
The Cal Computer Center Users Guide

Volume III - The 6400 Computer System

Part Three - The Time-Sharing System

Time-Sharing System Manual
May 1971 Revision

The attached version of the TSS manual completely replaces the

existing documents (dated February 1971). Although significant

changes have not been made to all pages, the manual has been

regenerated as a whole in order to implement a new page heading

format which includes the section number along with the section

title in the upper right corner of each page. Where the text

itself has been altered, a bar appears in the right ~rgin. ,Bars

appear on the following pages:

PART THREE

Ch. 1

2.2

2.3

2.4

Introduction: 1,2,4,5,8,9,10

Editor: 1,2,3,8,11,i2;13

Line Collec for: 1, 12-l~

SCOPE Simulator: 1,2,3

2.6 BASIC: (new section)

2.7 BCPL: (new section)"

2.8 Printer Driver: 1,3

3.1 Files: (new section)

3.4 Capabilities and C-lists: (new section)

3.6 Event Channels: 2

4 .• 1 File Actions: (new section)

4.4 C-list Actions: (new section)

4.6 Event Channel Actions: (new section)

Appendix A:

Appendix B:

PART FOUR

(new)

(new)

E. BASIC: 2-10,14,15,18 ,1'9,21

F. BCPL: (new section)

'1

The CAL Time-Sharing System

Introduction

Foreword

This portion of the CAL Computer Center Users Guide is devoted to
the Time-Sharing Syste11. The Table of Contents which follows
represents a tentative plan for tbe organization of material on
the system and may be altered and/or expanded as the development
of the system and the docu1entaticn progresses. Descriptions of
progra•ming languages and their processors are presented in PART
FOUR of the users Guide; therefore, information on how to use a
particular language under TSS will be found in that part of the
Guide ..

Sections will be made available as they are completed; a date in
·the left-hand column of the Table of Contents indicates the
existence of a section and when the latest version was released.
Suggestions for improving the accuracy, clarity, and/or complete
ness of the documents are welcomed and should be reported to
flarianne Bentley {2-1491). A suitable reward is offered tor valid
suggestions.

Update packages will be issued when a reasonable number ot changes
have been made. They will include a new Table of Contents with
the date of issue at the top of the page and the new pages with
bars in the left-hand margin to indicate where changes have
occurred.

The CAL Time-Sharing System

May 1971 Table of Contents

PART THREE - CAL TSS, The CAL Time-Sharing System

Chapter 1 - What CAL TSS is and how it runs
5/71 1.1 Introduction to CAL tss

5/71
5/71
5/71

5/71
5/71
5/71
5/71

5/71

5/71

5/11

5/71
5/71
5/71

1.2 Sample session at the console

Chapter 2 - User Subsystem
2. 1 Command Processor
2.2 The Editor
2.3 Line collector
2.4 SCOPE Simulator
2. 5 Debugger
2.6 BASIC
2. 7 BCPL
2.8 The Printer Driver
2.9 The Display Driver

Chapter 3 - System Architecture
3.1 Files
3.2 Directories
3.3 Processes; Subprocesses
3.4 Capabilities and C-lists
J.5 Operations/Calling the system
3.6 Event channels
3.7 System resources central and accounting
3.8 Disk processes

Chapter 4 - System Actions
4.1 File Actions
4.4 C-list Actions
4.6 Event Channel Actions

Chapter 5 - I/0 Interfaces
5/71 Appendix A - Character sets

Table 1. ASCII -- Printer Character Mapping
Table 2. Non-graphic ~TY Chardcter Representation

5/71 Appendix B - Error Classes and Numbers

PART FOUR

A.
B.
c.
D.

5/71 E.

5/71 F.

- Programming Languages and Processors

ALGOL - An Algolrithmic Language
FORTRAN - A Scientific Language
SNOBOL4 - A String Manipulation Language
COMPASS - A Comprehensive CDC Assembly Language
BASIC - Beginner's All Purpose Symbolic Instruction

Code
BCPL - Basic Christopher's Programming Language

2

The CAL Time-Sharing System

May 1971 Introduction

J!.§LQt !his .!lllil

CAL TSS is a time-sharing operating system available to users of the
Computer Center. Chapter 1 contains folksy bits of information to help
the novice get acquainted with CAL TSS and get a feeling foe its
capabilities and usefulness. Chapter 2 tells how to talk to the system
via the ccmaand processor and various subsystems currently available;
parts of it will be essential tc every user. Chapter 3 contains
sufficiently detailed information about system concepts and str~tuce
to be of interest to a system programmer and can probably be skipped by
the casual user without dire consequences. Chapter 4 gives the details
of system-implemented actions which a user may invoke in code he
writes. These actions may be considered as extensions to the 6400
hardware and are of interest mainly to subsystem-implementors and
machine-language progra11mers. Chapter 5 gives details on the I/0
interfaces which would allow a user to establish his own printer
driver, for example.

J

The CAL Time-Sharing System

May 1971 [ntcoduction

CHAPTER 1 - WHAT CAL TSS IS AND HOW IT RUNS -----------------------------------

CAL TSS is a large-scale, general-purpose time-sharing system written
by the Computer Center staff to run on a CDC 6000 series machine with
ECS. The broad design goals of the system are:

1. to support up to 256 simultaneous interactive users at
teletype-compatible terminals with fast response times foe
simple interactions, low system overhead, and good access to
various hardware facilities;

2. to provide a file system allowing many files to reside
peraanently in the machine and to pcovide a very general,
powerful framework within which such files can be accessed,
shared, and protected;

3. to provide a system environment in which a large number of
user-oriented subsystems can be developed and run;

4. to make possible a guaranteed response time for some subset of
the users of the system;

5. to utilize efficiently the hdrdware represented by the
Computer Center's 64008 system.

CAL TSS is called "large-scale" because it is in primary control {i.e.,
does not run under another system) of the computer, which is a
large-scale machine. It is a "time-sharing" system because a large
number of users at terminals may have programs active simultaneously
and aay each command responses from their programs on a time-scale of a
few seconds. Finally, it is called "general-purpose" because the
terminal user is not restricted to some particular pcogramming language
or set of programming languages; be may, in fact, program in machine
language if he so desires. In general terms, the system provides
facilities for the interactive user to

1. create files, preserve them in the system, retrieve and
destroy them;

2. manipulate text files with a text editor;

3. process files with a number of subsystems provided, including

4

The CAL Time-Shdring System

May 1971 Introduction

a. a SCOPE simulator, givin~ access to all the facilities of
the SCOPE system, including RUN Fortran, COMPASS, SNO
BOL, etc.;

b. a BASIC processor;
c. BCPt (a low level systems programming language);

4. prepare and run his own subsystems which may interact with his
teletype and other subsystems;

5. access the card reader, line printer, tape drives, and display
console;

6. give access privileges for his objects selectively to other
users if be so desires and obtain privileges of access to
objects of other users who wish to grant it.

When the terminal load on CAL TSS is low, another system facility
process a subset of the batch jobs normally processed by the
system. Other facilities can be implemented as determined by the
of the computing community, the programmer time available, and
capacity of the hardware.

will
SCOPE
needs

the

The structure of CAL TSS and the methods of using it are extensively
described in the subsequent pages of this document. Here are briefly
described concepts which all users of the system will have to deal
with, whether his aim is to run FORTRAN or to implement a language
processing system of his own.

5

-

.. - ..

txtended
Core
Storage -

300,000
60,.bit
words

Central
-Processor -

-

-

;

i

·,

-

i:-

--

Figure

Centra 1
Memory

32,768
words

. -

-·

.

1. CAL T Hardware Configuration

Periphera 1
Processors -

Peripheral
Equipment -01- Multi--

plplexor

- --

- -

-

- --

- -
~ -

-

-
-.

-·

- -

• -- -

-
r-

~

.,..._..

--

-

,,,,,....
........__ _/ i,....._-__,,-
r,....._ _/
r-...... _/

~
~ -

Line
Printer

~
,I Card

Reader

0
8,0

I SK;
00,000
ords w

Tape
Drive

0 0
,-

Console

< c lock

--

256
Telet es

Figure 2. Storage Pyramid

,---._

· Access Time Wor~s Cost per
For 1 word Available word

1 µs 32,768 $14
!j_emory

_§.xtended 4 µs .300,000 $1 Core
.§.tor age

depends on 8,000,000 • s~
DISK system load; I

many ms.

(
'-

1

The CAL Time-Sharing System

May 1971 Introduction

Figure 1 indicates the hardware configuration of the current 64008
system, on which CAL TSS is run. An exact understanding of all the
boxes and their interconnections is, fortunately, unnecessary, but a
brief description of the me•ory hierarchy will make dealing with the
system more understandable. Note first that a ,til~ is the basic entity
for storing information in the system; code ready for execution on the
central processor and text ready to be fed to a language translator are
both maintained in files.

Figure 2 represents as a pyramid the different storages present in the
hardware. As the figure indicates, storage at the bottom is slow and
cheap and big, while storage at the tof is fast and expensive and
relatively small.

The disk, at the bottom of the pyramid, contains all the files which
are accessible to the system without outside intervention such as
mounting a tape or reading a card deck.

At the top, central memory contdins the actively executing code of one
process.• As the central processor is switched from one process to
another, the code is swapped between CM and Ecs. Thus, ECS must
contain the code files for all processes currently active on the
system.

Part of any file which is being manipulated by one of the active
processes (an .2R!!D !i!~) may be in ECS or on the disk at the d.1.scretion
of the process concerned. rt may explicitly ask the system to maintain
parts (blocks) of the file in ECS by at_!:achi!Lg them and may dismiss
blocks by detaching them. When a process accesses part of a tile which
is currently in ECS, the information is delivered immediately. Access
to part of a file not in ECS causes the process to be blocked (stop
running) until the system is able to bring the required information in
from the disk. A process may, by attaching a block of a file in
adYance of its need to use it, improve its real-time processing speed
at a cost of using more ECS.

Within this context, some of the terms vitn which every user will
eventually become acquainted ace now defined.

Y§~_.2tofile: When someone makes arrangements to utilize CAL TSS, ~
body of information is recorded with the Computer Center business
office which identifies him and describes his funding and access to

I The noraal user at a terminal may consider all his interactions with
the system to be carried out under the auspices of his own private
process.

8

Play 1971

various system facilities.
profile.

The CAL Time-Sharing system

Introduction

This information is called the user

l,..29._.QDL!,oq of_!: When a user attracts the attention of CAL TSS from a
terminal, if his user profile and funding are in good shape, be is
logged on. This is a procedure which gives him access to his own
objects and such system objects and resources as his user profile
allows. System resources, such as memory space, are reserved foe his
use at this point and may be charged against his account. When the
user logs off, the resources are released and charging ceases.

File: As already noted, files ar@. the basic entity for storing
infor•ation in the system. Program cede ready for execution as well as
input to and output from language processors reside in files.

~i~~qtorx: Directories are special objects which control access to
other files, other directories, and other system objects. Directories
also provide the mechanism for associating symbolic names ("print
naaes") with the cbjects controlled by the directory.

fli.!!~Dent: _q!,si spac~: An amount of space determined by the user
profile is permanently reserved for a user• s files. It is the only
system resource tied up by a user who is not currently logged on and is
charged for continuously. It is controlled by the user's E~~llgQf
~irec;;tor1.

tempo,au_qisk spa~~: When a user logs on, space on the disk, as
determined by his user profile, is .reseC"ved to hold the temporary tiles
he may need while running, such as output files and compiler scratch
files. This space is controlled by his !~EQ£ary di~g£i.Q!.Y•

Pi;:oce.§2 : A process may be thought cf as an organizational entity
within the systea which ties together certain code from tiles and other
resources necessary to "carry out a task" or "run a program". CAL TSS
creates a process for each user as he logs on the system. His process
looks like a 6400 central processor with somewhat less than 32K of
memory; the full range of 6400 CP instructions is available to it. In
addition, the user's process is able to manipulate files and certain
other system-defined objects in a general way. It is delivered already
equipped vith some code which can, for example, communicate with the
user at his teletype. The private process created for the user is
given access to his permanent directory (among others), thus giving him
access to his files without giving access to other users.

[i!,ed_J£S seace: various data relevant to the state of a process are
kept in ECS by the system, as dre certain other objects germane to its
functioning. Also, the control information for opeb files is kept in
ECS. Because the system has no facility foe keeping such information
on the disk, it is kept in what is called fixed ECS space. The amount

9

The CAL Time-Sharing System

Kay 1971 Introduction

of fixed ECS which is set aside for a given user's process is
determined by his profile when he logs on.

~!~-~cs_spac~: Files and directories which are currently in ECS at
the request of a user's process are kept in vhat is called swapped ECS,
so that the system can free ECS space if it needs to by swapping the
files out to the disk. The amount of swapped ECS available to each
user is also determined by his profile at log on time.

10

! May 1971

Name:
Code:
Author:

Date.:
'P.nvironment:

2. 2. 1_PUt'.fOSP

The CAL Time-Shdring syste~

Eri i tor
F.d ,.c

2.2 The Editor

James Morris, Computer Science
Department, University ot Califor
nid, Ber-keley
Nov em c er 1 9 7 0
CDC 6400: Time Sharing System

The E<litor subsystem provides the 1SS user with facilities for
constructing and editing tiles cf coded information. A tile consists
of 1.i.!IB§ mdJP up at coded characters endin':l with the carriage return
character (generated by the RETURN key on the teletype).

The Editor is called by issuing a ccmmand of the form:

EDI'IOR fllgj!!~
., .. ~

where f!~Ef is the name of the tile to be cr~ated and/or edited.
If fll~filg is omitted, NULL is assumed. Whenever the tile specified
does not exist, an emfty file is created.

The Editor responds to being called by typing its prompt charact
er, a colon(:), and then awaiting reguests from the user.

2. Editor_Reguests

At any given time the Editor is looking at a specific line of the
file f!!I!..!!l~, called the current line. When the Editor is called,
the current line is d pseurto-lin~ which is always the top line of
a file; the significance of this line will become apparent later.

The following requests may be typed to move about the tile for the
purposP of cr~atinq, Jeletin~, or editing text lines. Each
request is ;tetminateJ either oy a carriage return, or if more than
one iequest is typed on one line, by a semi-colon. However the.
Editor does not actually receive the request(s) until a carriage

1

t
. ___

The CAL rime-Shdring System

Hay 1971 2.2 The Editor

rP-turn has oe~1n typed. Several reguests contain a "stop. condi
t.icn", C'epresented by ~£ belcw, which specities how many lines the
request affects.

T
D.§£

Insert the line(s) which follow
Delate tbe specified lines

.... .
lines
n uinbe.r of

P§£
C/str1/str2/sc

~nve to the top of the file
M6ve forward over the specitied
~ave hackwa~d the specified
lines (§£ must be an integer)
Print the specified lines
Repldce the first occurrence of
§1£1 in the specified lines

I
strl by

Repldce every occurrence of .21£1 by §1r2
in the specified lines
Edit the SFecified lines using the line
erlitor

R , f n am«':!, u name Insert the contents of the tile fna~~,
Qll!m£ after the current line.

Q

Locate (or create, if necessary) the file
fname,uname and write the. speci.tied lines
(including the current line) onto it
Finished - credte the file 1.ns.~~ from the
latest edited version
Finish~d but do not write a new tile.

The stop condition, §g, may have any one of five different forms:

a numbet
·IHI
/§tr

$

absent

where ~1£ is any string of characters not containing
a semi-colon. ·

A number specifies the exact number of lines, including the
current line, liffected by the reguest; (the pseudo-line is also
counted as a line) ; ·.§!:£ specifies all lines up to and including a
line containing the chat'acter string §.!:.!: as a subpart; /§ll
specifies all lines up to and including a l.1.ne beginning with §il
(ignoring lea,ling blanks); $ specifies all lines from the current
line throuqh thr:~ last line of the filB; and the absence ot §£
usu.:illy (but not alw"ys) means one line.

If the last line of tha file is reached before tbe stop condition
is met, th~ EJitor types *BOTTOM and waits at the last l1ric of the
file :cexcept in the M ccmmand) for another request. Whenever the

2

/
\.. .

The CAi. T1.me-Shar1.ng System

2.2 The Editor

Editoc does not rPcognize a request, it types???? and waits tor
d roqu~st it understan1s.

Insert_Rc~~st: I

This re~uPst must be.followed immediately by a carriage return
(i.e., not a ~:;r~mi-colon). All characters and lines typed fol.low
ing it, ('Ven lines int(:?nded as requests, are insected in the file
after the curr0nt line. When a new tile is being created or when
information is bAinq inserted dt the beginning of a file, the
current line. is the pscudo-lin~ mentioned above as being at the
top of all editor files.

The enrl of r\n ins0.rtion is si,j'nd.led by a carriage return at the
.Q~!l..!].!l.1.!!!l of a line; only then will editor requests be recognized.

For example, the following sequence of lines

EDI'IOR POfM
:I
JAMES JAMFS
WEATHERBY GECRGE DUPREE
TOOK GREAT
CARE OF HIS MOTHER
THOUGH HE WAS THREE.
er
M/J AMES; I
MORDISON MORRISON

calls the Editor (which responds with a colon), inserts five lines
in to the file POEM (the end of the insertion is signaled by a
carriage return at the beginning of a line which appears as a
blank line), then moves to the first line and iriserts the line
MORRISON MORRISON between the first and second lines. POEM now
consists of:

Jh11ES JAMES
MORRISON MORRISON
WEATHERBY GECHGE DUPREl
TOOK GREAT
CARE OF HIS MOTHER
THOUGH HE WAS THREE.

Additiondl linPs can be added tc the end of the file by moving to
the bottom of the file an~ insecting.

M$;I
..lA,i'HS , ,JAMES
MORRISON MORRISON
WEATHERBY GECRGE DUPREE

\. ..)

The CAL Time-Sharing System

May 1971 2.2 Tne Editor

ONE RAINY MORNING
SAID IO THIS '101'dER,
'MnTHER,' HR S~IU, SA~D HE:
' YO ll '1 ll ST NE V l:~.rl GO DO w N TO TH£:: END OF THE TO \ii~ ,
IF YOU DON'T ~O DCWN ~ITH ME.•
er

The l,1st line of t•Jxt inserted becomes the new cur-rent l.1.ne. The
fila POEM now cont1ins:

,lA :1 ES JAMES
~ORRISON MOR8ISON
i.ffATIIF:RHY GFCHGE DUPREE
TOOK GREAT
CAPE OF HIS MOTHER
THCUGH HF WAS THREE.
JAMES JAi'lES
MORRISON MORRISON
WEATHERBY GECBGE DDFREE
ONE RAINY HORNING
SAID TO HIS MOTHER,
'MOTHER,' HE SAID, SAID HE:
'YOU MUST NEVER GO DOWN TO THE END OP THE TOWN,
IF YOU DON•T GO DOWN WITH ME.•

Delete_Reguest: D§£

The delete request erases lines in the file beginning with the
current line and ending with the first line satisfying the stop
condition. Specifically, if the current line were the eighth line
of POEM, i.e., the second MORRISON MORRISON, then

D.RAIN oi: D/ONE

would delete thr:ee 1± nes, leaving:

JA:-IES ,JAMES
MORRISON MORRISON
WEA1HERBY GECRGE DUPHEE
TOOK GHEAT
CARE OF IIIS MOTHER,
TIIOlJGH [IE WAS THl,EE.
JAMES JAMES
SAID TO HIS MOTHE.H:
'~OTHErl,' HE SAID, SAID HE:
'YOU ~UST NEVHR GO DOWN TO THE END OF THE TOWN,
I~ YOU DON'! GO DOWN WI!U ME.'

4

(
\._

The CAL Time-Sharing System

May 1971 2.2 The Editor

fh•leh~d lines ,tCf" u?p.laced tr~mf.orarily by a line which prints as
*DELETED; it <lisappedrs however, as soon as the next move in the
filo is made. One or more l1u~s can be £~El~£~1 by combining the
delct(' dn,l ins0rt r:equPsts. SiJecitic,1.lli·, if the current line ,in
the tile POEM is: THOUGH HE WAS THREE, the requests:

D;I
THOUGH !IE WAS ONLY· THREE •

. c ['

produces the following version of the poem:

JAi1ES ,JAMES
MORRISON MORRISON
WLA!HERBY GEORGE DUPREE
TOOK GREAT
CftHE OF HIS MOTUER
THOUGH IIE WAS ONLY THREE.
,11\ iH S J A M E S
SAIC TO THIS MOTHER,
':itO'IHER,' f!E Sii.ID, SAID HE:
'YOU MCTST NEVER GO DOWN TO THE END OF THE TOWN,
IP YOU DON'T GO DOWN WI'IH ME.•

which, incidentally, is the true version.

The "top" request!> asks the Edi tor ·to move to the top ot the tile,
and the emFtY line becomes the new current line. Thus to ins.ert
text at the beginning of the file, cne might type:

T;I
'IITLE:
'DI SOD ED I ENCE
BY A.A. MILNE

Now the file would appear as follows:

T!TLF.:
DISCBEDIENCE
BY A. A. MILNE

JfvMES'JAMl:.S
MORRISON riORHISON
WEATHERBY GECRGE DUPREE

ii

!1

I
I

I
I
I
I
I
I
I
I

)

Th~ CAL Time-Sharing System

May 1q71 2. 2 The Editor

T'lOK Ci<i::I\T
CAHE OF HIS "lOTflER
TtlOIJr.fl HF WAS ONLY TIIBlE.
,J A '.1 E S .J f\. :-J E S
S 1\I D TO II IS MOTHER
'l'IOTHER,' !JE SAID, SAID IIE:
'YUU ~UST NE.VER GO DOWN TO THE END OF THE TOWN,
IF YOU DON'T ~O DOWN WITH ~E.'

The combination of requests, T;D§f er, can be used to delete lines
at the beginning o.t a file. For instance.,

T;D.LE:

or 'I;D/TI

or · T; D2

will delete the first line of the file POEM leaving the lirie~·fro•
DISOBEDIENCE on down to the end.

Note that tu delete the fi£§i line of the file using a numerical
stop condition, the number 2 was required rather than l .or simply·
D. Recall that T rositions the editor at the pseudo-line, rather
than the first line of text, so that although it is not possible
to delete the empty line, it must be included in the count for the
stop condition. Indeed this consideration applies to numerical
stop conditions for all requests issued immediately following the
top request.

11.QY.£L~eg uest: M§.£

The move request changes the c~rrent line to the first line which
satisfi~s the stop condition. For instance, in the latest version
of POEM, the requests I

T;M9

or M/TOOK

will both position the Editor at the line

TOOK GREAT

regardless of the old current line position. Whenever the last
line in the file is rectcheJ betore the particular stop cond1t1on
is met, the. Editor continues searching at the top of the file
(i.e.~ it ~raps around). If the condition is never met, it types
*NOT FOUND and returns to the old current line.

6

The CAL Tiwe-ShaC'ing System

May 1971 2.2 The Editor

Since ~$ sP.11ds the Editor- to the last line of the file,

.M1i;I
n ~ " 1 i n e (.,)
er

is the oasiest
example on page 4

way to append lines to the file.
uses this methcd.

iJac:<:ward_Move_Reg,11,::,st: B§f

Note that the

The bdckward move request rooves the current line position backward
in the file the number of lines specitied by the stop condtion. A
number is the only stop con1iti6n allowed with the B request.
Thus

E

or Bl i .. ~

moves the current linP. position t::ack one li . .ne;· 87 will move it
back 7 lines. However, dn attempt to back up beyond the first
line of text causes the Editor tc complain:

* BACK TOO FAR

and remain at the current line pcsition.

P~int_Regyest: P§f

The print request asks the Editor to print out all lines up to and
including either the line satisfying the stop condition or the
last line, whichever the Editor encounters tirst. The last line
printed becomes the new current line •. Specifically, P or Pl
prints the current. line but causes no change '. in line position.
P2, howeverr is equivalent to P;M;P. Thus in th• file POEM as it
stands so far:

T;P2

evokes

DISOBEDIENCE
" ,,;

(Reca~ll that the pseudo-line· is included in the count.)

.1

\) -··

i
j
t

I!
ii
F ,1
·1
!•

:1
n

:1

1: \
'

The CAL Time-Sharing System

May 1971 2.2 The Editor

PJ

will then cause

HY A.A. MILNE

JAMES JAMES

to be printed. The blank line, cf course, counts as a line.

F/MORR!S

prints the first and second lines of the poem, then

P$

prints the second line through the end.

If the end of the file is reached before
satisfied, the Editor types out

*BO'ITOM

and remains there.

the stop condition is

If the Euitor has bP-en reguested to print out far more than was
actually desired (i.e., is in Sorcerec•s Apprentice mode), it can
be stopped by typing CRTL-SHIFT-P. The Editor responds with a
colon and then awaits the next request.

Change_Reguest: C/§iI1/§!£l/§£

This request enables the user to alter a line without retyping it,
as was required by the D~f;I technique. The first occurrent~ (if
it exists) of the character string strl is replaced by ~l&:.i in the
current line and all succeeding lines through the line satisfying
the stop condition. For example, the sample po•m can be changed
further by such t:equests as: ; ·

T;M/JAMES;C/MES/NE/

which alters the first line cf the pcem to:

JANE JAMES

Then, how,ve~~ the subtl~ty of the E~itoc•s ways is demonstrated
when:

8

(l

'-"

I
(.
'-.. _.,

The CAL Time-Sharing System

May 1<}71 2.2 The Editor

c;:Hs /NE/

causes the Editor to respun~

* N () c !I A rm E *

The idr~a Wd::i to cha11ge the second occurrence ot JAMES in the fit"st
lin0 to ,JANE. Siuce it occurred at the end of the 11.ne however,
it was not tallowed by a blank. therefore, the Bditor was unable
to find the string to be changed and reported its failure with the
*NO CHANGE message.

However, C/MES/NF./ produces the following version of the poem:

DISGBEDIENCE
BY /\.A. MILNE

JI\NE JANE
ctORRISON MORRISON
WEATHERBY GfCRGE DUPaEE
TOOK GREA'f
CARE OF HIS MOTHER
THOUGH DE ~AS ONLY THREE •
• JAMES .J IU1ES
SAID TO HIS MOTHER,
'MOTHER,.' HE SAID,. SAID HE:
'YOU MUST NEVE~ GO DOWN TO THE END OF THE TOWN,
'IF YOU DON'T GO DOWN WITH ME'.

The following series of requests make the poem look more like the
original by indenting all but the second to last line:

T;M/DIS;C// /12
M$;C// I

Any chacacter that is not a letter may be used instead of slash to
delimit the string~ For instance

c.. . 1 :l

would also indent 12 lines.

/.

9

Tha CAL Time-Sharing System

May 1971 2.2 The Editor

Global Change_ReJuest: C~/st~1/str2/sc

This corumdnd is identical to the chang~ request except that all
occurrences of §1£1 in the current liue are replaced by g,ri. P'oc
example,

T;CG/HE/SHE/$

produces the following version of POEM by changing all ocaurrences
of the word HE to the word SHE:

DISOBEDIENCE
BY A.A. M1LNE

,JANE ,JANE
MORRISON MORRISON
WE1\1HERBY GECRGR DUPREE
TOOK GREAT
CARE OF HIS FA1'IIER
THOUGH SHE wAS ONLY THfiEE.
J A M ES ,1 A M ES
SAID TO HIS FATHER:
'FATHER,' SHE SAID, .SAIC S~E,

'YOU MUS! NEVED GO DOWN TO THE END OF THE TOWN,
IF YOU DON'T GO DOWN WITH ME.•

Op the other hand, T;C/HE/SHE/$ would have allowed the second HE
on line 12 to escape unchanged.

The edit request offers an alternate method for changing the text
of tho current line. It causes the current line to be treated as
if it had just been typed in, and the user is expected to enter
line editor requests. (see the section on the Line Editor) to
specify a new one which will replace it. As soon as the edited
line is completed and hds been accepted, the Ejitor no longer
accepts Line Editor requests unless the edit request is retyped.
For example, if the current line is:

THOUGH SHE WAS ONLY THREE.

the word "only" can te deleted· by tYE:ing:

C/ONLY//
, .

10

·--

The CAL T1me-Shacing System

May 1971 .2.2 The Editor

The sume enit can he done by typing:
E
CTRL-F S CTRL-F S CIRL-X CTRL-SHIFT-0

which copies the lin~ through the seconrt occucrance of th~ let~er
S, skips one word and .then ccncatenates the rest of ihe line,
prints it, an~ causes the new line to Da accepted and substituted
for the old lin~.

To then as an ~fterthouqht use the line editor to change the word
S~E to HE, the editor raqucst must te ~ntered again followed on
the next lin~ by the aFpropriate line editing requests.

An attempt to use the Line Editor when position~d' at the empty
line, e.g.,T;E evokes PSEUDO LINE SKIPPED trom the Editor. The
Editor must be requested specifically to look at tbe line to; be
edited, before the edit can be entered.

Read_File Re,gJ!est: R,f.!H!.!!!Q,.\.ill~!!!f

This ccmmano inserts the ccntents of the tile !n~!g,~ns!~ 1 j
immediately following the current line in the file. The last line
inserted becomes the current line. If, for instance, the second
verse of the poem in the sample were on the. file SECOND~ the
sequence of requests:

MJ;;R,SECOND;'t;P$

would produce the first two verses of the poem.

]rite File_~g~§..t: W,fname,uname,sc

This command creates the file fl!~d!!H!..!£ a if it does not already ·1·
exist, and writes onto it the contents of the current tile from
the current line through the' line satisfying the stop condition.
If the stop condition is omitted, it is assumed to be$ instead of
1. For i.nstance, after moving the second verse of the sample onto
the current file, the poem cculd be edited into its original form
and written onto the file KEEP using the following Lequests:

T;CG/SHE/H~/$;T;W,KEF.P,,$

a .YJH!fil2 is th;e .name of a temporary directory to which the user has
access. · :

11

The CAL Time-Sharing System

May 1971 2.2 The Editor

Finished_ReguestA F,fname,unc1me 1

This request tells the Editor that the editing is completed and
asks it to return control to the Command Processor. Defore doin1
so, it will leave the most recent version ot the current file in
ECS under the ndme fnd.£!!£, or .if no name is given in the F request,
under the 111.aill£ specified iu tht=> command which called the Editor
initially. In the case where the Editor was called to edit an
already existing file and the editing session is teI"minated oy an
F r:equest with a different illi!.!!!~, both the original file and the
edited versicn will be kept.

If, after editing a file, the user decides it was all a mistak~,
the Q request can be used instead ot F. The Editor responds by
leaving the original file in ECS unedited and not generating a ne~
file.

The two change cequests restrict the number of characters in §!:U to 50
characters.

The Editor permits lines to consist of up to 160 chatacters but it is
suggested that they be restricted to a total of 80 characters to assure
compatability with other processors, such as the c.ommand Processor, thel
Line Editor, and the teletype interface •

.f.:. 2 • 4 -1!2~.§

The Editor works by copying files in a purely sequential fashion; at
any point one file is being read and a new one is being created with
those modifications called for by the various requests~

A T {top) command causes the Editor to copy the remainder of the input
file to the outpu~ file, to make the cutput file the new input tile,
and to start creating a new output file. An M command which moves past
the last line of the file and returns to the top ot the tile, also
causes this activity. The two scrdtch files used tor this see-saw
process are given the names 11D~ill~ and ifn~ft, where fn~~f is the name
of the f,ile declared when 'the editor is calle9. In general, the
process is as follows:

If ·tUe usel c~ils th, Editor with:

12

11

1,.

I
I
I
i
I

i
I

'-·--

The CAL Time-Sharing System

May 1971 2.2 The Editor

EDITOR I::LATZ

then the Editor

1) · starts reading BLA'rZ {if it already exists) and writing
1BLATZ
2) then r-eads 1BLATZ and writes 2BLATZ
J) then Cf~ads 2DLATZ and writes 1DLATZ, etc.

and at the end, assuming an F command,
4) renames the mcst r:ecent file written (1BLATZ or 2BLArZ)
with the original name BLATZ and deletes the other two files.

Thus, in the ~ve11t of a iuinor di,;astec (foe example, the user deleted
half the file inadvertently), a fairly recent version of the file may
be found.under one of these names in tbe user's temporary directory.

'

13.

May 1971

Title:
Code:
Author:

Date:
Environment:

The CAL rime-Sharing System

Line Collector
LC 1. 0

2.3 Line Collector

Jim Gray, Computer Science Depart
ment, University of California,
Berkeley
November 1970
CDC 6400: Time Sharing System

The line collector constructs a line from the TTY using the previously
typed line as a template. It maintains two lines simultaneously, an
old one and a nev one. The old line is the last line received by the
Teletype and is local to the virtual teletype buffer; it may possibly I
be empty. A new line is constructed from the old one using the
characters typed in from the Teletype. To visualize the process of
constructing each nev line, imagine two cursors or pointers, one called
OLD which runs over the old line and one called NEW which is positioned
on the nev line as it is created. Normally when a character is entered
froa the TTY, it is appended to the new line and both cnrsors advance
one place. If certain non-graphic characters, comprising requests to
the line collector (see Figure 1) are entered, the cursors can be
manipulated so that, for example, characters are COPIED from the old
line to the new one, or parts of the old line are SKIPped, or the
cursors BACKUP over the undesired characters.

One application for the line collector would be in conjunction with an
on-line compiler which performs a si•Fle syntax check of each line as
it is entered. If the line is bad, it outputs a diagnostic, rejects
the line, and calls on the line collector. The user edits the old line
which still resides in the virtual buffer and resubmits it to the
coapiler.

The line collector accepts a number of requests for actions to be
performed on the old and/or new lines. ~ost of these involve moving
the cursors forward or backward to the desired locations. The actions
resulting from the requests are given below. In general, the actions
can be separated into five categories: copy, back up, skip, accept,
and other. In each of the first three categories, there are six
requests for specifying the various distances in the old and new lines
the cursors are to move. In the descriptions which follov, if the
first key(s) specified is (are) CTRL-, or CTRL-SHIFT-, the next
key must be pressed !.hi!~ the first key(s) is (are) still depressed.
"word" is defined as a sequence of one oc more alphanumeric characters
del iaited by non-al phanu 11erics; when looking for the beginning of a

1

The CAL Time-Sharing System

May 1971 2. 3 Line Collector

word, the cursor disregards all non-alphanumerics until it encounters
one or aore consecutive alphanumerics. For instance, in the line

'MOTHER,• HE SAID, SAID HE,

the beginning of the first word. is t.he letter M, not the graphic quote;
and the end of the first word is R, not the graphic comma. "Next
character entered" refers to the first occurrence in the line of the
next character typed following the request. If at any time an edit
request cannot be fulfilled, the line collector responds with a bell.
In the examples, the cursor is represented by a vertical bar below the
line.

~opy Begy~2! 2

1. ~Q.2.L-.Q!le cha[acte~: CTBL-A

The next character in the old line is appended to the new line,
and the character is printed. For example, if before the request
is issued, the old and new lines apfeared as

Old: THOUGH HE WAS ONLY THREE.
I

Nev:

the request would froduce:

Old:

Nev:

THOUGH HE iAS ONLY THREE.
I
T
I

2. £.2.EI .2J!LVOtg: CTRL-S

The characters in the old line up to the next word boundary are
appended to the new line, and are printed. Por example, it the
old and new lines appeared as they were left in the previous
example, the request would produce:

Old:

New:

THOUGH RE WAS ONLY THREE.
I

THOUGH
I

If issued again, it would produce:

2

The CAL Time-Sharing System

May 1971 2.3 Line Collector

5.

Old:

Nev:

THOUGH HE WAS ONLY THREE.
I

THOUGH HE

Characters in the old line
character entered are appended
the position of the cursors at
CTBL-D V would produce

up to but not including the next
tc the new line and printed. Given
the end of the previous example,

Old:

Nev:

THOUGH HE WAS ONLY THREE.

' THOUGH HE

'
A second such request of the form CTRL-D O would produce:

Old: THOUGH HE WAS ONLY THREE.
j

Nev: THOUGH HE WAS
I

The characters in the old line up to and including the first
occurrence in the re11ainder of the line of the next character
typed are appended to the new line and printed. For example,
using the lines in the last example, CTRL-F N produces:

Old: THOUGH HE WAS ONLY THREE.
I

Nev: THOUGH HE WAS ON
I

<;;o:e! to ta,!2: CTBL-G

The characters in the old line up to the next tab setting (see
Q!.h~-B~quest§ below) are appended to the new line and printed.
Assuming there is a tab setting at print pos~tion 20, and the
cursors are positioned as they were left from the previous
example, CTRL-G produces:

Old:

Nev:

THOUGH HE WAS ONLY THREE.
I

THOUGH HE WAS ONLY
I

J

The CAL Time-Sharing System

Play 1971 2.3 Line Collector

The remaining characters in the cld line are appended to the new
line and printed. CTRL-H has the following effect on the line in
the previous example:

Old: THOUGH HE VAS ONLY THREE.
I

Rew: THOUGH HE WAS ONLY THREE.
I

One character is erased from the nev line by backing up the cursor
in both lines one place. ~ is printed in the next forward
position in the printed line. This request would have the
following effect on the lines in the previous example:

Old: THOUGH HE WAS ONLY THREE.
I

Nev: THOUGH HE WAS ONLY THREE .. ~
I

and the actual image of the new line is:

THOUGH HE WAS ONLY THREE
I

2. ~ll..e-2.ne wotd: CTBL-W

All characters up to the last non-alphanumeric
erased by backing up the cursor in both lines.
the next (forward) position in the printed line.
would have the following effect on the lines
example:

Old: THOUGH HE WAS ONLY THBEE.
I

Nev (printed):THOUGH HE WAS ONLY THREE.~\
I

(actual): THOUGH HE WAS ONLY
I

chacactec ace
\ is printed in

This re-3:uest
in the previous

All characters in the new line Uf to but not including the first
occurrence in the backward directico of the next character entered

4

The CAL Time-Shacing System

May 1971 2.3 Line Collector

following the request are erased by backing up the cursor in both
lines. \ is printed in the next forwacd position. A request
such as CTBL-E N would have the following e.ff.ect on the previous
example:

Old: THOUGH HE WAS ONLY THREE.
I

Nev (printed):THOUGH HE WAS ONLY TH BEE. ~,,
J

(actual): THOUGH HE WAS ON
I

4. ~acku,1L!hrough n~character ent~~g: CTRL-R

All characters in the nev line up to and including the first
occurrence in the backward direction of the next character entered
after the request are erased by backing up the cursor in both
lines. \ is printed in the next fcrward position. A request such
as CTBL-R i would have the following effect on the previous
exaaple:

Old: THOUGH HE WAS ONLY THREE.
I

Nev (printed}:THOUGH HE WAS ONLY THREE.~\\\
I

(actual): THOUGH HE
I

All characters in the new line up to and including the first tab
setting encountered in the backward direction are erased by
backing up the cursor in both lines. ~ is printed in the next
forward position in the printed line. This request would have the
following effect on the line- in the previous example, it there
were a tab setting in position 10:

Old: THOUGH HE WAS ONLY TH BEE.

I
Nev (printed):THOUGH HE WAS ONLY TR REE. ~,,,

I
(actual) : THOUGH HE

I

6. 1!!£kup to.egg~: CTBL-Y

The new line is erased completely and may be started anew. 1 is
printed in the next print position, the printec paper is advanced

5

rhe CAL Time-Sharing System

r!ay 1971 2.3 Line Collector

and the carriage is returneJ. Thus, to change the line in the
previous examfle to read ALTHOUGH HE WAS etc., type: CTRL-Y
ALTHOUGH HE WAS ONLY THREE. After the back up request, the line
would appear as:

Old: THOUGH HE WAS ONLY THREE.
I

New: THOUGH HE WAS ONL'i THREE.<E-\\\\-1'
I

Then typing the first word of the nev line would produce

Old: THOOGH HE WAS ONLY THREE.
I

New: ALTHOUGH

'
Note that since the first word has more characters than it did in
the old line, the cursor in the cld line has run into the next
word. It would be handy to use the 11copy to edge" request here,
but to do so would make nonsense of the line, i.e., ALTHOUGHE wAS
ONLY THREE. Instead the remainder of the new line must be typed
in, producing:

Old: THOUGH HE iAS ONLY THREE.

I
New: ALTHOUGH HE WAS ONLY TH8EE.

' It will be shown later how the "insert request" can be used to
avoid this inconvenience.

~kj..e_~que~ts

1. Skip-211e chaI~~!~r: CTRL-Z

One character in the old line is skipped by moving the cursor in
the old line ahead one character. $ is printed on the teletype.
Assuming that the old line is:

'MOTHEB,' HE SAID, SAID HE,
J

the request CTRL-Z produces

Old: 'r10THEB,' HE SAID, SAID HE,
I

Nev (printed): $
I

6

The CAL Time-Sharing System

May 1971 2.3 Line CollectoL

3.

(actual):

One word in the old line is skipped by moving the cursor in the
old line ahead to the first non-alphanumeric character. $ is
printed for each character skipped. This request would have the
following effect on the lines in the last example:

Old: I MOTHER,' HE SAID, SAID HE,
I

Nev (printed):$$$$$$$
I

(actual) :
t

~kie to next chy:act~~!!U~~g: CTBL-C

All characters in the old line are
character entered after this request
old line up to that character. $
characters skipped. CTRL-C H has
lines in the previous examFle:

skipped up to the
by moving the cursor in
is printed in place

the following effect on

Old: 'MOTHER,' HE SAID, SAID liE.
I

New (printed):$$$$$$$$$$

(actual) :
l

I

next
the

of
the

If the cursors were positioned
new version of the line could
(the line will be shown after
action of the cursors):

at the beginning of the lines, a
be obtained in the following manner
each request to illustrate the

First type: CTRL-A (copy one character)

Old '"OTHER,' HE SAID, SAID HE.
I

New: '

Then type,
SIST CTRL-D H (enter SIST instead of MOTH and copy up to the
beginning of the word HE)

Old: '"OTHER,' HE SAID, SAID HE.
I

7

The CAL Time-Sharing System

~ay 1971 2.3 Line Collectoc

Nev: 'SISTER,'
I

Then,

and

I CTRL-X (enter I instead of Hand skip to the end of the wocd;
one could also say I CTRL-C (blank) to do the same thing)

Old:

Nev:

'MOTHER,' HE SAID, SAID HE,
I

'SISTER,' 1$
I

Then CTRL-D H (again, to copy up to the beginning ot HE, this
time at the end of the line)

Old:

Nev:

finally, I, to

Old:

'~OTHER,' HE SAID, SAID HE,
I

'SISTER,' I SAID, SAID
I

finish the line

'MOTHER,' HE SAID, SAID HE,
I

Nev (printed): 1 SISTER,' I$ SAID, SAID I,
(actual): 'SISTER,' I SAID, SAID I,

I

Note that the cursor in the old line has not yet ceached the end
of the line; this is irrelevant as long as a copy is not requested
next.

4. ~~ip th~2ugh next chacact~! enter~~: CTHL-V

All characters in the old line through the character entered
following the request are skipped by moving the cursor in the old
line to the character following the next occurrence of that
character in the line. $ is printed for each character skipped.
For example, if the cursors were positioned as in the lines:

Old:

New:

'MOTHER,' HE SAID, SAID HE,
I

'MOTHER,
I

(perhaps as the result of a copy through the next character
entered where that charactec was a comma), the reguest CTRL-V D,

8

The CAL Time-Sharing System

May 1971 2.3 Line Collector

folloved by a skip one character (CTRL-Z) and by copy to edge
request would produce:

Old:

New
(printed):
(actual) :

'~OTHER,' HE SAID, SAID HE,
I

'MOTHER,' $$$$$$$$ SAID HE,
'~OTHER,' SAID HE,

I

All characters in the old line up to the next tab setting are
skipped by moving the cursor in the old line to the next tab
position. $ is printed for each character skipped.

The remainder of the old line is skipped by moving both cursors to
the position at the end of the old line. $ is printed tor each
character skipped. For example, if a new line had been con
structed as follows:

Old:

New:

'MOtHER,' HE SAID, SAID HE.
I

'SISTER,' HE SAID,
I

A CTRL-N request would move the old cursor to the position at the
end of the old line, leaving the new line as is.

There are four requests which cause the new line to be accepted and
thereby mark the end of the requests that can be made for that line.
The first tvo cause the line to be accepted as is; the second two cause
the remainder of the old line to be concatenated onto the new l~ne
before it is accepted.

1. A££~E~.Regues~: er

Depressing the carriage return key enters the accept request. The
current new line is accepted as is, terminating the construction
of that new line.

9

The CAL Time-Sharing System

~ay 1971 2.3 Line Collectoc

~Reci~l Accept: CTRL-0 (not implemented)

This request is identical to the accept cequest except that thP.
line collector notifies the calling coutine that this line is
special.

This request appends whatever is left tallowing the cucsor in the
old line to the nev line and then causes it to be accepted. Foe
instance, if only the beginning cf a line were being altered as
in:

Old: 'MOTHER.,' HE SAID, SAID UE.
f

New; 'SISTER,'
I

a CTBL-P request would cause the new line to be accepted as:
'SISTER,' HE SAID, SAID HE.

This request is identical to CTRL-P except that the new line is
printed out in its final focm. It is handy when quite a few
changes have been made to the old line when creating the new line.

Q1,her R!!guests

There are six other reguests that can be made of the line
collector. They provide facilities for inserting text in a line,
setting and releasing tabs, tabbing, printing the current state in
both lines, and concatenating and ceediting without having the
line accepted.

!,nsert--1.§gU!:St: CLTR-L

When entered an odd number of times since the beginning of the new
line, the cursor in the old line is not moved on Backup operations
or when characters are entered, thereby allowing the insertion of
characters into a line. < is printed in response to odd numbered
entries of the request. Even numbered entries return the old
cursor to its normal action and cause> to be printed. Suppose,
for example, the line THOUGH HE WAS THREE is to be changed to:
ALTHOUGH HE WAS ONLY THBEE. The following series of requests
could be used:

10

The CAL Time-Sharing System

Play 1971 2.3 Line Collector

CTRL-L AL CTRL-L inserts the characters AL at the beginning of the
line:

Old:

Nev
(printed):
(actual):

THOUGH HE WAS THREE.
I

<rtL>
AL

I

Then CTRL-F S CTRL-L ONLY CTRL-0 copies the old l1ne through the
letter "S", inserts the word "only", and concatenates the remaind
er of the old line, causes it to be accepted, and prints the line
as it vas accepted. The output on the teletype would appear as:

<AL>THOUGH HE iAS < ONLY TH5£E.
ALTHOUGH HE WAS ONLY THREE.

I~~et/Release Regue§!: CTRL-K

This request sets (releases) a tab stop at the current position of
the cursor in the nev line when entered an odd (even) number of
times.

I~b B~guest: CTRL-1

This request inserts blanks up to the next tab stop (both cursors
advance). Blanks are inserted in the printed line. For instance,
if the user wanted to inde~t a number of lines five spaces, and
the old line started in print position one, he could set a tab
(see above) in print position 5 and start the new line with
request CTRL-I. subsequent indented lines co11ld be begun with
either CTRL-1 or CTRL-C (skip to next character entered) followed
by the first letter of the previous line.

Tfpe .llll.!LJ!e9ues1: CTBL-SHIFT-K

This request allows the user to see the current state of the
editing process; the printer paper is advanced to a fresh line,
the carriage spaces to the current position of the new cursor,
prints a copy of the remajgder of the old line, and on the
following line prints a copy of the new line Y.£ 12 the curcent
position of the nev cursor. For example, if CTRL-SHIFT-K has been
typed after CTRL-F S ("copy through the character S") in the last
exa11ple, the printed output would .have been as follows:

11

The CAL Time-Sharing System

2.3 Line Collector

<AL>THOCTGH HF WAS
TH REE.

ALTHOTJGH HE wl\S

indicating that, in the old line, the cursor was positioned before
the word THREE and then printing the new line as it had been
constructed so far.

Concatenate_and Re-edit_Re1uest: CTRL-SHIFT-L

This request combines some aspects of two of the requests
described above by appending the remainder of the old line onto
the new line, but instead of causing it to be accepted, it makes
this line the old line with the cursor positioned at the
beginning. The printer paper is positioned at the beginning of a
fresh line. Thus the "new line" can be edited further before
being accepteri.

2.3.3_TSS_Text Standard

The System Standard Text (Systext) is the standard method of storing
codPd information for the Time Sharing System. Information in systext
format exists in a file (a semi-infinite array of 60-bit wor-ds) and is
terminatPd by an end-of-information word. A Systext file is composed
of ling2 , which contain character coded information ani segments called
slOEEY segments which contain no information.

Syst".?xt Lines

A linP is a sequence of 7 bit ASCII chdractecs terminated by the
control character fB (= 1558). There is no limit to the length of a
line, and they may be split across file block boundaries. Each line is
packed left-iustified into successive 60-bit words, A characters (56
hi ts) per word.. The first 4 bi ts of each word serve to signal the
begirninq of a line: for the first word of a line these leading bits
are 1001; for all other words in a line they are 0000. consider the
linns ABCDEPGHIJ CR which would be stored in Systext as:

,---------- , r---------------,
110011 Al BJCI Cl El FIGJHI JOOOOjIIJICRl*l*l*l*l*I
L-----------------J L----------------.J

Char~cters which follow thP app~arance of CR in a word are ignored.

f1nltipl0 blanks in a line are compressed by insertinq a count of the
numbHr of blanks rather than the blanks themselves. The ASCII
charactPr j~sc (= 1738) is reserved for this purpose. Whenever ESC
occurs in the Systext file, the character following it is interpreted

12

May 1971

.1s a blank count, 'n• (0 i n < 128).
arP replacea by n blank charact~rs.

CharactP.r_R~resentation

The CAL Time-Sharing System

2.3 Line Collector

on output these two characters

ThP internal ASCII corie usea in System Standard 'rext is the external
ASCII+ 1408 (mod 200B). The conversion is performed by the system I/0
routines. This scheme maps blank onto O, U onto 208 and A onto 41B.
See Appendix A. Table 1. }!.QQ-graphic characters, however, ace not
allowed to occur in Syst8m Standard Text. (Carriage return and ESC in
t h 0 co n t P x t de s c r i he d a b o v e i1 re t he o n 1 y ex c e pt i on s •) The -c e f o re , the
charactPr l has been reserved as a special prefix for representing
non-graphic chardcters; if the graphic following a % maps onto a
control character under the mapping: internal ASCII+ 1008 (mod 200R),
the pair is interpreted as that control character (see Appendix A Table
2). Otharwise the% leaves its successor unchanged. So%% represented
1 and lM represented CR.

The CAL Time-Sharing System

l'llay 1971 2.1 Line Collector

A slofpy segment in the Systext file is a group of n words (0 < n <
21 8) that are to be ignored. The first and last vor1 of such a segment
are of the farm:

-IN DEF
r------.-----------------,--------,
I 60 O O i l n I
L-------L------~--------~---------~

48 17 0

where n is thA count of words in the segment. The system ignores the
mid<lle 10 hits of this header word and the successding n-1 words. A
sloppy segm~nt may not occur within a line and cannot be split across
fil~ blcck boundaries.

End-of-information

The end of systcxt is signaled by an end-of-information (EOI)
thP fcrm:

r--------,------------- ,
14000 I l
L J

c; 9 48 0

~he low order 48 bits of the word are ignored.

word of

14

The CAL Time-Sharing system

2.3 Line Collector

2.3.4_Line_Collector_Actions

Callinq the Line Collector (LC:ASCII)

The line buffer associated with a teletype ~s a sequence of words
containinq Systext, headed by a word specifying a pseudo-character
count. The Sys text may either cont a in com presse:i blanks or not,
depending on how the buffer is filled. Four actions are available for
ma n i p u l a t in g the bu ft e r: in p u t a 1 i ne , out p u t a l i n e , out p u t a
character, and edit a line. The input parameters are:

IP1 D: action specifier
IP7. nn: line buffer holding <BS characters)

~hPr0 thA action
IP1=0
IP2=1

IP1=7.

IP1=3

TP1=ll

specifier may be
no operation
Input a line. (IP2 is ignored).
A line. is read in frcm the teletype and is then
returned to the user via the block data return
authorization, i.e., the block of words constitut
inq the line buffer is returned in the parameter
RDAT BD: line buffer. Blank characters are not
compressed.
Output a line. The contents of the line buffer
specified by IP2 is cutput to a teletype up to a
carriage return character, or when the pseudo
character count in the header word is exhausted.
If the line contains compressed blanks, the pair:
ESCn is treated as 2 pseudo-characters.
Output a character. The first word of IP2, which
is assumed to contain a single right-adjuste1
syst~xt character, is sent to a teletype.
Edit a line. ~he line passed in IP2 becomes the
old line. (Blank compression is not allowed.) A
line is then read from the teletype and returned to
the user as in TP1=1.

1. The line collector limits the size of a line to 85 characters.
Should a line be constructed having mere than 85 characters using an
ins~rtion, all characters following the end of the insertion are
droppe~. If a line exceeds 80 characters, the concatenate Print and
Acc0ot command will not print the line although the other functions ace
still perfocme~.

15

The CAL Tirue-Sharing System

2.3 Line Collector

2. Whenever a request produces the effect of another request of a more
specific nature, the line collector respcnds as if the more specific
request had been entered. Por instance, if the cursors are positioned
at the end of the fi£§! word of a line and the request to "back up one
word" is qiven, the line collector resrcnds as if the request "back up
to edge" had been given. Similarly, if the cursors are positioned at
the second letter of a word {which is not the first word of a line) a
"back up one worn" request causes a ~ (for ttback up one characteru) to
he printed rather than\.

1. A special character in the middle of a word, e.g., DON'T or P.OPS,
is interpreted by the line collector as a word boundary. For example,
if the cursors are positioned at the beginning of the word DON'T, a
"copy one word 11 produces DON instead of the full word. A second "copy
one word" copies 'T, but then a "back UF one word" interprets ' as the
worrl bounrlary ann stops at. the T, printing ~ (see note 2).

16

,---...'\

I

'

Concatenate, Print, Accept

Special Concatenate, Accept

(J)_Q_a_0 __ (J)_ (D __ OiCDJ<D; G) o 07·pt
\G),r'\',twiu\',~\ ('\\ ('\',('\ I~ ~ rf\ ~ ,:>i

Backup: ~ \~ ~ ~ \~ \~ ,\J!._) \.!:.) ~ \.!..,) \,:V \..:V .
.d~,~'~'~'~'~G)~G)~~

Copy: C;J \ \..y \ \..E_) \ ~ \ \...!) \ ~ \ \J!.) \ J · ~ L \.jJ ~

S~ip: 8\0\0\r}J\0\ffJ'~©\~/.?{nCJ::Cha? 8

8 0 ft) ,,c:

~ ::s "C
ft) rt

ft)"
n ,: ... 0
::r' 0 ft)
0, '1 P..rt ... p.. ::r'
p, ft)
C')
rt ::s
ft)

~ 11
rt

g.
0,
'1
0, -,,
rt
ft)
ti

....

....J

C') c:
::r' "C
p,
'1 " p, o.
C')

" II>
ft) ::s
11 p...

C',) I-'• ::s ::s
rt 0
ft) I-' ... c:
ft) p..
p..

::s
OQ

::s
ft)
>C
rt

c:
"C

" 0

~
II>
O"

(Release) Concatenate, Re-edit
Type State

c:
~

" 0

ft)
p..

OQ
ft) -.... ft)

"' . rt

0
'1

pt
......

CIQ
::r'
rt -

·--.

"'l

...:.
::

h
1-r,.

" 1:,..., ,,,
,.....
I
I 3
1-;
11-·
I: ,
k
t::
I;
I
1:,
1-:.
t<
t::-
1:;

I~ l:l,
1.;i,
1:::,
1;;.. ;)
I ::::-
1:1 '.)

I.:>
l::J --:
let" :>
11"1 t ..
1:,
l--' --3
I I'.: ,,.
an . -1:r :.... :c
1.:i. I
h -· ~I)

a.:i. ,.... ~
l:'l :::, ;.,
a.~ '"

,.,
f;') , (") :::,

'"".,- 0 ..Q
I-'
I- .. (J)

~ '<
0 tll .
rt ("t

0 :l) ,, =

May 1971

J&4 THE SCOPE_SI~ULATOR

Tit le:
Code:
Author!

Date:
Environment:

Th~ CI\L Time-Sharing system

2.4 The SCOP~ Simulator

s<:OPE Simulator
SC 1. 1
Karl Malbrain, ComputAr Center,
University of California, R~rkcl0y
February 1971
~~chine:CDC 6000 Series
Opecating System: C&L DISK TSS
Coding Language: CO~PASS

The SCOPE Simulator pr.ovides an operating Pnvironment for programs
written f:,c Cal's f;401) batch. system (SCOPE 3.0 or CI\LID05CC1PF,) rln,1
permits interactive control by the user over the construction and
execution of such p~oqrams. It also provides~ batch run facility for
background execution of small jobs.

The Simulator runs in two subprocesses in the user's proc8ss. ThP
lover subprocess contains the simulator itself while the upp~r one
contains the "11ser•s subprocess", i.c~., the environment for the '>::OPF
program {e.g., registers, core, RA•1 checking, etc.).

Local files for the program as well as interfaces into the user's
permanent files and th~ system library files are generated.

The Simulator indicates that it is ~eady to accept requests from thP
user by causing a "qceater than" (>l symbol to be printe~ on th0
teletype. ~he appearance of an "up arrow" (1) signals that t~~ proqram
itself is awaiting a control request.

The SCOPE Simulator is called by issuing the following req11es t to t hP
Command Proc~ssor!

SCOPE fl

where fl iz a field lenqth. Jn general, the field length mav r~ngP
from 1000 to 50DOO, with 14000 assumed if the parameter is omitted.
SCOPE will type out the tirue and date and then await the first command
after typinq >. At this point any legal CALIDOSCOP8 control request
can be typed in immediately following the> symbol. For example,

f!ay 1971

>RFL,50001"1
>RUN.
>LGO.

~he C~L Time-Sharinq System

2.4 The scnP? Simulator

would increase the field length to 50000 (octal), compile a FOR~RA~
program, and then read and exec~te it.

SCOPE Simulator requests may also be ~ntered after the>.

The following are leqal SCOPE Simulator requests:

.§!STF.XT_Pile_neclaration: TEXT,fQ1!~

The file fname is declared ~s ~ ~ew SYSTEXT file and information
written on it by ~hA cunning program will be translated to SYST?XT
as it is written. Por exa~ple,

would declare the file name OUTPUT to he a Systext (See sect ioa
2.3.l} file {alt:houqh it alt"eady is by rlefault). "'iles th'lt
already contain information in Systext (generated by the ~~itor,
for exampl~) need not be declare1. The proper conversion will he
performed on reads (or writes). ~his cequ~st will not convert
into ~ systAxt file a ftle which already exists in some othnr
mode.

The file !~!~ con ta ins a list of req11?sts which will he
interpret~n one by one as separate requests. An imbcdJ~rt FIL~
request causes a !!:!Jlfilfil;: to thg new file. All messa.qe;; that
would normally be typed out if the requests werP ~nteced 1ndivi1u
ally a re suppressed, excP.pt error messages. When an error occurs,
the file is advanced pdst the next EXIT request or to th~
end-of-file. whichever occurs ficst. > is typed if an EXIT
reqtiest is reached normally, or if the end-of-file is re~chPd.

Normally, messages fro• the program are printed on the teletype.
These may h~ suppressed by:

>MSG,OFJI'

or restarted hy:

>NSG,ON

The CAL Time-Sharing syst0m

2.4 Th~ SCOPP. Simul;ttnr

All messages are writ ter. on the System 1 og, however, re':Jar d less 0f
whether t~~y ap~eac on the teletype.

Th~ firs~ tim~ the Simulator rP.ferences any file, it attempts to
obtain it fro~ ~be user 1 s tPmporary directory. Files in other
directories may he obtained via thP GET request. ~he specified
file name must never have been used by the proqram before. For
example,

>GE~,LGO

requests that the file named LGO be obtained from the Commanrt
Proc~ssor. The file may be closed and forgotten explicitly by. thE>
PUT request:

>PUT, LGO

Files which are not disposed of explicitly are returned wh~n thP
user finishes with the Simulator during FIN request processinq
(see below) •

The STEP request allows the user to trace the 'HA+1' calls which
the program makes on the Simulator. This mode of tracing 2ach
request is entered via:

>STFP

The ~imulator prints eacb request in octal before it is performed,
then stops and waits tor verification after printing a greater
than sign (>). There are four responses that can be marte, each
consisting of a single l~tter:

8 111ear,s call the EEAD qhost nebuqger:-. Upon return, I
another> is print~d.

S means perform the rPquest.
P means ignore the request an1 perform an ENn request

instead.
G means leave STEP mode and then do the request.

Any other letter is equivalent to s.

The simulator also provides the GPSL functions of loading. ThesP may
be invoked via the LDR 'PA+1' request or the following "r.ontrol r,3.rrl 11 j
requests:

]

The CAL Time-Sharing ~ysteM

"ay 1971 2.4 The SCOP~ Simulator

Load_and Execut.e_Li.Qcgry; P£Q.g£~.!!= libname, ,ea cams

~he LGO request is identical to that described for CALIDOSCOP~ 1n

the g1_r.uid!!•

1.Q~_£on!£2!: LOCTL,'!SS
LDCTL,SC()PE

These requests toggle the loader between normal and th~ special
TSS mode, in which all common blocks for each file are loaded ~re
allocated at core addresses following all the program blor,ks.
This sorting is usef11l for separating rea,1-only iind rear:l/writP
sections of a subprocess. Note that the other LDCTL requests
desccihed in the CAL Guid~ are also acceptable.

If the loader is in ~SS mode, a core imaqe is written onto the
file fna.11e 11ithout banner vor:ls (see Appendix A), i.e., just thP
contents of loaded and linked core. This mode is used primarily
for producing subprocess descciptor files. If the loa~er is in
'SCOPE •ode•, a •0.,0' lev~l overlay is prod11ceti startinq at cP.11 n
throuqh the last word loaded.

A running program can make a request for teletype input via thP ~s~
'RA+1• reqnest:

59 39 18 17 0
rr~~~~~~,---,~~-------------,---~------------,

GS!'! l0J1J Jpointer to 100 I
i I I fvocd buffer I

~L~--~~~L•--•-L---~·~~----~~4-----------------J
The Simulator prints the up arrow and waits for input. The line type1
in after the arrov is placed one character per word, right justitie1
display cone, ~ero-filled, in the buffer provider!. The end of the lin(~,
as typed 1.s marked by a zero vord.

The user axits fro~ the Simulator by
does so, the program's log iB appended
are rewonnd a ni! closed. Then the core
returned to the Command Processor.

typing FIN after the >. Whl'.?n h,c,
to the file OUTPUT and all files
file is delete~ and control isl

4

Th~ C~L Time-Sharing System

Play 1971 2.4 ThP. SCOPB Sim11lator

1. Request ~rro£2 :

COftMANO WORD> 10 CHARACTERS, ~RY AGAIN.

A ~ord in the req,~st line exceeds 10 characters. The requPst
is ignored.

I RAV~ NO RECOLLECTION OP THAT FILE!

~- file name in a PU'J' request has never been US(~d heforP. ~h::>I
request is iqnored.

I REC~tL YOU HAVE ALREADY USED TH!~ FILR!

The filen~m~ in a ~ET request has already been used. Th~
request is ignored.

NONSENSE co"~AND IGNORED, TRY AGAIN.

The request is not known and does not appear in the library.

BAD B'lFFER PAIH\ME'rERS.

READ AFTER WRITE ATTEMP.TF.D.

WRITE DURING READ ATTE~PTED.

Writing after a read is not implemented, except aft~r an fOR.

UNKNOWN F.CN CODE

~he function code in the FET is unknown.

POIP.TFP. IS NEGATIVF.

POINTER> FL.

REQUESTRD PL IS TOO BIG.

REQUESTED FL IS NEGATIVE.

The CAL Tiffie-Sharjng SystPM

rtay 1971 2.4 ~h? SCOPE Sirnul~tor

FIELD LENGTH TOO S~ALL ~O LOAD PROGRAM

An address in a loader table exceeds the current fiel<l lPngth.
Loading is aborted.

FILE ENDS DURING TABLE

Before the word count of a leader table was e~hausted, the en~
of the file was encountered.

FILE IS NULL

Loading of null files is not implementP.d.

IGNORED, NOTHING SUCCESSFULLY LOATIED

An overlay or ezecute request could not be aone hPcause therP
is nothing load~d.

LOB FILE JS "!IEO ABS 5 RELOCATABLR.

A given load must be ei theC' OV?. rla y or re loca tah le, bnt not
both.

HO ENTRY POR XPER LABEL F01ND.

~he label on a CO~PASS END statement cannot be match~d to any
entry point.

NO TRANSFER LlBEL SPECIFIED. UNABLE TC START PROGPhM.

No starting entry point was spacified.

TABLE ON LOAD ADDRESS< O.

UNKNOWN TABLE TYPE.

YOU CAN*T LOAD A SYSTEXT FILE.

BLOCK MISSING FRO~ A FILE.

This errcr can ~e caused by a null file or a fil~ that WijS

improperly wcitten.

ERROR IN OCTAL NO~BER.

~be CAL Time-Sharing System

f!ay 1971 2.4 'I'hA SCDPT<' Si1111l-:1.tor

F'NT FULL.

ILLFGAL USER XJ CALL.

The user attempted to c~ll the 5COPE Simulator.

LIIF. LIMIT EXCEED.

USE~ CPU ARI"'ff-~RROR.

6. !.n!.fil.U~LJ.ll2~:

SCOPR TNTERRAL ERRORS - ZERO PNAME ON 1 FNT CALL.

SCOPE IIITERNAL ERROR - 1JO FILE CAP ON FIO rALL.

7

The CAL TimP-Sharinq SystPm

~a, 1971 2.4 ThP SCOPE Simulat0r

Appendix A. File_structure

The CAL!DOSCOPE fileset structure is simulated on TSS files hy th0
Simulator. A TSS file is call~d a 'SCOPE file' when it has the
following form:

Individual logical records have a banner word at each end. Thes~
banner words contain the information necessary to scan throug~ th~
file and access recor1s.

59 5b 53 49 35 17 O file_ad1ress
f , I 1 ---~-------,.---------,

JO I JO I O I O I n I o
I L L ~ ----~-----------~
I logical recor1 I
f n words I
I le Ye 1 L 1 (not EOF) I
a--.~-~------- ---~-----------~
I 4 I IL 1 J '). oB t n I m l n + 1
1--L--L -------4---------~----------~
I logical record I
I III woris I
I level L2 (not EOF) I
r--"f'--T---.-~----,.----------,-----------~
14 I IL2 I 20B t m f O I n+m+2
f- I ~ t - f --- I -----1
J6 I t17R• 30f3 t O I O I n+m+1
I f I ---+----+-------~
17 I f17Bt1030B 1 0 l O 1 n+m+4
L-J 1 -I.. J

The bits
59

in thR banner words ac~ ~nt~red as:

58
57

/~3-50
I 49-J,; l ~tri 8

\ Sl.- '5~

Eon bit. Zero in~icates a dummy h~nner.
EOP bit.
EOI hit. s~t for the last bannAr in th~ filr.>.
Level number of prBvious record.
PET coc!e/status .for previous recorc'i.
Record length of pr~vious recor1
Record leng~h of next record.

~ S.. vm 1 !\/\.IN' 4n c{-·
c~ ...;;_:\ .,,, r,._~ (Y\d) (I

The CAL Time-Sharing system

May 1971 2.6 BASIC

2.6 Runping a BASIC Prog,gm

BASIC is called by typing BASIC to the ccmmand processor. When BASIC
is ready to accept statements, it will type BASIC HERE, followed on the
next line by its prompt character, a colon (:). To create a program,
insert mode is entered by typing I followed by a carriage return. Nov
the lines of the program can be typed into the tile. Note that, as in
the Editor, it is necessary to be in insert mode to add lines to the
program. If a line to be added has an error in it, BASIC will type an
error message and that line vill not go into the file. Instead, the
line remains as the old line in the Line Collector so that it can be
correctEd before being put into the program. If a bad line is in a
file that is read in with the R command of the Editor, the line does
not go into the program, and it is tyfed after the error message. A
line already in the program can be changed or edited, but if the new
"corrected" line has an error in it, it is typed after the error
message and the change will not be implemented. To aid in debugging,
some PAUSE statements may be added. PAUSE stops execution with a
message giving the next line to be executed, thereby allowing the
programmer to check values with direct PRINT statements, or to enter
any other direct statements. The program may be modified or changed in
any vay during a PAUSE. Unless the last line is an END statement, the
program cannot be executed.

Execution of a BASIC program is started by typing RUN. All variables,
functions, and arrays are made to be undefined and execution of the
program starts at the beginning. If there are some variables which
should not be destroyed because they have been set vith direct
statements or from execution of a previous program, execution can be
started with a direct GO TO. When the program encounters the END or a
STOP statement, it stops with the message EXECUTION COMPLETE.

The program may stop in the middle of execution for several reasons.
If there is an error in running, such as division by zero or a jump to
a non-existent line, an error message is typed out and execution is
halted. Direct statements and/or editing requests can then be entered
to discover and fix the problem. If, for example, the program jumped
to a non-existent line, it could be tixed by adding a line which vas
forgotten or correcting the line number in the GO TO statement. After
the problem has been fixed, the program could be restarted with a RUN
statement or CONTINOE, which would restart execution with the line
where the error occurred. Executicn can be halted by executing more
lines than specified by a direct LIMIT statement. By using LIMIT, a
program can be prevented from getting caught in a loop. If a program
gets in a loop, it is possible to get out by hitting the panic button -
CTRL-SHIFT-P. A message is printed as if an error had occurred.
Execution can be resumed by typing CONTINUE.

There are two ways to leave BASIC.
are used to leave the Editor. Q means

These are the same statements as
to quit and to destroy the

1

The CAL Time-Sharing System

May 1971 2.6 BASIC

program that was created. F,f~fil!~ saves the text of the program on the
file specified so that it can be printed er loaded again later.

See PART FOUR Languages and Processors: BASIC, for a complete
description of the language.

2

The C~L Time-Sharinq System

t1ay 1971 2.7 3CPL

The compiler is invoke1 by typing BCPL to the Command Processor. ~he
compiler then waits for lines of the form:

All para111eters ace optional ana. may appear in any order. If the
parameters i.!!.E!!!. or ~.2ll!.§.§ are TTY. the input is taken fC"om thP
teletype or the CO~PASS program printed on the teletype, respectiv~ly
~he meanir.gs of the paramet~cs are as follows:

Default
ill~m~!§tr !2!~

I 'f'l'Y

B

c 0

0 Or.ODE

same as I

(RC PL if T=TTY)

Designat~s the file containing the sourc~
code to he compileJ.

Desig~ates the file on which the relocat
able binary will be written. B=O sup
presses the output of binary. Default is
B!NPUT if I=INPUT or 3BCPL if I=TTY.

Designat~s the file on 1thicn .~ CO;"!Pl\SS
version of the program is WC'itt 0 n. ~his
version may be assembled by CO~PASS. C=O
suppresses COMPASS output.
Designates the scratch file to be use~
fo~ trahs~itting an intermediate obj8ct
code betw~en passes of tbe compiler.

Gives a name to the binary and/or COMPASS
program produced; i.e., N=.1:H!ffif wou l(J
cause TDFNT Il!fil! to be the first line of
the CO~PASS program.

T Caqses compilation times to be printea.

~R Check reentrant.

After each compilation BCPL waits for another line and exits when PJN
is typed.

1

May 1971

2.8 THE PBINTER_DRIVER

Title:
Code:
Author:

Date:
Environment:

The CAL Time-Sharing System

Printer Driver
PD1.0

2.8 Printer Driver

Keith Standiford, Computer Center,
University of California, Berkeley
December 1970
CDC 6400: Time Sharing system

The printer driver is an interim program which allows the line printer
to be used for listing long files as well as files containing lines
with more than 72 characters. (If lines with more than 72 characters
are printed on the teletype, characters past 72 will all be printed
directly on top of one another.)

The printer driver is called by entering

PRINTER I!lfil!~

where fng~~ is the name of the file to be printed.

The printer driver should respond:

TSS PRINTER DRIVER VER 3.0
ENTER TITLE LINE

If instead the second line reads

FILE NOT SYSTEM STANDARD TEXT

it means that fn,!!!~ is either a non-existant (empty) file or that it
was constructed under the SCOPE subsystem without asking for system
standard text format.

The ENTER TITLE LINE should be answered with a line indicating the job
number and name under which the output is to be filed in the output
area.

The printer will respond to the title line by asking

SCOPE P08MAT CONVENTIONS?

to find out whether the first character of each line should be
interpreted as a SCOPE carriage central character (see figure 1). A
response line with a Yin column one is interpreted as a "yes". If Y

1

The CAL Time-Sharing System

May 1971 2.8 Printer Driver

does not appear in column one, the printed file will be single spaced
vith an automatic page eject after 56 lines, and the first character of
each line will be printed.

blank
0
1
+

2
3

4

6
7
8
x

y
z

Figure 1.

Vertical_S£acing before Printing

one line
two lines (double space)
top of next page (line 6)
no advance before printing'

three lines (triple space)
skip to next of lines 9,36 (next half page)
skip to next of lines 8,16,44 (next one-third
page)
skip to next of lines 7,21,35,49 (next quarter
page)
skip tc line 1 following concave paper fold
skip tc line 1 following convex paper fold
skip to line 1
single space and suppress automatic page eject
until Y control character
single space and resume automatic page eject
single space and suppress automatic page eject
for this line only

There is a lockout mechanismz fer the printer since only one user can
have the printer at a time. If the message EVCH CLEARED appears next,
the user has the frinter and his teletype keyboard becomes inoperative
while the file is being printed. The aessage PRINTING ••• should
immediately follow EVCH CLEARED. If it does not appear in a few
seconds, the printer driver has gotten into trouble. One should then
take the termination exit below.

Occasionally the printer dcivec may type:

PRINTER NOT READY or HARDWARE EBROR or
PAPER OUT ON PRINTER

or words to that effect, to indicate that the printer itself is having
trouble, e.g., is jammed, or out of paper. The printer driver will
then type WAITING. Since nothing can be printed until the printer is
made ready again mechanically, the Us€r should notify an operator in
the machine room (2-3043).

1 Not implemented (1/71).
2 The name of the lockout is PRNLOCK, OPERATE.

2

The CAL Time-Sharing System

May 1971 2.8 Printer Driver

After about 30 seconds to a minute, the printer driver vill check to
see if the error has gone avay. It will type PRINTING ••• and attempt
to continue. If the error still has not been rectified, the message
will re-appear. For any message other than PAPER OUT ON PRINTER or
PRINTER NOT READY, the condition, hopefully, is temporary and should go
away. If this reoccurs several times, the user should notify the TA
and take the termination exit described in the next paragraph. He
should then attempt to print the file again (the printer lock may be
lost; consult the TA}. If the trouble persists, the operators should
be notified of a persistant hardware failure.

If, however, the message

PRINTER LOCK EBROB, SORRY
ABORT

appears, the printer has detected that tvo printer drivers were
attempting to run at once. This is possible only if someone has
recovered the printer lockout mechanism. In this case, the printer
driver aborts and returns immediately to the command processor. The
user should attempt to print his file again.

If the printer seems to be taking much longer than it should, the
process may be terminated with a panic (CTRL-SHIFT-P) followed by
RECALL, which should return to the Command Processor.

Under normal conditions, when the file has been printed, the printer
driver will return control to the Command Processor, which signals its
presence by typing

COMMAND PROCESSOR HERE
!

and awaiting the next input line.

3

May 1971

2.9 THE_DISPLAY DRIVER

Title:
Code:
Author:

Date:
Envir-onment:

2 • 9 • 1 Pu q~o se

The Time-Sharing System

Display Driver
DD1.0

2.9 Display Driver

Keith Standiford, Computer Center,
University of California, Berkeley
Fetruary 1971
Machine: CDC 6000 Series
Operating System: CALTSS
Coding Language: COMPASS

The display driver is designed tc allow the operator to display
important information about the system as well as to use the displays
for debugging.

The console consists of two CRT disFlay screens and a typewriter-like
keyboard. The CRT screens are divided into coordinates.• Approximately
40-50 coordinates at the top of each screen contain header information,
while an equal number at the bottcm are reserved for displaying
type-ins from the keyboard. The remaining center portion of the
screens is left for the various displays. (See Figure 1.)

Figure 1. Display Screens

I
I [channels]

I [states]
I
I
I
I
I
I

-------~
11~rnlay ,llg.!!!£
ke.1bog,£,g .!!ilg

\
I
I
I
I
I
I
I
I \ [error line] I

\L.£~£~nt iQEM1_1ingJ _____ /

I
/CALTSS (*UNP*] di.§2.!.U. ~

I title P=n!!JI!
I
I
I
I
I
I
I
\

"' "' I

I

I
I
I
I
I
I
I

\---------------~- ·---_!

The right screen header contains the lime-Sharing System identification
title in large letters, the "system unprotected flag", the eight screen
name, and the P-ccunter. !he left screen header contains tbe channel
statuses, the system state flags, the left screen name, and the current

1 See Peripheral Equipment Manual.

1

The Time-Sharing System

May 1971 2.9 Display Driver

logical keyboard name.
follows:

The system state flags are interpreted as

w idle
U user program running
S system running for user frogram
P ECS swap in progress
B swapper calculaticns
I interrupt code running

The lower portion of the left screen contains a line for error messages
and one on which keyboard type-ins apfear.

Three types of displays are available: CM/ECS displays tor presenting
the contents of areas in central memcry or Extended Core Storage; user
displays driven by programs inside the system and used for system
operator interaction; and the special ft display, which provides ECS
System statistics prepared directly by the display driver. Just as the
console screens can present several types of displays, the console
keyboard can be used to transmit messages to other programs besides the
display driver. The term !ggic~! !eJb2~£4 is used to describe the
multiple functions of the actual console keyboard. It is anticipated
that most of the system-operator interaction will occur via the logical
keyboard arrangement.

In addition, the display driver keeps the real time and
available to user processes via an ECS system call.
with the real time clock, the display driver provides a
event channels for processes desiring to wait until a
(See 3.6 Event Channels.}

Assignment of display names is as follows:

A-D
E-L

M

CM/ECS displays
User displays
ECS system statistics

date, which are
In conjunction

set of clocked
specified time.

Q~~f gis~2 are implemented by means cf a display buffer (an ECS
file) and an event channel. The display buffer consists of 32
eight-word line buffers which may be written into by a user program and
will be copied onto the screen by the display driver when selected by
the operator. Each line buffer has cne header word followed by seven
data words (see Figure 2). The intensity at which a message appears on
the CRT screen is controlled by a parameter in the line buffer header
word. Data from the line buffer are output verbatim, beginning with
the high order byte of the word following the header word and
continuing until f! bytes or the end of the buffer is reached. Data is
assumed to contain positioning information and display code (or dot

2

The Time-Sharing System

May 1971 2.9 Display Driver

coordinates if dot mode is selected). Note that a program using the
display may write anywhere on the screen. Therefore care must be taken
not to overwrite screen headers or the keyboard display area.

Figure 2. Oser Display Implementation

display buffer line tuffer
r , r

O I line buffer I 01 header I
I- -----f • -i

11 " " I 1 I I
I- -1 I- ..

21 " " j 21 I
I- -f • -i

• I I 31 aata I
• I I 41 I
• I • ' 51 I

I I 61 I
I I 71 I L-

___.
311 " " • L .J

line buffer heade:r word
----,,- ,

I/ I I I I IJ:lri!~ .f.~1.! £! I
L- .I -L---.J

24 12 12 12

~ri!~ is the relative brightness en the screen of the data in the
line buffer. The normal range is from 1 to 5 with the
brightness proportional to the value.of ,hrit~. A value of 1
is the normal brightness, and a value of O is equivalent to a
value of 1. If £!£1!,g is 6, the message will appear at a
brightness of 5 and will flash on and off about once a
second. If Bii!~ exceeds 6, it will be assumed to be 1.
Values for£!£!!~ greater than 1 or 2 must be used sparingly;
too many lines too bright will cause the screen to flash
badly and the display driver to run slowly.

!£~ is half of the function code sent to the device.z fcn=AyB
where~ is the mode and y is the character size:

!=1 indicates character mode
!=O indicates dot mode

2 See PeripheLal Equipment Manual.

3

May 1971

The Time-Sharing System

2.9 Display Driver

If !=1 then 1=0 specifies 64 characters/line (small)
y=l specifies 32 characters/line (medium)
y=2 specifies 16 characters/line {large)

Othervise y is ignored.

Since! and I are each represented by three bits, only the
lower 4 bits of 1£n are significant.

ct is the length (in 12-bit £.!!~§} of the data to be output. For
example, if £!=35, 35 bytes ace output; if ~=O, nothing is
output.

After the file containing a user display has been changed, an event
must be sent to the display driver to insure that the changes are
reflected in its copy of the display, in case it happens to be shoving
that display on a screen. This event is a bit mask, with each '1' bit
corresponding to an updated line. !he lines are indexed 0-31 in the
buffer, and the bits are numbered accordingly, with bit O at the low
order end of the word. No response signaling completion will be sent
to the user program.

The lL.!l!§.f.!2..Y consists of the major system clocks, the current date and
time (or the date and time from deadEtart if never entered by the
operator), some ECS system statistics, and some error statistics. The
ECS system statistics currently ccnsist of the ECS free space, ECS slop
space, the number of allocated blocks and the number ot free blocks.
These statistics are subject to change as required by further develop
ment of the ECS system. The error statistics are displayed in the
event of a system disaster.

A 1ggical_!~boa!Q is implemented as a 12 word event channel which can
hold the longest message that can be typed in at the console keyboard
(64 characteJ:"s) plus part of another message. Messages are sent 10
characters per event in left-justified display code.3 As many events
will be sent as aJ:"e required to contain the message. The end of a
message is signaled by a carriage return (60B) or by a "you lose" event
if the buffer overflowed and part of the message was lost. The
operator is also notified of lost data by an appropriate error message.

3 The keyboard space bar maps into OOE in a message, rather than 558
(blank).

4

The Time-Sharing System

May 1971 2.9 Display Driver

Note that there is no guarantee that the last event will contain zero
fill following the carriage return. Note also that with this implemen
tation, it is risky for two user processes to share a keyboard, since
if two processes are hung on the same keyboard event channel, and a
message greater than 10 characters is sent, each will get only part of
the message. Capabilities in user displays and keyboards are located
in the master device C-list. (See the sect ion on Allocation.)

~~ybo~rd~g_yest§: Entries made by the operator are displayed in the
lower left of the left screen. All lines beginning with the character
•;• are interpreted by the display dxiver as display requests. Those
not beginning with '/' will be sent to the current default keyboard.
Tbere is also provision for sending a message to a keyboard other than
the default keyboard as well as for sending a message beginning with
'/'. Blanks are ignored except in user messages and text commands such
as DATE, PASS~ and LOCK. If a mistake is made while entering a
request, the backspace key erases characters one at a time, while the
unlabeled key to the left of •=' clears the entire line. It is assumed
throughout the following descriptions that all lines end in carriage
return.

This request can be used to send a message to a logical keyboard which
is not the current default keyboard. g is a legal logical keyboard
name (the letters A-H) and ~§g is the literal text to be sent. If no
user program desires a message frcm that keyboard at the time it is
sent, the message is saved in a buffer (actually an event channel).
When the buffer becomes full, a message indicating lost data will be
given.

2. Change default keiboard name: /USE,!

This request changes the current default logical keyboard to the one
specified by n, where Q is a legal logical keyboard name.

3. Chan~dis.EJ:a.l_fil!_screen: 11,£

This request changes the display
the right to£, where both! and!
A-M). Either 1 or !: may be
display will remain unchanged. If
omitted.

shewn on the left screen to! and on
are legal display names (letters
omitted and the corresponding screen
£ is emitted, the comma may also be

Core displays consist of four groufs of eight consecutive Central
Memory or ECS words each. The area displayed may be changed using the

5

The Time-Sharing System

May 1971 2.9 Display Driver

"modify" display cequest. i and g,Q dr- g,!.E!: are both address expre
ssions, which are strings of octal digits optionally suffixed by one of
the following characters:

c for a CM address (default)
E for an ECS address
+ for a positive number (ignored)

for a negative number (number is complemented)

An address expression is treated as a 60-bit quantity.

In the "modify display" request only C and E have meaning. ! may be a
number from Oto 5 with the following interpretations:

0-3 set the
addresses
gdd.[=g!.E!

!th word group to display the eight
starting with that given by

Note that
ignoced.
illegal.

4

5

set all four groups to display consecutive
words starting at the address given by
~gQf~.E!
add the exfression to the current starting
address of each group; select repeat mode.
Repeat mode causes the value of the expression
to be added repeatedly to the starting address
of each group, thereby providing a scan of
memory. To leave repeat mode, the operator
clears the message line. This may be accomp
lished by either pressing the clear key (the
unlabeled key to the left of '=') or backspac
ing past the beginning of the message.

where an address is net required, c and E suffixes are
For example /4E,1 is tceatea the same as /4,1 while /4-,1 is

5. 0£erator date_and time: /DATE,J!/.Q/1
/THlE, hl!. !!•§.2

Date and time are entered in the above formats. The delimiters"/" and
•.' are interchangeable. All numbers are expanded to two digits, if
not specified as such, by adding leading zeros. No zero fields are
allowed in DATE, and no trailing period is allowed in TIME, but
otherwise no checks are made.

6. Clear_and restore_s1stem_Erotecticn: /PASS
/RSP

The system is nocmally protected. The operator may enter a three
lettec password after typing /PASS. If the password is accepted, the
system unprotected flag will be set and *UNP* will appear on the right

6

The Time-Sharing system

May 1971 2.9 Display Driver

screen header. It will remain until /RSP is entered to restore system
protection.

7. Restore_to initial_state: /RESTORE

This request causes the display driver to return to an initial state
defined at deadstart time. Although the operator should never need
this request, is has proved useful in debugging since, in the event of
a system crash, the display driver may be waiting for an event which
will never occur, thus causing some part of its program to halt.

8. Lock and_unlock_CPU •: /LCCK
/UNLOCK

When /LOCK is entered, the display driver interrupt code will not give
up the central processor until /UNLOCK is entered.

9.CMLECS_store •: /addr-exir = value

The contents of Central Memory or ECS may be altered with this request.
Both ~QQ.£=.~~E~ and !~lug are address expressions as described above
undeI:' 4. E and care ignored for .!~!Y~, which is interpreted as a
60-bit word quantity.

10. Mani£ulate channel_•: /fegnn[,mmmm]

There are several requests available for manipulating I/0 channels.
These aI:'e typed in the above general format, where ~g identifies the
request, .!!!! is a channel number (octal), !!.!!.!!.! is an output value
(octal). n and mmmm will be right-justified, zero-filled by the
display driver. The following reguests are provided:

I AC N!l.!!
/DC N.n!!
IF AN!!!!, J!.!J!l!!
I OA N n n, !!.!!.!.!!

activate channel !ill
deactivate channel n
function.!!!.!!! on channel !l!l
output!.!!!! on channel n

The
error
these
it is

channel status is checked, and these requests are refused with
message NOT SAFE it conditions are unfavorable. In order to
requests, display M must be shoving on at least one screen.

not, the error message NEED SCREEN M appears.

system Disasters

the
use
If

A section of pI:'ogram within the display driver is devoted to checking
for system disasters. When one cccurs, it reinitializes the other
programs in the display driver, places the M display on the right

• This request requires that the system be unprotected.

7

The Time-Sharing System

May 1971 2.9 Display Driver

screen, clears the left screen and ccmmits suicide. The~ display then
flashes disaster to indicate that the system is dead. It shows the
address of the jump to DISASTER• 1, and, if the disaster was due to an
ECS error, the absolute ECS address of the first bad word contained in
the unsuccessful transfer is displayed.

The demise of the disaster check routine is followed within 100 msec.
by the death of the clocked event channel driver when it tries to make
clocked event channels tick. However, the console keyboard still
accepts requests normally. Therefore, for instance, Cft can be examined
and modified. In fact, three possible ccurses of action exist:

la. Nothing is done or the deadEtart button is pushed - with no
repercussions.

1b. The operator uses the disi;lay carefully and possibly disco
vers the problem.

2. The operator types a request tor which the display driver
requires help from the system. The display driver issues the
message NOT SAFE.

This will occur upon entering any of the following requests:

Send message to logical keyboard
DA TE and 'IHI E
LOCK and UNLCCK
ECS store

Note: RESTORE may cause strange results since it reincar
nates the disaster check routine.

3. The operator tries to display ECS, which may hang the display
updater. This condition is not serious since the keyboard
still responds. To correct the situation, the screen should
be set to contain only Central P1emory, then /RESTORE should
be entered. For example,

/A
/4,0
/RESTO BE
/A

(contains ECS; updater hangs)
(contains Cft only)
(disaster check occurs again)
(desired results!)

8

The CAL Time-Sharing System

May 1971 J.1 Files

3. 1_FILES

3.1.1_File_structure

A file is a sequence of dddressable 60-bit words used to contain
informaticn, such as program code or data. All CAL TSS files are
constructed in a symmetrical tree structure (see Figure 1.) so as tol
permit a large file address space and, at the same time, to allow
incremental allocation of file stcrage space. The addressable words of
the file are contained in blocks cf uniform length called i~1~ blocks
which form the "leaves" of the file tree. The non-terminal nodes of
the tree are called £21~!~£ blocks and contain links to either data
blocks or other pointer blocks.

For any file, there is a sequence of positive integers which are
specified when the file is created and which describe the shape of the
file tree. The first number in the sequence is the number of branches
extending from the root of the tree. Each successive integer in the
sequence is the number of branches frcm each non-terminal node (pointer
block) in the file tree at the corresfonding level. The last shape
number is the uniform size of the data blocks. All shape numbers,
except the first one, are required tc be powers of two to facilitate
file address decoding. Since the tree is symmetrical, these numbers
completely describe its shape, and their product gives the total
number, n, of addressable words in the file. These words are addressed
from top to bottom using consecutive integers ranging from O to n-1.
For instance, if the shape numbers are 2,4,128, there are two branches
extending from the root of the tree, each pointer block at level two
branches to four.data blocks, and the tree contains eight data blocks
of 128 words. The four data blocks attached to the left side of the
tree contain addresses 0-127, 128-25:, 256-383, 384-511, respectively,
and those on the right side contain addresses 512-639, 640-767,
768-895, and 896-1023.

Use of the tree structure means that, even for very large files, the
need to allocate continqucus file stcrage space is limited to the
tile's data block size. In addition, while the maximum size of a file
is specified when it is created, unused or non-existant portions of the
file are not allocated space until they are needed.

Whenever necessary, therefore, data blocks can be added to (or deleted
from) a file at any file address srecified by tbe user. Appropriate
accounting is performed to charge (or stop charging) for the space
occupied by the block and to control (i.e., limit} use of the storage
space. Pointer blocks connecting the data block to the root of the
tree are supplied when necessary. Newly created data blocks are
initialized to zeros. Data blocks may be moved from one file to
another, if the data block sizes are the same, and thus data blocks
already containing data may be added to a file.

1

The CAL Time-Shdcing sy~te~

J.1 Files

Fil)UC'e 1. Fil~ 'Icee ---------

Level 3

l2 7

Level
128 words

..__ ...
Level 1 /

0 -,/(e~el....._.l poLnters

Fi le Root of
Descriptor File Tree

n . .
0 ,

File Shape= (2,4, 128} n . .
o I

n . .
• f

2

The CAL Time-Sharing System

May 1971 3.1 Files

3.1.2_Disk_files

Since CAL TSS uses ECS (Extended Core Storage) as its primary memory
and since ECS space is limited, files in CAL TSS may reside either on
the disk or in ECS. In fact, the disk is used for permanent file
storage, and disJC files which ax:e active, or open (see below), have a
file incarnation in ECS which bas the same structure and shape as the
disk version. Portions of the file (i.e., data blocks, corresponding
to file address ranges) are copied between the disk and ECS and are
added to or deleted from the ECS incarnation of the file according to
the requirements cf the user process. Thi3 procedure is referred to as
"attachin.9 11 or "detachin.9 11 a block.

For a user process to read (write) a file requires use of the "file
read (write)" action, which transfers wcrds between the address space
of the running sut:process and the data block (s) of a specified file in
ECS. The user indicates the address in the file of (for) the desired
information, the address in Central Memory of the area to be read into
(written from), and the number cf wcrds to be read (written). If the
data blocks containing the required range of addresses have already
been attached to the ECS incarnation of the file, the transfer of
information is performed in a straightforward manner by the ECS level
of the system. If, however, one er more of the data blocks are not
present in ECS, the transfer proceeds until the first non-present file
address is encountered, whereupon F-return action (see «process con
trol") passes control to the disk subsystem. Here the entire transfer
is performed by 1) copying or re-cofying blocks which were already
present in ECS and 2) attaching the blocks which were not present in
ECS, copying these blocks, and detaching them again. This attach,
copy, detach process is performed for each required data block which
was not present in the ECS version cf the file. Required data blocks
which were present are transfered with normal ECS level file read
(write) actions.

The contents of each subprocess address space ace specified by the
subprocess map (see "sut:prccesses"). The map establishes a relation
ship between sections ot the subfrocess address space (memory) and
portions of ECS files. Whenever a sul::process is swapped into central
memory, the appropriate portions cf the files designated by the
subprocess map are copied frcm ECS into central memory. When the
subprocess is swapped out to ECS, the reverse operation is performed
(except for map entries which are "read only"). Portions of disk files
which are to be used in a subprocess map are attached to the process
and held in ECS as long as the map entry remains in force.

3

The CAL Time-Sharing system

l'1ay 1971 3.1 Files

3.1.3_Disk_File_O£en-Close

In order to keep track of which disk files are in use and therefore
must have an ECS incarnation and file control information (file header
block) in ECS, frograms must explicily open and close disk files. In
this wdy, the system can maintain a ccunt of how many processes are
using any particular file. Whenever a process intends to use an
existing disk file, it must "open" the file by presenting a disk file
capability for the file. A disk file capability contains in its 2nd
word the disk file unique name and the disk address of the file header
word. The disk system will return an ECS file capability for the ECS
incarnation of the disk file. When a frcgram is through with a file,
it should "close" the file. Although the open and close actions
normally occur in pairs, it is possitle, and in some situations
advantageous, for a process to open a file more than once before ever
closing it (e.g., separate subprocesses using the same file). If only
one §Q~process at a time used a file, the disk subsystem could simply
maintain an open counter which it incremented each time an open was
issued and decremented when a close was issued. A zero count would
indicate that all processes were through with the file. However, since
more than one subprocess can use a file at a time, the disk system
maintains both a local open-close counter which keeps track of the
opens and closes by a single process, and a global open-close counter
which indicates how many different processes ace using the file.

When a process Ofens a disk file, the lccal open count for the file is
incremented. If the local Ofen count went from zero to one, the global
open count is incremented. If the glcbal open count went from zero to
one, the file header block is brought from the disk into ECS, and an
ECS incarnation of the file is created. This procedure is reversed for
a 11 cl cse" action. Whenever the global count goes to zero, the disk
system deletes the ECS incarnation of the disk file atter updating the
contents of the disk versicn of the file.

While a disk file is open and being manipulated, care is taken to
insure that the versicn ot the file on the disk is readable at all
times. Data blocks of a file which have been modified are written at
new "swapped" locations on the disk leaving the original "fixed"
version of the file unmodified. When the file is finally closed by the
last rrocess holding it open (or upon request for a "pseudo-close"),
pointer blocks are written to new locaticns on the disk to reflect the
new locations of the modified data blocks. After all pointer blocks,
except the root block, have been successfully written, the root block
is re-written at the same disk locaticn to tie the modified portions of
the file to the root (or header) block. This mechanism permits the
system to write file data blocks at the first available disk position
and preserves the cld contents of the file in the event of a system
failure. The system may, at any time, initiate a "pseudo-close" to
reclaim space on the disk by causing the file contents to be updated.

4

The CAL Time-Sharing System

May 1971 3.1 Files

Another mechanism is also available to the user who must insure that
the contents of his file on the disk are updated only after a sequence
of changes to the file have all been ccmfleted. The £Q.!!i§ill1§ of two
files can be interchanged without dcing any copying. The interchange
is imflemented in such a way that one of the files will either remain
unchanged or have the contents of the ether file regardless of a system
failure at any time.

3. 1.4_Data_Block Attach-Detach

When a faction of a file is used for reading or writing or is in a map
entry, it must exist in the ECS incarnation of the file. When a data
block is first "~,ttach~g", it must be copied from the disk to ECS.
This transfer is accomplished in two ftefs in order to avoid a time
interval during which the data block exists in the ECS file but does
not have the correct contents. A holding fi~e in ECS is used so that
during an attach, the informaticn is copied from the disk to a block in
the holding file. Once this copy is complete, the block is .!!Q!gg to
the proper block cf the ECS incarnaticn of the disk file. User
programs can attach a black of a file whenever the block is needed or
will be needed soon. Placing a porticn cf a disk file in a subprocess
map also forces the block to be logically attached. An attach count
mechanism similar to the open count mechanism is employed for each
block to determine when a block can be removed from the ECS incarnation
of the disk file.

When the user is through with a particular portion ot a tile, the
block (s) can be ".Q~ta£h~£". The loca 1 attach count tor each data block
is reduced. If the local count becomes zero, the global count is
reduced. If the global attach count is exhausted, the block is removed
from ECS. Associated with each data block of an ECS file is a
"dirty-bit" which is set whenever the blcck is written into or placed
in a read-write map entry. If the dirty bit is not set, the block does
not need to be written back to the disk since it has not been modified;
it can simply be deleted. otherwise, the block is mov~g to the holding
file and then copied to the first available position on the disk.

3. 1J Disk_File_Interlocks

The user may protect
mechanisms in the
particular file(s)
read-write basis.

access to any particular file by other users using
directory system. He may also choose to share
with other selected users on a read-only or

Although the open-close counters keep track of tile usage, only the
special "exclusive open" action places any restrictions on the number
of users ~he may Ofen the same file for reading or writing at one time.
Thus it is possible fer two or more frocesses to be writing into the
same portions of a file simultaneously, obviously a precarious situa
tion. To aid interprocess ceoperaticn, the disk system provides a

5

The CAL Time-Sharing System

May 1971 J. 1 Files

completely voluntary £1aim mechanism. If a process wishes to coordin
ate its use of a file with other fOssible simultaneous users it can
make a "claim" on the file. If the user flans only to read the file,
he may make a §hared £la.!!!· Mere than one shared claim may be honored
at the same time. If, on the other hand, the user wants to write on
the file, the frocess should make an exclusive claim for the time
during which it will be altering the file. An exclusive claim will not
be honored until there are no other claims in effect on the file and,
while an exclusive claim is in effect, no other claims, exclusive or
shared, may be honbred for that file. A queue of claims waiting to be
honored is maintained on a first-come, first-served basis when claims
on a file come into conflict.

3.1.6_File_Accounting

Charges fer file usage are based on the amount of ECS and disk space
occupied by the portions created and/or used. Parts of a file which
remain in ECS as long as the file is cpen, such as the description of
the file shape and the data blcck of a single level file, occupy ti.!ed
1£~ §~£.§. Data blocks of multi-level tiles which have been attached
by one or more precesses occupy sw~~ed ECS §l!dCe. Even though several
processes may be using the same file, each is charged for the ECS space
occupied by the fOrticns it has attached and for the fixed ECS space.
The disk space occupied by a file is charged to the funding directory
(see "accounting and allocation") which is associated with the file at
the time cf the file creation. Temporary space occupied by data blocks
which have been written to the disk is nf! charged to the tile. Also,
for op~n disk files, the amount of Disk System Storage used by the file
is regulated.

If a disk file is to be used by several frocesses, it may be "frozen".
When a i;rccess "freezes" a file, all existing file blocks are attached
and the ECS space occupied by the file is charged to the process.
Processes which open the file after it has been frozen are not charged
foe any fixed or swapped ECS space in connection with the file. Thus
commonly used files can be frozen so that only one process pays tor the
file space (which is charged as fixed ECS space).

6

The CAL Time-Sharing System

May 1971 3.4 Capabilities and C-lists.

3.4 CAPABILITIES AND C-LISTS

3.4. 1 Ca2abilities

Within CAL TSS objects are identified, and access to them authorized,
by means of caRabilities. A capability identities an object by
specifying the !:.Y~ of the object and providing a 60-bit datum which
uniquely identifies the item. The interpretation of the datum depends
on the type of the object. This 60 bit datum, used to identify the
object named by the capability, is called the "protected name". The
protected name along with the type are used to J:g,g.!l!.ill and access the
object referenced by the capability. The information content of the
protected name cannot be modified once it is set into a capability and
thus can contain critical information, such as a pointer or a sequence
number, to be used in accessing or identifying the object. In some
cases, when the object being named by the capability is very small, the
object itself may be stored in the protected name (e.g., class codes,
capability creating authorizations, and access keys). Each capability
also carries 42 "options", which are used to indicate the particular
kinds of access permitted to the object represented by the rest of the
capability. Each option represents a specific operation that can be
performed on that object; for example, in a file capability, options
are designated for reading, writing, deleting and other more obscure
operations on files. When a capability .is copied, options may be
turned off, thereby producing weaker capabilities (ones allowing fever
operations) from stronger ones.

Each capability is two (60-bit) words long. See Figure 1. The first
word contains the 18 bit type field and the 42 options. Objects which
are recognized by the ECS system and occupy space in ECS (i.e., tiles,
event channels, processes, C-lists, operations, and allocation blocks)
are identified in the second word of a capability by a unique name and
an index into the ~aster Object Table (MOT). All access to these ECS
system objects is through the MOT, and includes checking the unique
object identification (assigned when the object was created, and stored
in the MOT entry). Also contained in the MOT entry for an object is
the single pointer to the start of the object in ECS, which makes
possible the compaction of storage in ECS without the necessity of
updating capabilities referring to the objects. On every reference to
an object, the unique name assigned to the object is checked against
the unique name stored in the MOT. This scheme makes it possible to
destroy an object and re-use its MOT slot without locating and
invalidating all capabilities referencing the object.

1

I .
I

May 1971

Figure 1

Capability

options

object identification

ECS system object identification

capability

options

unique name

type

MOT
index

object in ECS

-~

The CAL Timc-Shariny System

3.4 Capabilities and C-lists

Master Object Table

uni ue name ECS addr

' 2

The CAL Time-Sharing System

May 1971 3.4 Capabilities and C-lists

3.4.2 Ca.2.2bilit_y_lists

Since capabilities are used to authorize access to objects within the
system, it is necessary that the user be prevented from fabricating
them without proper authority. To this end, capabilities are gathered
together into C~abilit_y-lists (C-lists) which are themselves objects
within the system. A capability-list is a sequence of capability slots
which are indexed from Oto n-1 (where n is the length of the C-list
and is fixed when the C-list is created). "Empty" capability slots are
represented by a pair of zero words. Capability lists may be thought
of as a peculiar sort of addressable memory which can be accessed only
through the system. To modify the contents of a C-list, there are
system functions which copy capabilities from one place to another,
clear a capability location, or return a capability for a new object.

To provide an initial set of capabilities for programs running on the
system, every process bas a distinguished C-list called its .!!.Qrk!~g
£::.!is!. A capability is referenced by specifying an entry in the
working c-list. If we let w denote the working C-list, then W[i]
denotes the capability in the i-th slot of w. Since C-lists are
objects which can themselves be named by capabilities, it is possible
to specify capabilities in more complex ways; e.g., W[i][j] would be
the j-th entry of the C-list named by the capability in the i-tb entry
of w.

In the interest of simplicity, all capabilities referenced as parame
ters of operations are allowed to invcke only one level of indirection.
Thus, two formats are recognized for specifying capability parameters.

Direct capability reference:

59 17
r"-T---------------~-------,
I O I I ! I = W[!.]

Indirect capability reference:

59 30
r"-T----------~---------------,
I 1 I j l .! I = W [i][j]
L-..1.------------L-----------------.J

By these mechanisms of capability referencing and modification, it is
clear that a capability (in a C-list) is the protected name ot the
object it represents; while the direct or indirect reference {i.e., its
address in the C-list) is the unprotected name of the object named by
the capability. !he integrity of the frotection system is assured

3

The CAL Time-Sharing system

May 1971 J.4 Capabilities and C-lists

because only capabilities reachable from the working C-list of a
process have unprotected names in that process. The fact that a
capability is in a process' working C-list is construed as evidence
that the process has the right to access the object named by the
capability.

3.4.3_C~abiliU_Creating_Autborizations

Since the presence of a capability in a C-list is interpreted by the
system as a-priori authorization to manipulate the object identitied
(named) by the second word of the capability, the user must never be
allowed to directly fabricate a capability and place that capability in
a C-list. Functions within the system which "create" objects are
permitted to fabricate capabilities for them and place them into
C-lists. since the interpretation of the second word (identification
or protected name) of a capability is dependent upon the 11..E~ of the
object, the injunction against fabricating capabilities can be relaxed
somewhat. In particular, the privilege of fabricating capabilities for
d particular type of object could be authorized if the type were ~nown
to be different from any other type already being used.

By extending the number of types of objects in this way, a subsystem
may represent objects which it creates and maintains by capabilities
with an extended type. To achieve this flexibility and extendability
while retaining the protection and access-control features of capabili
ties and C-lists, a new object is implemented in the basic (ECS)
system. This object, called a ~g~~i1!11 £~~1ing Autn~riz~tiQ~ (CCA),
is simply a protected name for the type which is being authorized. The
identification of the new type is carried in the second word of the
capability for the capability-creating authorization. The ECS system,
when creating a new££!, simply fabricates and returns a CCA capability
naming the next 18-bit integer satisfying the contraints of a type
number.

The ECS system, when presented with a CCA capability and a 60-bit
datum, will fabricate and return a capability of the type named by the
CCA with the second word of the new capability set as specified by the
supplied 60-bit datum. Thus the new capability is the protected name
of whatever the identificaticn or naming portion of capabilities of
this type represent. This mapping (i.e., the meaning of the protected
name) presumably is applied by the subsystem which creates the extended
type capabilities.

4

The CAL Time-Sharing system

May 1971 3.6 Event Channels

Event channels are ECS objects which are used to synchronize the
behavior of running processes as well as to implement "block" and
"wake-up" 11ec hanisas. Events can be sent to oc l"ecei ved fC"om an event
channel. An event consists of two 60-bit words: the f ir:-st identifies
the sending process or the sending channel while the second is a 60-bit
datum, presumably caC"rying information for the process which receives
it.

The event channel is composed of two queues, one for events waiting to
be picked up by some process and the other for processes which are
waiting for an event to arrive. At least one of the queues is always
empty; either there are more processes requesting events than there are
events (event queue is empty), or more events have been sent to the
channel than there are pcocesses requesting events (process queue is
empty). Of course, the channel may be idle, and both queues will be
empty. Since the event queue is stored in the event channel, it hds a
maximum size which is specified when the event channel is created. The
length of the process queue, however, is unlimited since it is
aaintained bf means of a pointer chain through the processes in the
queue.

A user process can create an event channel, send an event to a
particular event channel, cequest an event from one event channel or a
set of them, and destroy an event channel. (See Event_ Channel
l~.!l§.)

When a user process sends an event, the event (event datum provided by
sender) is passed to the first process in the process queue if there is
a process waiting. In this case, the first waiting process is removed
froa the process queue, passed the event in X6 and X7, and scheduled to
run. If the process queue is empty, the event is placed in the event
queue if there is room. Should there be only one free slot in the
event queue when an event is sent, the intended event datum is replaced
by a special "you lose" datum so that the process which eventually gets
the event will be aware that the event ~ueue became full and that
information may have been lost. If the event queue is full, tbe event
cannot be sent. The system always returns a flag to the sending
process indicating the disposition of the event (i.e., event passed to
a waiting process, placed in event queue, "you lose" event placed in
event queue, or event queue full).

1

The CAL Ti~e-Sharing system

[I.lay 1971 3.6 Event Channels

A user process may attempt to get an event from an event channel. When
an event is available, it is immediately delivered to the process in X6
and X7. If no event is available, the process may elect either to
"block" or to be notified immediately that the event queue is empty by
means of an F-return (see Section 3.3). If the process "blocks" (i.e.,
wishes to vait until an event arrives), it is added to the end ot the
process queue of the event channel and "descbeduled". The process will
not execute any more instructions until enough events have arrived on
the event channel to bring the process to the head of the process
queue. A process waiting on the process queue of an event channel may
also be restarted by an "interrupt" to the process which has sufficient
priority to pre-empt the program which hung on the event channel (see
"interrupts"). The next event after the process becomes the head of
the event queue will cause the process to be scheduled to run, and the
event will be passed in X6 and X7.

A process aay also try to get an eYent from one of a list of event
channels. The event channels are checked one at a time and the first
event fro• the first non-empty event channel on the list is delivered
to the process in 16 and X7. If all of the channels are empty, the
process may elect either to be notified immediately by an F-return as
in the one channel case, or to wait for an event. In the latter case,
the process is queued on all the event channels on the list. The first
event to arrive on any one of the channels (which does not have earlier
processes waiting) is sent to the process, which is simultaneously
unqueued from all the event channels.

The number of event channels which may be interrogated simultaneously
is limited by a parameter built into the system. It is further
restricted by a parameter supplied when the process is created.

The channel which delivers an event is identified in the first worct of
the event. If the process receiving the event was hung on a list of
event channels, the ordinal of the sending channel is packed into the
scale. If the process was only hung on one channel, it gets a 1 packed
in the scale.

l set of special event channels, called clocked event channels, provide
facilities whereby a program may economically wait for varying periods
of time. Each of these channels is set for a specified trequency.
When one of them ticks, all processes hung on the channel receiv~ an
event to activate them. (The event datum is the reading from the
master {micro-second) clock at the time the tick occurred.) These
channels are iaplement.ed so that they tick on even multiples ot the
time of day clock, which is entered by the operator when the systew is

2

The CAL Time-Sharing system

r!ay 1971 3.b Event Channels

initialized and kept by the display driver. Channels ace pcovided
which tick whenever the time of day clock turns over to each even:

1/10 second
1 second
10 seconds
1 minute
10 minutes
1 hour

For instance when 10: 00:00 turns over, all the channels tick but at
10:00:01 only the 1/10 second and one second channels tick; at 10:00: 10
these two ~D~ the ten second event channel tick. There are two things
to note: First, in order to time something using these channels, one
11ust wait for an initial tick, and then bang again, or get the time and
date from the system and compute the interval until the next tick
should come. Second, these channels run off of the real time clock,
which is entered by the operator. Consequently, whenever the time is
entered, the next tick of each event channel will not be at the
expected interval from the previous tick.

Event channels may be used for such tnings as inter-locking two or more
processes, free list allocation, and sending messages. For example, if
the syste• has only one printer, only one user may access it at one
time. If access to the printer is governed by an event channel with
only one event, users wanting to print will try to get the event from
that channel. If some user already has the event, others must hang in
the process queue until the user is finished printing and sends the
event back to the event channel.

Free list allocation can be handled by an event channel it the single
event is a pointer to the head of the free space list. in which the head
of each block of free space points in turn to the head of the next
block of free space. When a process needs space, it gets the event
from the event channel, takes the pointer from the head of the list and
pats it into an event which it sends back to the channel; when it is
finished with the space, it gets the event, places the pointer in the
event into the first word of the space being released, puts the address
of the first word of the space being released into the event, and sends
the event back to the channel.

Messages can be sent between processes yia an event channel. The
aessage might consist of one or more events, 10 characters per event
vith a special character to signal the end of the messagP. These
events ace sent sequentially to the event channel, and, if the
receiving process is not waiting to get them, are stored in the event
queue. Note that it is vital to the proper function of this particular

j

The CAL Time-Sharing system

May 1971 3.6 Event Channels

mechanism that only one process at a time be getting or sending events
from the channel.

4

Time-Sharinq System

:'1cty 1971 4.1 Pil0 ~ctions

Pile_Actions

The Time-Sharing system provides a number of actions for handlinq
files. A description of files and how they are han11~~ un~er TS~
appears in Section 2. 1. ~he following list summarizes th 0 ~vailable
actions!

Create a disk file via directory system
Create an F.CS file
create a disk file
Create an ECS file data hlock
create disk file ~ata blocks
Delete a data block from an ics file
Delete a hlock from a disk file
Delete an F.CS file
Delete a disk file
Move an Er.S file block
Open a disk file read-only (read/write)
Exclusively open a disk file
Close a disk file
Attach file block
Detach disk file blocks
Interchange file contents ("shazam")
React (writ~) files
Make an exclusive claim on a file
Make a shared claim on a file
~elease claim on a file
Rea<l shape of an ECS file
Display disk file status
Display status of n-th disk file
Display n-th attachen block of nisk file
Check for missinq ECS <lata blocks {"probe")
Check for misstnq nisk file blocks
Close all open files
Set-reset close all over-rine
Test and reset ~irty bit
Return disk subsystem clock

Detailed descrintions of these actions appear helow. For a genPral
description of how the user calls the system ta initiate an action, sen
Sect.ion 1.S.

Time-Sharing System

4.1 r.-il 0 l\ctions

4.1.1 Create Disk_File_via Directory_system

('T'o be supplied)

TimP-Sharinq system

May 1971 IL 1 1?i 1 ,--, a.ct.ions

4. 1.2 Create_an_ECS_F'ile ci;;c: CF'IL)

IP1 C: Cap1hility for allocation block {OB.CPFIL)
IP2 D: C-list index to return capability
IP1 n: Number of levels in the file
IP4 O: Pointer to a list of shape numhers

When a file is created, only the file descriptor is construct~d. The
file descriptor contains a pointer to the roo• of the file tre~
(initially empty since no data or pointer blocks exist). Th~ user
snpnlies the capability of the allocation block which is to f11n 1t th0

ECS space occupied by the file. The user must also supply the index of
the C-list slot wher~ the systPm will put the capability for the newly
created file (all option hits in the capability tor the new tile ~re
turned on). The last two parameters of the file create ~ct.ion,
indicate the number of levels (n) contained in the structure of thP
file tree, and a pointer to a list of n shape numbers (S1 through Sn),
the first n-1 of which iniicate the numher of branches from each
oointer block at each successive level of the file tree; the last shape
nnmber (Sn) gives the uniform size of all rlata blocks in the til"'. l'\
"one level file" (IP3=1) consists of a single data block of lPngth S1.
i.:ach_sha~_numher (S1 excepteii) must_bf.,_a non-negative_,2owPr_of_two.

Possible errors while creating an ECS file:

~la 22 B..!!filbe.£

E.1\BLOCK F:. NO}\BLK
F..1\BLOCK E.NOF.CS
E.PI\RMS E. NEG IX
R.PJ\RMS E.BIGIX
F..PARMS E. NEGP'"!'

F:.PARMS E. NEG PAR
"S.PARMS F..BIGPI\R

E.OPFR F:.CAPTY
E.f'ILES F.NEGSTZ
F..FTLES f'.BIGST7.
E.FIL-PS F!. NOTPOW

E.F'ILFS 'R.RIGFIL

Allocation tlock does not exist
No ECS available
C-list index is negative.
C-list index ex~eeis full C-list
Pointer to list of shape nu~h0rs is
neqative
Level number n < 1
Level nu~ber is too large or
Pointer to list of shape numbers plus
list length exceeds us~r's FL
Type or options bad
Ncn-positive shape nnmher
Shape numbeC's exceeds 217-1
Shape nqmber other than S1 not a oower nt
2
~otal size of file exceeds 259-1

Time-Sharing systPm

May 1971 tt.1 f'il,~ Actions

4.1.3 Create_a disk_file t

Inp11t parameter-s:
IP1 D: Disk accounting record numher
IP2 RD: Shape numbers SO through Sn

Returned parameters:

(UF: CFIL)

RDAT : Disk uniq~e name, header block size, and disk ~~drPss
(oneworrl)

RCAP : ~cs file capability for new file

A file of the specified dimensions (see 'Create ECS file') is Ct:"Paterl
in hoth ECS and the disk system data structure. The resulting ~isk
file is opened for the creating process. The new file is associated
with the disk accounting record specified by the first parameter (TP1),
and this record must fund all permanent disk space occupied by thP
file. Althouqh space is reserved on the disk tor the file header block
(see below), it is not copied to the disk until the file is closed.

For a disk file, the first level of pointers (or the 1ata block in the
case of a onf> level file) is associa t€1 with thP heaiier hlock ot t.hP.
file (in contrast to the schemP for ECS filPs in which t.he fi1°
descriptor and file root are separate). Thus, if the new file is a on0
level file, the data block is funded and added to the RCS incarnation
of the file.

f\n ~cs file capability (with vrite accPss) toqether with the disk
unique name and hea1er block address are returne1 to the caller vi~ the
return parameter mechanisms {sPe 3.5). ~he ECS file capahility has all
options set except for: OB. DSTRY, OB. CHNA.M, 08.CREBL, on. DEL BL,
OR.PLMAP, OB.FOA!, and OB.TRDB. There are many restrictions on the
shape of a disk file. Considerations of efficiency and utility have
forced what mav seem to be arbitrary limitations on the ranqe of th 0

dimensions of a disk file.

Sha£e_restrictions: one level files - data block size< 512 - 4

mnlti-level files - numher of levels ~ 11
data block si~0 = 128 or 2Sh or

512
pointer block fan out> A

(for somr,:, n)

< 1 i8
= 2**n

first shape nnmber (S1) < 12R
total lnngth nf file S 236 - 1

1 Privilene~ operations are use1 by privileged system suhpro~esses anj
are 112.i allowP.,1 t.o bP in usr.>r C-lists.

4

Time-Sharing System

4. 1 F' i 1 e A ct ions

Tn addition to P.rcors which ~ay he detected while processing the filo
description, errors may he encountered in funding the newly crcatea
file. Pixed ECS space is funded from the process allocation block: a
one-level file receives the data block size plus 4 words; a m11lti-lev2l
file receives the sum of the number of levels plus the first shapo
number plus four. Permanent disk space is funded from th~ disk
accounting record (IP1); a onE>-level file receives from 1 to 7 sPctors
depending on the data block size, and a multi-level file receives onn
sector. Fnough Disk SystPm nata Storage (DOS) is reserve,-1. to p 0 rmit
creating at least one block on the file. Ad~itional DDS space may he
reserved by making the appropriate call upon the disk system.

Possible errors while creating a disk file:

£:lg_§§ .N!!.filQ!!!:

P..PARMS F.. NEGPJ'1R
F. FIL F.S E.LLEV
E.i::'ILF.S E.NEGSIZ

F:. FIL ES F,.BIGSIZ

E. FIL F.S E. NO'!'POW

F.f'TLES E.BIGFII.
F-.FTLES E.NOLFH
E. FILES E.FHLL
F.. A BLOCK E.NOl'IBLK
1L A BLOCK ~.NOECS
E.ABLOCK F.. NOD SK

E. A BL 0C£{ "E.NODDS

Number of levels< 1
Nurober of levels too large
Data block size negative or too small
(< 128) - multi-level fil0
Shape number too small (< R) - onP level filP
Data block too big {multi-level > 512) (onE>
levl?l > t;()R)

Shape numher too big {> 128)
Data block size or pointer block stz~
(multi-level file) not power of 2
File too biq ('> 236 - 1)
Too many locally open files
Disk system tables full
Disk accounting record does not exist
~ot enough fixea ECS for file
Not enough permanent disk space in
1isk accounting recora
Not enough nns space

~ime-Sharinq System

May 1G71 4.1 PilP Actions

4.1.4 Create_an_ECS_File Data_Block (RC:CRLK)

TP1 C: Capahility for file (OB.CRFRL)
IP2 D: Address of block in the file

Once an ECS filP has been created, data blocks of the declared length
(Sn) may be added subsequently, one at a time, to hold data or code. A
count of the subpro~ess map entries which reference the data block is
maintained with each data hlock. (This count is important whPn
deleting a block - see below). To create a block, the user supplies a
capability for the file to which the block is being added, and an
address which is contained in the block which is to be added to thP
file.

When a data block is added to a file, it may also he necessary tor the
system to create some or all of the pointer blocks between that dat1
block and the file descriptor. Recall that pointer blocks are require1
to link the file descriptor to the data hlo~ks in any file with morP
than one shape number (i.e., not a one level file). All newly
allocated P.CS space is charged to the allocation hlock associ~t0d with
the file.

Possihle errors while creating a block:

F..PARMS
F.P,RMS
E.PARMS
F..PARMS

F.OPER
E.FTLF.S
E.FILF.S

E.ABLOCK

E.NEGIX
E.BIGIX
E.~EGP~
F.9IGPT

R.CAPTY
E.NOPIL
E.TSALK

F..NOECS.

Descri£tion

C-list index is negative
C-list index exceeds full C-list
Ad1ress of new block is negative
~ddress of new block~ file length
(address range: 0 to length-1)
~ype or options bad
Pile does not exist
Address of new block corresponds to an alrPady
existing block
No ECS space available

!.l. 1 Pile? Action~"

4.1.5 Create_disk_file_data_hlocks (DF~ CLBK)

TP1 C: ECS file capability for locally open disk file (0B.DCRRL)
IP2 D: Starting file address
TP3 D: word count

nata blocks may be added to any locally open disk file. ~he filP +o bP
enlarged is specified by qivinq thQ PCS file capability (IP1) t,)r a
locally open disk file (i.e., a dis1': file which has been openr-'(1 hy +.he
calling process). More than one block may be addBd at one~. Rlo~k~
beginning with the one containing the startinq file addross (Tr2)
through the one cor.taininq the startin1 a('Mr~ss nlus the worrl r-:011nt

(TP2 • TP1) are created anrl attac.hed to thP callinq process.

All new data blocks and any necessary new point.Pr hlnr.k::, ar~ t11nr10.'J on
the disk by the disk accounting recor~ assnciilted with th':' clisk file.
Disk sface for all '1ata blocks is fun1ed before any hlo~ks iirn cr 0 at~~
(unused space is returne1 in case of an error). B.~1..12.12~2. EC" so,1ce for
a t t a chi n g the n e w d a ta h 1 oc ks is ch a Pl e ~ to th e s w a r pP a F. cs ii cc o II n t of
the calling process. ~he actual ECS file spac~ occnnie~ hy thP nPw
file blocks is absorbed by the disk svstem ECS allocation hl0ck.

The create disk file data block operation will qenerate an F-return it
the ('lisle file to bP 0nlar.qe,1 is frozen, (i.e., all usa9e is bP1n1 nai:i
for by a sinqle user). On onP-level "iisk fi1'--s this ilct.ion n:>t11rns an
error. after checking that the tile addresses are in range. This is
because the data block of a one-level file always exists an1 can
neither be created nor del~ted. Rrrors may occur. after one or mora
blocks have been createi. The file address of the firc;t hlock: !12..t
created is added to the error number to iniicate the state of th~ fil~
when the error occurced.

PossiblA errors while creating a disk file data block:

F'.t:1ARMS
E. PARMS
E.PARl'IS

E.PARfti!S

F. OPER
P.. FILES
F..FTLES

E.NEGIX
E. RIG IX
E.NEGPAR

E. B TG PAR

E.CAPTY
P..NODFTL
E. DTOP.FR2

DescriQtion

C-list index is negative
C-list innex exceeds fnll C-list
Negative starting file addrec;s or n°gative
woril. count
File ac1dress plus word count exceeds file
length
~ype or options bad
No such disk file openHc1 by this process
F.rror on pointer block read from disk
(modifier= file address of first block not
created)

2 Error may occur after zero, ono or more blocks have been cr~at~d.

7

E.PILES E.TSBLKZ

F.F'TLES E.NI\BRZ

P.. FILES E. ZLEI/
P..A.BLOCK E.NODSK
E.ARLOCK P..NOSWP

Ti~e-Sharinq system

4.1 ,..ilP .ri.ctions

Data block address already exists (modifier=
file a~dress of hlock which Pxists)
No attached block record, i.P., disk system
out of local storage (modifier= file a~drcss
of first block not created)
Attempt to add a block to a one-level tile
Insufficient disk space to fund all data blocks
Insufficient swapped RCS in process ~isk
accountinq recor1.

Time-Sharina System

"fay 1971 4. 1 File !\ct ions

4.1.n Oelete_a data block_frorn_an_ECS_file

IP1 C: Capability for filP {OB. DELRL)
IP2 n: Address of blo~k to he deleted

(EC: ORLK)

A block can be delPtei from a file as long as it is not reterPnco1 hy
an entry in some snbnr-ocess map (reference count = 0). The nsf>r m11st
supply the capability iniex for the tile and the address within tho
file of thP block which is to be deleted. If the block is reference1
hy a map entry, an er.ror is issued.

Possible errors while deleting a data block from an ECS file:

E.PA.Rfl!S
E.PARMS
E.PARMS
-i;,.PARNIS

E.OPER
F.FILES
F. FIL RS

E. NEG IX
E. !HGTX
F..NF£'.;Pl\R
E. BIG PAR
E.CAPTY
E.NOl3LK
E.TNMAPS

De.scri_etion

C-list is negative
C-list index exceeds full C-list
Pointer is neqative
Pointer is too larqe
Tvpe or options bad
Rlock to he cteleted does not exist
Block to be ~elete~ is in a map

q

r-,a Y 1 c: • 'L1 :·'ilP Actions

4.1.7 D~lete a block from_a disk file fDF: ORI.Kl

IP1 C: ECS file capability for locally open disk file (OR.11DLBL)
IP2 D: starting address in file
IP3 n: Word count

Data blocks may be deleted from a locally open disk file. The fil~ is
specified by giving the ECS file capabilitv (IP1) for a locally open
1isk file. More than one block may he deleted at a time. Blocks arP
destroyed beginning with the block containinq the starting file ad1rPss
(TP2) through the block containing the startinry address plus the word
count (IP2 • IP3).

Rlocks may not be deleted from a file which is open by more than on0
process. The hlocks to he deleted may be either on the iis~
(unattached) oc in ECS. If in ECS, thE>y must be attached only to thP
calling pcocess. Purthermoce, they may not be in any maps.

The disk space occupied by the deleted data blocks is refunrted to thP
disk accounting record associated with the file. Space tor any pointer
blocks which may become empty is not refunded until the filA is
globally closed (no longer in use) or pseudo-closed (a technique for
updating the disk version of a file). If some of the <iata blocks werP
locally attached, swappe~ EC5 space is refun1ed to the calling pcogram.

The operation t.o delete disk file data blocks will F-cetucn if the disk
file is frozen. This action returns an error on one-level disk files.
1'h1? data block of a one-level disk file always exists and can never hP.
deleted. An error may occur after one or more blocks have been
deleted. The file address of the first block n2! deleted is added to
the error number to facilitate error recovery.

Possible errors while deleting a block from a disk file:

fla22 Number

E.PARMS E.NEGTX
E. PARMS E.BIGIX:
F.. PARMS F.NEGPAR

E.PARMS F.. A Ir.PAR

F..OPER E.CAPTY
E.FILF.S F.NODPIL
f..FILES F. ':'MOPN
E.FTLFS F. OIOERR :1

E.FTLES F.. NOo LK 3

Desc,t!_Qtion

C-list index is negative
C-list index exceeds full C-list
Negative starting file address or nega
tive word count
File address plus word count exceeds file
length
~ype or options brtd
No such disk file open by calling proc0ss
File is open by some other process
I/0 error reading pointer block (modifier
= file address of first block not
deleter!)
Rlock tote deleted does not exist (modi
fiet' = file address of first hlock which

10

Time-Shar.inq System

illay 1971 4.1 File l\ctions

does not exist)
E.PII.F.S E.1'MGAJ fl lock is attached to anoth~ r process

(modi f i.er = file addrC'ss of attil.cher'l
block)

R.PILES E.INMAP53 Block in some map in callinq process
(moi!i f ier. = f il('.l address of block in m~ p)

E.FILF.S F.. 7. LEV Attempt to rlelPte rlata block:. of a one-
level filP

1 F.rror may oc~ur. after zero, one or more blocks have been deleterl.

1 1

Time-Sharinq system

May 1971 4.1 r-'il~ .l\ctions

4.1.8 Delete_an ECS_file (EC: DFIL)

TP1 C: Capability for ECS file (OB.DSTRY)

When an ~CS file is deleted, it must not contain any data hlocks, i.e.,
it must consist only of the file descriptor. Only the capability index
of the file is require~ as a parameter.

Possible errors while deleting an ECS file:

E.PA.RMS
F:.PARMS
E.FILES
E. F' TI.ES
E. 0 PER

E.NEGIX
E.BJGIX
E.NOFIL
F..NO'fFMP
F..CAPTY

C-list index is negative
C-list index exceeds full c-list
File to be deleted does not exist
File to be deleted is not empty
~ype or options bad

12

Tirue-Sharinq system

May 1971 4.1 File Actions

4.1.9 Delete_a_Disk_Pile {DF:DFIL)

IP1 C: Capahility for a disk fili::> (OB.DSTRY)

The disk file to be deleted must be locally open and it must not b0
opened by any other process. Blocks may exist in the file ~nd may be
attached hut no block of the file may be in a man. If everything is
well, swapped and fixed ECS are immediately refunded to the local
accounting record. The oisk space occupied by thP file wilJ bP
refunded and the ECS incarnation of the file is destroyed by a parallel
process which will complete the file destruction.

Possible errors in 1eleting a disk file:

E.OPER
F:.FTLPS
E. FTLF.S
E. FIL ES

E.CJ\PTY
F.. NODFrI.
F..1'i"'IOPN
E.IN1'lllPS

~ype or options bad
No such locally open disk file
File is open in some other process
Block of file is in a map (modifier=fil~
adiress of offending block).

1 ~

~ime-Sharing System

"lay 1971 4. 1 F'i le Actions

4.1.10 Move_an_ECS File_Block (EC: MRLK)

IP1 C: Capability for SOUC'Ce filf> {08.RDF'TL, OR.DELB~)
IP2 n: Address in source file of block to he moved
IP) C: Capability foe destination file (OB.WFILE, OB.CRERL)
TP4 n: Address in destination file of block to be movei

File blocks can be transferred between FCS files whose data block sizes
{Sn) are equal. In addition to the capabilities for the source an~
~estination files, the system expects to receive from the user thP
address within the source file of the hlock to he moved and the address
in the destination file to which the block is heinq moved. Any address
within each block suffices. Tf the block to be moved is referenced hy
a map, moving it (which <leletes it from the source file) woulr'I causA
problems when swapping; therefor~ an error is issued. If no errors
occur, the designated block is deleted from the source file ana ~dde~
to the destination file. The contents of the block are not affectej.

Possible errors while moving a block:

E.FILES

E.FTLES

E. FILES
E.FILF.S
'P..PARM5
'R.PARMS
F..PARMS
F.. PARMS
E.OPER

E.NCBLK

E.ISBLK

E. l"IIS!'ICR
F..IN"IAPS
E.NEGPT
P.. B IGP'l'
F.. NF.GIX
F..BIGTX:
F:.CAPTY

nescri£tion

Block to be moved does not exist in
source filf'
A block already exists at the d~siqnate~
address in the destination filo
Files de not have equal data block sizes
Block to be moved is in a map
Pile address neqative
File address too large
C-list index is negative
C-list index exceeds f11ll C-list
'l'ype or options bad

, ,~

~ime-Sharing System

"'lay 1971 I+. 1 P1lP. .l\.ctions

4. 1.11 Q£en_a_disk_file_read-only_jreadLwritel_ (DF:OPRO,DF:OPRW)

Inp11t parameter:
IP1 C: Disk file capability (OB.OPEN (OB. WFILE))

Returned parameter:
RC~P : ECS file capability tor open disk file

Before a disk file can be manipulated, it must first be logically
opened. ~he open action returns an ECS file capability for the RC~
incarnation of the disk file. Almost all disk file operations require
this ECS file capability as a parameter. To facilitate file sharing, a
~isk file may be opened by several processes and may be opene~
repeatedly by a single process. A process local open count permits
repeated opening and closing by a single process without interferring
with the global open count, which reflects the number of separate
processes which have logically opened the file.

The disk file capability (IP1) contains the disk address and unique
identification for the disk file. The first time a disk file is
opened, the header block for the file must be read from the disk and an
~cs file created from the shape description contained therein. Subse
quent opens return a capability for the ECS file created by the initial
open without requiring a disk reference.

If the file has previously been "exclusively" opened, thP open action
wi 11 !l'-return.

Tf the file has not heen opened previously by the calling process, the
process is charged for the fixed ECS space required tor the RCS fil~
descriptor and the first level of the file tree. On the disk, the
first level of the file is stored in the header block of the file and
must be brought to E~~ when the file is opened. If the file is frozen
or is already open in the callinq process, no charge is maie for fixed
RCS space. Fixed ~cs space is funded hy the process allocation block;
a one-level file must pay for space <:>gnal to the data block size plns
four; a multi-level file pays for space equal to the number ot levels
plus the nnmher of branches from the first level (S1) plus four. Tn
addition, sufficient DDS space (disk system global storage) is r0served
to allow the attaching of any one file block. Additional DDS space may
he reserved explicitly or automatically as needed.

An ECS file capability, with or without write access, is returne1
depending on whether the open read only or open read/write operation
was called for. The "open read/write" oreration requires an additional
option bit (OB.tH'ILE) in the disk file capability (IP1) to siltisfy the
~cs system parameter checking. "Open read/write" returns extra options
08.WFIL~, OB.DCRBL, and 0B.DDLRL. In all cases, the option bits of thn
ECS file capability are ANDed with the option bits ot the user supplied
·iisk file capability (IP1) befor.? the ECS fill? capability is returnP·l

Time-Sharing system

4. 1 FilP Ar::tion;:;

to thP caller. Finally the followinq options are t11rned Q!f
file capability which is returned: OR.DSTPY, OB.CHNA~,
OR.DELBL, OR.PLMIP, OB.FDAE, and 08.TRDR.

Prohibited options are:

OB.DSTRY
OB.CHNAM
OB.CREBL
OR.DELRL
OR.FDAf:
OB.PLMAP
OB.'l'RDB

Destroy a f i lP
Change nnique name
Create a hlock
Delete a block
Direct ¥.CS access
Place in subprocess map
~est and reset dirty hit

F-return condition: file is "exclusively" open already.

Possible errors while opening a disk file:

£la.§§ !!.!!.!!'.!?~!: !2~§cr1.Eii2n

R.PARMS E.NEGIX C-list index is negative
E.PARMS F..13IGIX C-list index exceeds f11ll
E.FILES E.NOFIL No such disk file or

in the FCS
rrn.C?EBL,

C-list

Disk par-ity error on h earler- hlock
E.FT.LES E. TMOPN Too many opens (loca 1 open co11nt)

2 1 8- 1 or q loba l open c:ount > 21"-1)
E.FILF.S E.NOLFH Too many locally open files (> 2 ~)
R.FILFS E. FUT, L Disk system tables full
P..OPF.R P..CAPTY Type or options hiid
E. ft RLOCK F..NOECS Insufficient fixed ECS to opPn tile
P.. A BLOCK F..NOD'JS I n s u ff ic i en t_ DDS space

1b

May 1971 4.1 Fili::- Actions

4.1.12 Rxclusivel1_ogen_a_1isk_file {D F': XOPN)

Tnput parameter!

TP1 C: Disk file capability

Returned parameter:

RCAP: ECS file capability for open disk file

Tn order to provide enforced exclusive access to a disk file to
alleviate some problems surrounding thosP 1isk system actions which
requice that the file .!1.2!. be shared (delete file and interchanqe
content.s), an exclusive QEen is pcovided. 'l'his ;:iction, if it su--ceens,
will prevent any subsequent opens on the file. Th~ exclusive open will
fail if the file is already exclusively opened or if any other procPss
currently has the file open. If the exclusive open succeeds, it will
perform all the activities normally associated with an open of a fil~
file (see "open disk file"). The file is iHJtomatically opened
read/write.

~-return condition:
another process.

fil~ already exclusively open or file op~n by

Possible errors while exclusively opening a disk fil~:

F..PARMS
F:.PARMS
F. FTLES

E.FILES
F.OPF.R
E. A BLOCK
F.. A BLOCK

F:. NEG IX
R.Bir.IX:
E.NOFIL

E. FULL
F..CAPTY
E.NOECS
E.Nonns

C-list index is negative
C-list index exceeds full C-list
No such disk file or
Disk parity error on header block
Disk system tables full
Type of options bad
Insufticient fixed ECS to open file
Insufficient DDS space

17

'1ay 1971

4 • 1 • 1 3 C 1 o s e a d is. k f i 1""

Time-Sharing Syste~

4.1 file Actions

(DF:CLO - ECS file capability)
(DF:CLOS - Disk file capability)

IP1 C: ECS file capability (or disk file capability) for locally
open disk file (OR.CLOSE)

A disk file should be close~ when a process is through manipulatinq it.
rf the calling process is the only process to have opened the file, a
close will cause the contents of the file on the disk to be update~ to
reflect all changes in the file content and size. Should •he system
crash after a successfully complete1 close, it is unlik~ly that
information in or about the file will be lost. On the other hand, as
long as the file remains open by some process, all chanqes ~ade since
the file was first opened may be lost in the event of a crash.

As mentioned ahove, a process local open count records multiple opens
by a single process. If a close decrements the open count to zero, any
blocks of the file which are attached to the process are detachei, and
the swapped PCS space is refunded to the process. Fixed PCS space is
also refunded, unless the file was frozen when the process opened it.

Tf the local open count becomes zero, any local claims on the tile are
released and the global open count is decremented. When the qlohal
open count becomes zero, a request is sent to a special disk systPm
process which will update the contents of the file on the disk. The
update is carried on simultaneously with the execution of the process
requesting thf> close file action. 'l'he updatinq of the file on the oisk
consists of re-writina any pointer blocks which point directly or
indirectly to data blocks which have been modified and written to new
loc•tions on the oisk. After all pointer blocks have been writt8n, the
root level pointers ore re-written with the file header at their ol 1l
~ddress on ~he disk. In this way, the old contents of thP tile will
not be lost if the system should crash hefnr0 th0 update prnceiurc 13

complete.

Possible errors whilo closinq a iisk file:

F. "'A.PMS
r,,.nARMS

F. r) PER
F..r.-11,r.:"
E.PILF.S

F.. NF<; IX
F.. R p-; T '{
f:. CAf'TY
F. NOflf.'TL

?. INMl\P"

nescrintion

C-list inriex is negative
c- list i ndex P.Xceeri s f 11 l l c- l i ~~+
Typ0 or options ~ari
No such locallv op·"'n i.:ilP
Attachen hlock 1n 1 mrtP (morlifi0r
file a,ldrPss of hlock in map)

Tim~-Sharinn systn~

May 1<J71 4. 1 F'ilP Actions

ti. 1. 14 Att.ach_file_hlock.1.§1. (OF; l\'l'CH}

IP1 C: RCS file capability for a locally open 1isk file (?)
IP2 D: Startinq address in file
IPl D: Word count

nata blocks of a ilisk file may be ~!-.!2.f.h.QQ by i! process. Attaching 1

data block will cause the block to he held in ECS until the blo~k is
detached. If the data block is not alr@ady attached, a disk rea~ is
initiated to bring the block from the ,1isk. Howevf>r,, the pt'ocess dof>s
not wait for the hlock to arrive from the disk. Since sev~ral
processes may share a file and attach the same hlock, a qlohal
attachment count is maintained for disk file data blocks. If the block
being attache~ is already in ECS ty virtue of heinq attached by som~
other process, no disk read need he initiated. To permit multiple
attaches by a single process, a local attachment count is used to
pl'event one user from over-riding the attaches of another user. nnlAss
thP file (IP1) is "frozen". the user is charged for swapped ECS space
for each block which was not previously locally attached.

Several dat.a hlocks may he attachea by one r.all to the disk systP.m.
All data blocks from the block containing the startinq file address
(IP2} through the data block containing the starting fil" addr0ss plus
the word count (IP? + TP3) are attacher!. If IP1 is a one level tile,
only parameter checking is performed, since the first level of a 1isk
file is bruuqht to ECS (i.e., attacher!) when the file is opPnerL

Frrors may occur in the process of attaching a sequence of iata hlocks.
If the prohlem is a non-existant block, an F-return is made to the
callPt:. 'T'he add.ress of the missinq .~ata block is returned in X6. On
all other errors, the file address of the block causing the ~rror will
b~ added to the error numbPr. All blocks preceding the ecror hlock
will alt'eady be attached.

Possible errors on attaching file block(s):

!;,la.§§ 1!.Y.ill.h~f

F..PARMS F.NTr,rx
F..PARMS E.BTGIX
F..PARMS E. !<lF.GPAR

E.PARMS E.BTGPAR

F. 0 PER F..CAPTY
E.FILES F..NABR•

F:.PTLF.S E.1'MA•

D@SCl'i_etion

C-list index is negativf>
c- list index exceeds full C-list
Negative starting file address or nega
tive worn count
starting file address plus wol'd count too
big
Type or options bad
No attachf>d block records (rHsl< systPm
out of local storacre) {morlifier = tilP
address of last block attached)
1' o o man y 1 oc a t a t t a c h P s (> 2 1 z 1)
(modifiPc = file ar!drPss of last hlock

May 1g71

E.FTLES E.TMGA•
E.FILES E.DTO~RF•

F..ABLOCK F.NOS~P

E.ABLOCK E.NODDS

~im~-Sharinq Syst0m

4.1 File hctions

attached)
Too many qlobal attachPs {> 2s - 1)
Disk I/0 error (modifier= file adrtrPss
of last hlock attached)
InsufficiPnt swapped ECS in process disk
accounting record
nut of nns space

• May occ11r after zero, or more blocks are attache1.

20

Tiroe-Sharinq system

4. 1 Pi lP l\ct ions

4.1.15 Detach_Disk_File Alacks (OF': O~CH)

TP1 C:
TP? D:
IP 1 D:

ECS file capability for a Startinq file address
5tartinq file address locally open disk file (OB.
Word count

When portions of a disk file are no longer needed in ECS, thP
corresponding blocks of the file should be detached. Tn detachinq a
disk file block, the local attachment count is decremented. Tt the
local attachment count goes to zero, the global attachment count for
the block is decremented. If the global count becomes zero, the block
is removed from the ECS incarnation of the disk file. Tf the block is
clean (i.(,>., the dirty bit on the ECS file block is not set}, the block:
does not need to be written to the disk. Otherwise, the hlock is
written to the first available position on the disk. The newly written
block will not be linked (on the disk} to its file header until a clos0
or pseudo-close is pprformed on the file.

Unless the file is frozen, swapped 'P.CS space will he refunded on all
blocks for which the local attachment count has become zero. As with
"attach", more
disk subsystem.
bPen netache<l.
is added to the

than one block may be detached by a single call on th~
Also, errors may occur after one or more blocks have
In this case, the file address of the offending bloc~

error nnmber.

Possible errors while detachinq a file:

£1.~§.§ Ji!!.!!l..Q~.£
~.PARMS E.NEGIX
F..PARMS E.RIGIX
£.PARMS E.NF.GPAR

E.PARPl!S F.. RIG PAR

E. OPER R.CAPTY
F..F'ILES F..NA'l'H

E.FILES F..DIOEPR

E.FILES E.TMD

DescriI?tion
C-list iniex is neqative
C-list. index excPeds full C-list
Neqative startinq tile address or
Negative word count
starting file address plus word rount too
big
Type or options had
Block not locally attacherl (modifier =
file address of block)
Disk I/0 error on block (modifier= filP
address of block)
~oo many detaches (block is in a mar ani
non-map attach count already zero) (mo0i-
f i e r = f i 1 e a 11 dress of h l oc k)

21

mime-Sharing System

IL1 F'ilr.- i\ctions

4.1.16 Interchange_file_contents ("shazarn") (f)F: SHAZ)

IP 1 C:
TP2 C:

ECS file capability for primary file (OB.DCRBL, 03.PDLBL)
RCS file capability for SPCCndary filP (OB.DCPRL,OB.nDLBL)

Tt is possihle to interchange the contents of two disk fil0s without
copyinq data from one file to the other. Whenever one fil~ is
considerPd to be the "backup" version cf another file containing the
updated version of the file, the file interchange action may be usert to
securely update the backup file. The file interchange is performed by
first updating the contents of both fil~s on the ~isk anrt then
interchanging the root pointers of the two files in ECS and on the
disk. The order of disk writes is such that the secondary tile header
is clobbered first. Th~n the primary file is updated to contain the
former contents of the secondary tile. Finally, the secondary tile
header is updated on the disk to point to what was form~rly thn
contents of the primary file. This algorithm guarantees that a systPm
failure at any point will leave the primary file either unchanqei or
containing the contents of the s~condary file. ~he secondary tile will
he 1) unchanged, 2) gone, or 1) will contain the previous contents of
thP primary file. After the interchange, all blocks of hoth filPs will
be "If et ached" (i.e., on the disk).

In order to interchange two files, several coniitions must he met.
Both files must be locally open and must not be opened by any other
process. No hlock of either file may he in a map and the accountinrr
record of the smaller file mnst fund thP increase in fil!'.c' size. 'T'he
accounting record of the larger file will he refundea an appropriate
amount of space. One level files cannot participate in a tile
interchangP.

Possible errors while interchanging file contents:

~!!!.§§. l!Y.!1!£~!:

E.OPP.P E.CAPTY
E.PARMS E.NEr.rx
E. PAR MS E. BI<'~TX
E.FTLF.S E. NO!WIL

E. FIL ES E.INMI\PS

E.FTLES E.TMOPN

E.F!LES F.ZLF.V

F.I\LLOC E.NODSK

Descri12tion

Type or options bad
C-list index is negative
C-list index exceeds full C-list
File not locally open disk file (modifier=1 it
secondary file: 0 if primary tile)
Block in a map (modifier=file address of
off en rl in g h 1 oc k)
File is open in anoth~r process (modifier=1 if
secondar.y file; 0 if primary file)
File is one level file (modifier=1 i~ secon
d<1.ry file; 0 if primary file)
Jnsufficient disk space in file accounting
record

22

Time-Sharing SystPm

4.1 Fil0 A.ctions

4.1.17 Rearl_lwritel__file (EC:REA.D, EC:WRI~F.)

IP1 C: Capability for file (OR.RDFIL, (08.WPILE))
TP2 D: Address in file
IP3 D: Address in Central Memory
IP4 D: Count of words to be transferrei

fhe action of reading (writing) an FCS file transfers words be~ween thP
address space of the running (current) subprocess and the data blocks
of a file. In addition to the capability index for the file, the usPr
specifies the address in the file of (for) the desired intormation, th,"
address in Central Memory of the area to be rea~ into (written from),
and the number of words that are to be r€ad {writt':'n). If a trr1.nsfer
is requested which involves a file address corrnsponding to a non
present data hlock, the transfer proceeds until the non-pr~sent file
address is encountered, whereupon F-return action passes control to thP
disk system. '!'he <1isk system will check to SP,e if the filP (IP1) is a
locally open disk file. If not, an F-return will again be initiate~
(see "Process control" and "Operations"). If the file is a disk file,
the missing blocks will he fetched from the disk, the transfer
performed, and the blocks released or returned to the disk. If a block
which does not. exist in the disk version of the filP is enco11ntf'>n~r1, rln
F-return is initiated.

Possihle errors while reading (writing) a file:

E.Pl\RMS
F..PARMS
P..PARMS
E.PARMS

E.PARMS

E.OPF:R

E. N F:G IX
E.BIGIX
E.NEGPAR
E. NEGP'l'

P..BIGP1\F

E. CAP"'Y

C-list index is negative
C-list index exceeds full C-list
Word count negative
File address negative or
c~ address negative
File address plus word count (IP2 + IP4)
exceeds file length or
CM address plus word count {IP3+TP4)
exceeds user's field length
Type or options had

Time-Sharin1 system

4. 1 File l'\ct:ions

4. 1.18 Make_an_exclusive claim_on a_file (with or without wait)
(D P : EC L M) (w it h w a it)

(D F: EC L F') (without w a it)

IP 1 C: F.CS file capability for a locally open disk filP. (OB.P.CLM)

~n exclusive claim may be honored only when no other claim (P.xclusiv~
or shared) has been issued for the file in question. If thP "claim
without wait" call is used, an immediate F-return is passed to the usP.r
if the claim cannot be satisfied immediately. If the "claim with wait"
call is used, the process is added to the end of the claim wait queue
for the file (IP1} if the claim cannot he satisfied immediately. '!'his
queue is used to keep track of rlaims which cannot be honored due to
outstanding claims on the file. Whenever a claim is released (see
below), the claim wait queue is checked. If non-empty, either a single
exclusive claim is honored from the head of the queue provided no other
claims exist on the file, or a sequence of shared claims is processed
from the beginning of the queue. To avoid lockinq up a user process in
the disk system, a time limit is enforced in the claim wait queue. If
a claim cannot he satisfied after a wait of one to two minutes in the
queue, the user is removed from the queue and an P-return is returned
to the caller. Finally, the claim mechanisms permit only one claim per
user. l\ny attempt by a single user tc makP mori:- than one claim on a
sinqle file will cause an error to be returned.

Possible errors while making an exclusive claim:

F..PARMS
E.PARMS
E.fJPER
E. FILES
E.FILES
E.FILF.S

E. N EGIX
E.RIGIX
'?.CI\PTY
E.NOFIL
E. EXCLA"1
E. SHCLJ\"1

Descri,Etion

C-list index negativg
c-list index too larqe
Type or options bad
No such open disk file
Local exclusive claim already
Local shared claim already

24

TimP-Sharinq system

May 1971 4.1 PilR Actions

4.1.19 Make_a_shat"ed_claim_on_a_file {with or witho11t wait) (OF: sct"1)
(fH': scr.r.o)

IP1 C: ECS file capability for a locally open 1isk (OB.SCL~)

Tf the file is not exclusively claimed by some other process and no
process is waiting for an exclusive claim, a shared claim is honore~.
NotA that thP shared claim can be honored for several processes and has
the effect of preventing an exclusive claim. If the claim cannot he
honored, the user is either added to the end of the cl~im wait queuP or
pass~a an immediate F-return, iependinq on the type of th0 call (wait
or: no vai t). {See above.)

Possible errors while make a share1 claim:

F..PARMS
E.PARMS
R.OPER
F..FILF.S
F..FTLFS
E.FILES

F..NEGIX
E.BIGIX
F.CAPTY
F..NODFIL
F..EXCL!\M
E. SRCLAM

nesct"i.Qtion

C-list index negative
c-list index too large
Type o~ options baa
No such open disk file
Local exclusive claim alreaay
Local shared claim alreany

2S

Time-Sharing System

4.1 Pile Actions

4. l.20 Release claim_on_a_file (OF: PLSE)

IP1 C: ECS file capability for a lccally open disk file (OR.BEL)

Tf there is a claim (shared or exclusive) on the file by the calling
process, the file's claim status is updated to reflect the rel~ase of
the claim. If the claim was an exclusive claim or the last share,~
claim on the file, the claim wait queu? is processed. Either one
exclusivP claimer or a sequence of shared claimers (whichever ocr:urs
first) ar"" activatei from thf> claim Wilit q11ene.

Possible errors while releasing a claim:

E.PARMS
E.PAilMS
E.OPF.R
E.F'ILES
E.FIT.F.S

F.. NEG IX
F..BIGIX
F.. Cl\PTY
F.NODF'IL
F'. N OCLA. M

Oescri_etion

C-list index negative
C-list index too large
Type or options had
No such open disk file
No locill claim exists

Time-sharina syst0m

May 1971 4. 1 File ~ct ions

4. 1.21 Read_sh~e_of_an_ECS_file (F.C:RSHP)

IP1 C: Capability for file
IP2 D: Address of buffer for the shape numbers
TP1 n: Buffer size

The shape of a file is described by a sequence of positive inteqers
(S1,S2, ••• ,Sn), each of which is the number of branches in the filP
tree at each norie of level i (1 S i ~ n). Fi'ich <;i (i > 1) must be 'l

non-negative power of two. The user can obtain these shape numbers by
specifying the in1ex of the capability for the file whose shape he
wants to read, and the address and size of a buffer for the shane
numbers. The number of levels in the file is placed in the first wor~
of the buffer and the shape numb~rs {S1, ••• ,Sn) are placei in
succeeding words until either the buffer is full or all the shap0
numbers have been passed.

Possible errors while rea1ing shape:

fil§.§ !l..!!1!!.Q~£

E.FTLES F..NOFIL

E.PARMS E. N'PGIX:
E. PAR MS E. IHGI){
F..PARMS F..NEGP1'
E.PI\RMS E. NEG PAR
E.PARl'IS E.BIGPi\R

F..rJPER E.CAP'l'Y

Descri,Etion

File whose shape is to he read doos not
PXiSt
C-list index negative
C-list index exceeas full C-list
Ruffer aodress is neqative
Rn fter size .$. O
Buffer adrlress plus size exceeds user's
field length
Type or options bad

:u

Time-Sharin1 system

May 1971 4. 1 PilP Act ions

4. 1.22 Dis12lay_disk_file_status (D?: DSF)

lnput parameter

TP1 n· "P.CS file unique namf' (left justified)

Returned parameter

RnAT: ECS file unique name, r'!lR, and LFH (11 words)

The indicated file is located and the ECS file unique name, the filP
header record, and the local file header are returned to the caller.
The format of the returned data is indicated in the fiqure.

Possible errors while displaying disk file status:

E.F'ILES F:.NODFIL No such locally open file
Return parameter with errors

2H

Time-Sharinq System

:-lay 1971 u. 1 F'il0 Actions

U.1.23 DisQlay_status_of_n-th disk file (DF: DSFN)

Input parameter

TP1 D: Local index of file to display

Returned parameter

RDAT: EC<i file unique name, FHR, an'1 LF'H (11 words)

:'he date is returned as with "display ,Hsk file status". Tf thP numher
of locally open files is less than TP1, an F-return is initiatea.

Pnssible errors while 1isplaying status of n-th disk fil~:

Descri_Etion

E.PI\RMS E. NEG PAR IP 1 < 0

Time-Sharinq systnm

t.!ay 1971 4.1 Fi.le l\ctions

4. 1.24 Di.§.Elay_n-th_attached_block_of_disk_fil0

Tnput parameters

IP1 O:
IP2 0:

ECS file unique namP {left iustifie~)
index of block to display

Returned parameter:

RDAT: Attached block record (2 words)

~he IP2-th attached block record of the file indicated by IP1 is
returned to the caller. If there are fewer attachPd hlock records than
IP2, an F-return is initiated.

Possible errors while displaying n-th attached block of disk tile:

R.FILES E.NODFIL
E.NEGPAR E.PABMS

No such open disk file
TP2 < 0

3 n

t t

WW
...:i O
HQ
µ., u
...:i w
WN
::> H w Cl)

...:i :,..::
w ...:i z ll'.I
0 <

E-<
<
A

DATA RETURNED BY DISPLAY FILE ~irnA-Sharing Syst~m
DF:DFHR

!'lay 1()71

I

54
v

.J6
v

ECS FILE UNIQUE NAME

.r

18
v

' HEADER BLOCK SIZE

FILE~
LOCK. II

DISK FILE UNIQUE NAME DISK ADDRESS

DDS ADDR OF DDS HASH TABLE SUSPENSE

>
t t t

w ::.J ~
E-< ...:i w
H H 0..

~ µ., ':
z :::> z w ...:I

WNU
0.. ~ I . 0 :><

µ.,

FUNDING DAR LINK LIST HEAD

IFROZEN OPEN
I COUNT

TOTAL OPEN DDS RESERVE 'FILCL' INDEX
COUNT

I c,S NUMBER OF DATA FIXED ECS SPACE

I~~ BLOCKS TO OPEN

CLAIM CLAIM QUEUE
COUNTER HEAD

MEMBERSHIP UNIQUE ·~ NAME ~
I ROOT PO INTER
I
ls t SHAPI

NUM (S
0 DIST -0- L l , "

ECS FILE UNIQUE NAME .
I NUMBER OF BLOCKS

I ATTACHED

~~

Lr FROZ IT
~CLOSE-ALL OVERRIDE

SHARED CLAIM
---EXCLUSIVE CLAIM

----FROZEN

nl

LOCAL OPEN
COUNT

• J

~

OF ECS FILE .
DISK SPACE
OCCUPIED

(SECTORS)
CLAIM QUEUE

TAIL

NAME OF
FUNDING DAR

' I

14 I 13 12 Ll

DDS ADDR OF FILE
HEADER RECORD

ATTACHED BLOCK
QUEUE HEAD

DATA RETURNED BY DISPLAY FILE BLOCK

MAP ATTACH REG ATTACH ATTACHED BLOCK DDR ADDR FOR
COUNT COUNT LIST LINK POINTER FOR THIS

IlT f"'lf"'V

'
FILE ADDRESS OF THIS BLOCK

,~., f-'iln 71ct1ons

\

~

'"'
1,

•

,

'
~

ECS FILE UNIQUE
MME

FILE HEADER
RECORD (FHR)

I
SHAPE WORD

L. = log2 S.
].].

n
DIST= l L.

i=l 1.

(i.e. number of
bits to right of

s
0

in file address

LOCAL FILE HEADER
(LFH)

ATTACHED BLOCK
RECORD (ABR)

31

~imP-Sharinq Syst0m

r.iay 1971 4.1 Fil~ A~tions

4.1.25 Check_for_missing_ECS_data blocks_J"£rohe"L (EC! ppnfl)

TP1 C: Capability for ECS file
IP2 D: Address of block in the filP

This action allows the user to check for the presence of a data block.
ThP parameters required are the index of the capability tor the file to
which the block belongs, and the address within the filP where thn
block is supposed to be located. The number of missing levels in thP
path from the root of the file tree to that narticular hlock is
returned in register 16. Thus, if the block is present, XA <- O; if
then level file is empty, X6 <- n; and if only the data hlock is
missing (its pointer block is present), X6 <- 1.

Possible errors while ch~cking for missing blocks:

E.FILES
R.OPER
F.PJI.RMS
E.PARMS
E.PARMS
F.. PAR MS

F..NOFIL
-P.CAPTY
E. NEG IX
B.BIGIX
E. ~ F.GPAR
E.RIC';PA~

l')escriQtion

~he file noes not exist
~ype or options bad
C-list index is negative
C-list index exceeds full C-list
~he address of the block is n~qative
The address of the block is too larqe

12

Time-Sharin~ svst0rn

4. 1 ll'il.P Actions

4. 1. 26 Check_for_missi ng_disk_f ile bl eeks j",Erohe"L (DF': PflOB)

T P 1 C:
IP? D:

ECS file capability for a locally open ~isk file
Address of a block in the file

The existence of data blocks and oointer blocks in disk files can hP
checked with this action. ~he result is returned in register Xh an~ is
interpreted the same as for the "probe" of an RCS file. The first
level of a disk file always exists, and thus the eMpty n-level ~isk
file would return X6 = n-1 for all file adtlresses. nisk file "prohe"
may indicate fewer missing levels than there really are if blocks have
been deleted since the last "close" or "pseudo-close" of the file. An
T/0 error on a data or pointer block is treate1 as if the block wer0
missing from the file.

Possible errors during a disk file hlcck probe:

E.PAR!'IS
E. PAR MS
E.OP'P.R
E.FTLES
E.FILES
E.P'TLF.S

E.NEGIX
E.8IGIX
E.CAPTY
E.NODFIL
E.BIGPAR
E.NEGPAR

Descri,.Etion

C-list index is negative
C-list index excee~s full C-list
Type or options bad
No such locally open fil~
File andress too hig
File address neg~tive

Time-Sharinq system

"lay 1CJ71 4.1 PilP ~c:tions

4. 1. ?.7 Close all_o_Een_f iles_ s (DP: CIIJH')

No in FU t parameters

This action closes all locally open files which do not have the
close-all-over-ride flag set. Tt is to be used orimarily to clean up
the user process betvePn maier iob steps or after things hav~ qotten
fouled up. The action will abort if a block is in the map of some file
which is heinq closei.

Possible errors while closing all open fil~s:

F.. F' ILES F.INMA.PS

s Privileged operation.

Descri.Etion

Some block of some file is in a man (tilP
address added to error numher)

JI~

Time-Sharinq SystQm

May 1971 4.1 PilP .~r.tions

4.1.28 SetLreset_close_all_over-ride_ 5 (JF: CFLG)

Input parameters:

TP1 C:
IP2 n:

ECS file capability for an open 1isk filP
7ero for reset: non-zero for set

Returned parameter:

RDA"': (1) olrt value of over-ride flaq

The setting of the flag which over-rides the close-all action is
contrllled by this action. For a file to remain open throu~h th~
close-all action, the over-ride flag must he set. If TP2 is ZPro, thP
over-ride flaq is reset. Otherwise, the over-ride flaq is set to
prevent the file from being closeci hy the "clos0-all open fl.lPs"
act ion.

Possible errors while settinq-resettinq close-all over-ride:

E.FILFS
E. PAR MS
F. Ph RMS
E.OPER

E.NODP'IL
E. NEG IX
P..BTGIX
F. CAP'l'Y

s Privileged operation.

Descri.2tion

No such locally open rtisk tile
C-list index is negative
C - list index ex c e e rt s f 11 11 c- 1 is t
"'ype or options bad

Ti~e-Sharing Systn~

4.1 FilP Actions

4.1.2Q Test_ana_reset_dirty_bit_6

IP1 C: Capability for file (OB.TRDB)
IPJ D: Any a~dress within block tote tested

Returns O in X6 if the hlock was clean. Returns 1 in Xh if th0
block was dirtv. ¥-returns if sp~cified block does not PXist.

A hit on each data block of a file is used to tell whethar or not +ha
block has been written in since it was last tested. A completP
1~scription of the logic controllinq the bit is

1. nata blocks are created clean.
2. Rloclcs are dirtied hy:

a. file writes to any part of thP. hlockr incluHnq writes
with a word count of O;

b. beinq put in a m;:,p R/W;
c. being put in a DAE map entry

J. Move block carries the dirty bit i'llong with the block.
4. ~est and reset leaves the block clean.

Possible errors while testing and resetting dirty hit:

E.FILES
F..PARMS
F..PARMS
E.PARMS
R.PARMS
f.OPER

E.NOOr'IL
E.NEGPA.R
E. BIGPA.fl
E. NEG IX
E.BTGIX
F'..CAPTY

6 Privileged operation.

nescri£tion

File aoes not exist
File address negative
File address too large
C-list index neqative
C-list index exceeds full c-list
Type or options hai

May 1'171

4.1.10 R~turn_disk_subsystem_clocks

No infut parameters

Returned param~ters:

RDAT 0: system time
1: swap time
2: disk sys time

Time-Sharing System

4. 1 ?i l,• Actions

(OF': CLKS)

ThP cumulative time expende1 by the 1isk subsystem action is r~turnei
to the caller.

17

The CAL Time-Sharing system

4.4 C-list Actions

4.4_C-LIST_ACTIONS

Cr-eate a C-list
Display a Capability from the Full C-list
Copy a Capability within Full c-list and Decrease the Options
Copy Capability from Full C-list to Acbitr-ary C-list (and

vice-versa)
Change Unique Name
Zero a capability
Create a Capability Creating Authorization
Create a Capability of Authorized Type
Destroy a c-list

4.4. l_Cr-eate_a_C-list

IP 1 C:
IP2 D:
IP 3 D:

Capability for allocation block {OB.CRECL)
Index in full C-list to return new capability
Length of new C-list

(EC: CCL)

A capability list (C-list) is a seguence of capabilities and "empty"
positions. npon creation each C-list is filled with "empties" (zero
words). To create a capability list, the user must supply the index of
the Allocation block which funds the space occupied by the c-list
(IP1). In addition to the length of the new C-list (IP3), the user
must supply an index in the full C-list for the capability for the new
C-list (IP2).

Possible errors while creating a c-list:

£1~§§ .Number Descci_etion
F'.ABLOCK E.NOABLK Allocation block does not exist
E.ABLCCK E.NOECS No ECS available
E.PARMS E.NFGIX C-list index is negative
E.PARMS E.BIGIX C-list index exceeds full C-list
Fa.PARMS E.NEGPAR Length of new C-list s 0
E.PARMS E.BIGPAR Length of new C-list exceeds coce bu ff er drea

The CAL Time-Sharing System

May 1971 4.4 C-list Actions

4. 4. 2_D is.£lay_a_ca.2abili ty_from_ the F ul1_C-list (EC: DSCP)

IP1 c: Index in full C-list

~hen referring to capabilities within the full C-list, the capability
index used is interpreted as if the C-lists in the full C-list were
joined to form one long C-list. Thus, the index of the desired
capability (IP1) is all that is required to display it. The tvo words
of the capability are returned in X6 and X7.

59 17 0
r ,

X6 = J option mask I type I
L----------------'-------~
59 0
r----------------·-----,

X7 = I object identification I
L------------- .J

The following objects may be specified by the type field:

A.K.

A 11 cc at ion B 1 cc k
CCA
Class Code
C-list
Directory
Disk File
ECS file
Event Channel
Name tag: Dynamic

Operation
Subsystem

Sta tic

273781

17678
177 38
17378
13778
177681
177581
15778
1757B
267781
2 57 78 1

16778
237781

Possible errors while displaying a capability:

system Entry/Exit Errors only.

1 Subject to change.

2

The CAL Time-Sharing System

May 1971 4.4 C-list Actions

4. 4. 3_Co_ey_a_c~a l.Jili ty w i.th in_Full_C-list_an d_Decr:ease_ the_O,Et ions
(EC: MCAP)

IP1 c: Index of desir:ed capability
IP2 D: Index of destination C-list entry
IP3 D: Mask of options to preserve (in bottom 42 bits

ignore a)
top 18

The user: can copy a capability from one location in the full C-list to
another and in doing so may decrease the number of allowed options.
Recall that when an object is created, a capability is returned which
has all the option bits (the high order 42 bits of the first word) set.
The user must indicate the C-list index of the capability he wishes to
copy (IP1), the C-list index wher:e the altered capability will be
placed {IP2), and a bit-mask which will first be logically shifted, and
then "ANDed" with the option bits of the original capability (IP3) to
produce the option mask for the new version of the capability.

Possible errors while copying a C-list and decreasing the options:

£!s!.§§
E.Pl\RMS
E.PARMS
E.PARMS
E.PARMS

EY..filbef.
F..NEGIX
E .. NEGIX
E. BIG IX
E.BIGIX

Descri:etion
Index of desired capability is negative
Index of destination C-list entry is negative
Index of desired capability is too large
Index of destination C-list entr:y too large

3

The CAL Time-Sharing System

f1ay 1971 4.4 C-list Actions

4.4.4_Co.Ey_Ca.Eability_from Full C-list to Arbitrar_y_C-list ..(and
vice-versa (EC:CIN, EC:COUT)

IP1 C: Destination (source) C-list (Od.CPYIN, (OB.CPYOUT))
IP2 D: Index within destination (source) C-list of capability
IP 3 n: Index in the full c-list of source (destination)

capability

These two actions allow the user to transfer a capability between the
full C-list and an arbitrary C-list. Two parameters are required to
indicate the location of the capability in the arbitrary C-list, and a
third to locate the capability in the full C-list.

Possible errors while copying a capability from a full C-list to an
arbitrary C-list:

£1.!!§2].um be:£ .Qfil?££i.Etion
E.MISCE E.CLMOT C-list does not exist
F:.PARMS E.NEGIX IP2 is negative
E.PARMS E.NEGIX IP3 is negative
E.PARMS E.BIGIX I P2 is too large
F..PARMS E.BIGIX IP] is too large

4

The CAL Time-Sharing system

"1ay 1971 4.4 C-list Actions

4.4.5_Change_Unigue_Namez (EC: CHUN)

IP1 D: C-list index of ECS system object (OB.CHNAM)

This action allows the user to change the unique name of an object.
The system generates a new capability for the object with all option
bits set, thereby invalidating all old capabilities for that object.
The capability for the object whose name is to be changed must carry
the option bit which allows such a change (OB.CHNAM). If the object is
a file for which there are references in any map entries, all such maps
will be recompiled.

Possitle errors while changing unique name:

f.li§§
E.MISLE

NUffl.Q.§f
E.MISSOB

4 .• 4. 6 Zero_a_ca_eabili t_y

Descrigion
No such object

IP1 D: Index in full C-list of the capability

(EC: ZCAP)

This action erases a capability by storing zeros in the indicated
capability slot in the full C-list.

Possible errors while zeroing a capability:

fl2.§§
E.PARMS
E.PARMS
R. PAR MS
R.MISLE

l:B!.!!!.Q£.£
E.NEGTX
E.BIGIX
E.NOTCL
E.CLMOT

2 Privileged operation.

Descci2tion
C-list index is negative
C·-list index exceeds full C-list length
Not a C-list capability (indirection)
C-list does not exist (indirection)

5

The CAL Time-Shacing System

r.iay 1971 4.4 C-list Actions

4.4.7_Create a ca12abili.i.Y_Creating_Authorization (EC: MCCA)

IP1 D: C-list index for returned authorization

A capability creating authorization is a special type of capability.
Such a capability may be used to create new capabilities. The second
word of the capability contains the type of capability which may be
manufactured under the authorization.

Possible errors while creating an authorization:

Descr i.etion s;, la,2,2
E.MISCE

BY.!!!be.£
E.NOATJTH No more capability types are available 3

4.4.8_Create_a ca12ability_cf Authorized_I.Y.ee

IP 1 D:
IP2 C:
IP1 D:

C-list index for returned capability
A capability creating authorization
Data for second word of returned capability

(EC:CCAP)

A capability of the type specified by IP2, with all option bits on, and
with second word equal to IP3, is returned at the specified index in
the caller's C-list.

Only the Pntry/exit errors are possible.

3 Note that since there are only about 48000 different capability
types, unrestricted use of this operation would allow one user to
exhaust the supply, thus making those that wanted a special capability
type later on very unhappy.

6

The CAL Time-Sharing system

May 1971 4.4 C-list Actions

4.4.g_nestroy_a_C-list {EC: DCL)

IP1 C: Capability for C-list (OB.DSTRY)

The user may destroy a c-list when he no longer needs it; only the
index of a capability for the C-list is required. If the C-list to be
destroyed is in the full path of the user's process, an F-return is
initiated and the C-list is not destroyed.

Possible errors while destroying a C-list:

£.ls!§.§
E.MISCE

1!!!!!12~£
E.CLMOT

Desc ri,Eti on
C-list does not exist

7

The CAL Time-Sharing System

May 1971 4.6 Event Channel Actions

4.6 EVENT CHANNEL ACTIONS

Create an Event Channel
Send an Event
Get an Event or Hang
Get an Event or F-return
Get an Event or Hang (Multiple)
Get an Event or P-return (Multiple)
Destroy an Event Channel

4.6.l_Create an Event Channel

IP1 C: Capability for allocation block (OB.CREEC)
IP2 D: C-list index for new event channel capability
IP) D: Number of events that queue can hold

(EC: CEVC)

When an event channel is created it consists of a three word header and
an event queue which is initially empty. The header words are used to
maintain the queue of events and a queue of waiting processes, which
develops if the queue of events becomes empty and processes request
events from that channel. When creating an event channel, the user
specifies a capability for an allocation block (!Pl) which funds the
ECS space occupied by fhe event channel, a C-list index (IP2) where the
system can put the capability (with all options allowed) for the event
channel when it creates it, and the length (number of possible events)
of the event queue (IP3).

Possible errors while creating an event channel:

E.ABLOCK
E.ABLOCK
E.PARMS
E.PAHMS
E.EVENT
E.EVENT
E.OPEB

E.NOABLK
E.NOECS
E.NEGIX
E.BIGIX
E.NEGQ
E.BIGQ
E.CAPTY

Descri,Etion

Allocation block does not exist
No ECS available
C-list is negative
C-list index exceeds full C-list
Length of event queue f O
Event queue toe large
Type or options bad

1

The CAL Time-Sharing system

May 1971 4.6 Event Channel Actions

IP1 C: Capability for the event channel (OB.SNDEV)
IP2 D: Datum part of event

(EC: SEV)

This action allows the user to send an event to an event channel. The
user specifies the capability for the event channel (IP1) and a 60-bit
1atum to be passed with the event (IP2). The system indicates the
disposition of the event to the user in X6. The following responses
are possible:

Event put in event queue
Event passed to a process
"YOO LOSE" event put in event queue
Event queue full

1
2
3
4

The first response indicates that all vent well, and there was no
process awaiting an event in the process queue. The second response
indicates that there was a process waiting in the queue and that it vas
passed the event. The third response indicates that there was only one
free slot in the event queue (an event occupies 1!!2 words); the
intended datum has been replaced by a "you lose" datum (-0) so that the
process which ultimately gets the event will be aware that the event
queue was full and that information was lost. The fourth response
indicates that no action was taken because the queue was full.

Possible errors resulting from sending an event:

E. EVENT
E.OPER
E.PARMS
E.PARMS

E.NOCHAN
E.CAPTY
E. N EGIX
E.BIGIX

Event channel does not exist
Type or options bad
C-list is negative
C-list exceeds full c-list

2

The CAL Time-Sharing System

May 1971 4.6 Event Channel Actions

4.6.l_Get an Event_or_Hang (EC: GEVH)

IP1 C: Capability for event channel (OB.GETEV)

A user requests an event from a channel by passing the C-l~st index of
the capability of the channel in question (IP1). If the event queue is
empty, the process must wait ("hang" or 11 block") until an event arrives
before it can resume execution. If more than one process is awaiting
an event, the first event sent to that channel is passed to the first
process, while the other process(es) continues to wait. The event is
returned to the calling process in X6 and X7. X6 contains the unique
name of the process which sent the event while X7 contains the eveat
datum. A chaining word index of 1 is packed into 16 (useful mainly in
multiple event channel work, see 4.6.5).

Possible errors while getting an event:

Event channel does not exist
Type or options bad
C-list index is negative

E.EVENT
E. OPER
E.PARMS
E.PARMS

E.NOCHAN
E.CAPTY
E.NEGIX
E.BIGIX C-list index exceeds full C-list

4.6.4 Get_an Event_or F-return

IP1 C: Capability for event channel (OB.GTEVF)

The usec requests an event from a channel using the
event channel's capability (IP1). If the event
F-return will be initiated in order to permit the
alternative action. The event is returned in X6
;ibove.

Possible errors while getting an event:

Event channel does not exist
Type or options bad
C-list index is negative

(EC: GEVF')

c-list index of the
queue is empty, an

process to take
and X7 as in 4.6.3

E.EVENT
E.OPER
E.PARMS
E.PARMS

E.NOCHAN
E.CAPTY
E.NEGIX
E.BIGII C-list index exceeds full C-list

3

The CAL Time-Sharing system

May 1971 4.6 Event Channel Actions

4.6.5 Get_an_Event_from One of_a_Set_of Event_Channels or_Hang

IP1 D: Pointer to list of C-list indices
(OB. GETEV •••)

(EC: GVMH)
for event channels

IP2 D: Number of event channels involved

The procedure for getting an event from one of a set of event channels
is similar to that for getting a single event (see 4.6.3 above). The
channels are interrogated one at a time and if their respective event
queue is empty, the user's process will be queued on the process queue
of the event channel. If an event subsequently arrives or is
discovered on one of the event channels in the list, the process is
removed from all the process queues on which it has already been
chained and it is passed the event. If no event arrives or is
discovered before the last event channel is interrogated, the process
must wait ("hang" or "block") until an event arrives on one of the
event channels.

When an event is finally passed in X6 and X7, the ordinal in the user's
list of the event channel froducing the event is packed as the scale of
X6 {i.e., if the event came from the first channel in the list, 1 is
packed in the scale).

Possible errors while getting an event from a list of channels:

E.EVENT
E.PARMS
E.PARMS

E.PARMS
E.PARMS
E.OPER

E.NOCHAN
E. NEGPAR
E. BIGPAR

E.NEGIX
E.BIGIX
E.CAPTY

Event channel does not exist
Number of channels is i O
Pointer to list+ number of channels exceeds
FL

or number of channels exceeds scratch area
(P.PARAML - 2 cells)
C-list index is negative
C-list index exceeds full C-list
Capability type or options bad

4

The CAL Time-Sharing system

May 197 1 4.6 Event Channel Actions

{EC: GVMF)

IP1 o: Pointer to list of C-list indices for event channels
(OB. G'IEVF •••)

IP2 D: Number of event channels involved

This action is similar to the previous one except that if all of the
event queues are empty for the event channels specified by IP1, an
F-return is initiated in order to permit the process to take alterna
tive action.

When an event is finally passed in X6 and X7, the ordinal in the user's
List of the event channel froducing the event is packed as the scale of
X6; (i.e., if the event ca me from the first channel in the list, 1 is
packed in the scale).

Possible errors while getting an event from a list of channels:

E.EVENT
E.PARMS
E.PARMS

E.PARMS
E.PARMS
E.OPEB

E.NOCHAN
E.NEGPAR
E.BIGPAR

E. N EGIX
E.BIGIX
E.CAPTY

Event channel does not exist
Number of channels if i O
Pointer to list+ number of channels> FL
or number of channels exceeds process
scatch area (P.PARML - cells)
c-list index is negative
C-list index exceeds full c-iist
Capability type or options bad.

5

The CAL Time-Sharing System

May 1971 4.6 Event Channel Actions

4.6.7 Destr.Q.Y an Event_channel (EC: DEVC)

IP1 C: Capability for event channel (OB.DSTRY)

An event channel can be destroyed. The only parameter required is the
capability for the event channel which is to be destroyed. If there
are any processes waiting on the event channel's process queue, an
F-return is initiated leaving the event channel intact.

Possible errors while destroying an event channel:

E.EVENT
E.PARMS
E.PARMS
E.OPER

E.NOCHAN
E.NEGIX
E.BIGIX
E.CAPTY

Event channel dces not exist
C-list index is negative
C- list index exceeds full C-list
Type or options bad

6

The CAL Time-Shacing System

A p pen Ux A

Aprc:ndix A

:· .l \);' l . Ascr1_-_P1inter_chacactec ~d2£ing

(\SC! l r i· 1 '. t '!" !f' ~: (,; .: . ~ ,.· T i l ,1 ''. r. L r Prir·tt3r rss I\SCIIIASCII ?rinter TSS 'ISCII

'.:h.'..1 !. '.; i d '···· 1, · c· c: , t .. , I'..:.}'.}]__ ii! .:!I :l.!~ ~£:il~ I Ch cl r Q.1:~12hi£ ~Ql~
I

blank L1 ! I): (\ i -, 40 I f 100
A A 41 I a A 101 -

" i p lJ 42 b B 102
'l c c 4) c c 10 3
$,, r; [) 44 0 D 104
"{ r

) E E 45 e F 105
f; I\ 6 F F 46 f F 106

; 7 r. G 47 a G 1 !) 7
((1() fl H 50 h H 1 10
)) 1 1 T T 51 i I 1 1 1

* * 1 2 ,1 ,J 52 i J 112
+ + 13 K '/

\ 53 k K 11 3
, l .; L L 54 l L 1 14

i '; '.'1 55 'll M 1 1 5
l 1, N -~ 56 n N 1 1 6

I 1 .1 (' 57 () 0 1 i 7)

) 60 '.) p l ,~ ii
., 61 1 Q 1 . 1

)) " ;1 6 '2 r 1))
.: { - -~·

), ··; b) , .
.) 1} !

.,.
!) ti '1' 1. :i

) 65 u '.J 1) '>
,. ! (Jb v v 1 :2 f)

I J 7 '"
., L: l
""

:< x 1 l ')

1 'J 7 1 'J y 1) 1
72 z U 2

. r)
73 I (1 l j

< < l I+ \... \/ 74 t blank 1 14
.. l ' . J J

75 }) 1 l 5
) > ! t I' 1- 76 "" blank 116
? -), 77 i.: :1 bout hlank 137

The C\L Time-Shdrinq system

Apperdix A

'f1blP. 2
'Jc) : l - : ; [i J..! , l , : _ T' '.' Y _ C h i'I C i1 Ct-Pr_ Re£ r RS en t 1. t i On

' n tr, c n d l A·~ cl r
Ch::!L:!~!...:r. th'£L'•"',ent1t i,.'11

;~ , I ;, 1 1! .'"\

':C\I 1'~1
(~ r v 1 't 2
~~~ 141 
EnT 144 
'~ I\J 14 '.) 
\CK 146 
8FL 147 
~s 1~0 
,p 15 1 
T,F Vi2 
VT 15 ~ 
F P 154 
CFl 155 
SC 1S6 
S T 1 '> 7 
J L ·: 
i : 1 
l\ 

re' 
D c:i 

\J ,~ K 
s 'lN 
FTB 
CA', 

(J s 

1 •) !) 
1 :, , 

Hi,~ 
1 :J 1 
, 6 !~ 

1 o 5 
1 r, o 
16 7 
17 iJ 
, 71 
17> 
1 7 1 

1 7 It 
17 ") 
176 
177 

Key Combin1tion 
syst?xt_1eEresentation 

'l,[ 
% 
l ] 
%1 
%<-

9ell 
Backspac,~ 
f!orj_zontal Tab 
Line F<?er1 
Vertical Tab 
Page E iect 

Delete Line 

2 



May 1971 

OE.CHIP 

1 E.ARI'IH 

2 E.PARMS 

3 E.FILES 

The CAL Time-Sharing System 

Error Classes and Numbers 

Appendix B 

Error Classes and Numbers 

O E.NEGPAB 

1 E. BIGPAR 

2 E.NEGPT 

3 E.BIGPT 

4 E.NEGIX 

5 E. BIGIX 

0 E.NOFILES 

1 E • .ISBLK 

2 E.INMAPS 

3 E.NOBLK 

4 E.MISMCH 

5 E.NOBKD 

SCOPE Call 

Arith Error 

~rameter or_fointer Errors 

Parameter too small 

Parameter too large (Param number is 

masked into errnum) 

Pointer is negative 

Pointer is too large (Pointer is 

masked into errnum) 

C-list index is negative 

c-list index is too large (Index is 

masked into errnum) 

File-EfOcessing_Errors 

File does not exist 

Block to be created exists 

Block is in map 

Block to be moved does not exist 

Bleck sizes not equal for move 

Block to be destroyed does not exist 

1 



May 1971 

6 E.NOTEMP 

1 E.NEGSIZ 

10 E.BIGSIZ 

11 E.NOTPOW 

12 E.BIGFIL 

13 E.IDERR 

24 E.LLEV 

25 E. NODFIL 

26 E.NABR 

27 E.DIOF.RR 

30 E. '.Ill!A 

31 E.Tl'ID 

32 E.NATH 

33 E.ZLEV 

34 E. Tll!OPN 

35 E.EXCLAM 

36 E.SHCLAM 

37 E.CLOCK 

40 E.NOCLAM 

41 E.NOLFH 

42 E.HIGA 

The CAL Time-Sharing System 

Error Classes and Numbers 

File to be destroyed is nonempty 

Negative shape number 

Shape number is too large 

Shape number is not power 

File size is too great 

ECS I/0 Error 

Toe many levels 

No such open disk file 

No attach block record 

Disk l/0 error 

Too many attaches 

Toe many detaches 

Block not attached 

One level .file 

of two 

Too many opens (local or global) 

Already exclusive claim 

Already local shared claim 

Claim gueue lock up (time out) 

No local claim on release 

No local file header space 

Too many global attaches 

2 



May 1971 

4 E.SUBP 

5 F..PBOC 

6 E.ABLK 

O E.SAMNA 

1 E.NOFATH 

2 E.NOBLOC 

J E.COM F 

4 E. PIIACSZ 

5 E.NOFIND 

6 E.FULSTK 

7 E.ROOM 

10 E.NCAP 

11 E.ESTK 

12 E. STK 

1 J E. NLEAF 

14 E.IFRE'I 

15 E.NOXJ 

16 E.NSTK 

0 E.BLMISS 

1 E.NOROOM 

3 E. PGONE 

0 E.NOABLK 

The CAL Time-Sharing system 

Error Classes and Numbers 

SUbQCOC~,22_ _ _££eatio~L---£~!.l&_ __ ~nd 

i:e t.Y£L~Il:Q£§ 

Duplicate subp name 

Named father does not exist 

Block in swapping directive missing 

Not enough room for map 

Process becomes too big 

Named subp does not exist 

No room for subp in stack 

No rocm for parameters 

Too many capability params 

Emfty stack (on return) 

Emi:ty stack {on F-return} 

Attemft to delete subp at root or 

not leaf of subp tree 

Illegal F-return 

No CEJ where expected 

Attemrt to delete subp in stack 

f_Ioc~§_Creation Erroi:§ 

Block missing in swapping directive 

Not enough room for map 

Process gone from MOT 

!!lO.£illQ!LJ:!lo~_L!Y.Q1:§ 

Allocation block gone 

3 



May 1971 

7 E.OPER 

1 E. NOECS 

2 E.NOSLOT 

3 E.NOSWP 

4 E.NODSK 

5 E.NORES 

6 E. NOCP 

1 E.NOMO'I 

10 E. NORLC 

11 E.FATSON 

12 E.CRGER 

24 E.BADSN 

25 E.NODDS 

26 E.BOSY 

27 E.RESV 

28 E.ACTIV 

30 E. NOFU ND 

O E.IPO 

The CAL Time-Sharing System 

Error Classes and Numbers 

Not enough space to create object 

No MOT slot to create object 

No swapped ECS space 

No disk space 

Not enough reserved space 

donation 

Not enough CP time for donation 

for 

Not enough MOT slots for donation 

Not enough reserved space to cover 

duplication of object during 

reallocation. 

one allocation block not father of 

other 

Resulting charge rate 

illegal 

Bad Service Number 

out of DDS records 

would be 

Cannot destroy accounting block 

Accounting block holding reserved 

space 

Accounting block already active 

No fixed ECS allocation block supp

lied to disk system 

QE~~!ion_!~1~~Eietation_!~I2£2 

IPO not capability for operation 

4 



May 1971 

8 E.MISCE 

q E. EVENT 

1 E.NOOP 

2 E.CAPTY 

3 E.PSANY 

4 E.NOTANY 

5 E.USER 

6 E.BIGORD 

7 E.MANPAR 

10 E.BIGCNT 

O E.CUIOT 

1 E.MISSOB 

2 E.NOAU'IH 

O E. NEGQ 

1 E.BIGQ 

2 E.NOCHAN 

The CAL Time-Sharing system 

Error Classes and Numbers 

Operation not in MOT 

capability type or options bad 

Param spec (any) encountered 

Param spec (any) not encountered 

Should be user supplied parameter 

Order too big for scratch area 

Too many parameters 

Block param exceeds count in param 

spec in operation 

~!~~ll~~QY§_~~.£2 

Capability list not in MOT 

Misc cbject not in MOT 

No more capability creating authori

zations are available 

Ev fill! Ch~filH!L~ll.2.£2 

Event queue too short 

Event queue too long 

Event channel not in MOT 

10 E.NOEBR NO_fil!.QJL!Q_iye.erI.Q!: 

O E.NOERR1 

11 E.MAPS 

O E.ISDAE 

1 E.NT1BLK 

Error Class_for Ma~ 

Attempt to change or zero DAE 

DAE attempts to bridge blocks 

5 



May 1971 

12 E.PANIC 

1 3 EC • DIR EC T 

2 E. NOT DAE 

] E.BADNNS 

4 E.PRENT 

5 E.WRGFL 

6 E. WRFIL 

O E.t'ILDP 

1 E.MJBP 

O EN.BADI! 

1 EN.IMPOT 

2 EN.NTOWN 

3 EN.DUPNP! 

4 EN.NOSPC 

5 EN.LOOP1 

6 EN.LOOP2 

1 EN.NTDSK 

10 EN.ISOWN 

11 EN.BGOPT 

The CAL Time-Sharing System 

Error Classes and Numbers 

DAE action applied to swapping dit 

Bad word count or missing file 

Previous entry during make 11ap 

Wrcng cap for previous file 

Wrong file on delete map entry 

fg~i£§ (Interrupts) 

"ild panic (ZR test used by some 

code) 

Major panic (NZ test used by soae 

code) 

.Ili!:~!2!:Llll2U 

Bad naae given 

Access-key not in access-list 

wrong actions used to delete link 

entry 

Cannot have duplicate names 

Directory is full 

Softlink chain too long 

successor link chain too long 

Only disk system objects can be 

hardlinked 

Wrong action to delete ownership 

entry 

More than 42 options given to •add 

6 



May 1971 

14 EC. DYNTG 

15 EC. BEADS 

12 EN.ISLCK 

13 EN.NTLCK 

14 EN.NTDIR 

15 EN.NTKEY 

16 EN.OWNS 

17 EN.RSBV 

0 EN.FLOL 

1 EN.BLOC 

2 EN.FONT 

3 EN.BGOC 

4 EN.NTOP 

The CAL Time-Sharing System 

Error Classes and Numbers 

pair' 

Duplicate lock for nev access pair 

No such lock for access pair to be 

deleted 

Even scanlist 

directories 

Odd scanlist 

access-keys 

Directory 

something 

to 

entr.ies must be 

entries must be 

be deleted owns 

Directory is currently reserYed (ex. 

open) 

Full local open list 

Too many local opns 

Full global table 

Too many global opens 

No such locally open tag 

Beads_Errors 

1 



J 

L 

Noveml::er 1<371 

• 

Allee a tic n 
Block 

C-list 

File 

The CAL Time-Sharing system 

Option Bit Assignments 

Appendix C - Cfticn Eit Assignments 

CE.[S'IRY 
CB.CHNAM 
CE.CFEAB 
CE.CFECL 
CE.CE.EFIL 
CE.CREPR 
CE.CF.ESP 
CE.CF EEC 
OE.AICRD 
CB.GIVE 
CB.GE'! 
CB.GCt 
OE.INCHR 
CE.GIVCP 
CB.GE'ICP 
CE.GIVMT 
CB.GE'IMT 
CE.INMTR 

OE.CS'IRY 
CB.CBNAM 
CE.CPYIN 
CB.CFYO'I 
CE.ICCCL 

CB.IS'IRY 
CB.CHNAM 
CE.CFEBL 
CE.[ElBL 
CE.F[FIL 
CB.wFILE 
CB.fl!"'lAP 
CB.FDAE 
CE.CPEN 
CB.CLOSE 
CE.[CBBL 
CE. LClBL 
CE.1\'ICH 
CE.['ICH 
CE.[MAP 
CB.ECIM 
CB.SCIM 
CB.EEL 
CB.FBEZ 

restroy Allocaticn Block 
Change Unique ~anE 
Create Allocaticr Block 
Create a C-list 
Create a file 
Create a frocess 
Create a subprccess 
Create an event channel 
Create an operaticn 
Beserved space acnor 
Reserved space dcnee 
Create capability for nth object 
Increment charge field 
CP time dcncr 
CP time dcnee 
MO'! slct dcncr 
MC'I slct donee 
Increment DTS field 

[e!:troy C-list 
Change unique nawe 
Ccfy capatility into C-list 
Cofy cafatility cut of C-list 
local C-list fer subprocess 

r:estroy a filE 
Change aunique name 
Create a t:lock 
r:elete a tlock 
Fead a file 
irite en the file 
Place fCrticn cf file in map 
rirect ECS Access 
(disk file) Cfen file 
(disk file) ClcEe disk file 
{disk file) Create block 
{disk file) C€lete block 
(disk file) Attach block 
(disk fil€) Detach block 
(disk file) Fut in map 
(disk file) Excltsive claim 
(disk file) Shared claim 
(disk file) Eel ease claim 
(disk file) Freeze file 

Relative 
Bit_Position 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

0 
1 
2 
3 
4 

0 
1 
2 
3 
4 
5 
6 
7 
8 
g 

10 
11 
12 
13 
14 
15 
16 
17 
18 

1 



November 1971 

Process 

s ubp:ccess 

Event 
Channel 

OPERA'IICN 

CE.'lFI:B 
CE.:J<CPN 

OB.tS'IRY 
CE.CHNAM 
CE.!:C:INT 

CE.CS'IRY 
CE.'IEMP 
CE. FA'IHR 
CE.!:PFET 
CB.ECNT 
CE.IN'ISP 
CE.CALOP 
CB.!:CNSP 
CB.CHMAP 
CE.CAE 
CE.S'IESM 

CE.tS'IRY 
CB.CRNAM 
CE.SNCEV 
CB.GE'IEV 
CE.G'IEVF 

OE.CS'IRY 
CE.CHNAM 
CE.ACI:CR 
CB.CH'IYP 

CB.CYCP 

The CAL Time-Sharing System 

Option Bit Assignments 

'Iest ana reset dirty bit 
(disk f He) ExcltEive open 

19 
20 

Cestroy a precess 0 
Change unique naae 1 
Interrurted precess 2 

Cestroy sutprccess 0 
Set temferary fart of class cede 1 
Father sutprccess 2 
sutprocess ma] te jump returned to 3 
P-ccunter of sutprocess may be modified 4 
Interruft sutrrccess 5 
sutprocess callea by operator 6 
sen suti:recess 7 
Create, zero, er change map entry 8 
Eirect ECS Access map entry 9 
Set Errcr Selecticn Mask 10 

Iestroy event channel 0 
Change unique raroe 1 
Sercd an event 2 
Get an event (er hang) 3 
Get an event (er F-return} 4 

Cetrey an operation 
Change urique naae 
Crder may be added to operation 
Change i:arameter specification type 

in ar OfEration 
Change Cfticn tits for "user

supplied cafability" 
Ccfy an Oferatcr 

0 
1 
2 

3 

4 
5 

Directcries (tc be supflied) 



The CAL Time-Sharing System 

Novemter 1S71 C-list Type Field Values 

Affendix D. C-list Tyre Field Values 

Access Key 
Allccaticn Elcck 
CCA 
Class Cede 
C-list 
Directcry 
tisk File 
:ECS file 
Event Channel 
Name tag: Dynarric 

Static 
OE,eraticn 
sutsystem 

2737El 
1767B 
17738 
1137E 
1:77E 
1176B1 
177:Bl 
15.77B 
1i57E 
2E77Et 
25.7781 
1677E 
237781 

3 


	May 1971 Revision
	Foreward
	Contents
	Preface
	1.0 Introduction
	2.0 User Subsystem
	2.2 Editor
	2.3 Line Collector
	2.4 SCOPE Simulator
	2.6 Running BASIC
	2.7 Using BCPL
	2.8 Printer Driver
	2.9 Display Driver

	3.0 System Architecture
	3.1 Files
	3.4 Capabilities
	3.6 Event Channels

	System Actions
	4.1 File Actions
	4.4 C-list Actions
	4.6 Event Channel Actions

	Appendix A: Character Sets
	Appendix B: Error Classes and Numbers
	Appendix C: Option Bit Assignments



