
1 
;,\ new versi r, n of the summary clocuments i s being prepa red for dist r ibuti on. 

I wo ,1ld ,;q1preciate it if :vou c ould look this ove r _a nd gi ve rne a ny suggestions 

kw:f,ncllC by Friday. as I would like to 11 publ ish" it next · weeko 

I r eal ize that part 1. will req11ire rew iri tng when the 1irmancn t et.xxk directory 

structure is installed, but theother sections are th.oug ht to be u seful after 

the trauma wtho11t revision. Please bring counter-indications to my attention. 

v ~nce 



Summary documents l6r usin the user version of C~L TSS 

1. Idiot's Guide 

2. EDI COR 

3. HA lC 

4. SCOPE SIMULATOR 

APPl!:NIHX A: How to unt ogle a TTY from n unknown or embarrasing st te 

APPLNDIX 8: The LIE COLL£CTOR 

APPENDIX C: Sp ce control algorithm (wh t to do bout hassles like: 

U '~R ERIWR 
000 06, 000003, 00000000000000 EHl-<OR 

BEAD GHOST HERE 

Internal version, 26 May '71 



• I 

I I 

I 

I 

I I 

Idiot's Gui.de fnr l{unning on the Demonstration Version of CAL TSS 

I) Words of warning: 

II) 

l. Thi i.~ a demonstration system; there are known (and unknown) ways 
LO ~r;1·h it. 

2. There is no way to pres•rv files on this system once the user has 
logg~J out or in tile event o( a system•crash. 

Time-sharing in four easy st ps: 
l. The teletype must be turned on and switched to the connection for the 

8 machine; ask somebody if in doubt. 
2. Attract the attention of the system by typing CTRL-SHIFT-P (hold down 

the buttons marked "ctrl" and "shift" and hii: the letter "p"). 
If the response is: 

CAL TSS VERSION 1.0 
NAME YOUR PERMANENT DIRECTORY 

proceed; if the response is anything else, find expert advice. 
General information on dealing with the keyboard: 

a. All input goes to a piece of software called the line collector, which 
allows certain manipulations of the input. A few commonly useful 

1 

features are listed below. (Appendix B contains a more complete description.) 
b. Input lines are terminated by the "return" key (no line feed). 
c. Typing CTRL-Q erases the previous character entered. 
d. Typing CTRL-Y erases all characters in the current line. 
e. Typing CTRL-I skips to the next tab boundary (cols. 11, 21, ... ). 

4. A typical run: 
Back in step 2 the system asked you to name your permanent directory; 
this means that it is ready for you to log on. 
a. Logging on Lhecks you into the system: 

Type: GUEST 
Response: GIVE PASS WORD 

Type: GUEST (on the same line following the period) 
Response: ENTER TENTATIVE NAME FOR TEMPORARY DIRECTORY 

Type: any 7 or fewer alphanumeric characters which you feel will 
uniquely identify you (again immediately following the period). 

Response: COMMAND PROCESSOR HERE 

If some other response appears, such as: ERROR OCCURRED ON. C~LL TO CMMDS 
followed by several lines of junk, try another name; the 
one you chose was already taken. 

b.Doing your thing: You may now use BASIC, or any other subsystem which 
happens to be active. A sheet is available which describes BASIC, an in
teractive language. Use of other currently available subsystems generally 
involves the following steps: • 

i. make or update a text file with the Editor (a sheet describing the 
Editor is available). 

ii. call the subsystem which is supposed to operate on the tex~ file, 
for example, the SCOPE Simulator. 

iii. if errors, scan· the result file with the Editor to locate the errors, 
and then go back to step i.· 

iv. if no errors, print the result file with the Editor. 
v. repeat as patience and curiosity allow. 

c. When finish•;~:;: ;t/4 {P)/4 A-NfJ f l?J;;15S<sB/(rf! tfff' 'JM C(f FF 



i 
I 
Ii 

l'.1 • 

I, 
f, 
I' 

I 
I 
1 

I 

) ' 

3/71 

Summary of the Editor 

The Editor subsystem enables the TSS user to construct and edit files of coded .information. 
A file consists of lines of coded characters ending with a carraige return character (gen
erated by the RETURN key on the teletype). 

The Editor is called by typing a command of the form: 

EDITOR fname 

where fname is the name of the file to be c~eated and/or edited. The Editor will respond 
by typing EDIT and awaiting a request. At any given time the Editor is looking at a specific 
line called the current line. When the Editor is first called, the current line is a pseudo
line which is always the top line of every Editor file. 

The following requests may be typed to move about the file for the purpose of creating, 
deleting, or editing text lines. Each request is terminated either· by a carriage return or, 
if more than one request is made on one line, by a semi-colon. Some requests contain a "stop 
condition_" or line specifier, represented by sc below. Such requests affect all lines from 
the current line to the line specified by sc, inclusive. (If you've lost track of the cur
rent line, request "p" and the Editor willprint it.) ~ may be : 

1) a decimal number, specifying the lirie that number of lines from the current line 
2) ".str" (where str is any string of characters except semi-colon), specifying the 

next line containing that string of characters 
3) "/str", specifying the next line starting with the given string of characters, 

ignoring leading blanks 
4) "$", specifying the bottom, or end, of the file 
5) omitted, specifying the current line. 

After the Editor has processed the request, the line specified by the request becomes the 
new current line. 

Requests 

:t 

. Dsc 
T 
Msc 
Bsc 

Psc 
C/strl/str2/~ 

CG/ s trl/ s tr 2/ SC 

Esc 
R, f name, uname 

W,fname,uname,sc 

F,fname,uname 

Q 

The Editor prompts with 

Meaning 

Insert, after the current line, the lines which follow. 
Insertion is ended by, entering a null line. 

Delete the specified lines . 
Move to the top of the file (pseudo-line). 
Move forward over the specified lines. 
Mo'le backward the specified number of lines. (NOTE: sc can 

only be a number.) 
Print the specified lines. 
Replace the first occurrence.of strl by str2 in the specified 

lines. 
Replace every occurrence of strl by str2 in the specified lines. 
Edit the specified lines using the line collector.* 
Insert the contents of the file fname,uname after the current 

line. 
Locate' (or update if necessary) the file fname,uname and write 

into it the specified lines, including the current line. 
Finished - create the file £name from the latest version; simply 

entering "F" causes the updated text to replace the original 
file specified when the Editor was called. 

Finished but do not save any file. 

When it gets an incomprehensible command, it answers "????". 

Each line being edited is made the old line in the line collection and may then be altered 
using the line collector. (See Appendix Bon the Line Collector.) 

2 



Summary of BASIC 

BASIC is an easy-to-learn, general-purpose programming 
language similar to FORTRAl~ but crea·ted ~pecifically for 
time-shared computing environments. For details see the 
description in the CAL Computer Center Users Guide. 

BASIC accepts·three types of statements: 1) indirect,. 
which are saved to be executed sequ~ntially as _a·..P.r:o-: .'. 
gram at some other time; 2) direct, which are carried out 
(executed) as soon as they have been entered using the car
riage return key (direct statements, especially the PRINT 
statement, allow the teletype to be used as a very power-
ful desk calculator); and 3) Editor requests, which instruct 
the computer where and how to save the indirect statements 
as well as how to change (edit) them if necessary (see 
Editor document) .. 

Although some statements may be used only directly (or in
directly), most statements may be used either way. All in~ 
direct statements must begin witn a line nt.nnber and are exe
cuted in order of ascending line numbers. 

BASIC is called by typing a command of the form: 

BASIC 

It responds with BASIC HERE after which either direct state
ments or a program of indirect statements may be entered. 

BASIC prompts with: and types???? in response to lines it 
does not understand. 

There are two ways to enter a program of indirect statements: 

1. Creating a new program file 

a. type I 
b. type the statements (if BASIC responds with 

ERROR ... the line was not entered into the file 
and may be retyped). 

c. enter a null line (er only) to end the file 

2. Reading an already existing program file called fname 

a. type R,fname 
b. any lines containing errors will print. Corr~cted 

versions may be inserted using~ Editorvifter 
BASIC prompts. 

c. BASIC prompts with : when the file 

-------

Sample BASIC program starting from the Command Processor: 

BASIC 
BASIC HERE 
I 
100 
105 
110 
120 
130 

PRINT "NUHBER", 
PRINT 
FOR X=l TO 10 

LET S=X*X 
PRINT X,S,X*S 

140 NEXT X 
150 END 
empty line 
RUN 

(er only) 

"SQUARED", "CUBED" 

NUMBER SQUARED CUBED 

1 1 1 

2 4 8 

3 9 27 

4 16 64 

5 25 125 

6 36 216 

7 49 343 

8 64 512 

9 81 729 

10 100 1000 

Now the user mar: 

1. 
2. 
3. 

Edit his program using Editor requests and rerun ~t. 
Quit (and return to the Command Processor) by typing Q. 
Quit and save the program on file fnarne (and return to 
the Command Processor), by typing F,fname; the program 
will be available for further manipulation. 

List of Indirect or Direct Statements 

1 
LET var=[ ... var=]expr -- --

Each variable takes on the 
the expression. 

value of 

DIM 

Example: 10 LET A=n=4 •35-F 

array(dim list)[ ... ,array(dim list)] Reserve space f~r/ 
--arrays with more than two dimensions an 

or dimensions> 10. 
Example: 20 DIM A(60) ,L(5,N,3*N} 

1 A variable may only be a letter optionally followed by 
a digit, or by a list of expressions separated by 
commas and enclosed in parentheses. 

---------------------



SIG expr Number of significant digits printed for numbers 
is changed to the value of expr. Ex. 30 SIG~ 

DEF FN letter(param)=expr Defines a one line function whose 
name has three letters starting with FN and whose 
single dummy parameter is param. Example: 
35 DEF FNG(X3)=X3/10 - AO/X3 

READ var I ... , var] Reads· from a DATA defined list and 
- assigns values to the variables in a sequential 

order. Example: 40 READ A,B,G2 

INPUT YA,!"(, .• ,var] Requests input values from the TTY by 
typing ? and assigns values to the 
variables in sequential order'. 
Example: 12 INPUT A,B,C 

PRINT [ ... item] Prints and/or moves the telety"pe head as 
indicated by the item(s) which may be num expr, 
string var, "characters", TAB (expr), , , ; , and .. 
Example: 100 PRINT "VALUE +", TA!'l (B l*Bl) 

RESTORE Restores the p~inter into the DATA bank to the top. 

IF ~ expr GOTO lnum 
IF ~ expr THEN lnum 

Transfers control the statement with 
line number lnum if the logical expres
sion is true. 
Ex. 105 IF A B/SIN(X) GOTO 115 

GOTO lnum Transfers control to line number lnum. Example: 
20 GOTO 300 

ON expr GOTO lnum[ ... ,lnum] If expr has value=l, GOTO state
ment having first lnum in list; if expr has value=2, 
GOTO statement having second lnum in list, etc. Ex. 
10 LET X=l 
20 ON X GOTO 30,40,50 transfers to statement 30. 

REM char string A comment statement. 

GOSUB lnum Go to the statement specified by the line number 
but return to the line following the GOSUB when a 
RETURN statement is encountered. 

MAT READ c Reads values from DATA list into array c. 
MAT PRINT c Prints values from array c. 
MAT c = TRN(a) Matrix c becomes transpose of a. 
MAT c = ZER Zeros every element in matrix c. 
MAT c = IDN Square matrix c is set to identity matrix. 
MAT c = CON Array c is set to all ones. 
MAT. c = a+b Array c is set to the sum of a and b·. 

.MAT c = a-b Array c is set to the difference between a and b. 

\ Summary of BASIC (cont.) 

MAT c = (expr)*b Array c is set to the scalar product of 
expr and b. 

MAT c = INV(a) Matrix c becomes the inverse of a. 

List of Indirect Statements 
DATA valf ... ,val] Forms a list of data values to be used by 

READ statements. Ex. 12 DATA 5,7.3,JE + 52 

PAUSE[str] Execution pauses and str,if given, is printed. 
BASIC will accept direct statements or editing 
requests; execution resumes if CONTINUE is 
entered. 

END Ends execution; must have highest line number. 

STOP Stops execution (acts like a jump to END statement). 

FOR val=expr TO expr[STEP expr] Defines the limits of a loop. 
NEXT var The three expressions give the in

itial value of the control variable, 
the terminating value and the incre
ments, if not equal to 1. 

Example: 40 FOR I=l TO 10 STEP .5 
50 LET S=S+l 
60 NEXT I 

RETURN Execution goes to the line following the last GOSUB 
for which no RETURN has been executed. 

List of Direct Statements 

LIMIT integer Specifies a maximum number of statements that 
can be executed without control returning to 
the console; prevents infinite loops. 

RUN Causes executio·n of the program beginning with lowest 
line number. 

CONTINUE Execution continues where it last stopped. 

Operators 

Arithmetic 

t Exponentiation 
* Multiplication 
/ Division 
+ Addition 

Subtraction 

Relational· 

= Equal 
< >, ><, U Not equal 
< Less than 
<=, =< Less than or equal 
> Greater than 
>=, => Greater than or equal 

3/71 



\. 

- F.unctions 

ABS (X) 
ACS (X) 
ASN(X) 
ATN(X) 
COS (X) 
EXP(X) 
INT(X) 
LOG(X) 

Logical 

Logical OR 
£ Logical AND 
NOT Logical ~OT 

lxl LGT(X) 
arcos (x) RND(X_) 
arcsin(x) SGN(X) 
arc tan (x) SIN(X) 
cos (x) SQR(X) 
eX TAN(_X) 
integer TIM(X) 
loge x 

Summary of BASIC (Cont.) 

log x 
ranMrn num 
sign (x) 
sin(x) 
Ix 
tan (x) 
seconds used 

3/71 



' • 
Summar of SCOPE Simulator 

The SCOPE Simulator provides an operating environment for programs written for CAL's 
6400 batch system (SCOPE J.O or CALIDOSCOPE) and permits real-time control over the 
construction and execution of such programs by a user at a TTY. 

The SCOPE Simulator is called by typing the 'following command: 

SCOPE 

The Simulator responds by typing the time and date. SCOPE prompts by typing>. Any 
legal SCOPE Simulator r quest or CALIDOSCOPE control request may be entered following 
the > sybmol. (See summary below.) Code running under the simulator which interacts 
with the TTY prompts with t. 

SCOPE creates several standard files necessary for its operation whenever it is called, 
notably a SYSTEXT Elle called "OUTPUT". When it needs some other file in order to pro
cess a request, it tries to get it from the user's Temporary Directory; if there is no 
file by that name in the TD, it creates a null file and uses that. The "GET" request 
gives some flexibility in file usage. 

SCOPE Simulator Requests: 

Request 

TEXT,fname 
FILE,fnarne 
MSG,OFF or ON 
GET,fname 1_,.;____.~ 

PUT,fname 
STEP 

FIN 

Loading Requests: 

OVERLAY ,fname 

Meaning 

Declare a new SYSTEXT file. 1 

Read requests from the file fname. 
Suppressprogram messages to teletype or restart them. 
Get fname from the C.P. IA.CJ,l~'J _,, ' /,·,,;/ , ~ I> i 
Return fname to its directory. 
Trace RA+l calls made by program on Simulator. 

The Simulator will print each RA+l call in octal and then 
await response: 

B call BEAD debugger 
S perform request 
E ignore request and perform END instead 
G leave STEP mode; then perform request 
Exit from Simulator. 

Set TSS mode for the loader: common blocks for each file loaded 
ar.e allocated after all program blocks. 

Contents of loaded and linked core (without banner words) are 
written onto file fname. 

CALIDOSCOPE Control Requests: COPY 
COMPARE 
COPYL 
COPYN 
COPYSBF 
CATALOG 
CPC 

Library Programs: REGDUMP 
DEBUG 
SETPRU 
KOMMON 
MEMORY 
CFIO 
TRACE 

All RUN FORTRAN Library Routines 

DMP 
REWIND 
RFL 
RUN 
COMPASS 
UPDATE 
SNOBOL 

IO 
IORANDM 

1 will not change a file which already exists in another mode to ~YSTEXT. 



3/71 

In order to call subsystems, the user must oe in the CO}~1AND 
watching his teletype. If he forgets what he is doing, or 
explains how to tell what subsystem is in control and how to 

PROCESS R, wh'ch is the "ground state' of the process 
• L/ • ~-t--a, the table below 

get back to the COMMAND PROCESSOR. Procedure: 

1. If there is a prompt character printed by the teletype, check which subsystem uses that character. 
and observe the response: J' 

CA ,'.1 fll / .;1,,. 7.?, 7 I , ~ J ,fl .-(:tc /(' 

is a response 1Athe user should be able to iaentify the subsystem from the table. 

2. If not, 

a. If 
is no response, he should not try to use that teletype without getting expert advice; it may be blown 
may be involved in a remote function such as printing: -4.,,,f ~ -1 (' ( _,, c,,. , r {r/ 

b. If there 
up or it 

3. Having identified the active subsystem, the user may dismiss it or proceed. ~~c/~. rZ:..,; 

SUBSYSTEM 

CO}lNAND 
PROCESSOR 

SERVICES 

.BEAD GHOST 
(debugger) 

EDITOR 

BASIC 

SCOPE 

PRO [PT 

> 
t 

* 

@ 

(see SCOPE) 

RESPONSES TO INCO}1PREHENSIBLE INPUT 
OR ERRONEOUS INPUT 

• BAD SYNTAX 
or 

UNEXPECTED F-RETURN DURING COMMAND ... 
+ possible other lines 

or 
UNEXPECTED ERROR IN COMMAND PROCESS ... 
+ possible other lines 

or 
ERROR OCCURRED ON CALL TO COMMDS 
+ other lines 

same as COMMAND PROCESSOR, except the message 
sa s SERVICES 

same as CO}~1AND PROCESSOR, except the message 
says BEAD GHOST 

???? 

???? 
or 

miscellaneous diagnostics relevant to 
erroneous BASIC statements 

??NO?? 

HOW TO DISMISS IT 
(Commands are underlined below) 

when finished, LOGOUT 

3ou may call any available subsystem; 

FIN 

to return to co~~!AND PROCESSOR, 
PL1RGE 

to return to subsystem which made 
error originally, 
RETURN or 
RETRY 

F or 
.Q_ (see EDITOR document) 

same as EDITOR 

FIN 



I 

APPENDIX A (Cont.) 6/71 

C ,<:1 
TTY in known but undesirable state: For example, you are working on a 2000 line file 

with the Editor and have just typed "P/BLETCH" instead of "P/BLOTCH" and the Editor 

,is dutifully printing all 2000 lines instead of the 3 you had intended. Or you have 

just fired up your shiny new BASIC program and it has been calculating for 3 minutes 

when you know it can't possibly take that long (you are stuck in an endless loop). 

You can always interrupt the program which is currently running by sending a "panic" 

from your TTY. This is done by sending a CTRL-SHIFT-P. Civilized subsystems handle 

these panicson their own and print out some sort of (hopefully) useful message after 

being interrupted and then allow the user to proceed. Other subsystems are suspended. 

wherever they happena:ito be and a message: 

comes out on the TTY. 

PANIC 
BOO, BEAD GHOST HERE • 

4>.(Y, 
The Bea GHOST is the system debugger, and you can tell it to 

dismiss the subsystem which had gone astray by typing PURGE, after which the command 

processor should respond. Work that was in progress by the subsystem that you inter

rupted will have been cavalierly aborted and things may be in a fairly muddled state -

filesmight be half-modified or half-generated for example. 

UNEXPECTED APPEARANCES OF THE BEAD GHOST: Scenario: You were running along happily in 

BASIC or the Editor and you just said M/100 and got a response: 

USER ERROR 
, , .1-1-1,/--- ooooot 1 000001 1 oooocoooowOf/o F-Je I/~ 

BOO, BEAD GHOST HERE 

(The example is not chosen at random; the 6,3,0 error is the only one for which I can 

give you a remedy.) Whenever a subsystettrmak s an error in dealing with other subsys-

tems o;-;:tem-maintained objects, error processing is initiated. Some errors are handled\ 

automatically by various subsystems along the way and the user at the TTY is not even 
-:ck_ COrt-'141\ND fJl{IJCESSOf?, 

:::::1:: ::e::di:::: :::tr:::;t::r:na:::dT:: :: :o:::::n:u:::::::. (~o:: ::p::::::n::;:r- \ 

seen circumstances for which no remedial procedures have been provided (called "bugs" for 

short) and they are reported to the user at his TTY by the BEAD GHOST (system debugger) 

in hopes that he knows what to do (like, complain to a system programmer). The 6,3,0 

error is the only error (as of this writing) which the BEAD .GHOST should report to the 

TTY under normal circumstances. It means that the amount of space allocated to the 

user has become insufficient for the job currently being done and more space will be 

required before the job can continue. Appendi 

J 



I •• 

I t 

1 • 

3/71 

APPENDIX B - THE LINE COLLECTOR 

Unless tl1e user does something extraordinary, all input to a TTY goes through a 
piece of software called the LINE COLLECTOR. The LINE COLLECTOR provides a large 
number of ways to correct/change the line being entered. The chart below indi
cates the various manipulations that can be performed; to invoke a given function, 
hold down the CTRL key and hit the relevant key. A detailed explanation is avail
able in the "Users Guide", sec. 111.2.3. Here we give two examples and encourage 
the user to experiment. Underlined characters represent one key or a combination 
of keys, not the sequence of keys given by the individual underlined characters; 
blanks that might otherwise be "invisible" are also underlined. 

First note that the LINE COLLECTOR maintains the previously typed line as the 
"old line" and uses it, in conjunction with typed characters, to construct a 
"new line". Whenever the new line is accepted (by typing CR, for example), it 
becomes the old line. 

You are talking to BASIC and have just entered the line (considered as the "old 
line") below (which will have provoked a message from BASIC objecting to the line) 

old line: 

~ 

CTRL-L 

10 

CTRL-O 

PRNIT X 

meaning 

make an insert at the 
beginning of the "old line" 

this is what is to be inserted 

copy the rest of the "old line" (all of 
it) into the "new line" and accept the 
"new line". 

and the teletype responds 

no response 

10 

PRNIT X 
and the carriage 
will return. 

BASIC will issue another diagnostic as it still will not recognize the line as 
a valid statement, 

old line: 

~ 

CTRL-D 

N 

IM 

CTRL-Q 

N 

CTRL-H 

,Y 

CR 

10 PRNIT X 

meaning 

copy the "old line" into the "new line" 
up to the first occurrence of the next 
character typed 

you wanted IN and made a mistake 

erase the M 

copy the rest of the "old line" 
"new line" 

you remembered to print "Y" 

you are satisfied with your "new 

into the 

line" 

BASIC ·should accept this line, which is 

old line: 10 PRINT X,Y 

and the teletype responds 

no response 

10 PR 

IM 

+ 

N 

TX 

, y' 

and the carriage 
will return 

,7 

I.. 
I. 
I 

i 
I ,. 
I 
I. 
I 

.I 
I 

11 
I 



6/71 

/. r: APPENDIX C - Space Control 

TSS has several types of storage for which there is currently no automatic algorithm 

to share the available space among the users. The only positive thing to be said for 

the scheme described below is that it is better than simply handing out space until it 

is all gone and then letting the system grind to a halt (or crash). 

There are four types of space, arranged in a hierarchy: 

TYPE NOMINAL MODERATE LIMIT MAXIMUM 

1) swapped ECS space (highest type) 7000 34000 100000 

2) fixed ECS space 2000 ? ? 

3) MOT slots not concurrently controlled 

4) temporary disk space (lowest type) II II II 

When a user logs on, he is allocated the nominal amount of space of each type. A command 

is available t~ce in ·excess of this amount. If a user requests an amount of space 

larger than what is currently available, he is put into a queue waiting for someone to 

release space. If the request is for more space than the moderate limit, he is put in 

a special queue which prevents more than 1 user at a time from being "very large" in 

any particular type of space. 

There is currently no mechanism to~ a user"fr.elease space once he has it. Several 

mechanisms~ to prevent space hogging • .et:lt;l:!!~:t:!~~ First, whenever a user returns to 

the command processor, he is automatically reduced to nominal. Last, a user who has 

space over the nominal in some category is not allowed to get more space in that or 

any higher category without first releasing his space and going to the back of the queue. 

The space command works as follows and may be typed to the BEAD GHOST or to SERVICES: 

SPACE Pl P2 P3 P4 

Pl through P4 are the amounts of swapped ECS space through temporary disk space, res

pectively, that are desired. The following algorithm is- executed for each parameter 

starting with P4: kgeit 
if= -1 --es mt..Gl'I space of this type is released.I'\- down to nominal if possible 

if= 0 ignored 

if> O 1) If space above the nominal for that type or higher type has been 
obtained, error. 

2) If parameter is higher than maximum permitted for this type, error. 
3) If parameter, greater than moderate limit, enter very large queue.* 
4) If parameter less or= nominal, no further action. 
5) Otherwise, accumulate this type of space until the amount this user 

* 

has is up to the size of the parameter, waiting in queue if nec~ssary.* 
_ a i<,(t'UP,rc. I.ti/) 

A message will print if the space is not immediately available - will remove 
you from the queue if you would rather not wait. 



APPENDIX C (Cont.) 6/71 

There are two different starting points from which you may find yourself requesting 

space: 

'l) You are about to call a subsystem and you know in advance how much space it will 
require: enter SERVICES and request the required amount of space and then go back 
to the CP and call the subsystem. The request has to be big enough - see below! 

2) A subsystem you have called runs out of space and makes a 6,3,0 error which invokes 
the BEAD GHOST: if you have not already requested space, you may do so now with 
the space command. After you have gotten the space, type RETRY (do not type 
RETURN) and the subsystem will resume. If you already have space, there is no 
way to save yourself - you must type PURGE, which erases whatever work the sub
system may have done for you, and start over in the Command Processor. 




