
§: =I~~ Research THE CONTROL STRUCTURE OF
AN OPERATING SYSTEM

J. Gray/8. Lampson/8. Lindsay

H. Sturgis

July 21, 1972

RC 3949

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication elsewhere and
has been issued as a Research Report for early dissemination
of its contents. As a courtesy to the intended publisher, it
should not be widely distributed until after the date of outside
publication.

Copies may be requested from:
IBM Thomas J. Watson Research Center
Post Office Box 218
Yorktown Heights, New York 10598

..

,

THE CCNTROL STRUCTURE CF AN OPERATING SYSTEM

J. Gray
IEM Themas J. Watscn Research Center

Yorktown Heights, New York

E. lampson
Xerox FARC Research Center

Palo Alto, California. 94304

E. lindsay
Department cf Ccmputer ~cience

University of California
Berkeley, California. 94720

H. Sturgis
Xerox FAEC Research Center

Palo Alto, California. 94304

IBM Thomas J. Watson Research Center
Yorktcwn Heights, New York 10598

ABSTRACT: CAI is an operating system based on the concepts
of capatilities and of implementation via machine extension.
We first rresent some brief comments on our design
philosophy and our experience with this approach.
Extensions tc the capability (descrirtor) mechanism are
described. Tbe re•ainder of the paper concerns the control
structure for {a)intra-process communication: creation and
display of processes, domains and gates, various forms of
domain activation, and the fielding cf traps; and (b)in~~r
process ccm•unicaticn: messages, events, interrupts, and
locks.

This paper describes wcxk dooe by the authors while they were at the
University of California at Berkeley.

Key words: computer. operating system. control structure. process.
domain. semaphore. inteD'llpt. machine extension.

RC 3949 (#17842)
July 21, 1972
Computer Sciences

-

PAGE 2

CON'IENTS

ACKNOWlEDGMEN'IS __ 3

MO'IHERHOOD ___ 4

OEJEC'IS __ 11

IN'IBA-FROCESS CCMMUNICA'IION ____________________________ 21

tCMAINS ANt PROCESSES _____________________ 21

GATES, PARAME'IEFS, AND RESULTS ____________ 28

tOMAIN AC'IIVA'IICN AND EIN[ING _____________ 35

'IRAPS------------------------------------- 41

I ISP 1 AY AN [MAN IP ULA'IICN CF PROCESS ES ______ 4 7

INTER-FBOCESS COMMUNICA'IION ___________________________ _ 50

EVEN'! QUEUES ______________________________ 50

IN'IERBUPTS 63

CONCLUSION __ _ 69

REFERENCES __ _ 71

PAGE 3

ACKI.OwlEDGMEN'IS

'!he implementation of a system exposes many flaws in
the design and in fact the i~flementcrs redesign the system
many times as the imflementaticn proceeds. Hence the adage
"designers=implementors." Many of the ideas in this paper
are attritutatle to the fecple who worked with us in
implementing CAI:

I<arl f!albrain
Gene Mcraniel~

Jim Mcrris
Paul McJones Q.
Dave~

Charles '6-yRIQ:Ai Si1111> ,..;
Keith Standiford

Vance Vaughn J
":,,

Maarten van Emden and Alex Eirman aade several
suggestions which have improved the presentation.

David Fischer, laura Gould, Vincent Kruskal, Barry
Rosen, 1eo Rotenberg, and Steve Zilles pointed out several
flaws in a draft of the pafer.

Discussions with Frakash Hetalkar led
presentaticn cf P, Q, i and I driven systems.

to the

PAGE 4

MC'IHERHOOD

The CAI operating system was begun in the fall of 1968.

Within nine months the tasic system haa been implementea on

an off-the-shelf CCC 6400 with extenaea core storage. Since

that time it has been in aaily use for further aevelopment

ana experinentation. Since the fall of 1970 it has been

available to the Berkeley campus community. During this

time we have haa considerable experience with the system and

are now in a position to juage its virtues and flaws. One

of the richest aspects of CAL is its control structure.

'Ibis paper describes those aspects of the control structure

which we have found tc be particularly useful. In doing

this we have freely done violence to the realities of CAL.

Obvious (tut unimplementea) generalizations have been

includea.

repeatea

obscurea.

Mistakes maae in the implementation are

made to the hardware

not

here.

'Ihe design

puzzle spread

impossirle to

whether there

reason we have

Concessions are

of an operating system is like a Chinese

out on a tatle: Because of its size it is

tell what it will be when assembled and

are too many pieces er too few. For this

been careful not to depart too far from

reality for fear of loosing a piece or two.

shaved off a few rough edges.

We have simply

PAGE 5

A reasonable way to design er model a complex system is

to define the gtj~£!§ manipulated ty the system and to

define the o~erations which may be performed on these

objects. 'Ibis approach is usually called machine extension

since it augments the universe of objects manipulated by the

machine ano tbe operaticns ~hich can te performed. To give

a trivial example, objects called stacks may be added to a

•achine ty adding the operaticns CREATE.STACK(N),

DELF'IE.S'IACK (NAME), PUSH (NAME, I'IE~), FOP (NAME), and the

predicates EMP'IY.S'IACK(NAMF) and FUII.STACK(NAME). This

example pcints out two imfortant asfects of design via

•achine extension:

c 'Ihe design is modular and gives a functional

specification fer modular implementation. It

ignores questions such as resource allocation

which are frcperly implementation questions.

0 'Ihe

the

operations on an object

cbject. Ne ether form

completely define

of access to the

cbject is allowed. 'Ibis permits great

flexitility in implementation of the object

(for exa•ple, the stacks above could be

implemented as arrays or lists or functions).

Such variations are functionally invisible.

-

The adcftion of the extended machine

PAGE 6

approach is

mitigated ty two concessions tc the lirritations of the human

brain and fsyche:

c Operations must be conceptually simple and have

a uniform interface to one another so that the

validity of an ioflementation can be verified,

and so that their use may be easily documenteo

and explained.

c Each extension must be small enough to be

completed in a time less than the attention

span of the designers - irrflementors (typically

cne year) and less than the Ultimate Deadline

set ty the manager, customer, or finance

ccmpany.

Extending a simple machine to a ccmplex one may require

several extension stefs. This will give the implementation

a layered apfearance. The particular extension steps we

chose are deficted in Figure 1. A tare machine was extendeo

to a class of simfle virtual machines, each with a virtual

memory. These virtual machines are extended to have

operations en a global file system. The file system machine

is extended to acceft commands, control the actions of the

virtual machine, and to interfret file system naming. Most

programs run ''on top of" this machine, extending it in

various ways.

•

CDC 6400
+ BULK CORE
+ 1/0 PORTS

Figure 1
1hE layErS of CAI

PAGE 7

• •

FigurE 1 may be mislEadinq sincE it sEems to suggest

that highEI layers are unaware of the lower layers. Not so.

In an EXtEndEd 1achine a layer may invoke operations

implemented at any lEvel below it. In particular, a layer

often executes hardvarE instructions directly. The lower

layers appEar to bE a single machinE with some very powerful

cp-ccdes.

Except fer differences in scale and generality, this is

essentially the approach takEn ty :Cijkstra and his

colleagues in designing and implemEnting the "THE" system

PAGE 8

[E.L. J. In following this arproach WE have observed two

phEnomEna which arE not pointea out ty tijkstra:

Although it is indeed possitlE tote confident abcut

the corrEctnEss of any rarticular module (operation), it is

much more difficult to analyze the interaction of a group of

modules. Similarly, it typically invclves one man working

one day to fix a bug insiae a module. en the other hana, our

entire group often spent weeks just ciscussing how to fix

some flaw in the interactions among a modules. The most

common ana difficult faults we enccuntered were Either

errors or deficiencies in thE design cf the interfaces. It

is difficult tc foresee such errors sir.ce they are typically

of a dyna[ic nature or they exploit some facility in an

unforeseen way. As a corollary to this, the lower levels of

the system tend to grow and change with time to accommodate

these difficulties. In thEcry this is not necessary. All

deficiEnciEs in the lower levels roay te corrected hy

appropriatEly extending the given machine. In practice a

certain nurrter of such extensicns are done at a lower level.

'Ibis last point is a consEguence of a secona

phenomenon: as the layers pile up, the cost of gate-crossing

becomes significant. Cperaticns which seem simple at a high

level

'Ibis

may unlEash a flurry

is primarily because

cf activity

of the

at lowEr levels.

rigidly enforced

independence of operations, and tecause each operation at

each level typically calls two er mere operations at a lower

level. CnE nEed only examine the function of 2 to the power

N for small N to see the consequence of this. Invoking a

PAGE 9

theorem which invokes all cf set thEory costs nothing

invoking ar CfEration which invokEs the rest of a computer

system is not cheap.

we triEd various validation and debugging procedures.

Having a second pErson check all code (feer group

programming) was the roost effEctivE. It had a positive

effect on style, ccntributed tc the general understanding of

the system, and unEarthed many bugs. Exercisers for modules

proved to be rather difficult to ccnstruct and had to be

maintained as the modules changEd. ~hey did serve as good

tests cf ctscure cases but in general were probably not

worth the Effort. Manual ccnstruction of formal proofs of

the correctness of modules was tried cnly once. It was not

cost effective.

DespitE these caveats, misgivings, and scars we remain

enthusiastic atout the extended machine approach to design.

Given the adoption of the extended rrachine approach, the

important issues teccme:

c What arE the otjects that an operating system

~ust imflement and manifulate?

c what is a Sfanning set of operations on these

otjects?

c How can these ctjects and operations be glued

together in a uniform way?

PAGE 10

CAI proposes one answer tc these questions. This paper

discusses the nucleus of CAI. 1his layer contains the

primitive ctjects cf the system and the operations on them.

It also contains a control structure and a naming structure

which provide powerful extensicn facilities. Great care has

been taken to allow for sharing and prctection of objects.

An operating system may be vie~ed as a programming

system. As such it must have a name structure, a control

structure, and a syntax. we refer to Iampson [B.L. 1, 2, 3]

for a discussion of naming and of tr.E related issues of

protecticn and sharing. The issue of syntax seems to us to

be a matter cf taste and ccnvenience. Our taste leans

toward making the operating system interface a functional

extension cf a programming language

this paper will te the control

like ECPL. The focus of

structure of CAL. later

papers will describe other aspects of CAL.

PAGE 11

OEJEC'IS

'Ihe nuclEus of CAI imFlements the following objects:

1. files

2. precesses

3. domains

4. gates

c: banks ~-
6. event queues

7. capal:ility lists.

A !11~ is a sequence of words cf data numbered from

zero to scme dynamic upper J::ound. Cperations exist to

create, dEstrcy, read, write, lengthen, and copy files.

Files are variously known as segments and data sets in other

systEms.

Frocesses, domains, and gates will be discussed in

greater detail belcw. A gate is an entry point into a

domain. A dcmain is a sphere of protection (or a name

space) within a process. A process is a scheduling and

accounting entity. It may te thought of as the envelope

containing a virtual prccesscr.

]~~~§ are the funding elements of the system. All

resource use is charged against sere bank. Banks also

participate in resource allccation by limiting the resources

of each category that a process may consume. When a bank is

exhausted,

PAGE 12

any process charging against it is trapped.

Operations exist which create and destroy tanks and which

transfer funds from cne tank tc anothEr.

Event queues provide convEniEnt communication and

synchronizaticn amcng frocesses as wEll as cetween processes

and extErnal devicEs. 1hey are discussed at length below.

If an opErating system is tc inplement objects, and

operations on thesE objEcts, then thErE must be some way to

name the otjects. Clearly such namEs must be manipulated by

the operating systen and hEnce qualify as objects. 1his

circular (recursive} reasoning has several fixed points

variously called descriptors, capacilities, and control

blocks. 1hE particular fixed pcint cne chooses depends on

the issues cf protEction and scope.

If no Sfecial care is

program may creatE a name

system. Although such a

taken about protection, then any

and pass it to the operating

dEcisicn has the virtue of

conveniencE, it allows any program tc r.ame any object in the

system. If tbe system intends to maintain critical tables,

accounting information, sensitive data, or if the system

intEnds to provide any form of protection among users, then

creation or artitrary names is not acceftable.

Hence names are made objects which only the system may

manufacturE. 1here are several pcssitle implementations of

such a scheme [B.L.2]. CAl adepts the scheme used by

Burroughs [E.C.] and ty IEnnis and Van Horn [D. v.] of

-

PAGE 13

maintaining names in special otjEcts called £~E~Ei!i!..I

1.i§!§, C-lists for short. 1hese ctjects are variously

called segment dicticnaries, descriptor segments, or program

reference tatles in other systems. Associated with each

domain of each process is a C-list. When executing in a

particular domain, a process refers to objects by presenting

and index intc this list. 1hus unprctected names (integer

indices) are converted tc frctected names. By supplying

each doroair. of each precess with a distinct C-list, a very

flexitle system of protection and sharing is possible. A

particular domain of a process can cnly refer to objects

named directly or indirectly ty its C-list. However,

different capatilities for the same ctject may appear in

several C-lists and so sharing of objects among domains is

straight fcrward.

An exarple of this may te helpful. Suppose that each

of three dcmains must share twc of three mail boxes with its

two neightcrs and further that these mailboxes must be

pairwise private. Figure 2.A depicts a soluticn to this

problem using capabilities. 1he capatilities are presumed

tote allocated tc these dcmains by some fourth domain which

•manages• the names cf the mailboxes. 1his name manager may

write directly intc the C-lists of the domains t1, D2, and

D3 or it ray use the parameter binding mechanism of domain

call. Solving this simfle prcblem with the naming structure

of most prcgramming languages is non-trivial. One can prove

that it is impossible with the static name structure of

AIGCL. 1he issue is preventing M(i) froa being global to

D (i) • In AlGCl the soluticn is to use the parameter binding

PAGE 14

mechanism (call-by-name) and to eliminate free variatle

resolution and hence free variable "capture". Figure 2.B

displays this idea implemented in 'AICOI'. A similar trick

works for the Multics ring structure [F.G.] [S.S. J.

C-list of DI C-list of 02

Figure 2.A
!hree dcmains Fairwise sharing twc mailboxes via

caFatilities.

£1~1]
FFCCHUFE I:CMAIN (NEIGHBOR1, NEIGHEOli2);

NEIGHBOR1,NEIGHEOli2; 1a11&~1
£.f§1!

0

0

0

!].!;;
]!.§1]

fQ]]l]1 a new block to prevent free variable
M1 , M2 or M~ ty DOMAIN;

]A1!!f] M1 , M2 , M3;
EA1!12l~1]

r:1: r:CMAIN(M2,M3);
D2: I:OMAI'N (M 1, M3) ;
D3: r:CMAit(M1,M2);

!:A]!.H;
nm;

!].!;;
!]];

Figure 2.E
An 'AIGCl' implementation of figure 2.A.

PAGE is

'Ihe decision not to

structure en CAl derives frcm

imfose a particttlar naming

the €XfErience with the BSOOO

stack mechanism and the Multics ring structure which make

structures similar than these in Figure 2 difficult to

con.struct.

CAI ha.s .some interesting exten.sicns to the capatility

mechanisms descrited by Burroughs [B.C. Jr

Hornr [D.V.] and ty Ackerman and Plummer

ty Dennis and Van

[A.P.] The reader

unfamiliar with the conceft of capatilities should consult

cne of the atcve references tefor attempting to read the

remainder of this section. In CAl a capability is

represented ty at least three fields:

'IYFE

CF'IIONS

CBJEC'I. liAfH

and in the case of capabilities for files and for C-lists by

two additicnal fields:

BASE

lENG'IH

'Ihe generalizations cf capabilities are as follows:

(C.1) Tle ccnceit that a capability is a protected name

fer the object it refers to has been generalized to

allow other layers (e.g., users) to exploit this

naming scheme for the new

inflement. Cnly a few of

PAGE 16

ctjects that they may

the (2**18) different

tyfes of capabilities are reserved by the nucleus

(see the first paragraph cf this section for a

ccmflete list.) The remaining types of objects are

made available to users as follows:

(a) The nucleus has an operaticn which will return a

1if~TI§~ to manufacture a particular type of

otject. This license is actually a gate to the

system (a new operation) which will make new

capabilities of a certain TYPE. The call looks

like

GE'I.lICENSE() (MY.LICENSE)

where GET.IICENSE is a gate to the system. This

gate returns a capability for a new gate

(license) which makes cafatilities of a fixed,

unique type. MY.LICENSE is a C-list index to

receive the gate returned ty GET.LICENSE.

(b) Suppose that this call returns a gate which

makes licenses cf TYPE=932. Then we are assured

by the nucleus that the license to make

capabilities of this tyfe will never again be

given to a domain by the GET.LICENSE operation.

Thus MY.LICENSE tecomes a trademark of the

precess which cwns MY.LICENSE and of any other

domains that scmehow have shared access to it.

PAGE 17

(c) !he CBJEC!.NAME of a capability created by

MY.LICENSE is SFecified ty the caller. So for

example

MY.LICENSE (11FASSiCBD") (KEY)

creates and returns a cafatility of

TYPE=S32,

where:

OFTICNS= 11 ••• 11

OEJEC!.NAME="FASSWCBD".

MY.IICENSE is the gate described above.

"FASSWOED" is a string parameter specify

ing the new UNIQOE.NAftE.

KEY is an index into the callers

C-list tc receive the resulting

key.

(d) Instances of capatilities created by license

(i.e., TYPE> 7) are called keys. Keys are like

any other caratility. !hey may be copied,

displayed, passed, and returned. Hence names

manufactured by users come

umbrella of the system.

mcdify the OEJEC!.NAME

under the protection

Note that no one may

cf a key; no such

oreration exists. So a dcmain may manufacture

the• out tc ether domains as the keys and pass

names of the otjects

the

i11:plemented by the

licenser. Since licensor has exclusive

rights tc make keys of a certain type, it can be

assured that whenever it sees a key of that type

(C. 2)

PAGE 18

(as a parameter tc some request made by some

other domain), then that key was originally

manufactur€d l::y a dcmain possessing the

affrofriate licensE. Thus, if a domain protects

its license (or shares it selectively) then the

dcmain can be assured that such keys contain

valid (unmodified) informaticn.

Tc give a ccncrete example: the disk system

is licensed to rrake keys cf TYPE=9. Any key of

TYPE=9 in the system is manufactured by the disk

system. The CEJECT.NAME cf such a key has a

disk address in it (by a convention established

within the disk system). Fossession of such a

key is froof of the right to access the named

section of disk subject tc the constraints of

the Ofticns of the key.

The capatility mechanism was extended to allow

dcmains to share files and C-lists on a per-item

ard en a sul::-file or sub-C-list basis. This is the

purpcse of the BCUNt and IENGTE fields of these two

capatility

transitive

types.

and

fICt€cticn/sharing.

This

allows

simple

for

extension is

even tighter

(C. 3) Indirection through C-lists (i.e., path names in

the directed graph defined l::y C-lists) was found to

dramatically reduce C-list sizes, for example

dcmains tyfically share a glotal pool of gates.

(C. 4}

(C. 5)

Almcst

which

all naming

describe the

PAGE 19

mechanisms have qualifiers

type of operations which the

capatility aliows (e.g., files are read, write,

execute, •••• } In CAI this has been generalized in

twc ways. 1he class of opticns has been expanded

tc allow for more diversity. 1his is then exploited

by having the system gate keeper check the types

ard Cfticns of all actual parameters

fcrmal parameter list of a gate. 1he

against the

gate keeper

traps the caller if the actual parameters are not

ccnsistent with the fcrmals.

CAI allcws capabilities tc te passed tetveen

dcmains as events.

1he atility tc ccpy a capatility and to reduce the

options of a capatility is distributed freely. Only the

system •anifulates the ether fields cf a capability. In the

case of a ley, any dcmain licensed to manufacture a key may

manufacture one with OEJEC1.NAME and CFTICNS specified by

the domain. 1he key 1IFE is fixed ty the license. Once

created, the CEJEC1.NAME field of a key cannot be changed;

although, anycne with the license can create a new key with

the desired CEJECT.NAME.

Cperations on c-lists include creation and destruction

of lists, ccfy a capatility frcm cne list slot tc another

list slot (while pcssitly reducing the options), delete a

capatility, send er get a capability via an event queue,

PAGE 20

pass a cafability as a farameter or result, and receive a

capability as a result. Ferhafs the most interesting

operation is 'display-capatility• which returns the bit

pattern refresenting the cafatility tc be displayed. Since

there is such an emphasis on frivacy and security,

protection within the systero is net based on secrecy.

Bather, it is based on a tight central on who may

manufacture and reference narees. Privacy is obtained by

limiting access, by judiciously using options on

capatilities, (e.g., execute- cnly files) and by ccntrolling

the distrituticn of cafabilities.

A general rule we have followed is that all the system

tables (with the exception cf the password file) should be

open to putlic inspection. This strategy results in some

minor violaticns of frivacy (e.g., one can find out how much

computer tiroe scme ether user has consumed) but not in any

violaticns of frotection.

Further details en these topics can be found in

[E.1.1].

PAGE 21

tCMAINS ANt PROCESSES

A domain defines an execution environment. All

non-local names generated ty a process executing in a

particular dcmain

capability list of

in the current

are interfreted with

that domain. Iccal names

stack frame (act i vaticn

respect to the

refer to names

record) of the

process.

protection

designing

Iomains are intended tc

and to provide for sharing

a process, one design goal

provide fine

of objects.

grain

When

is to separate the

processes intc several domains and thus to limit the

instantanecus name space of the process to the objects of

immediate interest. lhis facilitates verification and

debugging and limits error propagation. The scope rules and

block structure of most programming languages have similar

motivaticns. However an example was given above which

demonstratEd that exclusive sharing is difficult to attain

in most languagEs. In this sense, domains are a

generalization of cosmon sccpe rules.

ihe dcmains cf a process are organized into a rooted

tree calleo the process tree. ihe rurfose of this tree is

to direct the flow cf trap (error) precessing and to define

a pricrity fer interrupts. The parent of a domain will be

passed any traps net accepted ty the domain. Any interrupts

dirEcted tc the parent domain will interrupt the execution

of any cf its descendants. This will te explained in more

detail telcw.

PAGE 22

There is no concurrency within a process. Only one

domain cf a rroceEs is active at any instant. Ccncurrency

can te attained by spawning new proceEses or communicating

with existing ones. See Figure 3 fer au example of this.

A domain consists* of a capability list which defines

its name Eface, a trap-gate which iE an entry point to

accept traps, a trap-accept vector which indicates which

traps are acceptatle and which are to be passed to the

parent, a capability for the parent dorrain, and an interrupt

inhibit flag, an interrupt tuffer, and an interrupt lockout

timer. AsEuming that the C-list fer the domain has been

created, the following operaticn creates a new domain in the

process cortaining FABENT ** :

* In fact each domain alsc has a swapping directive
associated with it. Since the crc-6000 machines have
only a relocation and rounds register, no attempt was
made tc rrcvide virtual memory for the processor. Each
process must explicitly allocate its memory. In this
paper we will assume a segmented memory space and a
process stack in the style of the E5000 [B.C.] and thus
igncre these shcrtccmmingE.

** The existence cf cpticns en capatilities means that a
capability does not necessarily grant complete access to
the ob~ect it deEcribes. In this paper we will
implicitly assume that all capatilities carry options
which allow the specified access. Here for example we
assume that the capability for the C-list allows it to be
added tc a domain, that the capatility for the parent
allows the addition of a descendant to the parent, and
that the capability for the trap is a file capability
which allows execution cf the file. If any of these
assumpticns are violated, the gatekeeper will trap the
caller.

PAGE 23

CREATE.LOMAIN(C.LIS1,PAREN1,1RAP,1RAPOK) (RESULT)

where:

C.IISI

PAREN1

IBAP

IBAFO~

RESU11

is a capability for the C-list of the new

domain.

is a capability for the parent domain.

is an index of a capatility for a file in

C-list and a displacE«Ent in that file (a

file address}. In the event of an accepted

trap er interrupt, control will pass to this

location.

is a boolean vector such that TRAFOK[I]=TRUE

indicates that thE domain will accept the

I'th traf.

is the result of the operation. It is a

capability fer the newly created domain with

all options allcwed. lte name RESULT refers

to some C-list slct to receive this

capability.

Most commcnly, the capabilities needed by a domain are

planted in its c-list when it is created. While executing,

a domain may cbtain a capability by creating an object, by

receiving it as a parameter or as an event, or ty receiving

it as a result returned by scme called dcmain.

1he atove operation simfly creates a domain. Ibis

corresponds to declaring a block in a

Eelow we will describe how gates

programming language.

are declared, they

correspond to procedure entry points to domains. !hen we

PAGE 24

will describe how such procedure entry points are used to

construct ccmain activations.

Frocesses are extended virtual computers. When

assigned tc physical processors they execute instructions.

CAI considers processes tote cbjects. Viewed in this light

a process is a scheduling and accounting entity. A process

is composed cf a directory of its ccnstituent domains, a

stack cf activaticn records cf domains visited but not yet

returned from (the call stack) , the current processor state,

a collecticn of clocks (user, system, swap), a collection of

flags (active, •••), and a bank wbich will fund the

activities of this process. The follcwing operation creates

a process:

CFEATE.PROCESS(C.lIST,PARENT,TBAP,TRAF.CK,EANK,START) (RESULT)

where:

C.IIST, FARENT, TRAP, TRAP.OK specify the root domain

of the new process as atove.

EANK

START

is a capability fer a tank which will fund the

activities of the process.

is the initial state of the process executing

in the root domain.

RESUIT is a C-list slot to receive a capability for

the newly created result.

The dcmain created above is called the root domain of

the process since it is the root of the process tree. The

process is created in a suspended state. When activated by

the ACTIVATE (PROCESS) operation it will begin execution with

state START. Any traps which the root refuses to accept are

PAGE 25

passed as an interrupt to its farent dcmain which is in some

other rrccEss.

Frocess and domain destruction arE somewhat simpler and

are the sane creraticn:

DES1BCY(COHAIN)

If the donain has no descendants and has no activation

records turied in the process stack it is deleted, and if it

is the rcot of some process, that frocess is deleted;

otherwise, the caller is trarped with an error.

DES1ECY is a generic function which, given a capability

for any crject, will attemft to delete it from the systEm.

It will trar the caller if the capatility does not have the

destroy option enatled.

to sunmarize, a process embodies a virtual computer.

It is a scheduling and accounting entity. Its execution is

interpreted in the context of an activation of one of its

constituent dcmains. Each cf these domains provides an error

and interrurt handling context as well as providing a name

space: the local variatles in the current stack frame plus

the set of all objects rointed to directly or indirectly by

the C-list cf the domain.

PAGE 26

Ccntrasting this to othEr systems, cbserve that:

CAI has several domains rer rrocess,

HGCI has a hiErarchy of domains (clocks) per

frCCESS,

~ultics [s. s. J has eight rrogressively smaller

dcmains (rings) rer process,

E:OCO [E.C. J has one domain (program reference

tablE) pEr procEss, and

rennis and Van Born [D.V.J and Bt500 [H.D.] have

several rrccessEs rer dcmain (C-list or

segment dictionary)

We chosE to have several dcmains per process tecause each

other schenE may te emulated by the first by appropriate

indirection and sharing C-lists among domains and processEs.

Also we wanted to have several protected modules per process

since the cverhead cf a rrocess switch (scheduling,

accounting, status, stack) is necessarily greater than that

of a domair call.

SdV~l. jQ MO-U
ONV A.1.IHOlt!d .1.d0UH31..NI

PAGE 27

w
:::>
w
:::>
0

w
::>
w
::>
0
(f)

:::>
I-;

FigurE 3.
A fICCESS dEbugqing a IlEW VEr~icn of the R001

whi1E a srawned frocess ccncurrent1y prints a file.

PAGE 28

GATES, PARAMETERS, ANI RESULTS

As dEscribed above, rrocesses are decomposed into

domains. Each domain may tE viewed as a mode of executioP

having a oiffErent roenory srace and a different set of

orerations that it can rerform. For example the master-mode

slave-mode dichotcmy of many systems can be emulated hy

creating two doroains, cne (the master) containing a

capability for the C-list of the other (the slave) and also

containing scne privileged filEs and crerations.

When a rrocess is created and activated, it tegins

execution in its root domain witr a processor state

specified ty the creaticn creraticn. Clearly there must be

some way fer the rrocesscr tc move from one domain to

another. ~ince dcmains are spheres of protection, this

movement must be controlled by the rrctection system. In

the example atove it shculd net be rossible for a rrocEssor

in thE slave rrcde dcmain tc enter the master mode domain at

an arbitrary lccaticn er with an arbitrary parameter list.

These considerations motivate the introduction of

objects cf type gate. In its simplEst form, a gate is an

entry pcirt tc a domain flus a recipe for creating an

activation reccrd for the called domain. If one domain, A,

has a gate tc a dcmain Ethen A may call Eby using this

gate and once called E may return to A through this gate.

PAGE 29

As mEnticnEd in the intrcduction, we are looking for

the set of otjects that an Cferating system should implement

and for a sranning SEt cf operators en these ctjects. It

should come as no surprise that the orerators arE themselves

otjects (gates). This has several satisfying ccnsequences.

The identification of OfEratcrs ana gates makEs it

iwpossitle for a program tc distinguish tetween a "user

crEated" orerator and a "system" oi::erator. This property is

vital to a layeren system. ~fter each extension, all the

opEratcrs 1n existerce have the same interface independent

of the layer at which they are inplernented. In fact the

layers are ccrrletely invisible. Ancther virtue of making

operators ctjects is that they come under the protectioP

umhrella of the system. Thus tre qates to the Pl/1 coIBpiler

can be public and the gates tc the directory system can he

protected. Since this i::rctecticn is dynamic, it is possihle

for any dcnain of a process to call any other domain of the

r,rocess sc Ieng as the caller has the appropriate gate

cai::ahility. This is another examrle cf the flexitle scope

rules allo~ed ty capabilities.

In many cases the caller wants to specify some

parameters for the callee, and the callee wants to return

some results to the caller. Since dcffains •ay share files

and capatility lists, this sharing is a simple but so~etimes

inccnveniert matter fer reascns analogo•Js t.c the

difficultiES cf CCMMCN storag~ in FCF1F~N. It is SO~ftimes

desirable to be able tc rass and returu objects as

parameters and results and l!lake such tinding dyna11ir. This,

PAGE 30

howEvEr, involves tinkEring with the C-list of the caller

and callee. A capatility fer a gatE to a domain is not a

capability fer the domain: thEy arE different objects.

Hence thE systEm gatEkEEper rrust transfer the parameters and

rEsults tetWEEn the domains when a gatE is invoked.

In ordEr to do this, a formal paramEter and result list

is associated with each gatE when the ~atE is created. This

list constrains the allowed types cf each parameter and the

required Cfticns fer each tyfE as follcws:

o If the item must bE a capatility thEn the gate may

ccnstrain the allewea types of capabilities and for

each type it may reguire certain options to be

enatlEd.

e If thE item must te data then the gatE can specify

tre maximun amount of data

rEturned.

to be passed or

When a call is made tea domain, the caller specifies

the actual parameters tote passed to the callee and gives

the destinatiens of the results to te returned by the

callee. Tr.e gate-keEfEr checks thE types of the actual

parameters against the forrral parametEr list. If they do

not agree, then the caller is given a trap. On the other

hand, if the parameters are ccnsistent, then the

capabilities arE transfErred to the lcw order slets of the

callee's c-list and thE data are stackEd in the callee's

local narre sface. The caller is suspended and the callee is

activatEd at thE entry point (file address) specified by the

gatE. All parameters and results arE passed by value. The

PAGE 31

extensions of the capability mechanism described earlier

(see the ciscussicn cf cbjects, (C.2)) allows contiguous

blocks of aata and cafabilities to be passed ty reference.

The callee is new assured that the numter and type of

parameters he requestea were passed.

Ccnversely, when the callee returns some results the

gate keEfer checks them against the fcrmal result list of

the gate and traps the callEe if they are not consistent.

Other-ise the results are distributed in the caller's name

space as srecified ty the actual result list of the call.

To give an example to create a gate into a domain:

Cf<EATE.G~TE(IOMAIN,ENTRY,FOFMALS,RE~ULTS,EANK) (RESUIT}

where:

IOMAIJ is a caratility fer the dcmain to be gated. The

ENT FY

gate eftion

allowed.

on this capability must be

is a file address interrreted with resfect to

the gated domain's C-list.

te the entry rcint

capability ~ust

enatled.

fer the

have the

This address will

gate. The file

execute option

fOFNAIS is a list of the required parameter types and

their reguired ortions.

RE~Ul1~ is a list of the required result types and

their required ortions.

EANK

RESU11

is a carability for a bank to fund the

existevce of the gate.

is a slot in the C-list or the caller tc

PAGE 32

receive the cafatility fer the new gate.

The cperation CREATE.GATE is in fact a gate to the

system. It has four parameters and cne result. The types

and options on these parameters and results are constrained

as inaicatea atove.

The function of CREATE.GATE is declarative. It

corresponds tc a procedure declaraticn in ALGOL, or more

closely to the DEFINE function of SNCECL4. It constructs

and returns an object cf tyfe gate which contains all the

information needed to construct and bind a new activation of

the domain to be callea. It also specifies constraints on

the actual parameters and results of each invocation of the

gatE.

It would te possit]e tc merge the concepts of gate and

domain ty allcwing a dcrrain to have exactly one gate. 1here

are few acvantages to this and it makes the handling of

constructs like multiple entry points in FORTRAN and PI/1

difficult. Not uncommonly all routines which work on a

particular name space are grouped together in one domain,

each with a separate entry pcint. For example, the directory

system routines lCCKUF, ENTER, and IEIE1E coexist in one

domain.

Gates are protected entry points into domains. They

declare ar. interface definition and constraint which is

interpretea ty the system gate keeper. System gates and

user gates are inaistinguishatle. This provides an elegant

machine extension facility.

PAGE 33

Since gates are objects, they

come under the prctection/sharing umtrella of the system.

The mechanisrrs for sharing gates are the same as those

available for sharing files, C-lists, and other objects.

Passage of the execution cf a precess from one of its

constituent dcmains tc ancther is always via a gate. This

passage is carefully regulated by the system gatekeeper.

We conclude this secticn with twc examples cf how the

return result mechanisrr can te replaced l:y appropriately

passed input pararreters. Suppose a dcmain wants the file

"FOO" frorr the file system.

obtaining it is by executing:

1he most direct way of

FINI (11FCC 11 ,KEY) (FOC.SIOT)

where:

"FCC"

KEY

is the file name.

is the access key which the domain presents

to identify itself.

FCC.SICT is a C-list slct for the returned capability.

A second strategy would te to pass a C-list slot as a

parameter. Then the callee can fill it and no items need by

returned. Coe creates the gate FINt.1 which may be callea

l:y:

FIND.1 (11FOC 11 ,KEY,P.Y.CIIS1.FCC.SIOT)

where:

MY.CIIST.FOO.SICT is a capatility for the subsegment

of the C-list of the calling domain

which will receive FOO. This

sutseg•ent is ore ~ntry long.

PAGE 34

The atove technique is flawed ty the fact that the

caller cannct insure that a file will te flaced in FOO.SLOT.

That is, the type and option tit checking afforded ty the

gate keefeI has been lost. A fartial soluticn to this is to

pass a gate tc the caller which writes FOO.SLOT rather than

passing the slct itself. This gate can test the type of

object tefcre placing it in the C-list.

First a gate called WRITE.FOO.SICT is created:

CR EA 'IE • GA 'I E (CA 11 ER , WR I 'IE • FCC , (1 FI IE 1 , 1 f' CV E 1) , , EA N K) (WR I 'IE. F 00 • SL O 'I)

where: CAIIER is a cafability for the calling domain.

WRJ'IE.FOO is a file address which contains the

code:

WRITE.FOO: MCVE(O,MY.CLIST.FOO.SLO'I)

RETUFN

which moves the fassed capability to

FCC.SLC'I in the dcroain C-list.

1 FJIE 1 , 1 MCVE1 constrain the farameters to the gate

WRI'IE.FCC.~ICT tote files which can be

moved arcund inc-lists.

Given the existence of the WRI'IE.FOO.~ICT operator, the FIND

operation nay te redcne as:

FJNI.2(1 FOG1 ,KEY,WRI'IE.FOO.SLC'I).

'Ihis examfle generalizes tc mere complex situations.

If the caller has an intricate data structure and the

ccnstraints on it are very suttle, he nay fass Oferations to

read and ~rite it rather than pass the structure itself.

Extremely tight protection is fOssible using this mechanism.

PAGE 35

DOMAIN AC1IVA1ION ANI EINDING

1he previcus secticn described hew objects of type gate

are constructed and gave some simfle examples of their use.

1his section explains the set of Cferations that may be

performed er. gates.

It is possible to view gates as frccedure entry points

a la Fl/1 er AlGOl 68. All farameters and results are fassed

by-value. 1he value of a cafatility parameter is a copy of

the capability. 1his provides call-ty-reference and is

fairly cor.venient when ccmbined with the sut-file and

sub-C-list mechanism described in (C.2)

section.

of the OEJECTS

1his atstraction cf gates will satisfactorily explain

almost all uses of the gate mechanism and is all the naive

user need know about the sutject. Hc~ever, to explain the

operations JUMF.CAll, JUMF.EE1UEN, and 1RAP.RE1URN as well

as the precess IISFIAY Cferators it is necessary to

introduce the conceft of a QQ!~in activation ~~Eg~g.

As described above, invoking a gate is a request to

switch thE executicn cf tbe proces~ from one domain to

another, and returning is a reguest tc resume the execution

of thE caller. The system bas a ratler different view of

this situation. Domain CAll and EE1UEN are simply operations

on the frccess stack. Calls construct domain activation

records frcm a gate, a parameter list, aLj a result list and

place this activation on tof of

actual result list, the EETURN

tofmcst dcnain activaticn tc bind

formal result names in the

PAGE 36

the frocess stack. Given an

operation interfrets the

the actual results to the

callers domain. Then the

returning ocmain activation is erased from the stack.

A domain activation record contains all the information

necessary to rEsume the execution cf the domain on some

processor. In rarticular it contains:

A fCinter (perhafs implicit)

the caller.

to the activation of

The formal result list specified by the gate and

the bindings en the actual results as

specified by the caller.

The processor state (registers).

An interrupt disatle flag.

'Ihe actual parameters.

5ome local storage.

Figure 4 gives a mere complete picture of the relaticnships

among gates, domain activations, domains and processes. It

also disflays the structure cf each ctject.

-

PROCESS

STATE FLAGS

~~
CLOCKS

DOM6

STACK

~ -

I
I

I
I

I

I
I

I
I

PAGE 37

DOMAIN

/ _NA_M_E I DOM 3 j C-LIST
I PARENT I ROOT I

C-LIST ---====--+--~""'"I
TRAP

I

ACCEPT

GATE

/ GATE

DOMAIN

ENTRY POINT

FORMALS
PARAMETERS
RESULTS

ACTIVATION RECORD

DOMAIN [(io}.t3J

PROCEDURE FILE

ENTRY

/ STATE
I INSTRUCTIONS ---+_,.""1 INVOCATION

REGISTERS
~~

RESULT BINDINGS
==-=

ACTUAL DATA PARAMETERS

LOCAL STORAGE

~§§

FigUI.€ 4

1hE structur.~ and int€rr€laticnEhips among processes,
domains, gatEs and C-liEts.

-

PAGE 38

When a domain executes a CAIL operation such as

<gate>(<actual parameter list>) (<rEsult binding list>)

the system gatEkeepEr first checks thE number and typEs of

the actual parameters and the actual results against the

number and types specified by the gate. If they de not

agree, the caller is trapped. Ctherwise, using the gate and

the parameter and result lists, the gatekeeper ccnstructs a

new activaticn record for the callEa aomain and pushes it

onto the rrccess stack, thus making it the active domain.

Each of thE actual data parameters is then copied onto the

process stack and each of the capatility parameters is

copied intc the called domain's C-list starting at index

zero. {Note: This precludes domains calling one another

recursively with capability parameters, a flaw in the system

design.) Then the prccesscr state is set to begin execution

at the entry pcint specified by the gate.

In order to implement cascade rcutines a form of JUMP

is introduced:

JUMF.CAll gate(<actual parameter list>)

The effect of a JUMF.CAll operation is exactly the same as

that of a (All operation except that the activation of the

callee ffIJ~~~£ the activation of the caller in the process

stack rather than being pushed onto the process stack. The

activation of the callEr is ccmpletely lost. This mechanism

can be used tc construct cc-rotines and other barcugue

control structures. Since the callEr's activation is lost

it cannot be returned to, so the callee's activation

inherits the result bindings and constraints imposed on the

PAGE 39

caller (i.e. these ccnstraints are ccfied over to the new

activaticn.)

The sirrflest form cf return is to invoke the operation:

BETUBN(<actual result list>).

The BETUBN cferaticn first checks the number and type of the

actual results against the formal result list saved in the

activaticn record.

routine is trapped.

If there is an error the returning

Ctherwise the gate keeper binds the

actual restlts to the caller's domain as SFecified in the

call (and saved in the activation reccrd cf the returning

domain). Beturned data is COfied into the process stack,

returned cafatilities are cofied intc the designated C-list

slots. Then the activation of the returning domain is

erased fron the tcf cf the stack This has the effect of

making the returned-to-activation the topmost activation and

hence it is assigned the frccessor. Ncte that if jumps are

used then the returned-to-activation is not necessarily the

activaticn cf the caller cf the returning domain. However,

as descrited earlier, the jumf mechanism preserves the

result bindings of the returned-to-dcmain activation. The

actual result list of the returning domain must satisfy

these constraints.

It is sometimes convenient to return a trap rather than

a result (see the secticn en TBAPS.) The operation:

TBAP.BETUBN(TBAF.NA~E)

erases the activation of the domain which invokes it and

generates the designated traf in the returned-to-domain

activation.

-

PAGE 40

ThE rEturn mechanism is also genEralized. It is common

to want to flush the stack, that is to delete some number of

domain activations frcm it. The JUMP.RETURN mechanism

allows this if the returning domain can present the

appropriatE carabilities for each domain tote deactivated.

where:

JUMF.EETUEN (<result list>,C.IIST,N)

C.IIST is a carability for a list of capabilities

fer all domains tc be flushed from the

stack.

K is a number giving thE depth of stack to be

flushed.

A similar opEration exists tc return a trap to a domain

activaticn:

JUMF.TRAP.RETURN(C.IIST,N,TYFE)

where:

C-IIST,N are as above.

TYFE is the type cf trar to be returned.

These operations first check to makE sure that the C.LIST

spans the N-1 domains which will havE activations Erased

from the stack. If not the returning domain activation is

trafpEd. Trey then examine thE returned result constraints

for the activation N-1 deer in the stack, if they are not

consistent with the actual returned rEsults, the returning

domain is trarped. CtherwisE, the gatE keeper Erases N-1

activations from the stack and then tehavEs as though it

were an ordinary return or trap rEturn operating from the

activation N-1 activaticns intc the stack.

-

PAGE 41

'IEAPS

7he hardware and software continually make tests on the

validity cf the operaticns of each precess in an attempt to

detect errcrs as scan as possitle and thus to prevent their

propagation. Arithmetic faults, address faults, invalid

system requests, and tad parameter lists are the most common

examples of tre gereral phenomena called !£~E§· When a trap

occurs there must be a mechanism which allows the process to

recover anc ccntinue executicn. Such a mechanism has strong

ties with the prctection structure of a system, as is

pointed cut ty Lamrscn [B.I.J.

when a trap occurs, the executicn cf the trapped domain

is interrufted and a new domain is newly activated at its

trap-entry-point.

this new dcmain.

!he central issue is the selection of

Cne must srecify an crdering on the set of

domains of each process which will direct the flow cf trap

processing.

The mcst ctvicus

call stack. However,

less privileged than

completely unrelated

choice cf an crdering is the process

it often hapfens that the caller is

the callee or that the two are

(e.g., written ty different autl1ors).

Hence the caller cannot in general te expected to correct

the protlems of the callee. The caller merely has a

capability for a gate to the called ac~ain, not a capahility

for the dowain itself. ~his rules cut the use of the call

stack as an ordering. (Ncte that Pl/1 CN conditions do use

-

PAGE 42

the stack and so violate this siiple lcgic.)

The ordering clearly must take the form of increasing

responsiti]ity. If one domain refuses to accept a trap,

then the traf is passed en tc a more responsible domain.

The prccE!:S tree i!: ccnstructed with exactly this

relationshif in mind. Each node is considered to be

responsib]E for its descendants and, ccnversely, interrufts

to a parent are considered tc apply tc the descendants aE

well. If cne thinks of each dcmain as an ALGOL block and of

the proces!: as an AIGCI program, then the process tree can

be viewed as the static blcck nesting of the program. The

choice cf frCfagating traps up the precess tree is analagous

to the decision tc use the static rather than the dynamic

block structure to solve the free variable problem. Lest

the reader carry this analogy too far we point out that,

unlike the AIGCI name Etructure, the capability mechanism is

orthogonal tc the prcceEs tree and that the nesting does not

have any name !:cope rules asEcciated with it. In

particular, it is possible fer any dcrrain to knew about any

ether dcmain and tc !:hare ctjects with it.

Having decided on an crder for trap processing we now

define the traf operators. Conceptually each trap is given

a name and each dorrain may execute a ccmmand:

C~ (TRALNAME,ENTEii)

which wil] cause the domain to accept the trap named

TRAP.NAME and to re entered at ENTEF with information about

the trapped domain in its precess stack. If a particular

domain trafs then the trapped domain's activation is saved

-

PAGE 43

and the system searches Uf thE precess treer starting with

the traffEO domainr until a donain is fcund which is willing

to accept the trap. The accepting dcmain is newly activated

at its trap-gate entry fOint with parameters describing the

trap. 1o nakE loops less likelyr this trap-accert is turned

off. The domain must explicitly reset the trap-accept

conditicn in crder tc catch a re-occurrence of that traf.

Several trap names were left undefined to allow users

to Exploit the traf mecbanisn within their subsystems.

10 disarw a trap for a domain ar.d thus default it to

the parEnt ao~ain invcke the cperaticn:

CFF(1RAF.NAME).

In thE course of debugging and testing it was found to

be useful tote able to

important in testing

operaticn:

generate trars.

time dependent

1RAF(1RAF.NAME).

This is especially

code. Hence the

Also, some cases require the atility to report traps

~ack to the caller. Thus an cperaticr. exists which returns

a particular trap to the caller. 1his erases the callee

from the stack ana traps the caller at the lccation from

which he made the call:

1FAF.RETURN(1EAF.5AME).

Lampson (E.1.1] gives a detailed example of th~ use of these

facilities.

-

PAGE 44

Twc ancroalies rEmain. First, it is possiblE that the

ancEstcr demain has a tug and that thE trap procEssing will

loop. NEEdham (R.N.J proposes a schEme which solvEs this

problem: nEver allew an Errcr to rEpEat and put a tight time

limit en Each dorrain respcnaing tc a trap. Within this

contExt it is difficult te write a fault tolerant monitor.

ear examplE, it is new ccmmon to USE the hardware to detEct

arithmetic Errers ana also to allcw a program a guotum of

errors greatEr than onE, NEedham's scheme would forcEfully

exit any program which producEd an ovErflow twice. Such a

mechanism sreuld net bE welded intc an operating systPm;

although such a strategy cculd be irrplementea within CAL by

suit ally coding thE rcot and ty clearing the

trap-accept-vector cf any ether domain, In fairness to

Needham, it should be m~ntioned that he propcsed a more

general screme that aces allcw a fault tclerant monitor, hut

it does net sclve the leap protlem.

CAL treats the leap prchlem ty faith in the trap

processors, ty disarming thE trap accEpt flag cf a domain

when it is usEd tc catch a trap, by strict accounting and,

in thE interactive case, by usEr console interrupts,

The SEccr.d ancmaly ccncErns the case in which the root

is unwilling to accept a trap. In this situation, the

procEss is suspended and an interrupt (of the appropriate

type) is sent to the parent of the roct domain. This parEnt

is in a diffErEnt process and presumatly is in a tetter

position tc handle thE trap. This givEs an example of how

PAGE 45

convenient it is to identify traps witl interrupts.

Ey far the mcst ccrrmon example cf a free trap (i.e. not

accepted ty the rcct) cccurs ~hen the tank of a process is

exhausted so that the root domain cannot execute because it

cannot pay fer any resources. In this case the bankrupt

process is suspended and an interrupt (of the appropriate

type) is sent tc the parent cf the rcct domain. In order to

extricate the destitute process, this parent must replenish

its bank and reactivate the process. 'Ihat will allow the

root to run. Cf ccurse the parent may cpt to destroy the

descendant precess.

'Ihe discussion above has teen idealized. In fact, CAl

is not prepared to handle symtolic narres and •ultiple trap

entry points. Each trap is catalogued and given an index.

A trap-accept-vector and a trap entry roint is associated

with each dcrrain. When trap I cccurs in process P the

following algorithm is invoked!

~_!_gl_!!
'IEAEEEE := CUEEE~T;
~!Ei~..'.J

!!~1]
1! 'IRAF.ACCEF'I('IEAPFER)[I] = 'IHUE

'JHElt EEGIN
'IEAF.ACCEF'I(~FAFFEF}[I] := FAlSE;
JO~F.CAll TFAP.EN'IRY(1RAFPER)[I];
!.!! ;

J! 'JRAPFER = ROC'J
'!HEN EEGIN

IN'IEERUF'I (PAREN~ (ROC'I}, 1 'IRAP 1 I P I I};
!!!!;

'IR AF FER .- FAEEN'I ('IFAFPEB);

il!f;
X~!;
nm

PAGE 46

10 sunroarize, the operating system provides an error

handling mEchanism which is tcth flexitle and yet consistent

with the prctEction philcsphy of the systEm. Errors

propagate up the process treE until a responsiblE domain is

enccuntErec.

to

PAGE 47

DISPLAY AND MANIFUIA'IICN CF PROCESSES

'Ihe handling cf traps requires

examine the state of another.

tbat one domain be able

Cn the other hand

protecticn requires that such examination te regulated by

the capatility mechanis«.

'Ihe C-list of a domain may te recovered by the

operaticn

IISFIAY. tCMAIN.ClIS'I CDCMAIN} CFESUl'I}

where:

ICMAIN is a capatility fer the domain of interest

with the display cpticn enatled on the capatility.

FESUI'I is a returned capatility for the domain

C-list (with all cpticns allowed).

Examining the activaticn records of a domain is

somewhat were complex. 'Io display the names of the domains

active in the stack invoke the operaticn:

where:

rISFIAY. STACK. SKEIE'ICN (PF'JCE!:S) (RESULT)

PFCCESS is a capatility for the process owning the

stack.

FESOI'I is a data area to held the ONICUE.NA"Es of

the domains associat~d with the successive

activaticns in tbs frocess stack.

To display a particular activ~ti~n cf a iomain in the

stack invcke the operation:

-

Wh€re:

PAGE 48

II SPlAY. AC'IIVA'IIC N (PEOCES S, "CC MAIN, I) (RESUl T)

IECCESS is a capatility for the process owning the

stack.

ICMAIN is a capatility for the aomain associated

with the activation record.

] is the inaex in the stack of the

activation I€cora.

FESUl'I is a data ar€a (stack) to receive the

returned activation r€cora.

'Io write into an activaticn reccra:

where:

iEI'IE.AC'IIVATION(FEOCESS,DCMAIN,I,'IARGET,VAlUE)

fFCCESS,IOMAIN,I are as atove.

'IAEGET is an index into the activation recora.

vAlUE is a (clock cf) value (s) to be written into

the activation recora.

Only the processor state and lccal stcrage may be changea in

this way, all other information is protectea by the nucleus.

~ince capal::ilities are used to regulate these

operations, the protection is net violated and yet one

domain may exercise complete surveillance ana control over

ancth€r.

Since a domain may net te aestroyea until all its

desc€naents ar€ destroyed, it is impcrtant to be able to

reconstruct the process tree.

ar€:

'Ihe operations to do this

where:

and

where:

FCC'! (PROCESS) (RESUIT}

IEOCESS is a CaFatility

interest.

PAGE 49

for the process of

BESUl'I is a capatility for the root domain.

SCN (DCMAIN,I) (RESUI'I)

ICMAIN is a capatility for the domain of interest.

1 is an index of the desired son.

FESUl'I is a capatility for

descendant cf the

descendant exists.

the 1 1 th

dcmain if

immediate

such a

lastly there are operations to susFend the execution of

a Frccess and to activate a frccess. Wlen created, a process

is in a susfended state. Processes waiting on an event queue

are alsc susFended. AC'IIVA'IE enters a suspended process into

the scheduler's queue and SUSEEND remcves the process from

the scheduler's queue.

!:USFEND (FBCCESS)

AC'IIVATE(FBOCESS)

PAGE 50

INTERFFOCESS COMMUNICATION

CAL aichctonizes communication between processes as either

synchronous er asynchronous. synchronous messages are

call ea events ana asynchrcnous DEssages are called

interrupts. Although events may be sent at any time, they

arrive only when reguestea ty the receiving domain. They

are thus synchroncus with the executicn of the receiver.

Interrupts may strike the receiver at (almost) any time and

therefore appear asynchronous with its execution.

EVENl CUEUES

Event gueues are objects implemented ty the nucleus.

When createa, a gueue is aesignatea as containing either

capatilities or segments of aata. A capatility queue may

only hanale capabilities, ana a data gueue may only handle

segments of aata.* Associatea with each event in a queue is

the name cf the aomain which sent the event. Any process

willing to supply a tank which will tuna a queue may create

a queue. Tte creation is dcne as fcllcws:

* 1his is a restricticn implied by the gate type
constraints.

PAGE 51

CREA'IE (('C-QUE UE' I 'D-QUEUE ') , BANK, CAFACI'IY} (EESUlT}

where:

C-QUEUE

I-QUEUE

EANK

CAPACI'IY

RESUI'I

says makE a capatility queue.

says make a data queue.

is a carability for a bank that will

ray for space cccupied by the queue.

is the maximum number of words that

the messages in the queue may occupy.

is a carability-list slot to receive

the capatility fer the created queue.

'IhE operatiens on queues arE extremely simple. Operations

exist to add an event tc a gueue and te remove an event from

a queue or a sEt of queues. If the queue or set of queues is

empty and a process tries tc gEt an EVEnt, the process is

suspended and its stack is chained tc each such queue until

an evEnt arrivEs at cne of thEm. As the name queue suggests

a queue may hold mere than ene event in which case the

events are queued in a first-in first-cut sequence. If the

queue is full then the put oreratien suspends the process

and chains its stack tc the queue fending more space in the

event queue. If several precesses are queued waiting for an

event, only the first process receives the event. The other

processEs ccntinue to ~ait. ('Ihe definition of "first" may

be complicated by keyed events. SeE telov.} The suspense

actio~ may tE modified by a wait timE; if the process is

queuea fer mere than this time, it ~ill te de-queued and

given a trap return. Cne ether modifier is possible: a key

may te asscciated with a message by the sen~er. In this case

PAGE 52

a procEss must present thE appropriate key to get this

message. lf the key is inccrrect, the message will be

invisible. As mentioned in (C. 1) above, keys arE an

extension of thE capability mechanism, they prcvide

prctectea tames.

and

ihe fcrmat of messages is:

UNJQUE.NAME of sender

KEY

MESSAGE

optional

capability or block of data

ihe operations on queues are:

PU1C(QUEUE,MESSAGE,iAI11IME,KEY)

PU1t(QUEUE,MESSAGE,wAI11IME,KEY)

GE1C(CUEUE,WAI1TIME,KEY) (MESSAGE)

GETC(QCEUE,WAI1TIME,KEY) (~ESSAGE)

where:

c

D

CUEUE

MESSAGE

implies the message is a capability.

implies the message is a data segment.

is a capal:ility er list of capabilities

for the relevant queue or queues.

is either a aata segment descriptor or a

capatility tote sent or obtained.

WAITTIME is the maximum real time, in micrcseconds,

that the precess will wait in a gueuE.

KEY is a (epticnal to the sender) key which

is asseciated

present, the

with the message. If

receiving process must

present the key tc cttain the message.

-

PAGF 53

'Ihe gueUE mechaniE!ll

communicaticn among

is aEEignEd tc

proaucer!:: and

facilitate convEnient

ccnsumers of data and

capatilities. For examrle, all external devices (terminals,

tapes, card readers, printers, •••) are either producers or

consumers er l:::ot h. In CAI each of them ccmmunicates with

internal prccesses via event queues.

'Ihe teletype communication facility EXfloits most of the

featUIES cf guEUeE. 'IhEre iE a rrcces!:: ~hich listens tc all

(it iE actually run on a peripheral

procEsscr). 'Ihe listener Eenas and receives characters from

these external devices. For full duplex devices it echos

many of the characters that are sent.

'Ihe listener co!llwunicates ~ith internal processes by using

two t-gueues, one fer input ard one fer output. Whenever a

special character arrives er whenever the teletype has sent

a ccwplete line, the listerer put~ the message into the

input gueue alcng with a key identi~ying the teletype. These

keys allcw all teletypes tc sharE tte samE buffer without

fear of cne -r:rccess intPrCEpting ancthers input

'Ihis sharing reduces the space cverhead since

l:::uffers are almost always ewpty.

or output.

almost all

WhEnEVEI: a process want!": an inrut message from its

teletype it executEs:

GE'I[(INFU'I, 1CF7 ,K:EY} (l'H~SAGE)

which will get a message, if there is cne, ~~om the teletype

-

spEcifiEd ty KEY.

PAGE 54

The procEss will wait at most 10 seconds

for such a mEssage and if ncne arrivEs it will trap return.

At this foirt the procEss may assume the user is in "think

mode" and cut tack its working set in the swapping medium.

Cn the otbEr hand, if a roessagE is returned, then the

process will frcbatly respond with a nEssagE to the output

gueuE which SfEcifies thE Echc for thE message and some

control infcrroation fer the listener. Note that a message

sender nEEd not have the key as a frctected name but that

the receivEr must possess the appropriate access key to get

a keyed message.

This exanfle shews hew queues provide protected-pooled

buffered stream and block ccmnunicaticn among processes. It

is in sharp contrast witt the tuffer womping and flag

setting interfaces presented ty most operating systems as

the I/C irterface. cueues ftovide a complete interface to

all external devices (e.g. terminals, disks, •• ,) and among

the active precesses.

It st.culd be clear that keyEd messages make a

multiplicity of event queues almost unnecessary. It would be

possitle tc have cne gueue glcbal to the system and to use

thE keys as proxies for event queue capabilities. The

central frctlem is that scme malicious or errant process

cculd clcg or fill the queuE and thus lock-up the system.

The choice of having many disjoint gueues stems from our

ideas on accounting and on the isolaticn of one process from

another. ThErE is nothing tc prevent an implementation from

using only a single storagE fool fer the event buffers.

PAGE 55

Certainly at thE usEr lEvel this can tE done. In fact each

class cf inFut-cutFut driver has a pair of queues for

communicating with all instances of that device.

'Ihe examFle atove presumes that

the extent that they collect

thE Frocesses cooperate to

their Ressages so that the

telEtypE qUEUE doES not CECCmE cluttered. In reality this

assumption is violatEd and so when a {recess is atorted or

when a terrr-inal is rE-allccated, the terminal allccator

selEctivEly flushes the tuffer by using the following

OFeraticns:

where:

IISFlAY. EVEN'IS (CUEUE) (lIS'I)

rISFlAY. GE'I. HOCE SSE S (QUEUE) (IIS'I)

rISFlAY. FU'I. FEOCESSES (QUEUE) (lIS'I)

QUEUE is a capatility for an event queue.

II~'I is a data area to receive a list of events

waiting, processes waiting for an event or

Fiocesses waiting for acre room in the queue.

'Ihese disflay operaticns Froduce a skeleton of the queue.

If the list descrites one of the waiting process chains then

it gives tle UNIQUE.!AME cf each frccess (these are used as

identifiers telow). When disflaying the contents of the

queue, the list ccntains an entry for each event. This entry

bas an identifier for the event, the name of the sending

process, the key on the event if there is one, and the first

word of the event.

-

Using

flushed

these identifiers, the gueue

ty erasing un~anted events,

i;rocesses:

PUBGE.EVEN'I (QUEUE, ID)

FUBGE.fE'I.FBOCESS (CUEUE, JC)

FUEGE.FU'I.FROCESS (CUEUE, lC)

PAGE 56

may be selectively

and trapping waiting

where: CUEUF is the queue tc te affected.

IC is the identifier of the message or process to

te rerooved from the queue.

Of course the privilege tc nanii;ulate a queue with such

oi;eraticns is controlled ty the ci;ticns of the capability

for the queue and is net i;assed out tc the general i;ublic.

For exaroi;le only the terminal allocator has a cai;ability for

the low si;eed l/0 queues with all ci;ticns enabled. All other

capatilities fer these queues allow cnly the operations GETD

and PU'IC.

'Ihe i;rcoucer-ccnsuroer relaticnshif is not universal.

Processes are often related ty mutual exclusion. A comm9n

constraint is that at rrcst cne of a community of processes

may te in a certain roode at a ti roe (critical section) ;

however, there may te artitrarily ccrorlex constraints on the

concurrent executicn cf a ccrorounity of processes.

Semai;hcres are often i;rcfcsed as a solution to these

protlems. Einary semaphcres may be siroulated by creating a

C-queue of cne element. If C is any C-list slot and O is a

capability fer the queue, then SF'I(C) is equivalent to

GE'IC (C) (C) and CIEAE (C) is equivalent to PU'IC (Q ,C). N-ary

semaphores are obtained ty a simple generalization of this.

PAGE 57

UnlikE rEguEsts fer conventional sEmaphores, which are

grantEa in an artitrary way (fer artitrary

there exists a ncn-zero frotability aelta

large epsilon,

such that a

process will have to wait fer at least epsilon changes in

state of the semaphore tEforE thE rEguEst of the process is

grantea), semarhcres simulatea ty queues allocate the lock

on a first-cc~e first-servea tasis (there exists an epsilon

such that aelta is zero: namely any efsilcn greater than the

number of rrocesses waiting for thE leek when the request is

made.}

If the constraints en ccncurrent execution are actually

arbitrarily comflEx, thEn thE interlccking is best done by a

lock scheauler [J.G.J. 'Ihis afferas simpler logic,

protection, interlock avoidancE and reccvery.

In the simpler case, cnE may replace the sEmaphore by a

protectea leek on the objEct. Father than let the capability

C above tea aummy capatility, let C te the only capability

for the object. Then GE'IC (C) fC) gets exclusive accEss to the

obiect ana FU'IC (C,C) ;FORGE'I (C) relinquishes this access.

Similarly a reel cf scratch storage for a community of

aomains may te allccatea on a first-ccme first-served tasis

by placing a capability fer each scratch area in Q.

In the interest of ccmflEteness the operations:

ICCK (CBJEC'I)

[tiLCCK(CEJEC'I) could be incluaed by asscoiating a

PAGE 58

semaphorE ~ith each cbjEct.

Yet a third way cf leaking at queues is that they provide

an alternativE form inter-dcmain call. Sending an event can

be viewEd as calling some domain with one parameter

(forking), er returning a result to scme domain (quitting).

Requesting an event is analogous to re~uesting a result from

a functicn (jcining), er teing called with that event as a

this organization parameter. It is sometimes the case that

of havirg cne process perfcrm acticns

processes is either simpler er mere

for a community of

economic than having

many copies of the active precess imteoded in each memter of

the community. Its possitle advantagEs are ccncurrency,

lower overhead due to domain creaticn and private memory,

immunity frcm interrupts, and simpler access to data.

For examfle, it may be more efficient to have a phantom

process which drives the printers and which is driven by a

queue of file cafabilities than to have distinct copies of

such a driver as a domain within each process. The printer

driver when it needs a new job can absorb all pending

events, add them to its schedule in sane priority order, and

then execute the roost impcrtant one. 1c leeks are required

because cnly cne process is nanifulating the data.

~his incidentally frovides a convenient example of the

need to send structured messages. we need to send the

printer driver a message which contains a capability for the

file tc te frinted, a cafatility fer a bank to fund the

printing, the friority of the print jcb, the format of the

-

PAGE 59

filE. and thE format and dEstinaticn of the output (e.g.

font. type cf papEr •••••)

As with thE parameter passing mechanism descritEd earlier.

it is clearly desiratle _to bE able to pass complex data

structures as events. CAI has neither the hardware nor the

language support to specify such data structures. WE view

this as a flaw in the system. It is dEsiratle tote able to

transmit artitrary Fl/1 structures via gueues.

Wirth [N.W.] gives ancther

logically much simpler to have

the operatcr•s consclE than to

example

a flcating

have a

in which it is

process driving

dcmain (routine)

private to each process which performs this function. ihe

listener descrited above is a third exa•ple of this.

One may generalize theEe ctsErvaticns and characterize the

control structures of systems as being primarily:

F-driven: most actions are i•rle•ented as procEdure

calls synchronous with the executicn of

the process.

Q-driven: mcst acticns are i•ple•ented as queued

reguEsts to floating processes.

i-drivEn: central infcr•aticn resides in tables and

I-drivEn:

and prCCESSES •executE' these tables

(shared files).

ihe flow cf centre! is directed by

external interrofts.

•

PAGE 60

Multics ar,d CAI are ccnsiderEd to te primarily P-driven

although many mcdules cf Multics and CAI are Q-driven. In

particular the I/Chandlers, schedulers, and the phantoms

feed on qUEUES. 1he ccres of most Cferating systems are

I-driven. 1ransaction oriented systems such as TSS/360 and

CICS [I.E.M.1,I.E.M.2] are primarily Q-driven. syntax

directed ccmpilers and decision tatle languages are examples

of 1-driver systems.

PAGE 61

1he pcssitle advantages of

F-structure are:

a c-structure over a

(g •a)

(g. b)

(g. c)

(g. d >

Concurrency is exploited.

1he overhead of a single flcating process may be

less than that cf many private domains.

1he floating frocess is protected from user

errers and interrufts.

Access to data may be sirrflified, thus easing

the interlcck frctlem.

On the ether hand:

(p •a)

(p.t)

(p. c)

(p. d)

In order to fully exflcit (g. a) it may be

necessary to have several servers.

vitiate (g.t) and (q.d).

This may

In all known systems which do accounting and

friority scheduling, the ccst of a domain switch

is much less than the cost of a process switch.

Mere importantly, the srace overhead for a

single process is consideratly higher than the

Sface overhead for a sin9le domain because a

precess has a stack, and accounting and

scheduling infcrmatien.

If one considers the possitility of errors, the

message discipline tetween processes may have to

te very complex. 1he traf mechanisms descrited

previously do net extend tc a Q-driven system in

an ebvious way. If the precess must wait for a

response to each request then (g.a) is vitiated;

if net, then cc~plex pest-analysis may be

required vitiating (g.d).

•

PAGE 62

The virtues of the varicus central structures are

catalogea jn Figure 5. Ideally cne wculd like to merge the

concepts of procedure call, send event, and send interrupt.

We have net teen atle tc de this.

F-driven Q-driven 'I-driven I-driven

CCNCUFFEiCY * * *
MCI:UIAFI'IY * * *
CUICI< FE~ECNSE * * *
'IIGH'I CC i'IElC I * * *
ERRGR HAHIING * ? *
CLEAN IN 'IE FF >CE * *
CCNCH'IUHIY SHlFIE * *

Figure 5.

'IHE VIF'IUES CF FCUR CCN'IRCI STRUCTURES

To summarize, event gueues are Frovided to allow

interprocess communication. Mest ccmmunication with other

processes and with "the outside worla 11 is through message

queues (shared files, locks, and interrupts provide more

primitive communication). 'Ihe queues can pass either blocks

of data er they can pass entire ctjects by passing a

capatility. The systerr will suspend a process until the

message arrives (er is sent) unless the process overrides

this suspense. Keys can be attached to messages so that they

can be directed to a particular receiver.

PAGE. 63

I N'I E. fiR UP'I S

At least one author has suggestea the al:oliticn of

interrui:ts l:ecause the:y create so ll!uch grief (N.W.]. Most

theoretical mcdels cf contrcl structure seem to lack the

concept of interrupt for this reason. P.owever. real systems

are not at lil:erty to ignore the issue of what can be done

in case the event queuing mechanism treaks down or in case

continuous i:olling of an event queue is too expensive. 'Ihe

ol:vious answer is that it must be Fossi~le to interrupt the

executicn cf a acmain in sane process externally and to

cause the invccaticn of some new aomain cf the process.

Any dcmain may in!~rr~f! any other domain (including

itself} so long as it has the approi:riate capability for the

interruFted domain. An interrupt is addressed to a

particular dcmain cf a i:articular process. If that domain or

cne of its descendants is active then the interrupt strikes.

causing a new activation of the acmain to which the

interrurt •as directed. Otherwise the interrupt is arrested

until its target aomain is active er is a parent of the

active dc•ain of the precess (see Figure 3.) 'Ihe

interrupting domain may Sfecify a datum describing the

interrurt. This datum along with the ONIQUE.NAftE of the

interruptor is placed in the call stack of the interrupted

precess. As mentionea earlier. interrupts are much like

traps. ~he interrui:ted domain is activated as though a trap

bas cccurred (i.e. at the trap gate entry point.)

-

PAGE 64

Interrupts and events may interact with each other in a

bad way: if the interrupted dcmain is waiting for an event

it is de-gueued and its process state is modified so that

when the irterrupted dcmain is resumed it will immediately

re-execute the call tc get an event

counter is •tacked up').

(i.e., the instruction

'Ihe interrupt operators are:

IN'IEliliUFT (rCMAIN, rA'IUM)

tI ~ABIE. IN TEE EUF'IS (re ~A IN)

ENAEIE.IN'IEREUF'IS (rCMAIN)

where: DO f'A IN is a capal:ility for the domain to be

inter-rufted.

r; A 'I Dr'! is any datum.

'Ihe motive for using the precess tree to moderate

interrupt handling stems from the observation that

interrupts are very much like traps. A domain should only

l:e expected tc cbserve interrupts directed to its ancestors.

'Ihis corresponds tc a priority interrrpt system except that

it puts a partial order rather than a linear order on the

interrupt structure. 'Ihis generalization was fcund tc be

both inexpensive and valual:le.

'Ihe newly activated interrupt domain may perform any

operations it desires, sul:ject tc the limitaticns of its

C-list. In particular, it will examine the interrupt datum

and the i:rccess state (by displaying the process stack) and

it may interrcgate the user if he is en-line.

PAGE 65

ConsidEr thE exarnrle cf a user sending an interrupt to his

command prccessor domain frcm a terminal. The command

processor will ask the user what acticn is desired. "CEEUG,"

"PURGE," and 11EETUEN11 are ccmmon responses. tEBUG causes

the ccmmard rrocessor tc jump-call the detugger. The

"PETUBN'' request directs the ccmmand processor to return to

the interrupted domain as though nothirg had happened.

The "PURGE" command is mcst interesting. Presuming that

the command i:;rocessor

for all

is powerful

domains belcw

enough to

its first

have

stack

activation, the command processor may simply jump-return to

its first activation. This wculd destrcy all the intervening

domain activaticns. It is cften the case that intervening

domains would like tc make a more graceful exit. They may

want to clcse their files and write a suicide note to the

user. Hence the PUEGE ccmmand directs the command processor

to RETUEN.1EAF(INTEREUFT) tc the interrupted domain. This

initiates the trap processing mechanism mentioned earlier

and allows the active dcmains to flush themselves out of the

stack in ar crderly manner.

If this fails, the user may interrupt the errant process

and type FUEGE N fer any integer N. This will erase the top

N activaticns off the stack and BETUEN.TRAP(INTERRUPT) to

the domain N+1 activations deep in the stack.

an attreviaticn fer "PUEGE C").

("PURGE" is

-

PAGE 66

1here arE times when one must abolish (disable) interrupts

temrorarily. Certain critical secticns cf code manipulating

shared data must te executed withcut interruption. If such

modificaticns are interrupted in mid-flight and another

computatior. is scheduled, then the shared data will remain

locked for a rrohititively lcng time. lf the data is shared

with the interrupter, this raises the specter of a deadly

emtrace. 1hese protlems occur at beth the system and at the

user level.

1wo solutions are possible. Cne is to place the

noninterrurtatle ccmrlex very high in the process tree so

that only very high rriority interrurts can strike. 1he

second is

illuscry.

interrupt

to disatle interrupts. 1he first solution

For pragmatic reasons it must

any domain of any process. The

be possible

fact that

interrurt is powerful will tE seen tc le irrelevant.

is

to

the

Only the second sclution is tenatle. Since it must be

possible tc invoke any other domain without fear of losing

control, the scope cf interrupt disatle is glotal tc the

precess.

1he solution above has a flaw: it is now rossible to

construct a rrccess which can never te interrupted. Hence

interrupt disable has a real time limit. Associated with

each dcwain (not each activation of that domain) is a

timer. risatling interrupts in a dcmain sets its timer to

some quantum Q. At each instant that interrupts are

PAGE 67

disabled, some domain's timer is running down. It is now

possitle fer each dcmain tc te assurea cf at least Q units

of real tine executicn. Only the timer cf the topmost domain

in the stack with interrupts disabled is decremented. If

this timer laFses before interruFts are enabled then the

active domain is given a traF, interrupts for the entire

process are enabled, and the highest pricrity interrupt

strikes.

If a domain tries to return while it still has its

interrupts disabled the caller will get an interrupt

time-out traf. Tc prevent this mis-directed trap, a

returning frocess is trapped if the interrupt disable of the

returning dc•ain is set.

we want tc te able tc say that the maximum time for a

process of N dcmains to resfond to an interrupt is NxQ. To

insure this we must add the constraints that a domain cannot

reset its ti•er while the frccess continues in interrupt

disable •ode (i.e. all clocks clear at once} and that nc new

domains can te created while interrupts are disabled

(ctherwise N gives nc bound). If ttese constraints are

enforced then one may show that the maximum interrupt

response ti•e of a process is fixC.

This treat•ent cf interruftS differs from that descrited

by Ia•Fson [E.1.1] in two ways. ie decrement only one timer

at any instant. ihen a dc•ain ca11s ancther domain it really

has no idea what way transFire. For example, a request to

get a line fro• a teletype •aJ actually tea request for a

•

PAGE 68

line from a file er a program. This aynamic linking means

that a aonain is cnly aware cf its c~n execution ana the

interfaces ana shared data it sees. ~his requires that the

callea aonain be atle tc extend the interrupt disatle

quantum and that

from the quantum

it re atle tc ao this without subtracting

of some ether acroain. The second

difference is probably pedantic. We fix the number of

domains and associate timers with aomains rather than with

their activaticns. This prevents a process from getting into

a locp of a dcroain calling itself and aisatling interrupts

or a locp cf creating a aonain, calling it, and aisatling

interrupts. Frocess stack cverflow is the only limit on such

a situaticr in the ECC systen aescritea [E.L.1. J.

PAGE 69

CCNCIUSICN

The iuplementation of CAI was undertaken because it was

felt that the manufacturer-sufplied Cferating systems did

not allow the functions that were needed by a university

computing ccmnunity.

operating systems,

~fter titter experiences with other

we set generality, extensibility,

rationality, and reliability as our design goals. The tasic

system which we have descrited was designed in two man

years, implemented in three man years, and required four man

years of polishing and redesign. It (the lowest level)

consists cf seven kinds of ctjects and cf about seventy-five

operaticns en these ctjects.

the levels cf Figure l) has

invested ir it.

~he entire system (i.e., all

about t~enty five man years

The ccntrcl structure consists of domain call and

return, trap precessing, interruft send, event get and put,

and process create and destrcy. As it turns out, six of the

seventy-five cperations acccunt for 90, of the calls on the

lowest level. The six most frequent operations are file

read-write, dcmain call-return, and event get-put. Thus it

is SEED ttat the gate keefEr and thE call-return and the

get-put opErations are the mcst heavily used aspects of the

system.

The system has been in cperaticn for three years and

currently averages one crash per forty hours of operation.

Nine out of ten such crashes are cue to unrecoverable

PAGE 70

hardware errors. The software is an crder of magnitude more

reliatlE tran the hardware.

In a sense, CAI is a texttook system. It is easy to

explain to a class.

examplE, trE SCCPE

of CAI by writing

It is also fairly easy to use. For

CfErating system ~as irrplemented en top

a dcmain which sirrulated the CDC SCOPE

operating system using the orerations cf CAI quite heavily.

This reguired about :OOC machine language instructions. The

converse, running CAL on SCCPE, ~ould be much more

difficult.

The rEader is probably ccnvinced at this point that CAL

is indeed general, extensible, rational, and even reliable.

Eut hew much does it ccst? The answer of

we shall simrly compare the CPU time of

SCOPE is a reasonatly efficient efficient

computation-beund tatch jcb, SCOPE and

approximately the same fraction of tr.e CPU

course depends.

CAL and SCOPE.

system. en a

CAI deliver

to the user.

However, a student batch jct run en CAI

the CPU re~uired by SCCFE. Clearly one

for generality and

rationality should come

extensibility

fer free (but

requires six times

must pay something

(reliability and

they seldom do)).

Whether a factor of three er six is an acceptable price

remains te te seen.

•

[A.F.]

[B.C.]

[D.V.]

[E.D.]

[R.G.]

[J.G.]

[P.H.]

(H.t.]

(J.I.]

PAGE 71

EEFEEENCES

Ackerman, W.E., Ilummer, W.W., An Implementation

cf a Multiprocessing Ccmfuter System. !i£§! !~~

·Jll.E.Q.§.i.!!J!! on 0£erating s.1::tems PrinciEles, ACM

(19E7).

1he ~§££!.i.E!.QJ; --] t~jj~jtioE .Q£ !E§ ~2QQQ

Informaticn Burroughs

Corporation, Detroit, Michigan (1961).

Iennis, J.E., van Hern, E.C., Programming Seman-

tic:: fer Multiprograwmed Computations.

Communications of the ACM 9 I 3 (March 1966).

Iijkstra, E. w., ihe Structure of iHE

Multiprcgramming System. Cc••unicaticns .Q! !h~

~s;l .1.1 I ': (flay 1S6E).

Graham, R. M., Protection in an Information

Frocessing Utility. Communications of !h~ !~~ .1.1

I ': (May 1 SEE} •

Gray, J. N., locking.]~s.Qrd of the Project MAC

Ccnference en Ccncurrent Syste•s ang R2£21!§1

ComEutation. ACM (June 1970).

Eansen, P. E., ihe Nucleus of a Multiprogramming

System. Communicaticns of !£~ !f~ 11 I 4 (April

1970) •

Hauck, E. A., I:ent E. A., Eurroughs' B6500/b7500

Stack Mechanisms. ~E!iBS ~oint ~Q~E~!~!

Ccnfe£EDCE 1S t, Spartan Eccks, Hew York (1968).

Iliffe,J. K., Easic Machine Frinciples. American

Elsevier Fublishing Comfany, Bev york (1968).

•

PAGE 72

[I.E.M.1] IE~ System/~60 1ime Sharing System Concepts and

Facilities. f CI m International

Eusiness Machines Ccrporaticn, Armonk, New York,

(1967).

[I.E.M.2] fEf!2m§f

.§§1l§f2l

Information f£D1fQ1 1Y§!§ill --fif~--,

Informaticn]_g]]~l· form GH20-1028

[B.L.1]

[B.1.2]

[B.I.3]

[R.N.]

[S.S.]

[N.W. J

Internaticnal Eusiness Machines

Arrrcnk, New York, (1971).

Iarrpson, E. W.,

Proceedings Qf

Dynamic Frotection

Corporation,

Structures.

Conference 1970, Spartan Eocks, New York (1970).

larrrson, E. w., en Reliatle Extensible Operating

Systems. (A preview cf CAI), 1h§ EQ~f!h

Generation, Datamation, Greenwich, Connecticut

(1972).

Iampson, E. W., Protection. Froceedings Ql !h§

Fifth Annual Princton Conference gg Information

Frinctcn University,

Frincetcn, New Jersey (septemter 1971)

Needham, R. M., Handling tifficult Faults in an

Cperating systerrs. 1hlfQ]f~ ~YIDEQ§i~m 2n

f.I2§!2!.!].9 S_ystell'S Frinci_.ElH. ACM (1971).

Schroder, M. D., Saltzer, J. H., A Hardware

Architecture fer Implementing Protection Rings.

Communications Ql !!ls !f~ .J.2 # 3 (March 1972).

Wirth, K., Cn Multiprogramming, Machine Coding,

and Comriler Organi2ation. fcmmunications Ql !h§

lf] ..1l # 9 (Septemter 1969).

	Title
	Contents
	Acknowledgments
	Motherhood
	Objects
	Intra-process Communication
	Domains and Processes
	Gates, Parameters, and Results
	Domain Activation and Binding
	Traps
	Display and Manipulation of Processes

	Interprocess Communication
	Event Queues
	Interrupts

	Conclusion
	References

