CAL TSS Manual

July 1971

INTRODUCTION TC CAL TSS

Preface

1.

3.

General concepts

Access to CAL TSS

Files, directories

Login, logout

Command Processor, subsystems

Names, objects, name siaces, access locks, access keys
Command processor name space, BEAD name space, SCANL,
PERMDIR, TEMPDIE, OWN.KEY, nunll key, PUB.KEY

SERVYICES, BEAD GHOST, errcors

Space control {what to do abkout 6,2,? errors)

"¥HO' and PANICs, or how to untangle a console and how the
nser stops something he wishes he hadn't started

1. 170 A note on the Line Collector (how to erase mistakes)

& @

[S G Y
v 8 ¥ @
SO WA -

1]

- e e
)
W o

Examgles
Z. 1 Use of BASIC, not keeping permanent files
2.2 Creaticn of a permanent disk file +to be kept for future
sessions: :
2.2.1 future access 'auwtomatic?
2.2.2 future access 'manual!?
2.3 Access to permanent disk files
2.3.1 VUsing EASIC on the file from example 2.2.1
2.3.2.1 BSelective access tc permanent files
223.2.2 Making all the user's permanent files available to
all subsystems
2.4 SCOPE Simulator: a simple interactive FORTRAN progranm
2.5 SCOPE Simulator: an interactive SNOBOL program using a file
from a friend's directory
2.6 Login probklems illustrated

Subsystem summaries

3.1 EDITOR
3.2 BASIC
3.3 SCOPE
3.4 SERVICES and the BEAL GHOST

CAL TSS Manual

July 1971

" PREFACE

This document is iptended to provide inexperienced users with quick and

easy access to many CAL TSS facilities. It is not intended to be

logically complete or fastidiously accurate.

The first part gives a brief description of the logical structure of
the system as seen by the user. The second part is a <collection of

examples of some useful interactions, The examples provide a cookbook

approach which may be adequate for some users, and it is hoped that the
section on general coacepts will be helpful in easing the wuser dinto
productive and flexible use of the system. However it is doubtful that
these ©pages will answer all questions or transform someone with no
previous experience into a proficient user without some work.

Fortunately, one need not be an expert to use the system. One of the
advantages of interactive systems is that the user can "try it and see
if it works" withont incurring a prohibitive cost in money or time.
Thus, a 1ight reading of this document should be more than enough to
prepare the nser to start experimenting on the system itself. Of
course, having assistance from someone w%ho knows CAL TSS is very
helpful. But in the absence of expert advice, going back and forth
between the examples, the console, and the description of general
concepts is hopefully a reasonable route to expertise.

The third section gives brief summaries cf the subsystems available on
CAL 1I5S. These summaries are not intended to teach people how to use
the subsystems. Rather, they are intended as convenient "crib sheets®
for people who already know how to use then.

/“"‘\\

CAL T5S Manual

July 1971

1.1 Access to CAL TSS

To wuse CAL TSS, one must satisfy two reguirements. The first is to
make arrangements with the Computer Center accounting office, or a TA,
or scme such autherity who has time to dispense. He will provide the
name of a permanent directory which will pay for use of the system, and
a password, which will werify the right to use that directory. The
second 1is to have access to a teletype {or other teletype compatible
terminal) , connected to the 400 B system. It is assumed that the
reader has access to such egquipment and knows how to operate the
equipment itself. Below are noted a few useful features of keyboard
input to CAL TSS: ‘

a) input lines are terminated by the RETURN key (no line feed)
b) typing CTRL-Q erases the previoms character entered

<) typing CTRL-Y erases all characters in the current line

4) typing CTRL-I skips to the next tab boundary {cols 11,21,..s)

1.2 Files and Directories

Files are system-maintained objects in which a user can keep informa-
tion {source code, progranms, data, etc.). In particular, when a user
is not active on the system, virtually all the information he wants to
keep is stored on the disk in files. Directories keep track of the
names and locatioas of all the files in the system, plus various other
information. ETach user has his own directory which keeps track of his
own personal files and contains information pertaining to him. This
directory stays on the disk when the user is not active and is called
the user's permanent directory to distinguish it from other directories
which are described later.

1.3 Login, logout

The process of making contact with CAL TSS is called LOGIN. The user
tells the system he is present by typing CTRL-SHIFT-P on the console.
The system then starts to construct the machinery necessary to give hinm
access to his files and to the various subsystems available to
manipulate files. Nominal amounts of system resources are reserved for
him. This nominal amount is sufficient to run a small BASIC program OrC
to use the EDITOR to modify a text file, The console responds by
asking the user to name his permanent directory and to prove that he is
anthorized to use it by giving the passwcrd.

A temporary directory is then created to hold the files that come and
go as he uses the system. The console asks him to name his temporary
directory. Since this name will be used globally across the system, it
rast not be the same as someone elsel!s temporary directory {if it is

? . CAL TSS Manual

July 1971

the same name as another's, +the user is then asked to choose a
different name). The appearance of the Command Processor signals
successful completion of the LOGIN procedure.

The temporary directory and any files which it owns will be destroyed
when the user finishes using the system and logs ont., It is easy to
iogout: simply get into the Command Processor and type 'LOGOUT? (see
examples) .

Note that once +the user has successfully logged in, he starts being
charged for the resources necessary to be active on the systen. This
charging will stop omnly after LOGOUT {not when the console is turned
off).

1.4 Conmand Processor, sunbsystenms

¥hen the LOGIN procedurs is comrpleted, the user will be talking to the
Command Processor. The Command Processor does not do many things for
the user itself, rather, it accepts commands to set up various
subsystems to work for him. Some standard subsystems which are always
available on the system are introduced in Table 1. A user may also
code and call {through the Command Processor) his own subsystems. The
exact method of dcing this is not described here.

TIable 1

r
{ SUBSYSTEM NAMNME WHAT IT DOES
1

TSI NS

q

{EDITCR prepares and modifies text files.

{ BASIC Prepares and Trans prograss in the BASIC]
i . language. .) i
{SCOPE simulates most of the functions provided by the]

operating system which runs batch jobs on the A{
machine; gives access to the FORTRAN, SNOBOL,|
and COMPASS 1languages, and executes programs]
comrpiled with then. : |

i S W s i

BCPL a programming language aimed at non-numeric|
i applications. |
{PRINTER prints files on the line printer. !
1 SERVICES manually manipulates user's files and|
i directories.]

1 £}

The Command Processor and all the subsystems print some character at
the beginning of the line when they are ready to accept a conmand.
This is «called a prompt character. A table in section 1.9 shows the
different prompt characters for all the system—provided subsystens.
After the Command Processor prompts, the user might tell it

P

CAL TSS Manual

July 1971

1EDITOR INPUT .
intending to edit a file called 'input® {the ! at the beginning of the
line was typed by the <Command Processor, not the user). A general
examnple of the form of commands accepted by the Command Processor is
lcommand param param ... paranm
where compand and param are strings of characters separated by spaces.
How the <Command Processor turns the characters at the console into
internally meaningful information is a lcng story, which is introduced
next.

1.5 Names, objects, name spaces, access locks, access keys

When the user types
1EDITOR INPUT

to the Command Processor, *'EDITOR? and 'INPUT' are exanples of what are
called names in this document. The handling of both these names makes
use of the concept of pame space. The trick is to +turn a string of
characters into scme internal form which will give access to a file or
a subsystem. A pame space can be thought of as a dictionary vwhich
translates a strimng of characters {name) into the required intermnal
form. There are several different types of internal forms all of which
are referred to as objects. Files and directories are examples of
objects., A directory contains the pames of objects and also informa-
tion about those objects. Thus, one form of name space is a sequence
of directories to be searched in turn for the given names.

Another important concept in changing names into objects is that of an
access _key. A given name in a directcry may be shared by having an
access _1lock attached to it. In order to get access to the named
object, an access_key must be presented along with +the ©name. Access
locks not only control whether or not access is permitted, but also
what kind of access is permitted. Thus, a given £file npame 1in sone
directory may be protected with two different access locks such that
when it is lcoked np with one key, the f£ile may only be read fron,
while it may be read, written, or destroyed if it is looked up with the
other key-

The most common form of pame space is a sequence of pairs {directory,
access key). The scope and power of a given name space are determined
by what directories are searched and what access keys are used.

There are several different name spaces attached to esach user, and
different ones are used in different circumstances.

CAL TSS Manual

July 1971

1.6 Command Processor nape space, BFAD name space, SCANL name space,
PERMDIR, TEMPDIR, PUBLIC, CWHN.KEY, null key, PUB,KEY

The first parameter typed to the Command Processor is looked up in the
conmand processor name space {see Table 2)., PERMDIR is a name used to
refer to the user's permanent directory. TEMPDIR is a named used to
refer to his temporary directory. PUBLIC is the name of a directory
which <contains the names of all system-provided subsystems. For
example, it contains the pname 'EDITOR'. If the user has just typed:
IEDITOR INPUT

the Ccommand Processor is guaranteed to f£ind the name 'EDITOR!, Having
found the object named EDITOR, the Ccmmand Processor assumes that the
object is a file which it can use to construct the EDITOR subsysten.
It procedes to do this. ©Note that if a f£ile named EDITOR were in the
user?s temporary directory, the Command Processor would find that file
because it searches TEMPDIR first. It would then try to start up a
subsysten constructed from the user?'s file, which is fine if the file
contains the 4user?s own private version of the EDITOR. Otherwise, an
error results. It is always best for the user to know what he is doing
before he tries it.

The interpretation of the rarameters after the first one 1is dependent
on the subsystem being called; each subsystem specifies the name space
it uses to evaluate parameters, The three possible names spaces are
shown 1in Table 2. The BEAD pame space is an o0ld form left over from
previous incarmations of the system. It 1is being phased out. The
SCANL npame space is initially as shown in Table 2, but the user may
pnodify it to suit himself.

Much of the complexity of the name sSpace situation stems from
considerations about the sanctity o©f permanent files {owned by the

permanent directory) and the reliability of subsystenms. Consider the
nature of the files in the user?’s permanent directory as opposed to the
nature of the files in bhis temporary directory. Many subsystems use
temporary or scratch files which are =not of interest +to the user.
These files come and go in TEMEDIR without troubling the user. They
automatically disappear when he 1lcg cuts. Free access to these files
is essential to the operation of the various subsystems, Presumably it
is no great 1loss 1f a subsystem runs wild and a temporary file gets
clobbered. PERMDIR, on the other hand, gives access to the wuser!s

permanent disk files, The user wounld be Justifiably annoyed to
discover that one of his files had been used as a scratch file by sonme
subsysten. There is no antomatic backup of these files. TIf some

subsystem has access to a user?s files and uses one for scratch or goes
wild and destroys files, he is in trouble. His files are gone, and it
will be monstrously inconvenient and expensive to recover then.
Therefore the system does not automatically allow access by subsystems
to the files in the permanent directory. If the user trusts all the
subsystems he is going to call, there are ways he can grant those
subsystems access to files in PERMDIR (see 2.2-2.3), but great caution

CAL TSS Manual

July 1971

is advised. It is as though those files were the only copy of the
informaticn.

One difference tetween +the various mname spaces is indicated by the
access key used when looking in the permanent directory. The pull _key
can only be nsed on one's own directories {PERMDIR, and TEMPDIR in most
cases of interest). It gives unrestricted access to any file in those
directories. Q¥N.KEY is the user!s personal key which was created
along with his permanent directory. It is nnigue to him, unless he
gives it away. The user may grant access to a given file in his
permanent directory from pname spaces less powerful than the command
pProcessor name space by attaching an access lock matching OWN.KEY to
the file. The access may be restricted (to read only access, for
example) by turning off suaitable ?option bits?! in the lock one puts on
the file (see examples). PUB.KEY gives read only access to the files
in the PUBLIC directory.

Now it may be clear that there must be at least two name spaces. On
the one bhand, wunrestricted access tc the files must be possible,
otherwise the user might not be able to do something with his file that
he wants to do. OCn the other hand, there must be name spaces which
keep unreliable subsystems from wreaking havoc. The existence of more
than twc name spaces is an unfortupate historical accident.

The existence and ase of the name spaces is complicated by compatibili-
ty features for subsystems following the conventions of an extinct
early version of the system. For both 'old!? and 'new' subsystems, the
command name i1s looked up in the command processor name space, but the
processing of the subsequent parameters varies.

014 subsystems have all parameters looked up in the BEAD nane space.
During execution, they may regquest further objects from the Command
Processor, which are also looked up in the BEAD name space. All
existing subsystems are being <converted +to the new conventions as
gquickly as possible,

New subsystems have their parameters lcoked up in the command processor
name space. During execution, they may request further objects in two
ways. If the snbsystem makes up the name of the object, it 1is looked
up in the SCANL name space, Objects may be obtained from the command
processor name space only if the user types in the name from the TTY.
Thus, 1in either case, permanent files are protected from unruly
subsystens and from accidental use as scratch files.

N

CAL TSS Manual

July 1971

Table 2 — Name Sraces

T EN 1 A
§ CCMMAND PROCESSOR | SCANL! 1 BEAD]
] NAME SPACE i NAME SPACE] NAME SPACE 2]
i . N | J
T 3 i R | 1 L)
{DIRECTORY |ACCESS KEY{DIRECTORY |ACCESS KEY]DIRECTORY JACCESS KEY]
g i t + 1 i {
|SOHME SPE- |NOT i i i] |
jCIAL NAMES|APPLICABLE]] | 1]
1E.Ga, i 1 i]] |
1'L0GOUT? —— —_— i -] - 1
jand i 1 | |] i
{*SERVICES?| 1 i]]]
F : i + } }]
JTEMPDIR j NOLL] TEMPDIR] NULL | TEMPDIR | NULL]
1 1 1 3 1 £l i
T El El E) { E} 1
JPERMDIR |NULL | PERMDIR] CHN.KEY | PERMDIR | OWNKEY |
F i + i + } |
| PUBLIC] PUB.KEY {PUBLIC | EUB.KEY { - | — I

]

1.7 SERVICES, BEAD GHOST, errors

For use of CAL TSS beyond the trivial, a knowledge of these two special
subsystens 1is required. SERVICES and the BEAD GHOST are similar to
normal subsystems, but are actnally Just new ‘'hats' donned by the
Command Processor appropriate to the occasion.

. e e e e P

files, directories, etc. The main reason for removing this function
from the Command Processcor proper is to minimize the number of reserved
words which may nct be used as pames «f user subsystem ('SERVICES?,
'LOGOUT?, etc.).

Unlike SERVICES, which is troublescme because it must be called, the
BEAD GHOST is annoying because it appears without being called.. The
BEAD GHOST is the system debugger and its appearance is prompted by
some error. Whenever a sunbsystem makes a mistake in dealing with some
object or some part of the system, errcr processing is initiated. Some
errors are handled antomatically by varions subsystems along the vay,

1 methods for altering SCANL from the console are available,

2 The BEAD NAME SPACE really occurs in several forms., This is the most
common form. ©Other forms are not of «crucial interest and are not
described here.

CAL TSS Manual

e e ny

July 1971

»

)

and the user usn't even aware of then. Many are reported to the
console by a given subsystem to indicate that they were asked to do
something illegal or impossible (the Command Processor is an outstand-
ing example of this). Some rTepresent unforeseen circumstances for
which no remedial procedures have been provided (called 1'bugs? for
short). They are reported to the console by the BEAD GHOST in hopes
that the user will Xxnow what to do (like complain to a systen
programmer) » Currently, only class 6 errors {"6,n,m ERRORM™) should be
reported to the console by the BEAD GEOST under normal circumstances.
Other aprearances of the BEAD GHBOST should be reported, along with all
the relevant console printout, to the system staff.

Class 6 errors mean that the resources reserved for the user have
become inadequate for the task being performed. Hhen they occur, the
unser must either obtain additional resources or abort what he was
doing, which introduces the next topic.

1.8 Space Control

CAL 1TSS has several types of storage for which there is curreatly no
antomatic algorithm for sharing the available space among the users.
The only positive thing to be said for the scheme described below is
that it is better than simrply handing ont space until it is all gone
and then letting the system grind to a halt {or crash).

Table 3
r k] T 1 q
1 TYPE | NOMINAL {MODERATE LIMIT |MAXIMUM]
1 i 3 k| ¥ |
E | | 1 1 3
11) swapped ECS space { 7000] 100000 1 1000001
{ (highest type)] 1 1 l
{2) fixed ECS space 1 20400 1 ?] 2 i
i] [1 k I]
T L] R}
{3) MOT slots } not concurrently controlled]
14) temporary disk space } not concurrently controlled]
| {lowest type) |]
| 4 3

"hen a wuser 1logs on, he is allocated the nomipal amount of space of
each type. A command is available to obtain space in excess of this
amount, If a user requests: an amount of space larger than what is
currently available he is put intoc a gueue waiting £for someone to
release space. If the request 1is fcr more space than the moderate
1imit, be is put in a special gueune which prevents more than one user
at a time from being "very large™ in any particular type of space.

There 1is currently no mechanism to force a user to release space once
he has it. Several mechanisms tend tc prevent space hogging. First,
whenever a user returns to the Command Processor, he is automatically

CAL TSS Manual

July 1971

reduced to nomipal. Last, a user who has space over the nominal in
some category 1is not allowed to get mcre space in that or any higher
category without first releasing his space and going to the back of the
queue.

The space command works as follows and may be typed to the BEAD GHOST
or tc SERVICES:

SPACE p1 p2 g3 ph

pl1 through pi4 are the amounts of swapped ECS space through temporary
disk space, respectively, that are desired. The following algorithm is
executed for each parameter starting with pi:

if = -1 2 space of this type is released to get down to nominal
if possitle

if

il

0 or not typed {trailing parameters): 1ignored

if > 0 = 1) If space above the nominal for that type or higher

type has been obtained, error.

2) If parameter is higher than maximnum permitted for
this type, error.

3) If parameter greater than moderate 1limit, enter very
large queue,3

4) If parameter less or = nominal, no further action.

5) Otherwise, accunmnulate this type of space until the
amount this user has 1is up to the size of the
parameter, waiting in gueue if necessary.?3

There are two different starting points from which the user may find
himself reguesting space:

1 He is about to call a subsystem and knows in advance how much
space it will require: enter SERVICES and reguest the
required amount of space and then go back +to the Command
Processor and call the subsystem. The request has to be big
enough - see belcw!

2) 4 subsystem he has called runs out of space and makes a class
6 error which invokes the BEAD GHOST: 1f he has not already
reguested space, the user may do so now with the space
conmand., After he has gotten the space, he types RETRY {not
BETURN) and the subsystem will resume., If he already has
space, there is po way for him to save himself - he must type

- -

3 A message will print if the space is nct immediately available - a
panic {see 1.9) will remove the user frcm the gqueune if he would rather
not wait.

10

AN

CAL TSS Manual

July 1971
PURGE, which aborts whatever work the subsystem may have done
for him, and start over in the Command Processor.

1.9 YJHHQOY' and PANICs (how to untangle a console and how the user

stops scmething he wishes he hadn?t started)

WHO is a regquest that may be typed at the console to determine which
subsystem is in ccntrol. PANICs are a way of interrupting whatever is
going on if the user has somehow lost control. PANICs come in two
flavors:

MINCE PANIC {or PANIC for short) - hold down the CTRL and SHIFT
keys and simultaneounsly type P to send a minor PANIC;

MAJOE PANIC - hold down the BREAK key for at least three seconds
to send a MAJOR PANIC

The difference between a PANIC and a MAJOR PANIC is that subsystems may
handle PANICs on their own if they wish tc, but a MAJOR PANIC always
invokes some arm of the Command Processor.

The remainder of this section gives three procedures covering different
cases of console problems, plus a table telling how to recognize and/or
dismiss subsystems.

PROCEDURE I covers how to approach a conscle initially.

PROCEDURE II tells what the user dces if he is already logged in and
using the console but has either forgotten what he was doing or the
console stopped responding the way he expects it to.

PROCEDURE IITY is for those times when the user has started something
that he wants to stop {e.g., the EDITOEK is printing 2000 lines because
he mistyped something or his BASIC program has been computing silently
for an cminous length of time, etc.).

Sometimes the relevant procedure has a happy ending and the wuser «can
continue. But, alas, the procedure may suggest that the console is
down, or the system is down, or there is a bug in the system. The user
can frequently distinguish between a sick console and a sick system by
seeing if. other conscles in the area are operating. If they are, it
looks like the console is sick. If they arean't, it 1looks 1like the
system 1is. The <current procedores for reporting troubles of this
nature should be available from some other sources. They are not
included here because they are inm a state of flux.

11

CAL TSS Manual

July 1971

PROCEDURE I - a user is just approaching a console to try to establish
contact with CAL 1SS

f]

]Make sure the console is on and is connected to CAL TSS. |

> jMake sure CAL TSS is supposed to be available at this 1
i] hour of the day.]
]

E |

| 1Make sure somebody else isn't using this console.
[}

! i

T 1
i {Send a PANIC.]
i i
|] no] respcnse
i] response]

3 [™
] Jresponse approximately =

4 JCAL TS5 VERBRSION something
] { no response (PERMANENT DIRECTORY?

] 1 1

no { response]] no] yes

T
{ 1Send a MAJOR PANIC
i}

SER R T

T 1 f 3
{Are you really sure |] i {Congratulations. You are in |
Jthe console is OK? | |]]the LOGIN procedure. 1
1 4 {See the examples. |
i | i 1 4
| yes 1 i
T 1 i 1
jIt looks like your |]]Response say something |
jconsole is down or | i {about no srace?]
{the system is | 1 3
{do¥n. 1 1 i 1
i 1 i | no | yes
f 1
i i |Condolances. The system is |
]] jalready loaded to capacity. i
]] jTry again in a while. i
1 i

i |

g

§This means that the console was already logged in

] {perhaps that man hurrying across the room with his cup
jof coffee will shed some 1ight on the situation). This

]is your problem. You can PURGE the guy and log him out

jif that is your style or try to find him if youn are

{more solicitous.
1L

R e

12

CAL TSS Manual

— July 1971

PROCEDURE II — the user is logged in and using the console and has
either forgotten what he was doing or gotten into some mysterious state
vhere the console doesn’t respond the way he expects it to:

r
{REMEMBER THAT ALL INPUT LINES END WITH A CARRIAGE RETURN
] {THE KEY MARKED RETURN ON TELETYPES)!!1

1

e et s i

i

£

JIf you haven't already done soc, look up the prompt
icharacter in the table. {Suksystems signal that they are
jready to process a request by printing a character

jat the beginning of the line. The table will help you
jidentify the subsystem if there is a prompt character
jvisible.)

i

I S F T

1

r 1

no {If you have just typed something, did the characters echoj

< {{print)? |
E |

K]

yes |

r R
i {If the lines are being happily swallowed by the console and
| {no prompt characters are aprearing, some subsystem is |
] jgobbling them up. Are you perhaps in insert mode in the]
| §EDITOR or BASIC? Youn get ont of that mode by entering an]
] jempty line {no characters, just the RETURN key.) If you |
] IJwere in insert mode and you enter an empty line, a prompt |
i 1

3

]character should appear and you can go from there.
(|

| i

r 1
i {Type WHO {followed by BETURN, c<f course).]
L N i
1] no] response
i] respoanse i ‘
T k|
] i jCivilized subsystems respond to this query by |
i i jannouncing their name. Barbaric subsystems are |
{ 1 Jlikely to treat it as a nonsense command and |
i] {print some irrelevant diagnostic. In either]
]] jcase, the table should tell you what's going |
] i jon. |
4 i
El R
— i Send a PANIC i
i i
1 no] respoase

13

CAL P55 Namwal

Jaly 1971
N !
1 response ;
R P e T o s oy P == G o= amd A e g
i gS@me sahsystams ilelﬁ {minor) PANICs and allow }
{ jyom to resume comrtrel. Others duck the PANIC i
i jand the BEAD GHOST appears. Yom can tell the i
i {BEAD GBOST to abort the subsystem by saying i
] JPUREE and you will get back to the Command |
i jProcessor. {You cap also poke arommd in the i
i isubsysten with the BEAD GHOST if you are I
| gdebugglng 1t, but that is famrly S@Phlsﬁlca&@du)
a‘
- S e e —_
i Semd a HAJEB PANIC 1
| ST, — PO |
{1 no a responsse
ﬂ respemse i .
Py ia s .&‘k_« {, . S — e S e n aelak = o e s S ke ,‘an,«:,_ﬂ
QIt l@@ks like your] i A smhsystem which swallewed PANECS {
]Jyour console or the] | was in execution. No system—provided i
;system is down.] | subsystem shoenld behave this way. Bither |
b i e -1 1 ' i
7\ § 1 it was a non—-stapdard sabsysten, i
i 1 ox CAL TSS has a bmgs i
i q s i s e e e e I = 3
N
14

July 1971

CAL TS5 Manual

PROCEDURE III — the mser has -just started seme%hiﬂg he wishes he hadn"y

i

ﬂSend a PANIC

e

—
i

{ no

§ response

response

D Al ﬁd‘auﬁ

ﬂ
i

j_ i = e o . o '.s;,

pmmmsum-mznmm::ﬁ

Nlce snhsystems w111 stop what they’re ﬂ@lmg aﬁﬁa
wait for the user to tell them to do semethiag |
else. Not-so—-nice subsystems will duek the PANIC]
and the BEAD GHOST will appear. The user can {
abort the subsystem and get back to the 1
Command Processor by typing PURGE. Or 1
ifihe decides that whatever was going on was i
OKjafter all, he can tell the BEAD GHOST to I
nake the saubsystem continue exactly what it was]
dolng whem 1nterrupted by typimg RETRY;~ §
5

PR L om e DRSPS popa—— .

— B =, s

= 3
]Sena a MAJOB EAHIE |
A

st e

Y |

] no

| response

| { respomse

1 i

ﬂ\ A = . o o e b

QIt 1ooks like your a QA subsystem Wthh swallowed PANICs
{your comsole or the] {(was in execution. No systep— provided

{system is dowmn.

1

e = A

| {subsysten should behave that way. Bither
{ {it was a non-stamdard subsysten,

gor CAL ?SS has a bug.

- e e e e A (ST il e T s N e e .

15

July 1971

CAL TSS Manual

TABLE 3 — HOW TO RECOGNIZE AND/OR DISMNISS STANDARD SUBSYSTEMS

T EJ
PROMPT{RESPONSES TC INCCMEREHENSIBLE] HOW TO DISMISS IT

T 1

SUBSYSTEN | i
i JOR ERBONEOUS INPUT i !

1 b | 1 3

¥ | T 1

COMMAND i !] BAD SYNTAX |This is the ground |
PROCESSDR jor]state of a console. |
|] SAY AGAIN |From here, the user |

] jor ‘ |may call subsystems |

i { UNEXPECTED F~-RETURNX jor 'LOGOUT! when he |

| jor]is finished. i

] i UNEXPECTED ERROR i |

i jor] |

i] ERROR OCCURRED ON CALL TO { i

i] CHMMDS i]

+ { - 1 1

LOGIN] - jsame as COMMAND PROCESSOR]The user has to suc—}
PROCESSOR { i jcessfully finish the]
i | jlogin {[see examples) |

4 + 3 -4

SERVICES] % i same as CCMMAND EROCESSODR JYFIN? i
3 1 g . |

T E) £) d

BEAD GHOST | @ { same as COMMAND PROCESSOR { *PUBGE! will return |
{debugger) | | jto the COMMAND PRO- |
| | JCESSOR; 'RETRY' or |

i]] *RETURN?! will returni

1] jto the currently]

1 i jactive subsysten. i

1 1 i 1

T T 1 1

EDITOR | 2 i 2222 J*F?' or Q' ({(see]
i 1 JEDITOR document) |

3 i 1 i

g} 1 1 1

BASIC 3 2] 227272 {same as EDITOR]
] or jor i]

{ ? { miscellaneous diagnostics i]

i] relevant tc erroneous |]

i] BASIC statements i i

1 3 k| 3

E] E 1 E]

SCOPE] {see 1 2280272 {IFINY]
| SCOPE) § i |

A 4 L | F}

16

CAL TSS Manual

July 1971

1. 10 The Line Ccllector

Unless the wuser does something extraordinary, all console input goes
through a piece of software called the Line Collector, which provides a
large number of ways to correct/change the 1line being entered. The
chart below indicates the various manipulations that can be perforned;
to invoke a given function, hold down the CTRL key and type the

relevant key. 3 detailed explanation 1is available in the "Users
Guide®, sec. IIT.Z2.3. Here we give two exanples and encourage the
user to0 experiment, Upderlined characters represent one key or a

combination of keys, not the sequence of keys given by the individual
underlined <c<haracters; blanks that might otherwise be "invisible? are
also underliked.

First note that the Line Ccllector maintains the previously typed 1line
as the o©ld line and uses it, in conjunction with typed characters, to
construct a neyw _1linpe. ¥henever the pew line 1is accepted (by typing
RETURN, for example), it becomes the 0ld line.

Suppose the user 1s talking to BASIC and has just entered the line
{considered as the 0ld line) below {which will have provoked a nmessage
from EASIC objecting to the line).

0ld line: ERNIT X
type meaning and_the teletype responds
CTRI-L make an insert at the <
beginning cf the o01ld line
10_ this is what is to be imserted 10_
CTRL-0 copy the rest of the o0ld 1line PENTT X
{all of it) into the new and the carriage
line and accept the pnew line. ¥ill return.

BASIC will issue another diagnostic as it still will not recognize the
linpe as a valid statement.

old line: 10 PRNIT X
type eaping and the teletype responds
CPRL-D copy the o0ld line dinto the no response

new line up to the first cccunr-
rence of the next character typed

N 10 PR

In you wanted IN and made a mistake I
CTRL—-0 erase the Y <-

N N
CTRL-H copy the rest of the 01d line T_X

into the ©Dnew line

17

Jaly 1971

, ¥
RETHEN

Pocdand aniciam oY

you
you
new

BASIC shoyld

o0ld linez

repenbered to print ¥
are satisfied with your
line

accept this lime, which is

10 PRINT X,¥

CAL TS5 Mamwal

¢
apd the car-
riage will
retarn

18

July 1971

Teletype Keyboard‘and Control Characters

(33/35)

1.

igure

F

\

uawuu<

3dedoy ¢

jdaooy

~, u§-to edge (iéﬁﬁféfi

TATHS-TIIO%. -

93e3g =44

ITpa—Y% qmumamuwosoo (osesTaY).

38uBYy) 3JI9SUT 195 F°L

@@
e O/O/O

qe

973 ,m.ﬁwu.mu.ﬂoo

‘qutag amumdmumoﬁou

one character -

.character entered

" up-to and includiﬁgﬁne
entered

Lyp to thg_;neit; chara

. one word

N

@@@@@@@@@@@

@Q@@@@G@

DO 060 0008600

GeleXelaforerolt

3da00y
TeToeds

CAL PS5 Manual

July 1971

2., Exanples.

These examples are pot all-imclusive. They are provided to give a
feeling of how CAL TSS works, plus a few pointers omn how to do some
commonly usefnl things. The first exanple is heavily connented,
subsequent ones are commented only where they comtein poimts of special
interest. Characters typed by the system have been nwpderlimed in the
first example to distingunish them from the thimgs that the mser typed.
Subsegquent exanples are not anderlined.

2 it

i
B

L 3

I AR TR

October 1971
/Example 2.1

Y
CAL TSS VERSION 2.9
20:35:14 1¢/21/171
JPERNANENT DIRECTORY?
GUEST :
GIVE PASSWORD
GUEST
TEMPORARY DIRECTORY?
CLJOHN
COMMAMD PROCESSOR HERE
IBASIC
(BASIC VERSION 2.0
PRINT PI
3.141593
-19 LET X = 13
23 LET Y = 198
G =38 PRINT X,YXxY
ERROR OPERATOR MISSING
=3@ PRINT X,Y,XkY
~4@ END
RUN o '
G.0 J 13 13 234
EXECUTION COMPLETE
-LIST 3¢ ’
3@ PRINT X,Y,X*Y
— -EDIT 30
) 3@ PRINT X,Y,X*Y,X/Y
-RUN
13 18 234
EXECUTION COMPLETE '
“FIN
CHANGES NOT SAVED
“FIN
COMMAND PROCESSOR HERE
ILOGOUT
23710 13/21/71
CONNECT TIME = 97782,
CPU TIME = 6311602,
{ FIXED ECS = 344681559.
MOT SLOTS = @.
SWAPPED ECS = 407565312,
TEMP DISK = @.
MONEY =$.297
GO0D DAY
N

O § OO O €O OO0

o

7222222

!

CAL TSS Manual

21

CAL TSS Manual

July 1971
EXAMELIE 2.1 - SI¥PLE USE CP BASIC, NC FILES KEPT

1.0 These lines <ccnstitute the login procedure. Prior to the
first line, the user has attracted the attention of CAL TSS
by typing P while hclding dcwn the CTRL and SHIFT keys.

1.1 'TGUEST? is the name given for the permanent directory.

1.2 The password to use the GUEST directory is also 'GUEST!, but
the password is not usually the same as the directory name.

1.3 'JOHN' is the name the user chose to give to the temporary
directcry.

2.0 The appearance of the Command Processor signals the success-
ful completion of the login prccedure.

2.1 The user tells the Ccmmand Processor that he wants to use
the BASIC subsysten.

3.0 A1l these lines are a conversation with the BASIC subsysten.

3.1 BASIC announces 1its presence .and signals that it is ready to
process commands by printing *-7,

3,2 The user gives it an immediate command to print the value of
pi and it responds with the value,

3.3 Now the user decides tc construct a simple BASIC program, SO

he begins entering indirect statements. These lines consti-
tute the text of the EASIC prcgram being constructed.

3.4 This 1is an exXample of erasing a mistake, The arrow printed
because the user typed CTRL-Q to erase the 3, The actual
line entered was '20 LET Y = 187,

3.5 The user forgot a comma in this line, so BASIC does not
recognize it as a valid statement and complains. The
correct line is entered.

3.6 The wuser tells BASIC to run the program he just constructed
and it runs the program and prints the results,

3.7 He decides to change the program and types the request *'LIST
30", which types line 30 for inspection.

3.8 The user tells BASIC that he is going to edit that line, so
it is made the o0ld line in the Line Collector.

3.9 This line was ccnstructed by typing CTRL-H, which copied all
of the o0l1d 1line, and then typing ',X/Y' followed by RETURN.

3.10 The nser now runs his program again and the new TrTesults
appear.

3.1 The FIN command tells EASIC that the user is finished.
BASIC warns the user that changes have been made in the
program %hich will be lost 1f the user does not use the SAVE
command to save the new prcgram. The user repeats FIN to
inform BASIC that he dces not wish to save +the program he
has constructed.

4.0 The Command Processor resumes control of the console,

4.1 The user signals that he 1is finished using the system by

typing 'LOGOUT', The system prints the accounting data for

the run and after it wishes him a good day, the console goes
dead.

22

CAL TSS Nanmal
[”\

July 1971

This page no longer contains information.

23

er

3.<::>“;",July 1971

Example 2.2

(CAL TSS VERSION |.2
PERMANENT DIRECT RRY?
JUSER: YV

< AIVE PASS 4ORD

.ORBL

TEMPORARY DIRECTORY?

NV ’

C OMMAND PROCESS OR HERE

\ ISERVICES |
SERVICES HERE |
*NEYDF PERMDIR: AUTO (.D

xPCAP OWUN.KEY

AR AAARAG AR AGAS I P ED
*NEWDI «F PERMDIR:MANUAL

*FIN ;

(C oMMAND PRocrsqu HERE
IEDITOR AUTA.

i

I PRINT 1Z%PI

2@ PRINT 29PI

3G END

COMMAWD PROCaSoOn HERE
1 EDITOR M : :
t I S

1% LET X = 1@

20 LET Y = 20

an PRTNT X*PT YkP T

48 END :

\F

C OMMAND PRUCESSOR HERE
1L0O30UT -

200D DAY

77777777777777¢m?757}» (:)
*ADDKEY 53202 77777777777777 PERMDIR: AUTO (.3

*MC AP PVPMDIR'WANUAL TEWPDIR:

CAL TSS Manual

—~ July 1971

EXAMPLE 2.2 — CREATICN OF PERMANENT DISK FILES TO BE KEPT
FOR FUTURE SESSIONS.

1.0 This is the login procedure again, except that the permanent
directory name is ?*USER:VV?! and the password is *'QRBL', 'V!
has been chosen as the name for the temporary directory.

2.0 The user tells the Command Processor to call the subsysten
SERVICES.

3.0 These lines are a conversation with SERVICES.

3.1 The nser requests SERVICES to make a new disk file by saying

NE¥DF. He has asked that it be created 1in his permanent
directory and named AUTO.

3.2 The command 'PCAP OWN.EKEY! causes the user's private access
key to be displayed. This is done so that he «can see the
number of the access key, which is required by the command
which adds locks to names. The number is the 53002 which
occurs in the second 1line.

3.3 This command =adds lock 53002 matching his OWN.KEY, to the
file AUTO in his PERMDIR. The string of 7's are the kinds
of access which the user is allowing, namely all kinds of
access. The addition of this lock to the pame 'AUTO' mnakes

o the file AUTO available in the BEAD name space, and it will
automatically be available whepever he logs on in the
future.

3.4 A mistake was made in entering this line; the first 'I' was
erased by typiang CTRL-OQ. The 1line actually entered vwas
'NEWDF PERMDIR:zMANUAL?', which creates a new file MANUAL in
the user'!s PEBMDIR.

3.5 Because the uoser decided not to have auntomatic access to
MANUAL, he set up a name in TEMPDIR which can be used to
access MANUAL during this console session. The sense of

this command is to allow the file MANUAL in PERMDIR to be
referred to as ¥ in TEMPDIE.

This dismisses SERVICES and the Command Processor returns.
The Editor is used to put some text in the files AUTO and
MANUAL, alias M, for future sessioans.

= W
9

OO

25

7

| EXECUTION COMPLETE

- SWAPPED ECS = 224351232,

October 1971
Example 2.3.1

CAL TSS VERSION 2.9
2:40:39 19/21771
PERMANENT DIRECTORY?
LSER:VV

GLVE PASSWORD

ARBL

TEMPORARY DIRECTORY?
RY

COMMAND PROCESSOR HERE
IBASIC

BASIC VERSION 2.0

~-L0AD AUTO - —————-——~-‘—~—_.~.~_.@

ERROR OPERATOR MISSING\ |

o6 PRINT 20P1 [— = @D
1@ PRINT 1@*PT\ I ()
3@ END ,>“‘ — — —— @ .
28 PRINT 20%PT «— — — __ __ __ '
RO~ o &
31.41593 | -
62.83185 |

-SAVE AUTO <+— — — — . . _,
S -G
COMMAND PROCESSOR HERE

1LOGOUT

28: 41243 168/21/71

CONMECT TIME = 47156.

CPU TIME = 7245765,

FIXED ECS 166224900,

MOT SLOTS)

TEMP DISK = @.
MONEY =%$.296
@0D DAY

-

July 1971

1.0

P Qe
L3
1) =a

P —
L] &
Boow

s %
oY Ul

CAL T8S5 Manual

EXAMPLE 2,3.1 — USE OF 1 ?REVIOUSLE CONSTRUCTED FILE IN
BASIC . v
Only the interactiea with BASIC is described, althoungh the

reader should note that no special manipmlations were done.

after login to get access to ABTD. :
The command 'LOAD AUTO' tells BASIC to load the file AUTO.
The user may not have noeticed the nistake nade when

constructing AUTO, but BASIC does notice. It priats a

diagnostic message followed by the offending statement.
After BASIC has read the wmhole file, it promnpts agaim. The
nser tells it to list the programn. '
The program is printed and he sees that the statement in
error has been left out.

This is the correct form of the statememt.

He asks that the program be run apd the resunlts are primted
ont,

Becanse the user made a correction to his program, ke wants
to save the new versien, so he does a 'SAYE'. The PIV
leayes BASIC destroyiag the pregram im it.

-1
f%
1

e

I R L

PR I S Rt LI T ST

T R I DT P r I W Y I A

SRp 2N . .

e s i

Octaber 1971

Example 2.3.2.1 ‘

CAL TSS VERSION 2.9
Co@:42:27 16/21/71

PERMANENT DIRECTORY?

JUSER:VV

GLVE PASSWORD

".QRBL

TEMPORARY DIRECTORY?

IV

COMMAND PROCESSOR HERE

v IEDITOR MANUAL . 3

T3PS

_ *Q
i (COMMAND PROCESSOR HERE
. ISERVICES
SERVICES HERE
MCAP PERMDIR:MANUAL TEMPDIR :M

TN
(COMMAND PROCESSOR HERE
IBASIC
'BASIC VERSION 2.0
. { -LOAD M
RUN |
31.41593 62.83185
EXECUTION COMPLETE
CFIN
COMMAND PROCESSOR HERE.
ILOGOUT

243258 1@/21/71
CONNECT TIME = 71783,
CPU TIME = 18849976,
FIXED ECS 253038600 .
MOT SLOTS @

SWAPPED ECS = 31967488@
TEMP DISK = G. L
YONEY =$.443
G0D DAY

"o

CAL T5S Manual

EXAMPLE 2.3.2,71 — SELECIIVF MANDAL ACCESS TO PERMANENT FILE

/4
7 July 1971
1.0
2.0
2.1
3.0
™\

This shows that the Rditor wasnit given a copy of the mser’s
file MANUAL, because he printed the file and it is eumnpty.
The user talks to SERVICES to set up access to HANBAL.

This command sets up access to HANUAL in hkis PEREDIR under
the name 'H? in TENPDIE.

He calls BASIC, reads 1im his file HANUAL, alias H, and
executes the program.

29

October 1971

. Example 2.3.2.2

CAL - TSS VERSION 2.0
20:46:904 1@/21/11
PERMANENT DIREGTORY?
USER:VV
GLVE PASSWORD
QRBL
TEMPORARY DIRECTORY?
OV
COMMAND PROCESSOR HERE
ISERVICES

| SERVICES HERE
| ACHAIN PERMDIR TEMPDIR.

*NCHAIN PERMDIR
*CHAIN TEMPDIR PERMDIR
M

(COMMAND PROCESSOR HERE
IBASIC
BASIC VERSION 2.9
-LOAD MANUAL
-RUN

31.41593 62.83185
EXECUTION COMPLETE

N -FIN
COMMAND PROCESSOR HERE
1LOGOUT ,
20:4T:14 16/21/71
CONMNECT TIME = 52511,
CPU TIME = 7699295,
FIXED ECS = 185104800.
0T SLOTS = 4.

SWAPPED ECS = 247353344,
TEMP DISK = &,
MONEY =$.317

G0D DAY

e

CaL TS5 Wanwal |

: Faly 1971
i

EXAMPLE 2.3.2.2 - ACCESS FOR SUBSYSTENS TO ALL YOUR PERMANENT FILBES
's PEREBIR

1.0 This conversation with SERVICES makes the the user

logok like part of his TEEPDIR and hence gives access to his
’ permanent files to all subsystems Whlch have aceess to. th@
temporary files.

1.1 CHATIN causes the first dJdirectory, PEREDPIRY to have th@
second directory, TENBDIR, appemnded to it. Oops, thatis
backvards. ‘

1,2 So UNCHAIN takes any appended directory out of PEREDIR. :

1.3 Now CHAIN appends PERMDIR to TEMPDIR, which is what the user

was tryimg to de. If he hada't upchained PERMDIR f£rom
TENPDIE back at step 1.2, the two directories would consti-
tute a loop and the code thﬂh locks up panes would get
annoyed if it ever used them.

2.0 The same use of BASIC as in the previons exanple.

31

C . July 1971

Exa.m'p'le 2.4

CAL TSS UERSION |.2
NO R0ONOM, SWPEGS
G0N0 DAY S
CAL.TSS VERSION 1.2
NN RONM, SWPECS
G0OND DAY . '
CAL TSS VERSION [.2
NO ROOM, SWPECS
G0OND DAY :
CAL TSS VERSION 1.2
“NO ROOM, SWPECS
G0O0D DAY
CAL TSS VERSION 1.2
N0 RNOOM, SWPECS '
Gnonn DAY
CAL TSS VERSION .
Sl NO ROOM, SYPECS
N ~ GOOD DAY :
. .- . 'CAL TSS VERSION .2
NO RNOOM, SWPECS
GNON DAY - '
CAL TSS VERSION 1.2
_NO ROOM, SWPECS
GNOD DAY - S
CAL TSS VERSION 1.2
NO RONM, SWPECS

0o

Gnnn DAY | _
CAL TSS VERSION 1.2
" NO ROOM, SWPECS
- 300D DAY I
“CAL ‘TSS VERSTON .2
NO ROOM, SWPECS '
GNND DAY - h
CAL TSS VERSION 1.2
,PFWMANFMT DIRFCTORY7A
JSER: VV
SIVE PASS WORD
.ARBL
TEMPORARY DIRVCTORV?-
Y
G C OMMAND PROCESS OR HER
P | YSERVICES
N SERVICES HERE |
Ao 4c0 | %MAP PERMDIR: TRIVIA TFFPWIR INPUT -
L - . XFIN i

w(ﬂ\ . July 1971

e L S,

e o s s < sistr 01

S e T T TR T T T T T T T T

COMMAND PRICESS 3 HTRE
PENITAR INPUT
: T;P% o ¢.D
) AN
“PRAIRAM TRIV(TTYIN, TTYOUT, TAPE? TTYIN TAPFI TTY 0UT)
YRITE (L, la%) :
L@ FORMAT (+TRIVIA SPEAKING, WHO' L‘THERE?*)
READ (2,203) HAME R e
290 FORMAT =~ (AL®)
WRITE (1,3AR) NAME
o4 FORMAT (%GODDRYE ;% AL A).
END | ~ '

\:Q

CoMMAND PRNOCESS DR HERK

ISCOPE AGA7D%

15:42:35 AR/A6/7T1 SC”P??C ()F (758/?‘1/71

>RUN ‘ : .

WYATITING AT TP OF,QUnHE FOR S“APPED'ECS SPACE
COMPILING TRIV - ’ : ” '

bo

>Lan
MAITING AT TOP OF nUEUr FOR SWPPPED ECS QPACE
CWAITING FOR ACCESS T S4YAPPED ECS OPACE
3 AHuA? IN 2UEUE. : '

WATITING AT TOP OF AUETE FOR -’ SWAPPED ECS SPACE
BESGIN EXECUTION TRIV o
TRIVIA SPEAKING, WHD' S THEPF?
TPrOP qE

G0NDRYE, qEORnE

,6.

lEND O TRIV

> F'T]

COMMAND PRDCEQSOR HVRF
'L0GOUT '

~GOOD DAY

CAL TSS Manual

July 1971

EXAMPLE 2.4 - SCOPE SIMULATOR: A SIMELE INTERACTIVE FORTRAN PROGRAM

This example was generated when the system was fairly busy. H®hen the
user tried to log on, he was refused access because there was no space
to accomodate him. The space fluctuates on a short time scale, so the
user Jjust kxept trying until be got cn. Subsequently, the SCOPE
subsystem reguested additional space which was not immediately avail-
able and CAL TS5S printed the messages saying ‘'waiting at top of
GUEULas» ! and ‘'waiting for access to...!' so that the user would be
forewarned that processing his request might take longer than usual.

1.1 The reader has seen this before, The file TRIVIA in PERMDIR
is made available in TEMPDIR as INPUT.

2.0 The file is printed with the Editor.

2.1 Notice the special file names used to talk to the console.

3.0 The user asks for the SCOPE Simulator. Characters typed by
the user are underlined in this section.

3.1 SCOPE reguests the SCOPE Simulator and the 40000 is an

optional parameter which determines the initial FIL in the
Simulator. If it 4is omitted, a default value of 14000 is
used. 40000 is required to ase the RUN complier so that is
why this value was chosen. SCOPE prints the time and date.

3.2 > 1is SCOPE's rrompt character, signalling that it is ready
to process a regquest. The user may type the same ccmmands
that he wonld have put opn his control cards when using the
batch system. In particular, BRUN causes the FORTRAN compil-
er to compile statements from the file INPUT.

3.3 Another command causes the compiled program to be loaded and
execlited.
3.4 The previous line was printed by the user?s program. The |

is the prompt character which signals that a program running
on the simulator is waiting for input, as opposed to the
simulator itself. After the user responds *GEORGE!, ({fol-
lowed by RBETURN, of <counrse), the program grinds to its
rather uninspiring conclusicn and SCOPE starts watching the
conscle again.

3.5 SCOPE prompts for another ccommand and the user dismisses it.
The Command Processor reaprears.

34

July 1971

\
1
‘Example 2.5

"CAL TSS VERSION 1.2

PERMANENT DIRECTORY?

LAHUEST

3IVE PASS “ORD

.GURST

TEMPORARY DIRECTNRY?

. LUANCE o
- | COMMAND PROCESS IR HMERE
@.0 < ISERVICES

SERVICES HERE
xPCAP OWN.XEY :
77777777777777mno73{>, @D
GARNGARGARDA AR | 234G -
*xFIN

C OMMAND PROCESS OR HERE
1LO30UT ‘

[G0OD DAY
(CAL TSS VERSION 1.2

PERMANENT DIRECTORY? . -~ - = 0
JUSER: VU - e
SIVE PASS WORD . S

. ORBL
TEMP ORARY . DIRECLORY?

.VANCE

COMMAND PRACESSOR HERE ;

@D ISERVICES

SFRVICES HERE

xFIN

1 COMMAND PROCESQ OR HERE
rLosouT

\GOOD DAY

*ADDKEY 123491 71426 PERMDIR:DATA -

xADNKEY 1234@1 71427 PERMDIR:REACT .

(QN © . July 1971

‘CAL TSS VERSION [.2
PERMANENT DI?FCTOPY?
LGUEST
GIVE PASS MORD
. GHUEST S _
TEMPORARY DIRECTORY?
VANCE
COMMAND PROCESSOR HERE
ISERVICES
SERVICES HER
*MCAP VV: PWACT DHINGKRY PVRHDIR RFACT
UNEXPECTED FRETURN
*MCAP USER:VV:REACT; OWN. VEY PERWDIR REACL
UNEXPECTED - FRETHRN :
* FRIENTP USFR:VV
BAD SYNTAX
* FRIENTP USER:VV TEMPDIR:VV
- \BAD SYNTAX .
*FRIENDP UWSER: VWV TTWPTT HAVAYE

S G FWOAP VUIREACT; OYN.KLY PERNMOIR:REACT -

&,

XMCAP VV: DATA; OWN.KLY PERMDIR:DATA .~ - S
- kADDKEY lZSlﬂl 77777777777777 PERMDIRIREACT =~ '

*ADDKEY 1234“1 77777777777777 PFRVDIR DAlAf ﬁ

kEFTN ’ . ; coon
COMMAND PPOCEQSO? HVPa
1LosoudT ’
GOOD - DAY

' (ﬁa A July,1971j

CAL TSS VERSTOM 1.2
PERMANENT DIRECTIRY?
.GURST
SIVE PASS WORD
.BUEST '
‘ TEMPORARY DIRECTORY?
R .VANCE
COMMAND PROCESSOR HERE .
| ISCOPE | |
@ J1Silei54 ar/a5/71 SCOP32C OF mg/m1/7x
| >SNNBOL, T=REACT
SUCCESSFUL COMPILATINN

WOULD ANYONE OUT THERE LIKE TO HEAR SOME POEMS?

: 1SURE

HELLO. WHAT IS YOUR NAME?

TVANCE -

I WRITE POETRY. JOULW VOU CARE FOR A POEh, VANCE7

CMYES

GOOD. I SPECIALIZE IN WRITING HAIKU.- HA‘L I EXPLAIN
ABOUT THE FORM IN WHICH HAIKU ARE WRITTFN? .

T™N 0O THANX
' x

VANCE, I ALYWAYS FIND ONV‘S PHONE NUMBER ‘A KFY To’t;
PFRQONALIIY ”HAT IS VOHR PHONE MUMBFR? SRS T

T6425823

NAME A QVASOA—-OP IF YOU PREFER I LL CH OOSE ONE

UMMER

THANK YOIl. SUCH A LOVELY SEASQN IT INSPIRES NE

o 4 L s e PO e PN . Sy e we e e e st elvﬁ--..—-—--,..‘.“,..m_,_,‘

fA(f\' ﬁL]f3u1y 1971

FISHERMAN 'S BOAT DRIFIS
GLIMPSE OF YELLOY PINE POLLEN
FIREFLIES “ANDERING. -

WOULD YOU CARE FOR ANNDTHER POEM?

™0

I UNDERSTANI, VANCE. THE SOUL CAN -TAKE "ONLY
SO MUGH POETRY AT ONZ TIME. R

“40ILD ANYONE OUT.THERE LIKE TO HEAR SONE -POENS? = ..

T™NDO

. THAT'S ALL RIGHT. ‘I'M WRITING A SONNET CYGLE -~ . .
| C>FIN : R DR
S =) COMMAND PROCESSOR HERE =

oo 1LOGOUT . R
GOOD DAY

- [x]

SN

CAL TSS Manual

July 1971

EXAMPLE 2.5 — SCOPE SIMULATORz AN INTERACTIVE SNOBOL PROGRAM USING A
FILE FRCM A FRIEND'S DIRECTORY directory

This rather complicated example involwves four separate console
sessions.

1.0 The whole purpcse of this session is to find out the number
of the user?s access key so that his friend can add it to
the files she wants to let the user use.

1.1 The user tells SERVICES to print OWN.KEY so that he can see
its pumber, which is 123401.

2.0 This session is done by the user's friend, in order to add
locks matching the user's kXey to her files.

2.1 These commands to SERVICES add locks matching his key, which

is 123401, to his friend's files REACT and DATA in her
permanent directory. Only read access 1is allowed by the
option lists 771420.

3.0 Now the auser 1is going to make links in his own permanent
directory to his friend's files.
3.1 This is an example of typing first and thinking later. None

of these commands did anything except provoke pasty messages
from SERVICES.

3.2 Finally, FRIENDE causes a search to be made for a permanent
directory named 'USER=2VV?, and if one is found, a link to it
named 'V¥' w%ill be placed in TEMPDIR, If a permanent
directory USER:VY isn't found, the user will get sone
message like the ones printed above.

3.3 These commands make 1inks in PERMDIR named ?*REACT! and
'DATAY to files REACT and DATA in +the directory VY. The
meaning of 'YYV:REACT;OWN.KEY' scans roughly as: find
something named *VV?, {which will be the permanent directory
of the user?s friend USER:VV) and look up file REACT in that
directory using the access key OWN.KEY.

3.4 These commands have been seen before. They give automatic
access 1in the future +to the <£files named by 'REACT' and
IDATA? in the user’s permanent directory. Even though the
locks added here wounld allow all kinds of access, read only
access is all that is allowed becaunse of the locks on REACT
and DATA im USER:VV.

4.0 This session nses the files to which the user has laborious-
1y gaipned access. It is program written in SNOBOL which
interacts with the ccnsole and writes poetry.

4.1 The user calls SCOPE and invokes SNOBOL on his file REACT.

4,2 Most of the rest of this example is a conversation with the
poet. Lines which start with the ' indicate that the poet
is waiting for the user to say something and the characters
after the] are whatever the user chooses to respond.

4.3 When interest in poetry wanes, the poet goes away and SCOPE
resumes watching the ccmsole. The user leaves much edified.

39

. guly 1971
A

. Example 2.6

(CAL TSS VERSION [.o
N0 ROOM, SWPECS
300D DAY '
CAL TSS VERSION .2
MO RNOM, SWPECS = .
GOOD DAY o
GAL TSS VERSION 1.2
NO ROOM, SWPECS
GNOD DAY .
< CAL TSS VERSIAN 1.2
PERMANENT DIRECTORY ?
JSFR: VY .
SIVE PASS WORD.
.QRBL D ‘
TEMP ORARY DIRECTORY?
.V i
COMMAND PROCESS OR HEWTf;;
| tLosout B
(500D DAY

[CaL TSS VERSION 1.o
: o . PEIDARERT DIRLCTOIY?
| . LUV o
S UNSEYPECTED FELTUNY -
B o PaﬁmaysuT.nlrECTokY? S <:>
R | LUSFRvY: ‘
' LAH QVNTAY o
PERNANENT DIRLCTORY? &2
JSER: VY P
] A _ CIVE PASS WO : e e
EERE - PASS o : : R
Lo C] PASS WOILD NOT C{:Pltniu ' o
@0 < f):F'Mm;m'Dl.fe.t:ctr SIS @
JISER W ‘ ‘ . -
GIVFE PASG WOPD
CURLL B .
| - _ TER POLATY DIRLCTGRY? :
Ce e T e S
B 20 R S| BUPLICATE TERPOIT ¢ 2.5

Tii PORAKY DIPPClO?Y?
LVANCE e
CONMAND PﬁOCEo~0ﬁ'HERE
1LOGOUT AR
hcoch DAY .

July 1971

CAL ¥5S Hanual

EXAMPLE 2.6 — LOGIN PROBLEMS ILLUSTRATED

1.0

¥hen the user sent his CERL-SRIFT-P to CAL TS5S, there wasn't
enongh space to accemodate him. The space im the systep
fluctmates om a fairly short time scale, so trying again
every few seconds will gemerally get the user omn before he
can get annoyed. ‘

This iateraction illustrates the cousegueances of most of th@
mishaps that can ocecur durisg logim.

'"UNEXPECTED FRETURN' neans that there is aot a permanent
directery named "YV?. :

1BAD SYNTAX?! imdicates that ?*BSER:VY;" is mot evem &
possible mame for a permanemt directery. '

Self-explanatory.
'DYPLICATE TEMPDIR' ameans that soneone else has alr@&@w»

named his TEMPDIR "PAUL'. The user must keep choosing a a@m
name until he gets one that dees mot comflict.

CAL TSS Manual

November 1971

3.1 Summary of the Editor

The Editor subsystem enables the TSS user to construct and edit files
of coded information. A file consists of lines, where a line is a
string of coded characters epding with a carriage rTeturn character
{generated by the RETURN key on the teletype).

The Editor is called by typing a command of the form:
EDIT fnamel fname2

where fnamel is the name of the file to be edited and fname2 is the
name of the file that the resmlts are =written on. fnamel 1is the
default value of fname2. 211 file pames are specified by standard
parameters. The Editor prompts by typing : and awaits a request. At
any given time the Editor 1is looking at a specific line called the
current line. When the Editor is first called, the current line is a
pseudo-line which is always the top line of every Editor file.

The following rTequests may be typed to move abont the file for the
purpose ©of creating, deleting, or editing text lines. Each request is
terminated either by a carriage return or, if more than one request is
made cn one line, by a semi-colomn,, Some requests contain a "stop
conditicn®™ or 1lipne specifier, represented by sc below. Such requests
affect all lines from the current line to the 1line specified by sc,
inclusive. {If you've lost track of the current line, reguest 'P' and
the Editor will print it.) sc may be:

1) a decimal number, specifying the line that number of lines from
the current line,

2) '.str' {(vhere str is any string of characters except semi-
colon), specifying the next 1line containing the string of
characters,

3) '/str', specifying the pext line starting with the given string
of characters, ignoring leading blanks,

by *3', specifying the bottom, or end, of the file,

or 5) omitted, specifying the cuarrent line. .

After the Editor has processed the reguest, the line specified by the
request becomes the new current line.
Regquests Meaning

I Insert, after the current 1lipe, the lines
which follow. Imsertion is ended by entering
a null line (carriage retarn only).

Dsc Delete the specified lines.

T Move to the top of the file (pseundo-lime).

Msc Move forward over the specified lines,

Bsc Move backward the specified number of lines.
{NOTE: sc can only be a namber.)

Psc Print the specified lines.

42

CAL T55 Manual

Novemnber 1971

C/stxrl/stxr2/sc Replane the first eceurremce of ghEl by sﬁm@
in the specified lines. .
c8/strl1/str2/sc Replace every eocurremce of sfrl by skr2
' each of the specified lines.
Bsc. Edit the specified lines asing ‘the Line
» Coellector.*

BR,frame’ Insert the contents of file E£mame - after o t&a]
current line. .

W,fnames,,sc Frite the s@eaiﬁiﬁ@'linesf f*yﬁ:ﬁfcg“WT;Vfﬂ;li
rent lins, mmt@ tﬁé file EnEmE ,
F,fpames F1a1shea -

upﬁate@ text t@ replaee the. mmlglv ,«l fj@j
foame2 specified when the Bditor was: called
Q Finished but de mot save any file. .

The Editor prompts with : amnd responds 2227 to: limes it dees @@ﬁ
gnderstand,

4 PBach lipe helng edited is made the 0ld l1ime in the lime eolleetien -
and may then be altered usimg the Line Collecter., {(See section 1.0 o
the Line Collecter.) '

& If faname is mull a CP name is requested oan the next lime. . 1

53

CAL TSS Manual

pe0 Bl

July 1971

3.1 Summary_of the Editor

The Editor subsystem enables the TSS user to construct and edit files
of coded information. A file consists of lines, where a line is a
string of coded characters ending with a carriage return character
{generated by the RETURN key on the teletype).

The Editor is called by typing a command of the form:
EDITOR fname

wvhere fpame 1is the pname of the file to be created and/or edited. All
file names are looked up in the BEAD name space. The Editor prompts by
typing = and awailts a request. At any given time the Editor is
looking at a specific line called the current line., When the Editor is
first called, the current line is a pseudo-line which is always the top
line of every Editor file.

The following regquests may be typed to move about the file for the
purpose of creating, deleting, or editing text lines. Each request is
terminated either by a carriage return cr, if more than one request is
made on one line, by a semi-colon. Some requests contain a #®stop
condition®” or line specifier, represented by sc below. Such requests
affect all lines from the current line toc the 1line specified by sc,
inclusive. {If you?ve lost track of the current line, request *P?' and
the Editor will print it.) sc may be:

1) a decimal pumber, specifying the line that number of lines from
the current line,

2) '.str' {where str is any string of <characters except semi-
colon), specifying the next 1line containing the string of
characters,

3) '/str', specifying the next line starting with the given string
of characters, ignoring leading blanks,

4y *$*, specifying the bottom, or end, of the file,

or 5) omitted, specifying the current line.

After the Editor has processed the request, the line specified by the
request becomes the new carrent line.
Requests Meaning

I Insert, after the current 1line, the lines
which fcllow. Insertion is ended by entering
a null line {carriage return only).

Dsc Delete the specified lines.

T Move to the top of the file {pseundo-line).

Msc Move fcrward over the specified lines.,

Bsc Move backward the specified number of lines.
{¥OTE: sc can cnly be a number.)

Psc Print the specified lines.

C/str1/str2/sc Replace the first occurrence of strl by str2

———

CAL TS$ ¥awmal

July 1971

in the specified lines.

C8/stri/str2/sc Replace every occurrensce of gtrl by ste2 ip
sach of the specified lines. ’
Esc Edit the specified limes using the Line

Collector.*

R,fnanms Insert the contemts of the f£file
the curreat line.

¥,fnane,,sC firite the specified lines, imcluding the cmr“
rent liag, into the file fpame,

F,fnane Pinished — create the file fﬁ’ﬁé Erom th@
latest version; simply eantering *P' causes the
npdated text to replace ths origimal fil@
specified when the Bditor was called. '

9 Finished but do not save any file.

The Editor prompts with : amd respomse 2?27 to limes it does aot
pnderstand. :

* Eaah llne belng 2dited is pade the old lime im the lime c@ll@ctl@h
and may then be altered um using the Llne Cellector. {See section 1.10 om
the Lime Collector.) : ‘

///\.

CAL TSS Manual

July 1971

3.2 Summary of EBASIC

BASIC is an easy-to-learmn, general-purpose programming language similar
to FORTRAN but created specifically for time-shared computing environ-
ments., For details see the description in +the CAL_ Computer Center
Users_Guide, available at the Computer Center Library.

BASIC accepts two types cf statements: 1) indirect, which are saved to
be executed sequentially as a program at some other time; 2) direct,
which are carried out (executed) as scon as they have been entered
using the carriage return key {direct statements, especially the PRINT
statement, allow the teletype to be used as a very powerful desk
calculator).

Althcugh some statements may be used only directly {or indirectly),
most statements may be used either way. All indirect statements must
begin with a 1line number and are executed in order of ascending line
numbers, Those without 1line numbers are assumed to be direct.
Statements which may be indirect opnly are those that would only make
sense in a program. Statements which may only be direct are usunally
for changing the rrogram itself rather than the data it works on.

BASIC is called by typing a command of the form:

BASIC fnanme
where fname, if specified, is a file containing a BASIC program to be
loaded. EASIC responds with BASIC VERSICN ... after which either
direct statements or a program of indirect statements may be entered.

BASIC prcmpts with -,

There are three w¥ays to enter a ptogram cf indirect statements:

1. Pass BASIC a file fname as the first parameter when it is called;
the f£ile is loaded in the same manner as when a 'LOAD' command Ais
given.

2. Use the 'LCAD' <command toc read in a program from a file, Lines
containing errcrs will be typed cut after an error message and are not

included in the program.

3. Create a ne¥ program by typing it into BASIC. Lines with errors
will not be saved.

Sample EASIC program starting from the Ccmmand Processor:

BASIC

100 FRINT “NUMBERY, "SQUARED"™, ®CUBED"
105 PRINT

110 FCR X=1 TO 10

120 LET S=X*X

4n

e e o e o o . o o e e e . 4 g e e+ . e, e e e e e . e o o e S, o o . o o o e o 2 s iy g

CAL TS55 Manual

July 1971

130 PRINT X,S,X*S

140 WEXT X

150 EX¥D

RUN

NUMBER SQUARED CUBED
1 1 1

2 4 8

3 9 27

L 16 6L

5 25 125
6 356 216
7 Lg 343
8 64 512
9 81 729
10 100 1060

EXECUTICN COMPLETE

Now the muser may:

1. Edit hls program using direct statements and rerum it.
2 Qguit {and return to the Command Processor) by typing PIN.
3. Save his program by typing SAVE fnane.

List of Inmdirect or Direct Statements

LET var={...¥Yar=]expr
Fach variable® takes on the value of the expression.
Example: 10 LET A=B=4,35-F

DIM array{dim list)l...,array(dim 1ist)]

Beserve space for arrays with nmore than two dinemsioms and/er
dimensions > 10,
20 DIM A(60),L(5,N,3%N)

SIG expr
Number of sigmificant digits printed for numbers is changed to the
value of expr. :
Example: 30 SIG ¥

DEF PN letter{param)=e3Xpr
Defines a one limne functiom whose name has three letters starting
with PN and wvhose single dummy parameter is param.
Examrles 35 DEF FNG{X3)=X3/10 — AQ/X3

READ ¥YBI{ o»s,¥2T]
Reads from a DATA defined list amd assigns valmes to the variables

5 & wvariable may only be a letter optiopnally followed by a digit, or by
a list of expressions separated by commas and enclosed in pareatheses.

45

CAL TSS Manusal

July 1971

in sequential order,
Example: 40 READ 4,B,G2

INPUT var|s.s,¥ar }
Reguests input values from the TTY by typing ? and assigns valmes
to the variables in seguential order.
Examgple: 12 INPUT A,B,C

PRINT [..., ITEN] _
Prints and/or moves the teletype head as indicated by the item(s)
which may be num expr, string var, 'characters', TAB{@XBL), rr 3«
and 2.
Examgle: 100 PRINT ®VALUE +m, TAN{B1%B1)

RESTORE A
Bestores the pointer into the DATA bank to the top.

IP log expr GOTO lnum

IF log gxpr THEN lnum
Transfers control to the statement with line nmumber laum if the
logical expression is true. : '
Examgle: 105 IF ADB/SIN{X) GOTO 115

GO0TC lnup
Transfers control to line pumber lnum.
Example: 20 GQTO 300

ON expr GCTO lpumf...,lpum]
If sxpr has value=1, GOTO statement having first lmwm im 1list; if
expr has value 2, GOTO statement having second lnun in list, etcs
Example: 10 LET X=1
20 ON X GOTO 30,40,50
transfers to statement 30.

REM g¢har string
3 comnent statement.

GOSUB lpup
Go to the statement specified by the line number but returm to the
linpe following the GOSUB whem a RETURN statement is emncountered.
MAT READ ¢ - Reads valmes from DATA list into array c.

HAT PRINT ¢ — Prinmts values from array c.

It

MAT cC TRN{a) — Matrix ¢ becomes transpese of a.

MAT ©

i

ZER - Zeros every element in matrix c.

is

CAL PSS Hawual

July 1871

MAT ¢ = IDN - Square matrix c is set to identity matrix.

MAT © = CCN — Array ¢ is set to all ones.

HAT ¢ = at+bh - Array c is set to the sum of a plus b.

MAT ¢ = a-b - Array c is set to the difference bhetween a and b.
HAT ¢ = a*b - Array c is set to the prodmct of a aad b.

MAT ¢ = {eXpr)* b
Array © is set to the scalar product of expr and b.

MAT ¢ = INY{a)} — Matrix c becomes the inverse of a.

List of Indirect Statemspts

DATAE ¥allewas,yall
Porms a list of data values to bhe nsed by READ statenents.
Example: 12 DATA 5,7.3,30%52

PAUSE{str] :
Execution pauses amd str, if givem, is primted. BASIC will accept
direct statements or editing request; execuntiom resumes if CO¥—
FTINDE is entered.

ERD _
Ends execution; must have highest line number.

STOP .
Stops executiom {acts like a jump tc END statement)..

FOR var=expr TO exXpr] STEP expr]
¥EXT yar
Defines the limits of a loop. The three expressions give the
initial values of the control variable, the termisating valme and
the increments, if not egual to 1. '
Example: #0 FOR I=1 TO 10 STEP .5
: 50 LET S=8S+1I
60 NEXT I
. BETURN
Execution goes to the line follewing the last GOSUB for which no
RETDEN bas been executed,.

List @f Direct Statements

LIMIT ipteger
Specifies a maximum number of statements that cam be executed
without control returning to the console; prewvests infinmite loops.

87

CAL TSS Manual

July 1871

RUN
Causes execution of the prcgram beginning with lowest line number.

CONTINUE
Execution continues where it last stopped.

LIST [line_pumber[—-line number]]
Prints out the specified lines on the teletype, TIf the line
nupbers are cmitted ¢r are replaced by fALL', then the entire
Frcgram is printed,

DELETE lipe_ number{-line number]
Deletes the specified lines frcm the program. If 'ALL? is typed
inctead of the line numbers, then the whole program 1s deleted.
Note that this statement has no effect on the values that may have
been stored into any variables.,

EDIT line number [-line number]
The specified lines are passed one at a time to the line collector
for editing. Note that if the line pumber is altered so that it
is larger than what it was before but is still smaller than the
number of the last line in the range specified, then the line will
be edited again when the new line number's turn comes.

LOAD [fname]

Loads a program from a text file of the givemn namne, {No 1lines
which may have been entered into BASTIC are deleted.,) The name, if
given, 1is a simple name which is looked up using the scan 1list
SCANI, created by the system in the wuser's temporary directory.
SCANL 1looks for +the file in the user's temporary directory, his
permanent directory {with the user?s own access key) and then in
the public directory. To type a more complicated name, fpname 1is
cmitted and a prompt character gquote {") will appear, after which
any Ccmmand Processor name can be specified.

SAVE [fnanme]
Writes all the text ontoc a file of the given name, which must be
in the same format as for lcad. Hosever, if a name is givemn and
no file by that name exists, then a new file is created in the
user?!s temporary directory with that nanme,

WHO
Tyges out BASIC,

QUIT

FIN
Both of these statements return to the Command Processor after
destroying any program that may have existed.

48

&

July 1971

Operators

Arithmetic

§ Exponentiation
% HNultiplicationm
/ Diwvision

+ Addition

* Sgbtraction

Logical

Relational
= Egual

< >, >, # Yot egmal

< Less thanm

<=, =< Less than or egual

> ©Greater than
>=, => 6reater tham or egmal

1 Logical OR
& Logical AND
¥OT Logical NOT
Fapctions)
ABS{X) 1Xi LGT (X)
ACS {X) arcos{x) RED({X)
A8 {¥) arcsin{x) SGH {X)
ATN {X} arctan {x) SIN{(X)
/R COS{X) cos(x) SQR{(X)
EXP{X) e TAN(X)
INT {¥) integer TIN{X)
LOG {X} laoag X

leg x

randon num
sign {x)
sin{x)

X

tan {x)
seconds used

CAL T35 Manual }

49

CAL TSS Mannal

July 1971

3.3 Supmpary of the SCOPE Simulator

SCOPE provides an operating environment fo many programs written for
CAL's €400 Dbatch system {SCOPE 3.0 or CALIDOSCOPE), as well as
real-time control over the constructicn and execution of such prograns
by a user at a console.

SCOPE is called with the following commands:

SCOPE f1l
where £f1 1is an optional parameter specifying the field length. When
omitted, 14000 is the default value. SCOPE responds by typing the date
and time and then awaits requests after typing >, which is its prompt
character, Programs executing under SCOPE prompt with | when they want
input frcem the console,

SCOPE creates several standard files necessary for its operation
whenever it 1is <called, notably a SYSTEXT £ile called ?YOUTPUT'.
Whenever it needs a file to process a request, it gets it from the BEAD
NAME SPACE. If there is no file by the arppropriate name available, one
is created in TEMPDIR.

SCOPE_Simulator Requests

Reguest Meaning

TEXT,fname Declare a new SYSTEXT file fname {(will not
. change to SYSTEXT a file which already exists
in another mcde).

FILE,fname Use the file fname as the source of SCOPE
Simulator requests.

¥SG,0FF or ON Suppresses program messages to the console or
restarts themn.

GET ,fnane Get the file fname from the BEAD NAME SPACE.

PUT,f£nane Return fpname tc its directory.

STEP Trace calls made on the Simulator by code

setting cell 1.

SCOPE will print each cell 1 call in octal and
then await a response:

B call the deltugger

5 . perform the request
E igncre the request and perform END
instead
G leave step mode and then perform the
request
FIN Exit from SCCPE Simulator.
Loading_regquests:
Meaning
L,fnane Load and link the file fname
160, fname Load and link the file fpame and start the result-

ing code executing

49

a

July 1971

c

LDCTL,TSS

OYERLAY ,fname

IBBSECNPE Control Reguests:

CATALOGUE
COMPARE
COMEASS
CoPY
COPYL
COPYN
COPYBSF
CPC

D¥P
REWIND
RPL

RON
SNGBOL
UPDATE

CAL 7S5 Nanwal |

Set TS5S node for the loader {load all commen blocks
after program blocks) ’

Contents ‘of loaded and linked core {without banner
words) are written onto file Emane

Library Programs:
CPIO
DEBUG
I0
IDRAENDON
KONNON
NEMNORY
RECDUNE
SETPRY
TRACE

RTRAN Lib

All RON FQ

CAL TSS Manual

July 1971

3.4 SERVICES and the BEAD GHOST

This section consists of a list of the ccmmands understood by SERVICES
and the BEAD GHDST. An attempt has teen made to indicate what sort of
parameter {s) each command expects, and scme examples of the different
kinds of parameters are given below. A few of the commands are
nnderstood by only one or the other of the dynamic duo, and they are so
marked. The ccommands are written in caps, the parameters are under-

lined. The command and the parameters are separated by one or more
blanks.
FIN is the command which terminpates SERVICES; it
is not understood by the BEAD GHOST
PURGE {BEAD GHOST only) aborts the current subsys-
tem and returns to the Command Processor
RETRY {BEAD GHOST only) resumes execution of the
current subsystem right where it quit
RETUORYN {BEAD GHOSTI cnly) resunes execution of the

current subsystem without re—executing the
most recent system call, if that call pro-
voked an error

éﬂngNEWPSH passworg changes the user?s password to password
NE¥DF direct:fname creates a file fname in the directory direct

ADDKEY keypnum obits dirloc
adds a lock which can be opened by the access
key keypum to directory entry dirloc; the
¥inds of access allowed toywielder of Keynom *®
are defined by obits e S

DELKEY keynum dirloc revokes privileges of access to the directory
entry dirloc for holders of access key keynum

FRIENDP direct obijloc if there is a permanent directory named
direct, access to it is placed in objloc; the
access is highly restricted

FRIENDT direct objloc same as FRIENDP, except temporary directories

PCAP obiect prints the indicated object

PDATA datunm prints the indicated datum

PDATA datamloc datum prints datum words of data, starting at
datumloc

MCAP obiect oktdloc places a link to obiject at obijloc

MDATA datum datumloc moves datum to datumloc
CHAIN direct] direct2 makes direct?2 1look 1like an extension of

directl
UNCHAIN direct eliminates any extension of direct
NERV ident creates a new variable ident
KILLYV ident elimipnates the variable ident
___DLIST direct rrints the contents of the directory direct

SPACE datum| datum2 datum3 datumi
resources are reserved for the user; see
section on space control

MSPACE directl datum direct?
datum sectors of disk space are moved fron

51

CAL TSS Manual

S July 1971

directl to direct2. One must be the father
of the other. {One sector=64 words)

NEWU ident datum creates new user subordinate to the user
{i.e., @a pnew permanent directory named ident
of size datum as a son of the user's per-
manent directory)

KILLU ident the permanent directory ident is eliminated
from the user's permanent directory and
destroyed

NEWDR ident datuonm creates a directory ident on the user's
permanent directory of size datunm

NEWBLK filadr creates a new file block at filadr

KILLBLK f£iladr " deletes the file block at filadx

NERKEY obiloc creates a new access key at obijloc

KILLOBJ obiject deletes the indicated obiject

DELLINX dirloc removes the link at dirloc

DELOWN dirloc the cwpnership entry at dirloc is removed and
the owned otject is destroyed

P.FULL sets the rrint mode to print 20 successive
octal digits

P.ASCII sets the print mode to print 60 bit words in
groups of 4,7,7,7,7,7,7,7,7, useful for deco-

T ding text files which the user has somehow
been reduced to inspecting in octal

P.INST sets the print mode to print octal digits in

groups of 15, useful for dumping code files
{this is the default mode)

IN.OCT the mode of numbers typed into the Command
Processor c¢comfplex 1is to be octal if not
expressly marked otherwise {this 1is the
default mode)

IN. DEC the mode <©f nombers typed into the Command
Processor copplex is to be decimal if not
expressly marked otherwise.

NAKSUBY <cts> (ol il

LR

TLIA TR

TIMNE

DISPLAY proe - T = n v
MPOLS

LMIISFRS

ey
ErEL- o

.

SHAD AN
SOSVL Al 4l
VIEvW/

e TTT o

LEALS EMEH e

i

Cﬂ/‘/ ’l ’/ 4{0 [/ ’, /; s va ‘Wo

SERV ;
SERVICES \
WH()
LoGoeT
LOGOFF
CHARGE S
- TIME
bud Bl LL
CRUNCH BRUCE
OFAGSE AL
GETBOFILET KICK
ks FORCETAT
GONE s
i =
BaGiox
USERBUYG s |
JPRIC —

CAL ™S5 Manual

July 1971

Paraneters

datum parameters are evaluated to 60-bit integers; notice that if the
user gives the name of a datum, the datum is looked up for him,.
Exanples:

7 represents 7

11 represents 9, if *IN.OCT®

1M represents 11, if *IN.DEC®

5+10-15D represents -2, i1f *IN.OCT?

VARIABLE+4 represents 7, if VARIABLE contains 3

TCB+ (#52B+4) represents 56 plus the contents of cell 46 in
the subsystem which Jjust call the
BEAD GHOST

datumloc parameters specify places where data can be kept.

NAME 12 variable called 'NAME?

FILE#0 The first word of a file FILE in the
Command Processor name space

#10 Cell 8 of the subprocess calling the
BEALD GHOST

direct rparameters specify a directory

PERMDIR The user's permanent directory

TEMEDIR The user's termporary directory

USER:zVY The directory name 'VV? in the USER
directory

USER:zVV:P The directory named 'P*' in the

directory named 'VV! in the etc.

dirloc parameters specify names of files in directories
TEMPDIRzINPUT A file in the usert's TEMNPDIR
TEMPDIR:VV::REACT A file in the directory named VV in
the user's TEMPDIR

filadr parameters specity addresses within files

INPUT#0 Word 0 of a file INPUT named in the
Command Processor name space
TEMPDIRzVV:zREACT#100 Word E4 of the file mentioned above

fname is any legal file name; here are mentioned only strings of
alphanumeric characters

INPUT
MYFILE1O

ident is again, any string of arlhanumeric characters, blanks excluded

53

-

SRR

e DR

T R

|

CAL TS5S mdnual.”f

July 1971 |
i

keynumb is just a datum with a different name | ‘
301 Aceess key number 301 | ‘
VARIABLE Same, if VARIABLE=301 | |
object is a two-word set of informaticn which is the internal Ffoerm of
stuff kept by the system, 1like files and directories and access keys;
if the user specifies an objloc, the object will be fetched
OWN.KEY The user's private access key
SCARNL " The user's private name space

obijlec parameters specify places where objects are kept, =such as
directories amnd variables
VARNAME The wuser can create a variable VAR-

NAME and move objects to it

PERMDIR:FNAME 4 dirloc is a special form of ebjlec

Bl

	Contents
	Preface
	1 General concepts
	1.1 Access to CAL TSS
	1.2 Files and Directories
	1.3 Login, logout
	1.4 Command Processor, Subsystems
	1.5 Names, objects, name spaces, access locks, access keys
	1.6 Command Processor name space, BEAD name space, SCANL name space, PERMDIR, TEMPDIR, PUBLIC, OWN.KEY, null key, PUB.KEY
	1.7 SERVICES, BEAD GHOST, errors
	1.8 Space Control
	1.9 ‘WHO’ and PANICs (how to untangle a console and how gthe user stops something he wishes he hadn’t started)
	1.10 The Line Collector

	2 Examples
	2.1 Simple use of BASIC, no files kept
	2.2 Creation of permanent disk files to be used for future sessions
	2.3.1 Use of a previously constructed file in BASIC
	2.3.2.1 Selective manual access to permanent file
	2.3.2.2 Access for subsystems to all your permanent files
	2.4 SCOPE simulator: a simple interactive FORTRAN program
	2.5 SCOPE simulator: an interactive SNOBOL program using a file from a friend’s directory
	2.6 LOGIN problems illustrated

	3 Subsystem summaries
	3.1 Summary of the Editor (Nov. 1971)
	3.1 Summary of the editor (July 1971)
	3.2 Summary of BASIC
	3.3 Summary of the SCOPE Simulator
	3.4 SERVICES and the BEAD GHOST

