 

slave-mode dichotcmy of many systems can be emulated hy 

creating two doroains, cne (the master) containing a 

capability for the C-list of the other (the slave) and also 

containing scne privileged filEs and crerations. 

When a rrocess is created and activated, it tegins 

execution in its root domain witr a processor state 

specified ty the creaticn creraticn. Clearly there must be 

some way fer the rrocesscr tc move from one domain to 

another. ~ince dcmains are spheres of protection, this 

movement must be controlled by the rrctection system. In 

the example atove it shculd net be rossible for a rrocEssor 

in thE slave rrcde dcmain tc enter the master mode domain at 

an arbitrary lccaticn er with an arbitrary parameter list. 

These considerations motivate the introduction of 

objects cf type gate. In its simplEst form, a gate is an 

entry pcirt tc a domain flus a recipe for creating an 

activation reccrd for the called domain. If one domain, A, 

has a gate tc a dcmain Ethen A may call Eby using this 

gate and once called E may return to A through this gate. 
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As mEnticnEd in the intrcduction, we are looking for 

the set of otjects that an Cferating system should implement 

and for a sranning SEt cf operators en these ctjects. It 

should come as no surprise that the orerators arE themselves 

otjects (gates). This has several satisfying ccnsequences. 

The identification of OfEratcrs ana gates makEs it 

iwpossitle for a program tc distinguish tetween a "user 

crEated" orerator and a "system" oi::erator. This property is 

vital to a layeren system. ~fter each extension, all the 

opEratcrs 1n existerce have the same interface independent 

of the layer at which they are inplernented. In fact the 

layers are ccrrletely invisible. Ancther virtue of making 

operators ctjects is that they come under the protectioP 

umhrella of the system. Thus tre qates to the Pl/1 coIBpiler 

can be public and the gates tc the directory system can he 

protected. Since this i::rctecticn is dynamic, it is possihle 

for any dcnain of a process to call any other domain of the 

r,rocess sc Ieng as the caller has the appropriate gate 

cai::ahility. This is another examrle cf the flexitle scope 

rules allo~ed ty capabilities. 

In many cases the caller wants to specify some 

parameters for the callee, and the callee wants to return 

some results to the caller. Since dcffains •ay share files 

and capatility lists, this sharing is a simple but so~etimes 

inccnveniert matter fer reascns analogo•Js t.c the 

difficultiES cf CCMMCN storag~ in FCF1F~N. It is SO~ftimes 

desirable to be able tc rass and returu objects as 

parameters and results and l!lake such tinding dyna11ir. This, 
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howEvEr, involves tinkEring with the C-list of the caller 

and callee. A capatility fer a gatE to a domain is not a 

capability fer the domain: thEy arE different objects. 

Hence thE systEm gatEkEEper rrust transfer the parameters and 

rEsults tetWEEn the domains when a gatE is invoked. 

In ordEr to do this, a formal paramEter and result list 

is associated with each gatE when the ~atE is created. This 

list constrains the allowed types cf each parameter and the 

required Cfticns fer each tyfE as follcws: 

o If the item must bE a capatility thEn the gate may 

ccnstrain the allewea types of capabilities and for 

each type it may reguire certain options to be 

enatlEd. 

e If thE item must te data then the gatE can specify 

tre maximun amount of data 

rEturned. 

to be passed or 

When a call is made tea domain, the caller specifies 

the actual parameters tote passed to the callee and gives 

the destinatiens of the results to te returned by the 

callee. Tr.e gate-keEfEr checks thE types of the actual 

parameters against the forrral parametEr list. If they do 

not agree, then the caller is given a trap. On the other 

hand, if the parameters are ccnsistent, then the 

capabilities arE transfErred to the lcw order slets of the 

callee's c-list and thE data are stackEd in the callee's 

local narre sface. The caller is suspended and the callee is 

activatEd at thE entry point (file address) specified by the 

gatE. All parameters and results arE passed by value. The 
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extensions of the capability mechanism described earlier 

(see the ciscussicn cf cbjects, (C.2)) allows contiguous 

blocks of aata and cafabilities to be passed ty reference. 

The callee is new assured that the numter and type of 

parameters he requestea were passed. 

Ccnversely, when the callee returns some results the 

gate keEfer checks them against the fcrmal result list of 

the gate and traps the callEe if they are not consistent. 

Other-ise the results are distributed in the caller's name 

space as srecified ty the actual result list of the call. 

To give an example to create a gate into a domain: 

Cf<EATE.G~TE(IOMAIN,ENTRY,FOFMALS,RE~ULTS,EANK) (RESUIT} 

where: 

IOMAIJ is a caratility fer the dcmain to be gated. The 

ENT FY 

gate eftion 

allowed. 

on this capability must be 

is a file address interrreted with resfect to 

the gated domain's C-list. 

te the entry rcint 

capability ~ust 

enatled. 

fer the 

have the 

This address will 

gate. The file 

execute option 

fOFNAIS is a list of the required parameter types and 

their reguired ortions. 

RE~Ul1~ is a list of the required result types and 

their required ortions. 

EANK 

RESU11 

is a carability for a bank to fund the 

existevce of the gate. 

is a slot in the C-list or the caller tc 
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receive the cafatility fer the new gate. 

The cperation CREATE.GATE is in fact a gate to the 

system. It has four parameters and cne result. The types 

and options on these parameters and results are constrained 

as inaicatea atove. 

The function of CREATE.GATE is declarative. It 

corresponds tc a procedure declaraticn in ALGOL, or more 

closely to the DEFINE function of SNCECL4. It constructs 

and returns an object cf tyfe gate which contains all the 

information needed to construct and bind a new activation of 

the domain to be callea. It also specifies constraints on 

the actual parameters and results of each invocation of the 

gatE. 

It would te possit]e tc merge the concepts of gate and 

domain ty allcwing a dcrrain to have exactly one gate. 1here 

are few acvantages to this and it makes the handling of 

constructs like multiple entry points in FORTRAN and PI/1 

difficult. Not uncommonly all routines which work on a 

particular name space are grouped together in one domain, 

each with a separate entry pcint. For example, the directory 

system routines lCCKUF, ENTER, and IEIE1E coexist in one 

domain. 

Gates are protected entry points into domains. They 

declare ar. interface definition and constraint which is 

interpretea ty the system gate keeper. System gates and 

user gates are inaistinguishatle. This provides an elegant 
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Since gates are objects, they 

come under the prctection/sharing umtrella of the system. 

The mechanisrrs for sharing gates are the same as those 

available for sharing files, C-lists, and other objects. 

Passage of the execution cf a precess from one of its 

constituent dcmains tc ancther is always via a gate. This 

passage is carefully regulated by the system gatekeeper. 

We conclude this secticn with twc examples cf how the 

return result mechanisrr can te replaced l:y appropriately 

passed input pararreters. Suppose a dcmain wants the file 

"FOO" frorr the file system. 

obtaining it is by executing: 

1he most direct way of 

FINI ( 11FCC 11 ,KEY) (FOC.SIOT) 

where: 

"FCC" 

KEY 

is the file name. 

is the access key which the domain presents 

to identify itself. 

FCC.SICT is a C-list slct for the returned capability. 

A second strategy would te to pass a C-list slot as a 

parameter. Then the callee can fill it and no items need by 

returned. Coe creates the gate FINt.1 which may be callea 

l:y: 

FIND.1 ( 11FOC 11 ,KEY,P.Y.CIIS1.FCC.SIOT) 

where: 

MY.CIIST.FOO.SICT is a capatility for the subsegment 

of the C-list of the calling domain 

which will receive FOO. This 

sutseg•ent is ore ~ntry long. 
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The atove technique is flawed ty the fact that the 

caller cannct insure that a file will te flaced in FOO.SLOT. 

That is, the type and option tit checking afforded ty the 

gate keefeI has been lost. A fartial soluticn to this is to 

pass a gate tc the caller which writes FOO.SLOT rather than 

passing the slct itself. This gate can test the type of 

object tefcre placing it in the C-list. 

First a gate called WRITE.FOO.SICT is created: 

CR EA 'IE • GA 'I E (CA 11 ER , WR I 'IE • FCC , ( 1 FI IE 1 , 1 f' CV E 1 ) , , EA N K) (WR I 'IE. F 00 • SL O 'I) 

where: CAIIER is a cafability for the calling domain. 

WRJ'IE.FOO is a file address which contains the 

code: 

WRITE.FOO: MCVE(O,MY.CLIST.FOO.SLO'I) 

RETUFN 

which moves the fassed capability to 

FCC.SLC'I in the dcroain C-list. 

1 FJIE 1 , 1 MCVE1 constrain the farameters to the gate 

WRI'IE.FCC.~ICT tote files which can be 

moved arcund inc-lists. 

Given the existence of the WRI'IE.FOO.~ICT operator, the FIND 

operation nay te redcne as: 

FJNI.2( 1 FOG1 ,KEY,WRI'IE.FOO.SLC'I). 

'Ihis examfle generalizes tc mere complex situations. 

If the caller has an intricate data structure and the 

ccnstraints on it are very suttle, he nay fass Oferations to 

read and ~rite it rather than pass the structure itself. 

Extremely tight protection is fOssible using this mechanism. 
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DOMAIN AC1IVA1ION ANI EINDING 

1he previcus secticn described hew objects of type gate 

are constructed and gave some simfle examples of their use. 

1his section explains the set of Cferations that may be 

performed er. gates. 

It is possible to view gates as frccedure entry points 

a la Fl/1 er AlGOl 68. All farameters and results are fassed 

by-value. 1he value of a cafatility parameter is a copy of 

the capability. 1his provides call-ty-reference and is 

fairly cor.venient when ccmbined with the sut-file and 

sub-C-list mechanism described in (C.2) 

section. 

of the OEJECTS 

1his atstraction cf gates will satisfactorily explain 

almost all uses of the gate mechanism and is all the naive 

user need know about the sutject. Hc~ever, to explain the 

operations JUMF.CAll, JUMF.EE1UEN, and 1RAP.RE1URN as well 

as the precess IISFIAY Cferators it is necessary to 

introduce the conceft of a QQ!~in activation ~~Eg~g. 

As described above, invoking a gate is a request to 

switch thE executicn cf tbe proces~ from one domain to 

another, and returning is a reguest tc resume the execution 

of thE caller. The system bas a ratler different view of 

this situation. Domain CAll and EE1UEN are simply operations 

on the frccess stack. Calls construct domain activation 

records frcm a gate, a parameter list, aLj a result list and 
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actual result list, the EETURN 

tofmcst dcnain activaticn tc bind 

formal result names in the 
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the frocess stack. Given an 

operation interfrets the 

the actual results to the 

callers domain. Then the 

returning ocmain activation is erased from the stack. 

A domain activation record contains all the information 

necessary to rEsume the execution cf the domain on some 

processor. In rarticular it contains: 

A fCinter (perhafs implicit) 

the caller. 

to the activation of 

The formal result list specified by the gate and 

the bindings en the actual results as 

specified by the caller. 

The processor state (registers). 

An interrupt disatle flag. 

'Ihe actual parameters. 

5ome local storage. 

Figure 4 gives a mere complete picture of the relaticnships 

among gates, domain activations, domains and processes. It 

also disflays the structure cf each ctject. 

-
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When a domain executes a CAIL operation such as 

<gate>(<actual parameter list>) (<rEsult binding list>) 

the system gatEkeepEr first checks thE number and typEs of 

the actual parameters and the actual results against the 

number and types specified by the gate. If they de not 

agree, the caller is trapped. Ctherwise, using the gate and 

the parameter and result lists, the gatekeeper ccnstructs a 

new activaticn record for the callEa aomain and pushes it 

onto the rrccess stack, thus making it the active domain. 

Each of thE actual data parameters is then copied onto the 

process stack and each of the capatility parameters is 

copied intc the called domain's C-list starting at index 

zero. {Note: This precludes domains calling one another 

recursively with capability parameters, a flaw in the system 

design.) Then the prccesscr state is set to begin execution 

at the entry pcint specified by the gate. 

In order to implement cascade rcutines a form of JUMP 

is introduced: 

JUMF.CAll gate(<actual parameter list>) 

The effect of a JUMF.CAll operation is exactly the same as 

that of a (All operation except that the activation of the 

callee ffIJ~~~£ the activation of the caller in the process 

stack rather than being pushed onto the process stack. The 

activation of the callEr is ccmpletely lost. This mechanism 

can be used tc construct cc-rotines and other barcugue 

control structures. Since the callEr's activation is lost 

it cannot be returned to, so the callee's activation 

inherits the result bindings and constraints imposed on the 
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caller (i.e. these ccnstraints are ccfied over to the new 

activaticn.) 

The sirrflest form cf return is to invoke the operation: 

BETUBN(<actual result list>). 

The BETUBN cferaticn first checks the number and type of the 

actual results against the formal result list saved in the 

activaticn record. 

routine is trapped. 

If there is an error the returning 

Ctherwise the gate keeper binds the 

actual restlts to the caller's domain as SFecified in the 

call (and saved in the activation reccrd cf the returning 

domain). Beturned data is COfied into the process stack, 

returned cafatilities are cofied intc the designated C-list 

slots. Then the activation of the returning domain is 

erased fron the tcf cf the stack This has the effect of 

making the returned-to-activation the topmost activation and 

hence it is assigned the frccessor. Ncte that if jumps are 

used then the returned-to-activation is not necessarily the 

activaticn cf the caller cf the returning domain. However, 

as descrited earlier, the jumf mechanism preserves the 

result bindings of the returned-to-dcmain activation. The 

actual result list of the returning domain must satisfy 

these constraints. 

It is sometimes convenient to return a trap rather than 

a result (see the secticn en TBAPS.) The operation: 

TBAP.BETUBN(TBAF.NA~E) 

erases the activation of the domain which invokes it and 

generates the designated traf in the returned-to-domain 

activation. 

-
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ThE rEturn mechanism is also genEralized. It is common 

to want to flush the stack, that is to delete some number of 

domain activations frcm it. The JUMP.RETURN mechanism 

allows this if the returning domain can present the 

appropriatE carabilities for each domain tote deactivated. 

where: 

JUMF.EETUEN (<result list>,C.IIST,N) 

C.IIST is a carability for a list of capabilities 

fer all domains tc be flushed from the 

stack. 

K is a number giving thE depth of stack to be 

flushed. 

A similar opEration exists tc return a trap to a domain 

activaticn: 

JUMF.TRAP.RETURN(C.IIST,N,TYFE) 

where: 

C-IIST,N are as above. 

TYFE is the type cf trar to be returned. 

These operations first check to makE sure that the C.LIST 

spans the N-1 domains which will havE activations Erased 

from the stack. If not the returning domain activation is 

trafpEd. Trey then examine thE returned result constraints 

for the activation N-1 deer in the stack, if they are not 

consistent with the actual returned rEsults, the returning 

domain is trarped. CtherwisE, the gatE keeper Erases N-1 

activations from the stack and then tehavEs as though it 

were an ordinary return or trap rEturn operating from the 

activation N-1 activaticns intc the stack. 

-
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'IEAPS 

7he hardware and software continually make tests on the 

validity cf the operaticns of each precess in an attempt to 

detect errcrs as scan as possitle and thus to prevent their 

propagation. Arithmetic faults, address faults, invalid 

system requests, and tad parameter lists are the most common 

examples of tre gereral phenomena called !£~E§· When a trap 

occurs there must be a mechanism which allows the process to 

recover anc ccntinue executicn. Such a mechanism has strong 

ties with the prctection structure of a system, as is 

pointed cut ty Lamrscn [B.I.J. 

when a trap occurs, the executicn cf the trapped domain 

is interrufted and a new domain is newly activated at its 

trap-entry-point. 

this new dcmain. 

!he central issue is the selection of 

Cne must srecify an crdering on the set of 

domains of each process which will direct the flow cf trap 

processing. 

The mcst ctvicus 

call stack. However, 

less privileged than 

completely unrelated 

choice cf an crdering is the process 

it often hapfens that the caller is 

the callee or that the two are 

(e.g., written ty different autl1ors). 

Hence the caller cannot in general te expected to correct 

the protlems of the callee. The caller merely has a 

capability for a gate to the called ac~ain, not a capahility 

for the dowain itself. ~his rules cut the use of the call 

stack as an ordering. (Ncte that Pl/1 CN conditions do use 

-
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the stack and so violate this siiple lcgic.) 

The ordering clearly must take the form of increasing 

responsiti]ity. If one domain refuses to accept a trap, 

then the traf is passed en tc a more responsible domain. 

The prccE!:S tree i!: ccnstructed with exactly this 

relationshif in mind. Each node is considered to be 

responsib]E for its descendants and, ccnversely, interrufts 

to a parent are considered tc apply tc the descendants aE 

well. If cne thinks of each dcmain as an ALGOL block and of 

the proces!: as an AIGCI program, then the process tree can 

be viewed as the static blcck nesting of the program. The 

choice cf frCfagating traps up the precess tree is analagous 

to the decision tc use the static rather than the dynamic 

block structure to solve the free variable problem. Lest 

the reader carry this analogy too far we point out that, 

unlike the AIGCI name Etructure, the capability mechanism is 

orthogonal tc the prcceEs tree and that the nesting does not 

have any name !:cope rules asEcciated with it. In 

particular, it is possible fer any dcrrain to knew about any 

ether dcmain and tc !:hare ctjects with it. 

Having decided on an crder for trap processing we now 

define the traf operators. Conceptually each trap is given 

a name and each dorrain may execute a ccmmand: 

C~ (TRALNAME,ENTEii) 

which wil] cause the domain to accept the trap named 

TRAP.NAME and to re entered at ENTEF with information about 

the trapped domain in its precess stack. If a particular 

domain trafs then the trapped domain's activation is saved 

-
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and the system searches Uf thE precess treer starting with 

the traffEO domainr until a donain is fcund which is willing 

to accept the trap. The accepting dcmain is newly activated 

at its trap-gate entry fOint with parameters describing the 

trap. 1o nakE loops less likelyr this trap-accert is turned 

off. The domain must explicitly reset the trap-accept 

conditicn in crder tc catch a re-occurrence of that traf. 

Several trap names were left undefined to allow users 

to Exploit the traf mecbanisn within their subsystems. 

10 disarw a trap for a domain ar.d thus default it to 

the parEnt ao~ain invcke the cperaticn: 

CFF(1RAF.NAME). 

In thE course of debugging and testing it was found to 

be useful tote able to 

important in testing 

operaticn: 

generate trars. 

time dependent 

1RAF(1RAF.NAME). 

This is especially 

code. Hence the 

Also, some cases require the atility to report traps 

~ack to the caller. Thus an cperaticr. exists which returns 

a particular trap to the caller. 1his erases the callee 

from the stack ana traps the caller at the lccation from 

which he made the call: 

1FAF.RETURN(1EAF.5AME). 

Lampson (E.1.1] gives a detailed example of th~ use of these 

facilities. 

-
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Twc ancroalies rEmain. First, it is possiblE that the 

ancEstcr demain has a tug and that thE trap procEssing will 

loop. NEEdham (R.N.J proposes a schEme which solvEs this 

problem: nEver allew an Errcr to rEpEat and put a tight time 

limit en Each dorrain respcnaing tc a trap. Within this 

contExt it is difficult te write a fault tolerant monitor. 

ear examplE, it is new ccmmon to USE the hardware to detEct 

arithmetic Errers ana also to allcw a program a guotum of 

errors greatEr than onE, NEedham's scheme would forcEfully 

exit any program which producEd an ovErflow twice. Such a 

mechanism sreuld net bE welded intc an operating systPm; 

although such a strategy cculd be irrplementea within CAL by 

suit ally coding thE rcot and ty clearing the 

trap-accept-vector cf any ether domain, In fairness to 

Needham, it should be m~ntioned that he propcsed a more 

general screme that aces allcw a fault tclerant monitor, hut 

it does net sclve the leap protlem. 

CAL treats the leap prchlem ty faith in the trap 

processors, ty disarming thE trap accEpt flag cf a domain 

when it is usEd tc catch a trap, by strict accounting and, 

in thE interactive case, by usEr console interrupts, 

The SEccr.d ancmaly ccncErns the case in which the root 

is unwilling to accept a trap. In this situation, the 

procEss is suspended and an interrupt (of the appropriate 

type) is sent to the parent of the roct domain. This parEnt 

is in a diffErEnt process and presumatly is in a tetter 

position tc handle thE trap. This givEs an example of how 
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convenient it is to identify traps witl interrupts. 

Ey far the mcst ccrrmon example cf a free trap (i.e. not 

accepted ty the rcct) cccurs ~hen the tank of a process is 

exhausted so that the root domain cannot execute because it 

cannot pay fer any resources. In this case the bankrupt 

process is suspended and an interrupt (of the appropriate 

type) is sent tc the parent cf the rcct domain. In order to 

extricate the destitute process, this parent must replenish 

its bank and reactivate the process. 'Ihat will allow the 

root to run. Cf ccurse the parent may cpt to destroy the 

descendant precess. 

'Ihe discussion above has teen idealized. In fact, CAl 

is not prepared to handle symtolic narres and •ultiple trap 

entry points. Each trap is catalogued and given an index. 

A trap-accept-vector and a trap entry roint is associated 

with each dcrrain. When trap I cccurs in process P the 

following algorithm is invoked! 

~_!_gl_!! 
'IEAEEEE := CUEEE~T; 
~!Ei~..'.J 

!!~1] 
1! 'IRAF.ACCEF'I('IEAPFER)[I] = 'IHUE 

'JHElt EEGIN 
'IEAF.ACCEF'I(~FAFFEF}[I] := FAlSE; 
JO~F.CAll TFAP.EN'IRY(1RAFPER)[I]; 
!.!! ; 

J! 'JRAPFER = ROC'J 
'!HEN EEGIN 

IN'IEERUF'I (PAREN~ (ROC'I}, 1 'IRAP 1 I P I I}; 
!!!!; 

'IR AF FER .- FAEEN'I ('IFAFPEB); 

il!f; 
X~!; 
nm 
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10 sunroarize, the operating system provides an error 

handling mEchanism which is tcth flexitle and yet consistent 

with the prctEction philcsphy of the systEm. Errors 

propagate up the process treE until a responsiblE domain is 

enccuntErec. 



to 
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DISPLAY AND MANIFUIA'IICN CF PROCESSES 

'Ihe handling cf traps requires 

examine the state of another. 

tbat one domain be able 

Cn the other hand 

protecticn requires that such examination te regulated by 

the capatility mechanis«. 

'Ihe C-list of a domain may te recovered by the 

operaticn 

IISFIAY. tCMAIN.ClIS'I CDCMAIN} CFESUl'I} 

where: 

ICMAIN is a capatility fer the domain of interest 

with the display cpticn enatled on the capatility. 

FESUI'I is a returned capatility for the domain 

C-list (with all cpticns allowed). 

Examining the activaticn records of a domain is 

somewhat were complex. 'Io display the names of the domains 

active in the stack invoke the operaticn: 

where: 

rISFIAY. STACK. SKEIE'ICN (PF'JCE!:S) (RESULT) 

PFCCESS is a capatility for the process owning the 

stack. 

FESOI'I is a data area to held the ONICUE.NA"Es of 

the domains associat~d with the successive 

activaticns in tbs frocess stack. 

To display a particular activ~ti~n cf a iomain in the 

stack invcke the operation: 

-
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II SPlAY. AC'IIVA'IIC N (PEOCES S, "CC MAIN, I) (RESUl T) 

IECCESS is a capatility for the process owning the 

stack. 

ICMAIN is a capatility for the aomain associated 

with the activation record. 

] is the inaex in the stack of the 

activation I€cora. 

FESUl'I is a data ar€a (stack) to receive the 

returned activation r€cora. 

'Io write into an activaticn reccra: 

where: 

iEI'IE.AC'IIVATION(FEOCESS,DCMAIN,I,'IARGET,VAlUE) 

fFCCESS,IOMAIN,I are as atove. 

'IAEGET is an index into the activation recora. 

vAlUE is a (clock cf) value (s) to be written into 

the activation recora. 

Only the processor state and lccal stcrage may be changea in 

this way, all other information is protectea by the nucleus. 

~ince capal::ilities are used to regulate these 

operations, the protection is net violated and yet one 

domain may exercise complete surveillance ana control over 

ancth€r. 

Since a domain may net te aestroyea until all its 

desc€naents ar€ destroyed, it is impcrtant to be able to 

reconstruct the process tree. 

ar€: 

'Ihe operations to do this 



where: 

and 

where: 

FCC'! (PROCESS) (RESUIT} 

IEOCESS is a CaFatility 

interest. 
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for the process of 

BESUl'I is a capatility for the root domain. 

SCN (DCMAIN,I) (RESUI'I) 

ICMAIN is a capatility for the domain of interest. 

1 is an index of the desired son. 

FESUl'I is a capatility for 

descendant cf the 

descendant exists. 

the 1 1 th 

dcmain if 

immediate 

such a 

lastly there are operations to susFend the execution of 

a Frccess and to activate a frccess. Wlen created, a process 

is in a susfended state. Processes waiting on an event queue 

are alsc susFended. AC'IIVA'IE enters a suspended process into 

the scheduler's queue and SUSEEND remcves the process from 

the scheduler's queue. 

!:USFEND (FBCCESS) 

AC'IIVATE(FBOCESS) 
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INTERFFOCESS COMMUNICATION 

CAL aichctonizes communication between processes as either 

synchronous er asynchronous. synchronous messages are 

call ea events ana asynchrcnous DEssages are called 

interrupts. Although events may be sent at any time, they 

arrive only when reguestea ty the receiving domain. They 

are thus synchroncus with the executicn of the receiver. 

Interrupts may strike the receiver at (almost) any time and 

therefore appear asynchronous with its execution. 

EVENl CUEUES 

Event gueues are objects implemented ty the nucleus. 

When createa, a gueue is aesignatea as containing either 

capatilities or segments of aata. A capatility queue may 

only hanale capabilities, ana a data gueue may only handle 

segments of aata.* Associatea with each event in a queue is 

the name cf the aomain which sent the event. Any process 

willing to supply a tank which will tuna a queue may create 

a queue. Tte creation is dcne as fcllcws: 

* 1his is a restricticn implied by the gate type 
constraints. 
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CREA'IE ( ( 'C-QUE UE' I 'D-QUEUE ') , BANK, CAFACI'IY} (EESUlT} 

where: 

C-QUEUE 

I-QUEUE 

EANK 

CAPACI'IY 

RESUI'I 

says makE a capatility queue. 

says make a data queue. 

is a carability for a bank that will 

ray for space cccupied by the queue. 

is the maximum number of words that 

the messages in the queue may occupy. 

is a carability-list slot to receive 

the capatility fer the created queue. 

'IhE operatiens on queues arE extremely simple. Operations 

exist to add an event tc a gueue and te remove an event from 

a queue or a sEt of queues. If the queue or set of queues is 

empty and a process tries tc gEt an EVEnt, the process is 

suspended and its stack is chained tc each such queue until 

an evEnt arrivEs at cne of thEm. As the name queue suggests 

a queue may hold mere than ene event in which case the 

events are queued in a first-in first-cut sequence. If the 

queue is full then the put oreratien suspends the process 

and chains its stack tc the queue fending more space in the 

event queue. If several precesses are queued waiting for an 

event, only the first process receives the event. The other 

processEs ccntinue to ~ait. ('Ihe definition of "first" may 

be complicated by keyed events. SeE telov.} The suspense 

actio~ may tE modified by a wait timE; if the process is 

queuea fer mere than this time, it ~ill te de-queued and 

given a trap return. Cne ether modifier is possible: a key 

may te asscciated with a message by the sen~er. In this case 
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a procEss must present thE appropriate key to get this 

message. lf the key is inccrrect, the message will be 

invisible. As mentioned in ( C. 1) above, keys arE an 

extension of thE capability mechanism, they prcvide 

prctectea tames. 

and 

ihe fcrmat of messages is: 

UNJQUE.NAME of sender 

KEY 

MESSAGE 

optional 

capability or block of data 

ihe operations on queues are: 

PU1C(QUEUE,MESSAGE,iAI11IME,KEY) 

PU1t(QUEUE,MESSAGE,wAI11IME,KEY) 

GE1C(CUEUE,WAI1TIME,KEY) (MESSAGE) 

GETC(QCEUE,WAI1TIME,KEY) (~ESSAGE) 

where: 

c 

D 

CUEUE 

MESSAGE 

implies the message is a capability. 

implies the message is a data segment. 

is a capal:ility er list of capabilities 

for the relevant queue or queues. 

is either a aata segment descriptor or a 

capatility tote sent or obtained. 

WAITTIME is the maximum real time, in micrcseconds, 

that the precess will wait in a gueuE. 

KEY is a (epticnal to the sender) key which 

is asseciated 

present, the 

with the message. If 

receiving process must 

present the key tc cttain the message. 

-
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'Ihe gueUE mechaniE!ll 

communicaticn among 

is aEEignEd tc 

proaucer!:: and 

facilitate convEnient 

ccnsumers of data and 

capatilities. For examrle, all external devices (terminals, 

tapes, card readers, printers, ••• ) are either producers or 

consumers er l:::ot h. In CAI each of them ccmmunicates with 

internal prccesses via event queues. 

'Ihe teletype communication facility EXfloits most of the 

featUIES cf guEUeE. 'IhEre iE a rrcces!:: ~hich listens tc all 

(it iE actually run on a peripheral 

procEsscr). 'Ihe listener Eenas and receives characters from 

these external devices. For full duplex devices it echos 

many of the characters that are sent. 

'Ihe listener co!llwunicates ~ith internal processes by using 

two t-gueues, one fer input ard one fer output. Whenever a 

special character arrives er whenever the teletype has sent 

a ccwplete line, the listerer put~ the message into the 

input gueue alcng with a key identi~ying the teletype. These 

keys allcw all teletypes tc sharE tte samE buffer without 

fear of cne -r:rccess intPrCEpting ancthers input 

'Ihis sharing reduces the space cverhead since 

l:::uffers are almost always ewpty. 

or output. 

almost all 

WhEnEVEI: a process want!": an inrut message from its 

teletype it executEs: 

GE'I[ (INFU'I, 1CF7 ,K:EY} (l'H~SAGE) 

which will get a message, if there is cne, ~~om the teletype 

-
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The procEss will wait at most 10 seconds 

for such a mEssage and if ncne arrivEs it will trap return. 

At this foirt the procEss may assume the user is in "think 

mode" and cut tack its working set in the swapping medium. 

Cn the otbEr hand, if a roessagE is returned, then the 

process will frcbatly respond with a nEssagE to the output 

gueuE which SfEcifies thE Echc for thE message and some 

control infcrroation fer the listener. Note that a message 

sender nEEd not have the key as a frctected name but that 

the receivEr must possess the appropriate access key to get 

a keyed message. 

This exanfle shews hew queues provide protected-pooled

buffered stream and block ccmnunicaticn among processes. It 

is in sharp contrast witt the tuffer womping and flag 

setting interfaces presented ty most operating systems as 

the I/C irterface. cueues ftovide a complete interface to 

all external devices (e.g. terminals, disks, •• ,) and among 

the active precesses. 

It st.culd be clear that keyEd messages make a 

multiplicity of event queues almost unnecessary. It would be 

possitle tc have cne gueue glcbal to the system and to use 

thE keys as proxies for event queue capabilities. The 

central frctlem is that scme malicious or errant process 

cculd clcg or fill the queuE and thus lock-up the system. 

The choice of having many disjoint gueues stems from our 

ideas on accounting and on the isolaticn of one process from 

another. ThErE is nothing tc prevent an implementation from 

using only a single storagE fool fer the event buffers. 
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Certainly at thE usEr lEvel this can tE done. In fact each 

class cf inFut-cutFut driver has a pair of queues for 

communicating with all instances of that device. 

'Ihe examFle atove presumes that 

the extent that they collect 

thE Frocesses cooperate to 

their Ressages so that the 

telEtypE qUEUE doES not CECCmE cluttered. In reality this 

assumption is violatEd and so when a {recess is atorted or 

when a terrr-inal is rE-allccated, the terminal allccator 

selEctivEly flushes the tuffer by using the following 

OFeraticns: 

where: 

IISFlAY. EVEN'IS (CUEUE) (lIS'I) 

rISFlAY. GE'I. HOCE SSE S (QUEUE) (IIS'I) 

rISFlAY. FU'I. FEOCESSES (QUEUE) (lIS'I) 

QUEUE is a capatility for an event queue. 

II~'I is a data area to receive a list of events 

waiting, processes waiting for an event or 

Fiocesses waiting for acre room in the queue. 

'Ihese disflay operaticns Froduce a skeleton of the queue. 

If the list descrites one of the waiting process chains then 

it gives tle UNIQUE.!AME cf each frccess (these are used as 

identifiers telow). When disflaying the contents of the 

queue, the list ccntains an entry for each event. This entry 

bas an identifier for the event, the name of the sending 

process, the key on the event if there is one, and the first 

word of the event. 

-



Using 

flushed 

these identifiers, the gueue 

ty erasing un~anted events, 

i;rocesses: 

PUBGE.EVEN'I (QUEUE, ID) 

FUBGE.fE'I.FBOCESS (CUEUE, JC) 

FUEGE.FU'I.FROCESS (CUEUE, lC) 
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may be selectively 

and trapping waiting 

where: CUEUF is the queue tc te affected. 

IC is the identifier of the message or process to 

te rerooved from the queue. 

Of course the privilege tc nanii;ulate a queue with such 

oi;eraticns is controlled ty the ci;ticns of the capability 

for the queue and is net i;assed out tc the general i;ublic. 

For exaroi;le only the terminal allocator has a cai;ability for 

the low si;eed l/0 queues with all ci;ticns enabled. All other 

capatilities fer these queues allow cnly the operations GETD 

and PU'IC. 

'Ihe i;rcoucer-ccnsuroer relaticnshif is not universal. 

Processes are often related ty mutual exclusion. A comm9n 

constraint is that at rrcst cne of a community of processes 

may te in a certain roode at a ti roe (critical section) ; 

however, there may te artitrarily ccrorlex constraints on the 

concurrent executicn cf a ccrorounity of processes. 

Semai;hcres are often i;rcfcsed as a solution to these 

protlems. Einary semaphcres may be siroulated by creating a 

C-queue of cne element. If C is any C-list slot and O is a 

capability fer the queue, then SF'I(C) is equivalent to 

GE'IC (C) (C) and CIEAE (C) is equivalent to PU'IC (Q ,C). N-ary 

semaphores are obtained ty a simple generalization of this. 
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UnlikE rEguEsts fer conventional sEmaphores, which are 

grantEa in an artitrary way (fer artitrary 

there exists a ncn-zero frotability aelta 

large epsilon, 

such that a 

process will have to wait fer at least epsilon changes in 

state of the semaphore tEforE thE rEguEst of the process is 

grantea), semarhcres simulatea ty queues allocate the lock 

on a first-cc~e first-servea tasis (there exists an epsilon 

such that aelta is zero: namely any efsilcn greater than the 

number of rrocesses waiting for thE leek when the request is 

made.} 

If the constraints en ccncurrent execution are actually 

arbitrarily comflEx, thEn thE interlccking is best done by a 

lock scheauler [J.G.J. 'Ihis afferas simpler logic, 

protection, interlock avoidancE and reccvery. 

In the simpler case, cnE may replace the sEmaphore by a 

protectea leek on the objEct. Father than let the capability 

C above tea aummy capatility, let C te the only capability 

for the object. Then GE'IC (C) fC) gets exclusive accEss to the 

obiect ana FU'IC (C,C) ;FORGE'I (C) relinquishes this access. 

Similarly a reel cf scratch storage for a community of 

aomains may te allccatea on a first-ccme first-served tasis 

by placing a capability fer each scratch area in Q. 

In the interest of ccmflEteness the operations: 

ICCK (CBJEC'I) 

[tiLCCK(CEJEC'I) could be incluaed by asscoiating a 
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semaphorE ~ith each cbjEct. 

Yet a third way cf leaking at queues is that they provide 

an alternativE form inter-dcmain call. Sending an event can 

be viewEd as calling some domain with one parameter 

(forking), er returning a result to scme domain (quitting). 

Requesting an event is analogous to re~uesting a result from 

a functicn (jcining), er teing called with that event as a 

this organization parameter. It is sometimes the case that 

of havirg cne process perfcrm acticns 

processes is either simpler er mere 

for a community of 

economic than having 

many copies of the active precess imteoded in each memter of 

the community. Its possitle advantagEs are ccncurrency, 

lower overhead due to domain creaticn and private memory, 

immunity frcm interrupts, and simpler access to data. 

For examfle, it may be more efficient to have a phantom 

process which drives the printers and which is driven by a 

queue of file cafabilities than to have distinct copies of 

such a driver as a domain within each process. The printer 

driver when it needs a new job can absorb all pending 

events, add them to its schedule in sane priority order, and 

then execute the roost impcrtant one. 1c leeks are required 

because cnly cne process is nanifulating the data. 

~his incidentally frovides a convenient example of the 

need to send structured messages. we need to send the 

printer driver a message which contains a capability for the 

file tc te frinted, a cafatility fer a bank to fund the 

printing, the friority of the print jcb, the format of the 

-
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filE. and thE format and dEstinaticn of the output (e.g. 

font. type cf papEr ••••• ) 

As with thE parameter passing mechanism descritEd earlier. 

it is clearly desiratle _to bE able to pass complex data 

structures as events. CAI has neither the hardware nor the 

language support to specify such data structures. WE view 

this as a flaw in the system. It is dEsiratle tote able to 

transmit artitrary Fl/1 structures via gueues. 

Wirth [N.W.] gives ancther 

logically much simpler to have 

the operatcr•s consclE than to 

example 

a flcating 

have a 

in which it is 

process driving 

dcmain (routine) 

private to each process which performs this function. ihe 

listener descrited above is a third exa•ple of this. 

One may generalize theEe ctsErvaticns and characterize the 

control structures of systems as being primarily: 

F-driven: most actions are i•rle•ented as procEdure 

calls synchronous with the executicn of 

the process. 

Q-driven: mcst acticns are i•ple•ented as queued 

reguEsts to floating processes. 

i-drivEn: central infcr•aticn resides in tables and 

I-drivEn: 

and prCCESSES •executE' these tables 

(shared files). 

ihe flow cf centre! is directed by 

external interrofts. 

• 
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Multics ar,d CAI are ccnsiderEd to te primarily P-driven 

although many mcdules cf Multics and CAI are Q-driven. In 

particular the I/Chandlers, schedulers, and the phantoms 

feed on qUEUES. 1he ccres of most Cferating systems are 

I-driven. 1ransaction oriented systems such as TSS/360 and 

CICS [I.E.M.1,I.E.M.2] are primarily Q-driven. syntax 

directed ccmpilers and decision tatle languages are examples 

of 1-driver systems. 
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1he pcssitle advantages of 

F-structure are: 

a c-structure over a 

(g •a) 

(g. b) 

(g. c) 

(g. d > 

Concurrency is exploited. 

1he overhead of a single flcating process may be 

less than that cf many private domains. 

1he floating frocess is protected from user 

errers and interrufts. 

Access to data may be sirrflified, thus easing 

the interlcck frctlem. 

On the ether hand: 

(p •a) 

(p.t) 

(p. c) 

(p. d) 

In order to fully exflcit (g. a) it may be 

necessary to have several servers. 

vitiate (g.t) and (q.d). 

This may 

In all known systems which do accounting and 

friority scheduling, the ccst of a domain switch 

is much less than the cost of a process switch. 

Mere importantly, the srace overhead for a 

single process is consideratly higher than the 

Sface overhead for a sin9le domain because a 

precess has a stack, and accounting and 

scheduling infcrmatien. 

If one considers the possitility of errors, the 

message discipline tetween processes may have to 

te very complex. 1he traf mechanisms descrited 

previously do net extend tc a Q-driven system in 

an ebvious way. If the precess must wait for a 

response to each request then (g.a) is vitiated; 

if net, then cc~plex pest-analysis may be 

required vitiating (g.d). 

• 
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The virtues of the varicus central structures are 

catalogea jn Figure 5. Ideally cne wculd like to merge the 

concepts of procedure call, send event, and send interrupt. 

We have net teen atle tc de this. 

F-driven Q-driven 'I-driven I-driven 

CCNCUFFEiCY * * * 
MCI:UIAFI'IY * * * 
CUICI< FE~ECNSE * * * 
'IIGH'I CC i'IElC I * * * 
ERRGR HAHIING * ? * 
CLEAN IN 'IE FF >CE * * 
CCNCH'IUHIY SHlFIE * * 

Figure 5. 

'IHE VIF'IUES CF FCUR CCN'IRCI STRUCTURES 

To summarize, event gueues are Frovided to allow 

interprocess communication. Mest ccmmunication with other 

processes and with "the outside worla 11 is through message 

queues (shared files, locks, and interrupts provide more 

primitive communication). 'Ihe queues can pass either blocks 

of data er they can pass entire ctjects by passing a 

capatility. The systerr will suspend a process until the 

message arrives (er is sent) unless the process overrides 

this suspense. Keys can be attached to messages so that they 

can be directed to a particular receiver. 
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I N'I E. fiR UP'I S 

At least one author has suggestea the al:oliticn of 

interrui:ts l:ecause the:y create so ll!uch grief (N.W. ]. Most 

theoretical mcdels cf contrcl structure seem to lack the 

concept of interrupt for this reason. P.owever. real systems 

are not at lil:erty to ignore the issue of what can be done 

in case the event queuing mechanism treaks down or in case 

continuous i:olling of an event queue is too expensive. 'Ihe 

ol:vious answer is that it must be Fossi~le to interrupt the 

executicn cf a acmain in sane process externally and to 

cause the invccaticn of some new aomain cf the process. 

Any dcmain may in!~rr~f! any other domain (including 

itself} so long as it has the approi:riate capability for the 

interruFted domain. An interrupt is addressed to a 

particular dcmain cf a i:articular process. If that domain or 

cne of its descendants is active then the interrupt strikes. 

causing a new activation of the acmain to which the 

interrurt •as directed. Otherwise the interrupt is arrested 

until its target aomain is active er is a parent of the 

active dc•ain of the precess (see Figure 3.) 'Ihe 

interrupting domain may Sfecify a datum describing the 

interrurt. This datum along with the ONIQUE.NAftE of the 

interruptor is placed in the call stack of the interrupted 

precess. As mentionea earlier. interrupts are much like 

traps. ~he interrui:ted domain is activated as though a trap 

bas cccurred (i.e. at the trap gate entry point.) 

-
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Interrupts and events may interact with each other in a 

bad way: if the interrupted dcmain is waiting for an event 

it is de-gueued and its process state is modified so that 

when the irterrupted dcmain is resumed it will immediately 

re-execute the call tc get an event 

counter is •tacked up'). 

(i.e., the instruction 

'Ihe interrupt operators are: 

IN'IEliliUFT (rCMAIN, rA'IUM) 

tI ~ABIE. IN TEE EUF'IS (re ~A IN) 

ENAEIE.IN'IEREUF'IS (rCMAIN) 

where: DO f'A IN is a capal:ility for the domain to be 

inter-rufted. 

r; A 'I Dr'! is any datum. 

'Ihe motive for using the precess tree to moderate 

interrupt handling stems from the observation that 

interrupts are very much like traps. A domain should only 

l:e expected tc cbserve interrupts directed to its ancestors. 

'Ihis corresponds tc a priority interrrpt system except that 

it puts a partial order rather than a linear order on the 

interrupt structure. 'Ihis generalization was fcund tc be 

both inexpensive and valual:le. 

'Ihe newly activated interrupt domain may perform any 

operations it desires, sul:ject tc the limitaticns of its 

C-list. In particular, it will examine the interrupt datum 

and the i:rccess state (by displaying the process stack) and 

it may interrcgate the user if he is en-line. 



PAGE 65 

ConsidEr thE exarnrle cf a user sending an interrupt to his 

command prccessor domain frcm a terminal. The command 

processor will ask the user what acticn is desired. "CEEUG," 

"PURGE," and 11EETUEN11 are ccmmon responses. tEBUG causes 

the ccmmard rrocessor tc jump-call the detugger. The 

"PETUBN'' request directs the ccmmand processor to return to 

the interrupted domain as though nothirg had happened. 

The "PURGE" command is mcst interesting. Presuming that 

the command i:;rocessor 

for all 

is powerful 

domains belcw 

enough to 

its first 

have 

stack 

activation, the command processor may simply jump-return to 

its first activation. This wculd destrcy all the intervening 

domain activaticns. It is cften the case that intervening 

domains would like tc make a more graceful exit. They may 

want to clcse their files and write a suicide note to the 

user. Hence the PUEGE ccmmand directs the command processor 

to RETUEN.1EAF(INTEREUFT) tc the interrupted domain. This 

initiates the trap processing mechanism mentioned earlier 

and allows the active dcmains to flush themselves out of the 

stack in ar crderly manner. 

If this fails, the user may interrupt the errant process 

and type FUEGE N fer any integer N. This will erase the top 

N activaticns off the stack and BETUEN.TRAP(INTERRUPT) to 

the domain N+1 activations deep in the stack. 

an attreviaticn fer "PUEGE C"). 

("PURGE" is 

-
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1here arE times when one must abolish (disable) interrupts 

temrorarily. Certain critical secticns cf code manipulating 

shared data must te executed withcut interruption. If such 

modificaticns are interrupted in mid-flight and another 

computatior. is scheduled, then the shared data will remain 

locked for a rrohititively lcng time. lf the data is shared 

with the interrupter, this raises the specter of a deadly 

emtrace. 1hese protlems occur at beth the system and at the 

user level. 

1wo solutions are possible. Cne is to place the 

noninterrurtatle ccmrlex very high in the process tree so 

that only very high rriority interrurts can strike. 1he 

second is 

illuscry. 

interrupt 

to disatle interrupts. 1he first solution 

For pragmatic reasons it must 

any domain of any process. The 

be possible 

fact that 

interrurt is powerful will tE seen tc le irrelevant. 

is 

to 

the 

Only the second sclution is tenatle. Since it must be 

possible tc invoke any other domain without fear of losing 

control, the scope cf interrupt disatle is glotal tc the 

precess. 

1he solution above has a flaw: it is now rossible to 

construct a rrccess which can never te interrupted. Hence 

interrupt disable has a real time limit. Associated with 

each dcwain (not each activation of that domain) is a 

timer. risatling interrupts in a dcmain sets its timer to 

some quantum Q. At each instant that interrupts are 
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disabled, some domain's timer is running down. It is now 

possitle fer each dcmain tc te assurea cf at least Q units 

of real tine executicn. Only the timer cf the topmost domain 

in the stack with interrupts disabled is decremented. If 

this timer laFses before interruFts are enabled then the 

active domain is given a traF, interrupts for the entire 

process are enabled, and the highest pricrity interrupt 

strikes. 

If a domain tries to return while it still has its 

interrupts disabled the caller will get an interrupt 

time-out traf. Tc prevent this mis-directed trap, a 

returning frocess is trapped if the interrupt disable of the 

returning dc•ain is set. 

we want tc te able tc say that the maximum time for a 

process of N dcmains to resfond to an interrupt is NxQ. To 

insure this we must add the constraints that a domain cannot 

reset its ti•er while the frccess continues in interrupt 

disable •ode (i.e. all clocks clear at once} and that nc new 

domains can te created while interrupts are disabled 

(ctherwise N gives nc bound). If ttese constraints are 

enforced then one may show that the maximum interrupt 

response ti•e of a process is fixC. 

This treat•ent cf interruftS differs from that descrited 

by Ia•Fson [E.1.1] in two ways. ie decrement only one timer 

at any instant. ihen a dc•ain ca11s ancther domain it really 

has no idea what way transFire. For example, a request to 

get a line fro• a teletype •aJ actually tea request for a 

• 
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line from a file er a program. This aynamic linking means 

that a aonain is cnly aware cf its c~n execution ana the 

interfaces ana shared data it sees. ~his requires that the 

callea aonain be atle tc extend the interrupt disatle 

quantum and that 

from the quantum 

it re atle tc ao this without subtracting 

of some ether acroain. The second 

difference is probably pedantic. We fix the number of 

domains and associate timers with aomains rather than with 

their activaticns. This prevents a process from getting into 

a locp of a dcroain calling itself and aisatling interrupts 

or a locp cf creating a aonain, calling it, and aisatling 

interrupts. Frocess stack cverflow is the only limit on such 

a situaticr in the ECC systen aescritea [E.L.1. J. 
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CCNCIUSICN 

The iuplementation of CAI was undertaken because it was 

felt that the manufacturer-sufplied Cferating systems did 

not allow the functions that were needed by a university 

computing ccmnunity. 

operating systems, 

~fter titter experiences with other 

we set generality, extensibility, 

rationality, and reliability as our design goals. The tasic 

system which we have descrited was designed in two man 

years, implemented in three man years, and required four man 

years of polishing and redesign. It (the lowest level) 

consists cf seven kinds of ctjects and cf about seventy-five 

operaticns en these ctjects. 

the levels cf Figure l) has 

invested ir it. 

~he entire system (i.e., all 

about t~enty five man years 

The ccntrcl structure consists of domain call and 

return, trap precessing, interruft send, event get and put, 

and process create and destrcy. As it turns out, six of the 

seventy-five cperations acccunt for 90, of the calls on the 

lowest level. The six most frequent operations are file 

read-write, dcmain call-return, and event get-put. Thus it 

is SEED ttat the gate keefEr and thE call-return and the 

get-put opErations are the mcst heavily used aspects of the 

system. 

The system has been in cperaticn for three years and 

currently averages one crash per forty hours of operation. 

Nine out of ten such crashes are cue to unrecoverable 
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hardware errors. The software is an crder of magnitude more 

reliatlE tran the hardware. 

In a sense, CAI is a texttook system. It is easy to 

explain to a class. 

examplE, trE SCCPE 

of CAI by writing 

It is also fairly easy to use. For 

CfErating system ~as irrplemented en top 

a dcmain which sirrulated the CDC SCOPE 

operating system using the orerations cf CAI quite heavily. 

This reguired about :OOC machine language instructions. The 

converse, running CAL on SCCPE, ~ould be much more 

difficult. 

The rEader is probably ccnvinced at this point that CAL 

is indeed general, extensible, rational, and even reliable. 

Eut hew much does it ccst? The answer of 

we shall simrly compare the CPU time of 

SCOPE is a reasonatly efficient efficient 

computation-beund tatch jcb, SCOPE and 

approximately the same fraction of tr.e CPU 

course depends. 

CAL and SCOPE. 

system. en a 

CAI deliver 

to the user. 

However, a student batch jct run en CAI 

the CPU re~uired by SCCFE. Clearly one 

for generality and 

rationality should come 

extensibility 

fer free (but 

requires six times 

must pay something 

(reliability and 

they seldom do)). 

Whether a factor of three er six is an acceptable price 

remains te te seen. 

• 
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