Languages and Processors: BCPL

May 1971

Preface

This manual is not intended as a primer; the constructs of the language
are presented with scant motivation and few examples., To use BCPL on
the 6400 effectiveiy one must have a good understanding of how a
computer works and be familiar with the operation of the CDC 6400 and
either the SCOPF operating system or CAL TSS. BCPL 1s a useful
language but has few provisicns fcr protection of the naive user.

languages and Processors: BCPL

May 1971

Acknowledgements

In the interest of making documention of BCPL available quickly, large
portions of this manual were taken frcm a very well-written memorandun
by R. H. Canady and D. M. Ritchie cf Bell Telephone Laboratories,
Naturally any errors or omissions 1in this manual are the author's

responsibility.

The initial design and implementation of BCPL were done by Martin
Richards of Cambridge University, Fngland.

The implementaticn for the CDC 6400 was done with the assistance of
Richard Arnoff.

Languages and Processors: BCPL

May 1971

Tatle of Ccntents
Preface
Acknowledgenents

Table of Contents

Chapter 1 - General Information
1.1 Langquage Characteristics
1.2 Properties of 8CPL
1.2.1 Projran
Elements
Exfressions
Constant Expression
Table Expressions
Operators
Arithmetic
Shift
Relational
Logical
Addressing
Conditional
1.2.7 Blccks
1.3 Processor Eavironment {(to be suprlied)
1.3.1 Hardvare
1. 3.2 Softvare
SCOPE
TSS

L]
L]

MY NN
s
AN E WN

. 9
L] L]

R S S

& o
.

Chapter 2 - Structure of BCPL
2.1 Commands
2.1.1 Assignment Commands
2 Conditional Commands
3 Locping ccmmands
.4 FOF Commands
«95 RESULTIS Command
.5 SRITCH Coamand

6

7 Transfer of Control
rations

1 GLOBAL

2 Manifest

3 EXTERNAL

4 Dynamic Cell
5

6

7

8

q

o

fo B I

N
.
N
o
.
WWT N NN NIDNON NP o a e wd ws
L]

Dynamic Vector

Function

Routine

Label
9 Simultaneous Declarations
cessor

[\
.

W
3

1 Get command
.2 Copments and spaces

NNEIIONNNNNNONNNOD DD NN NN
[]

Languages and Processors: BCPL

May 1971

2.3.3 Insertion of *DC' or ‘'THEN?
2.3.4 Insertion of 3!
2.4 Additional Peatures
2.4. 1 Assewmbly lLanguage Coding (to be supplied)
2.4.2 Library of subprocgrams
HEAD ([to be supplied)
BCPLIO (to be supplied
FREESPACE (to ke supplied)
Special TSS Functicns (to be supplied)
Input/Output Functicns

Chapter 3 — Usiang BCPL
3.1 How to write a BCPL Program
3.2 How %to compile BCPL
3.2.1 BAICH
3.2.2 1SS
3.3 Diagnostics
Appendices
A, BCPL Reserved #ords and Tokens
B. ASCII Ccnversion Tables
C. Run-Time Environment

D. Syntax of BCPL

E. Programmers Checklist (tc¢ ke supplied)

Languages and Processors: BCPL

May 1971

CHAPTER 1 - GENERAL_INFORMATION

BCPL is a programming language for non-numeric applications such as
compiler-writing and general systegs programming. It has been used
successfully to isplement compilers, interpreters, text editors and a
batch~processing operating sys*em. The BCPL compiler 1is wrlttpn in
BCPL and runs on either of the Computer Center's CDC 6400's.

1.1 LANGUAGE CHARACTERISIICS

The syntax is extremely rich, allowing a variety of ways to write
conditional bhranches, 1loops, and subroutine definitions, and thereby
permitting the coamstruction of quite readable progranms,

The btasic data object is a word (60 bits on the 6400) with o
particular disposition as to type. A word may be treated as a
bit-pattern, a number, 2 subroutine entry or a 1label, Neither the
compiler nor the run-time system makes any attempt to enforce type
restrictions. In this respect BCPL has both the flexibility ani
pitfalls of machine lanauage.

Manipulaticn of pcinters and vectors is simple and straightforward.
All subroutines are re-ertrant and recursive since all data are kept in

a stack. This feature is helpful for multi-programming or applications
vhere recursion is useful (e.q.,, tree-prccessing).

1.2 PROPFERTIES_OF BCPL

1.2.1 Progran

On the outermost level, a BCPL program consists of declarations:
*function', 'glchali', 'external', 'manifest', and 'label' declarations.
The constructs of a BCPL program will te described from the inside out.
The most hkasic construct is the 'element?t.

a1

element ::= idepntifier | character constant |

string _constapt | numkter|
TRUE | FALSE

An identifier consists of up to 20 alphanumeric characters, the firs*
of which must be a letter,

]

languages and Processors: BUPL

May 1971

A number 1s a sequence of digits. An octal constant begins with octal
digits fcllowed by 'B?'. The reserved word TRUE denotes ~-0=777......
7778 {i.e., a word o€ 1 bits) and FALSE denotes #0. However, in any
context where a truth valune 1is expected, any negative value 13
interpreted as true.

A string__constant consists of up to 128 characters enclosed by *"!
double quotes. The intermal <character set is ASCIT. The actual
character " can be represented in a string constant only by the pair *"
and the character * can be represented only by the pair *¥, Other
characters may be represented as follows:

*N is npewline
*T is horizontal tab (space up to column 11,21,31, etc.)
*Onnn represents the octal character code nnn where nun

is three octal diqgits.

A string is represented as a sequence of 7 bit bytes. In the last word
the characters are left justified, follcwed by a 140B.

56 49 42 35 238 21 14 7 N
| | Y Y Y Y ¥ T L) 1
(I i !] i i | | I
l 1A | I 5 | T | R | I I N I G I
I | | i i | i | |
L.l 1 3 i 4 4 i 4 4
| T R T T T T T 1
(I | | ! i l | | | |
11 i I i N | | M I E 1 M t 0 I
1 { i | | i | I I
H+ + + t + + + + 2|
I i | | !] | | i
| IR I | 10140 | i | | |]
4.4 Iy . 1 A — i 1 -d

Each appearance of a string constant generates a new static vector of
cells to contain the string. The value of the string constant is the
address of this vector.

A character constant consists of up toc 8 characters enclosed by single
quotes. The actual character ' <can be represented in a chdracter
constant only by the pair *', The other escape conventions are tne
same as for a string constant.

A character constant is right justified in a word. Thus
*A'= 41B and '1C'=424338.

1.2.3_Expressions

The next construct 1in BCPL is the expression. Because an identifier
has no tyre inforwation associated with it, the type of an element i3

Languages and Processors: BCPL

May 1971

assumed tc he the type required by its cantext.

All expressicns are listed below. e1, e2 and e3 represent arbitrary
expressions excert as noted in the descriptions which follow the list,
and t0, t1, t2, etc. represent table constants {constant expressions,
string constarts, or parenthesiz2d table expressions).

Kind of Expressiop Expression Description

primary element

(e1)
result VALOF bhlock
function el (e2,23,...)

addressing

arithmetic

relaticnal

shift

logical

conditional
table

The relativ> binding power of

(highest)

el.e2

LV e

PY el

+e1

-e1

el*e2
el/e?

el REM e2

el+al
el-e?
el = e2
elte?
21 < o2
el > el
el £ o2
el > el
el LSHIFT e2
21 RSHIFT e2
el 4 w2

el

el v e2

el Ae?2

el EQV ez
a1l NEQV &2

21 => e2,e3
TABLE ¢0,%t1,t2, ...

VALCF
function

. {subscripting)

LY PRV

subscripting
address generation
indirection

Integer remainder
{modulus)

not equal

left shift by o2 2> 0
hits

right shift by e2
bits

arithmetic shift or
el* (2%%e?)

not (complement) el
inclusive or

0

I

and
bitwise equivalence
bitwise not—equiva-

lence (exclusive or)

the opzrators is as follows:

Languages and Processors: BCPL

May 1971

* , REM

+ -

LSHIFT RSHIFT #
relationals

-

N

¥

EQV NEQVY

-> Y
(lovwest) TARL®

The VALOF expression wiii be described in 2.1.5, after the construct
block has been described,

1.2.4 Constant exrressics

A constant expression is any expressicn involving only constants and
operators other than LV, 8V, VAILCF, vector application (.), and TABLE.

1.2.,5 Table expression

The value oOf a TABLE expression is the address of a static vector of
cells initialized to the values of the TABLE constants t0, t1,
Thus table is closely analcgous %o a string constant .

A TABLE constant 1is a string constant or a constant expression or a
table expression enclosed in parenthecses.

1:.2.6 Operators

Arithmpetic operators

There are two kinds of addition and subtraction: short and long, Tha
long version is symbolized by suffixing a period to the symbol for the
short version: 1i.e., the short ofperations are written

el + e2 el - e2
while the long are written
el +. e2 al -, e?

A short operaticn is undefined if the absolute value of either of 1its
operands or its result is greated than 217, The long oparations are
defined for any 60-bit gnantities.

Under addition and subtgaction -0 (=7....7B) behaves like +0,

In general, nultiplication, division and remainder are detined only

languages and Processors: BCPL

May 1971

wvhen the operands and results are less than 248 in abhsolute valuel,
The behavior of -0 is undefined.

The integer remainder {wmodulus) cperator is defined as:
B REM B = A - ({A/B) * P

Shift operators

In the expression o1 LSHIFT e2 (el RSHIPFT e2), «2 must evaluate to a
non—-negative nunber. The value is 1, taken as bit-pattern, shifted
left (right) by e2 bits. Vacated positions are filled with 0 bits,
The expression e14e?2 calls for an arithmetic shift of e1 by e2 vplaces.
If e2 1is positive, e1 is shifted left circular; if e2 is negative, el
is shifted right with sign extemnsion.?

Relational operators

As with addition and subtraction, there are two kinds of relational
operators, short and long, which are symbolized in the =same wnanner.
That is, the 1long version 1is obtained by suffixing a period to the
short version (2.9., ey <oy <oy 2ey Loy 20)
A relational expression of the foinm

el 31 e2 R2 €3 ... 2{(n—-1 R({(n-1) e(n)
is egquivalent tg

21 R1 22 A e2 R2 22 A ... Ae(n-1) R(n-1) e(n)

The result of relations involving -C is uandefined.

Logical operators

The effect of a lcgical operator depends on its context. There are two
logical ccntexts: ‘'truth-value' and 'hit'., Truth-value context exists
vhenever the result of the expressioa will be interpreted as TRUE or
FALSE; any positive value means FALSE and any negative value means
TRUE. Each subexpression 1is interpreted, from 1left to right, 1in
truth-value context until]l the truth or falsehood of the expression is
determined., Then evalunation stops. Thus

1 Tn the curcent implementation multiplication by constants having less
than 7-bits in their absolute value is accomplished by shifts and adds,
making possible 60-bit operands. ©Division or remainder by a constant
pover of 2 is done by shifting or masking respectively.

2 0On the 6400 arithmetic shifts are slightly faster than logical
shifts.

Languages and Processors: BCPL

May 1971

elve2 A-el
will be true if
el is true (negative), im vwhich case e2 and e3 are not
evaluated
or if
e2 is true {(negative) and e3 is false (positive).
In 'bit' context, the = operator causes bit-by-bit conmplementation of

its operand. The other operators combine their operands bit-by-bit
according to the following table:

operator
operand A \' EQV NEQV
0 0 10 a 1 0
0 1 {0 1 0 1
1 0 0 1 0 1
1 1 1 1 1 0

The most interesting operators in BCEL are those which allow one to
generate and use addresses. An address may be manipulated with integer
arithmetic and 1s indistinguishable from an integer until it is used in
a context which requires an address. ¥For exanmple, if X contains the
address of a word in storage, then

X+ 1
is the address of the next wvori.

If ID is an identifier, then associated with ID 1s a single word of
memory, which is called a cell.

cell for ID

In --- r)
L 4

The contents of this cell is called the value of ID. The Aadiress of
the cell is called the address c¢f ID.

An address wmay be us=2d4 by applying the operator RV (or $). The
expression

10

Languages and Processors: BCPL

May 1971

RY e1

has as value the contents of the cell whose address is the value of the
expression 1. 0Only the low-order 19 ftits of el are used.

An address may be gonerated by means of the operator LV. The
expressicna

LY el
is valid only if el is

(1) an identifier, in which case the value of LV ID is the address
of ID. (Note: e1 may not be an external name.)

{2) a vector expression, in vhich case the value of LV el.,e2 i3
el+e?.

{3) an RV expressicn, in which case the value of LV RV el i3 21,

Case (1) is self-explanatory. <Case (2) is a consequence of the way
vectors are defined in BCPL. A vector of size n 1s a set of n+1
contiquous words in memory, nupbered 0,1,2,...,0. The vector 1is
identified by the address of werd 0. Tf V is an identifier associated
with a vector, thet the contents of Vv is the address of word 0 of the
vector. ‘

vector
cell for V {(n+1) cells

L J bi ¥}
[1 t o
Vy ==~ L 4 =D - 4 1
t 1 2

| |

| . |
| . | .
I . ' .
.LV ‘% -
- 4 n

The value of the expression
V.el

is the value of cell number el of vector V, as one would expaect. The
address of this cell is the value of

Vtal
hence

LV V.1 = V421

1M

Languages and Processnrs: BCPL

May 1971

This relation is true whether or not the expression
V.el
happens to he valid and whether otvr not V is an identifier.

Case (3) is a consequence c¢f the fact that the operators LV and RV are
inverse.

The interiretation of

RV e

depends oun context as fcollows

(1) If it appears as the left-hand side of an assignment

statement, 2.g.,
RV el := e2
el is evaluated to produce an address and e2 is stored there.

{2} LV (PV e1) = el as notad above.

{(3) In any other context el is evaluated and the contents of that
value, treated as an address, are taken,

Thus, RV forces one mcre contents—-taking than is normally demanded by
the context.

As a summarizing example, consider the memory configuration depicted

Languages and Processors: BCPL

May 1971
below.

i |

| W !

I |

| I {

k 1

Reeosad | c|
- i

i . {

{ . |

! . |

- 4

c | 5]

- --4

| BN 1

| I]

| I i

b q

Beaowab | di
— 1

1 . 1

i . |

| . i

r—- 4

d T4

- -4

I . i

I |

B {

a and b are the address of A and B respectively. Then each of the

13

BCPL

Languages and Processors:

May 1971

following assignments induces the memcry confiquration shown adjacent,

a

e gl vl e ey o

#

(2]

v

—yw g s v e

by = -

-

" e - ot

-

s e o
L&

- — g YR S SYR - Gp W G o W —

e

> o+

| o ~

"

14

L -+

Lanquages and Processors: BCPL

May 1971
i
a4 71
L ———d
¢ -——
A aj cl
— 4
RV A := B | {
F 4
ci a1
+ 4
t {
B b} 11
t -4
¢ .
dl 71
[3
Note that
1V A:= B

is not meaningful, since 1t would «c¢all for <changing the address
associated with A, and that associated is permanent.

Conditional operator

The expression

is evaluated by evaluating el in truth-value context. If it is true,
then the expression has value e2, otherwise e3. e2 and e3 are never
both evaluated.

A block consists of one or more commands and/or declarations, encloseid
by the symbols [called 'secthra*', at the beginning and], calleid
*sectket', at the end.

A sectbra or sectket wmay he "tagged® with up to 8 alphanumeric
characters, terminated by the first non-alphanumeric character follow-
ing the sectbra or sectket. A sectbra or sectket immediately followe]
by a space is in effect tagged with null.

15

Languages and Processors: BCPL

May 1971

A sectbra can be matched only by an identically tagged sectket, When
the compiler finds a sectkat, if the nearest sectbra (smallest
currently open block) does not match, that block 1is <closed and the
process repeats until the matching sectbra is encountered.

A block may be used wherever a command is allowed, and in addition is
required in a few contexts where a commpand is not permitted. A block
may be used for twc purposes: to group a set of commands which are to
be treated as a unit, and to delimit the scope of declarations.

16

Languages and Processors: BCPL

May 1971

CHAPTER_2 = STRUCTURE

fra
(@]
3
et}
le}
fro
e

221 COMMANDS

Commands are separated by semicolons (;). However, in most cases the
compiler automatically 1inserts a semicolon at the end of each line if
it is syntactically correct there (see Section 2.3).

The pair of reserved words DO and THEN are synonymous.

The complete set of commands is shown here, with e, el1, e2 and e3
denoting the expressions and ¢, ©1, and c2 denoting commands:

Iype of Command Command

routine el({e2,e3,...)

assignment 2xpression_list := expression_list
conditional IF e BC c

UNLESS e DO C
TEST e DO ¢l OR <¢2

looping WHILE e DO ¢
Cc REPEAT
c BEPEATUNTIL e
¢ REPEATWHILE e

for FOE N=el TO e2 DD ¢
result RESULTIS c
switchoa SWITCHCN e INTO [...]
transfer GOTO e

FINISH

RETURN

BRERAK
block [eee]

Discussion of the 'routine' commangd
el{edyjeee)

which calls the routine whecse address is el will be deferred to Section
2.2.7.

17

Lanquages and Processors: BCPL

May 1971

2.1.1 Assignment _command

e v

The command

el 1= e2
causes the value of 2 to he stored into the cell specified by el. el
must have one of the following forms:

{1) an identifier ID
(2) a vector expression e3.el
(3) a value—as—address expression RV e3

A list of assignments may te written thus:
£1,€2,00-42h 2= £1,£2,...,f0

where ei and fi are expressions. This is equivalent to

el = £1
e2 ;3= f2
en := fn

IF e DO c1
UNLESS e LC c2
TFST e THEN ¢c1 CR c2

Expression e is evaluated in truth-value context. Command ¢l is
executed if e is true (negative), otherwise command c2 is executed,

2:1.3 Llooping commands

WHILE e DC ¢
UNTIL e DC ¢

Cc REPEAT

¢ REPEATUNTIL e
C REPEATRHILE e

Command ¢ 1is executed repeatedly until condition e becomes TRUE or
FALSE as implied by the command. If the condition precedes the command
(WHILE, UNTIL), the test will be made before each execution of «c. Tf
it follcws the ccmmand (REPEATWHILTE, BEPEATUNTIL), the test will be
made after cachk execvtion of ¢c. 1In the case of

c REPEAT

18

languages and Processors: BCPL

May 1971

there is no condition and terminaticn must be by a transfer of control
command in c, {c usvally will be a block.)

Within REPEAT, REPEATUNTIL, and RFPEATWHILE ¢ is taken as short as
possible. Thus

IF e DO c REPEAT

is the same as

IF @ DO [t REPEAT]

2:1.4 FOR command

FOR N=e1 TO 2 DO cC

N must be an identifier. This command will be described by showing an
equivalent block

[IET N,t = el,e2
UNTIL N>t DO
[C
N 2= N+1]]
Note: The decliaration
LET ID = e
delcares a new cell with identifier IT (see Section 2.2.4).

Note that t is a new ideatifier not occurring in c.

The most unusual feature of this command is that the identifier N is
not available outside the scope of the ccommand.

o s len b e A st s Sl et D D e S et s s

The expression
vALCF{.O‘I.l]

defines a 'value blecck'., It is evaluated by executing the comrpands
(and declarations) in the block, until a RESULTIS command of the form:

RESUITIS e
is encountered., The expresison e is evaluated and its value becones

the value of the value block., FExecution of commands within the value
block ceaces.

19

Languages and Processors: BCPL

May 1971

A value block must contain one or more RESULTIS commands and one must
be executed.

In the case of nested value blocks, the RESULTIS command terminates
only the innermost VALCY¥ block centaining it.

21.6 SHITCHON command

SWITCHON e INTO block
vhere the block contains labels of the fcrm:

CASE constant_expression : or
CEFAULT:

The expression e is first evaluated, and if a case exists which has a
constant with the same value, then execution is resumed at that label;
otherwise, if there is a default label, then execution is <continue?l
from there, and if there is not, execution is resumed just after the
end of the SWITCHCN command.

The switch is implemented as a direct switch, a sequential search or
binary search depending on the number and range of the case constants.

2.1.7 Transfer of _control

GOTC e
FINISH
RETURN
BREAK

The command GOTC e interprets the value of e as an address, anfi
transfers control to that address. The command TINISH causes an
implementation-dependent termination of the entire progran. RETURN
causes control tc return to the caller of the routine, BREAK causes
executicn to be resumed at the poiant just after the smallest textually
enclosing 1looping command. The 1looping commands are those with the

following key wvords:
UGNTIL, WHILE, REPEAT, REPEATWHILE, REPEATUNTIL and FOR.

. A . R s i s s

There are eight distinct declarations in BCPL: GLOBAL, MANIFFST,
EXTERNAL, dvnamic cell, dynamic vector, function, routine, and label.

2. 221 GLOBAL declaration

A BCPL program need not be coiapiled ia one piece. The global vector
provides a means cE communication between separately compiled segments

20

Languages and Processors: BCPIL

May 1971

of a program. The declaration
\

GLOBAL [name : constant-expression]

associates the identifier pame with the specified location in the
global vector. Thus npame identifies a static cell which may he
accessed by pame or by ary other identifier associated with the sane
global vector location. Global declarations may be combined:

GLOBAL [nl:clin2:cl;...]
Note the absence of a final ;.
The scope of a global declaration, i.e., the region of program where
the identifier is known, is the region ismediately following the global

declaration up to the end of the srallest textually enclosing block,
except where the identifier is redeclared within that scope.

22252 MANIFEST Declaration

An identifier may be associated with a constant by the declaration

MANIFEST [pame = consiant-expression]

The scope of this declaration is the same as for a global declaration.
Within the scope of this identifier, use of the identifier is exactly
equivalent to using the constant—-expression.

The constant—-expressions in a multiple MANIFEST declaration are all
evaluated before the declarations take effect. Thus

MANIFEST [MASK=777B;NMASK= — MASK)

is 1illegal (unless MASK has been declared 1in a previous MANIFERST
declaration). However

MANIFEST [MASK=T7773]
MANTFEST [NMASK= —1 MASK]

will declare NMASK as — 777B.

A MANIFEST coastant, like any constant, does not have an address.
MANIFEST declarations may te combined exactly like GLOBAL declarations.

2.2.3 EXTERNAL Declaration

An identifier may be associated with FNTEYs declared in other (indepen-
dently ccmpiled) programs by the declaration: '

21

Languages and Processors: BCPL

May 1971

EXTERNAL [n
EXTEANAL [1

] or
= gstring _ccnstant J.

In the first case the strinag-constant is assumed to be the same as the
name. The scope of the pame is the same as for a global declaration.
EXTERNAL declarations may be ccmbined in the same manner as MANIFEST or
GLOBAL declarations. Fvery routine and function declared in a BCPL
program is declared an ENTRY (first seven characters only).

2:2.4 Dynamic cell declacatiorn

The declaration
LET nl,n2,..., = el,n2,...
creates n dynamic cells (words) and associates them with the identi-

fiers nt,n2,... . These pnames are krown in the remainder of the block
containing the LET delcaration. They are also known in the expressions

el,e2,e.. . They are not kncwn within the body of any function or
routine declared subsequently in the llock.
Example
[LET A = el
LET B = e2

LET F{x) = €3
cl;c2:...]

A is known in el1,e2,c1,C2,..»
B is known ir e2,c1,C2, .«
P is kncwn in e3,ct1,c2,...

The words reserved by a dynamic cell declaration are released when the
block in which the declaration aprears is left.

Example
[LET A =1
B z= 1V A]
[LET X =7
C 2= RV B]

The effect of this program segment is not defined. In the current
implementation, it is likely that 7, not 1 will be assigned to c.

2:2+5 Vector declaraticn

The declaration

22

languages and Processors: BCPI,

May 1971

LET N = VEC m

vhere m is a constant expression, creates a dynamic vector of m+1 cells
by reserving m+1 cells of conrtiguous storage in the stack, plus on=2
cell which is associated with the identifier N, The scope of N is the
same as for a dynamic cell declaration, Execution of the declaration
causes the value of N to become the address of the block of mn+t1 cells.
The storage created is released when the block is left.

The declaration
LET N{P1¢Lb2peeaePm) = €

declares a fupcticn named N with m parameters. The parentheses are
required even if ®n=0. The scope of the parameter names is the
expression e. A parameter name has the same syntax as an identifier.

The first 7 characters cof § will be declared as an ENTRY and are thus
accessible to cther programs using aprropriate EXTERNAL declarations.

The function is invcocked by the exgression
el (el,e2,.+.,2Hm)

vhere expressicn e evaluates to the address of the fuanction. In
particular, within the scope of identifier N the function may be
invoked by the exrression

N(el,e2,..,en)
Each value passed as a parameter is copied into the argument list, even

if the expression for the ©parameter is a simple identifier. Thus
arguments are always passed by value. The value passed may, of course,

be an address. :

2.2.7 Routine declaration

The declaration
LET ¥(plyp2,...,pn) BE block
is identifical in effect to a function declaration except that

(1) the body is a block rather than an expression
(2) no value is returned to the caller,

The scope of the parameter identifiers is the block.

23

Languages and Processors: BCPL

May 1971

The routine is called by the ccamand
e0(el,....,0m)

where the expression e0 evaluates to the address of the routine. As in

the case of a functioan, the routine N may be invoked by the command
N(el,.0.,2m)

within the scope of identifier W.

Any function may be called as if it were a rouatine, but if a routine is

called as a function, the valvoe returned is undetined.

2,2.8 Label declaration

A label is declared by

nane:
A label declaraticn may precede any ccmmand or label declaration, but
may not precede any other form of declaration.

The scope of a label identifier is different from any other declara-
tion, because it includes all of the suwallest enclosingy routine hody,
function body, or LET block (whichever is smallest), including the
portion before the declaration itself.

Labels may be assigned to variables and passed as parameters. In
general they should not be declared global, pbut can be assigned to
global variables. Transferring to a label after the block in which it
was decilared has heen left will produce chaotic (undefined) results.

2:2:9 Simultaneous_declarations

Any declaration of the form
LET———-~

may be folloved by one or more delcaraticns of the form
AND~——-

where any construct which pay foliow LET may follow AND. As far as
scope is concerned, such a sequence of declarations is treated 1like a
single declaration.

’e
s
o
e
[

Languages and Processors

May 1971

2.3 PREPRQCESSOR

In order to make BCPL proqgrams easier to read and to write, the
compiler allows the syntax rules to be relaxed 1in certain cases.
Source text input to the compiler is scanned by a preprocessor which is
capable of inserting senicolons and the reserved DO (or THFN), where
appropriate,

Thus the rprogrammer normally can write BCPL programs without using the
command terminator (seaicolon) and wWwith fewer DOs than the strict

syntax requires.

2.3.1 GET _comman

e i

The coasand

GET "striupg"
causes the {ile identified by "“string™ to be included 1in the source
text in place of the GRT commandA. The translation of the string into a

file name, and the internal format of the file, are implementation
dependent.

Under TSS the string is interpreted as a directory entry. Under SCOPE,
the first seven characters of the string are used as the file nane,

2:3.2 Comments _and_spaces

The character pair // denotes the beginning of a comment, 211
characters from {and including) // 9up to (but not including) the
character 'pewline' wiil be ignored by the compiler.

Blank lines [lines iacluding only the characters 'space?, 'tab', and/or
'nevwline') are ignored alsc.

Space and tab characters may be freely inserted except inside ar
element, inside a syster reserved wcrd (e.g., VALOF), or inside an
operator (e.g., :=). Space or tab characters are required to separate
identifiers or system reserved words from adjcining identifiers or
system reserved wcrds.

2+3.3 DO _or THEN

The symbol N0 is inserted between pairs cf items if they appear on the
same line and if the first is from the set of items which may end an
expression, namely:

) eieuent]

25

Languages and Processors; BCPL

May 1971

and the second is from the set of items which must start a command,
namely:

TEST FOR IF UNLESS UNTIL WHILE GOTO
RESULTIS CASE DEFAULT BRTAK RETURN
FINISH SHITCHON [

2.3.4 Semicolon

The preprocessor inserts a semicolon between adjacent items it they
appear on different lines and if the first is from the set of svmbhols
which may end a ccamand, namely:

BREAK RETURN FINISE REPEAT

) element]

and the second 1is from the set of items which may start a commaad,
namelys:

TEST FOR IF UXNLESS UNIIL WHILE GOTO
SWITCHON (RV element
RESULTIS CASE CEFRULT BRFAXK FETORN
PINISH {
As an exanple, the following twc frogram segments are equivalent:

IF A=0 DG GOTOC X; | IF A=0 GOTO X
A = A-1: i A := A-1

2.4 ADDITIONAL FEATURES

2241 Assepbly lapguage Coding (tc be _supplied)

2:4.2 Library of Subprograps

Input/Quput Rcutipes

The input/cutput facilities of BCEL are quite primitive and simple.

INITIALIZEIO{Y,SIZE) is a routine that sets up a free-space area in the
vector Y of length 5TZF. 1t initializes a global pointar to the buffer
area (ICBASE) and the character conversicn tables (C6T0O7 and C7T06).

FINDINPUT (LFYN) is a function taking a string constant file name (LFN)
and returning a stream-pointer to ke wused by the input rouatines.
PINDINPUT initializes ap input buffer and attempts to read a bhuffer-
load of the named file. If no infcrmation is found, an error occurs.

CREATEOUTPUT{LFN) is a fuprction taking a file name (LFN) and returning
a stream-pointer *to be used by output routines, No testing of the

26

Languages and Processors: BCPL

May 1971

external file environment occurs, but a file may be opened any number
of times.

READCH (STREAM,CH) is a routine which teads the next character froam an
input stream and stores it (indirect) in CH. Thus to get the character
into a variable, A, one executes READCH(S,LV A). If the stream is at
an end of the reccrd, thne character ENDOFSTREAMCH (= 144B) is stored.

WRITECH (STREAM,CHY is a rouvtine vwhich writes a character onto an output
strean.

READVEC {STREAM,V,N,EORL,ECRC) reads N words from STREAM into V.0,..., V.
{N-1). Tf less than N words remain in the STREAM the number of words
actually read 1is stored (indirect) in BORC and a transfer to FORL 1is
performed., Mixing calls of RFADVEC and READCH on the same strean
produces undefined results,

WRITEVEC(STREAM,V,N) write N words from Vu.0,e.e,V. (N-1) oOnto STREAM.
Mixing calls of WRYITEVEC and WRITCH on the same stream produces
undefined results.

ENDREAD{STREAM) closes the file and releases the buffer space asso-
cliated with STREAM.

ENDWRITE (STREAM) writes cut anything remaining in the buffer, writes an
end of record, and releases the thuffer space. This action 1is not
performed until the file has been closed as many times as it was

opened.

ENDOFSTREAM (STREAM) returns TRUZ if the stream is at an end of record,
otherwise FALSE.

CLOSEALL () performs ENDWRITEs and EEDREADs on all open streams until
they are closed.

ABORT({) performs a CLOSEALL and mak2s a standard exit,

Other useful subroutines

PACKSTRING(V,S) packs characters V.1,V.2,...,V.{(V.0) into the vector S
(ie€e, iNtOo S.0,S.1,ee+,5.(V.0/8+1)).

UNPACKSTRING {S5,V) stores the characters of S in V.1,...,V.N and stores
N in V.0.

BCDWORD (S) produces a ieft-justified, display-coded word from a (long)
string S.

ASCII{D,A) packs the displav-coded wozd D into vector A.

27

Languages and Processors: BCPL

May 1971

WRITES(S) writes the characters of S onto the output stream ONUTPHT (a
global variable).

WRITEN(N) writes the number N onto the cutput stream OUTPUT.

WRITEO(N) write the aumber N {in octal) onto the output stream O0UTPUT.

Global variables for I/0

The following glcbal variables are used by the T/0 routines, They ars2
declared in BCPLSD (see section 3.1.13).

IOBASE: holds pointer to tuffer area; initialized by TINITIALT-
ZEIO, used by FINDINPOT, CREATEQUTPUT, and CILOSEALL.

C6T07:; points to a Aisplay-code +to ASCII conversion vector;
initialized by INITIALIZEYIO, used by REACH and ASCIT.

C1TO6: points to an cutput stream; used by WRITEN and WRITEO.

MONITOR: points to an output stream for error messages; should be
initialized before any I/0 is attempted.

24

Lanquages and Processors: RCPL

May 1971

CHAPTER 3 - USING BCPL

3.1 HOW TO_NRITE A BCPL_PROGRAM (TQ _BE SUPPLIED)

3.2 _HOR_TO _COMPILE BCPL

A field lengtt of 45,0008 shculd allow sufficient space tor the
compiler to translate most programs. If the stack space needad grows
beyond the declared field length, an ARITHMETIC ERROR - MODE 1 will
occur. There should never be an arithmetic error for any other reason,
but there may be. The distinguishing characteristics of an arithmetic
error caused by stack overflow are:

1« B6 contains a number relatively close to the field length,

2. 1The offendiag iostruction is either

SAL B6 + K
or SAL X + X
or SAL Xj + Bk

where i=6 or 7 and the effective address is greater than the
field length,

If these conditions are not satisfied, there is a bug in the compiler.

3.2,1 Osing_ BCPL_under_ SCOPE

The four ccomon files, BCPL, BCEL2, BCELIO, and BCPLGD are public and
may be accessed by any user in the normal way. (BCPL2 1is the second

pass of the compiler.)

Compiling

The _Contrgcl Card

The BCPL comgiler is directed to translate a source deck by the SCOPT
control card:

LGO,BCPL, I=infput,L=1isting,E=binary,C=compass,0=ocode,N=nane,
T=tree,SA,D,CR.

All parameters are optional and may appear 1in any order. Their

May 1971

interpretation is as follows:

SA

Defanlt
Value

INPUT

OUTEOT

LGO

OCODE

{same as B)

Languages and Processors: BCPL

Use

Designates the fileset <containing the
sougrce code to be compiled. If the
fileset appears to be empty, it is
revound and tried again. The source decxk
is terminated by an end of recori.

Designates the fileset on which t he
source text, along with diagnostics and
other information, will be written. L=0
suppresses listing except for diagnostics
which will appear on OUTPUT.

Designates the fileset on which the relo-
catable btinary will be written. B3=0
suppressaes the output of binary.

Designates the fileset on which a COMPASS
version of the program is written, This
version may be assembled by COMPASS., (=0
suppresses COMPASS output.

NDesignates the scratch fileset to he used
for +*ransmitting an intermediate object
code betveen passes of the compiler.
This fileset is always rewound at thn
start of ccmpilation.

Gives a name to the binary and/or COMPASS
program produced. I.e., VN=pame wouldl
cause "IDENT name™ to be the first line
of the COMFASS progranm.

Designates a fileset on which a represen-
tation of the parse tree will he written,
T=0 suppresses the printing of the tree.

If irncluded as a parameter, suppresses
abortion of the joub if the compiler tinds
2rrors in the source program. (The com-
piler often produces an executable [but
dangerous] program even when errors
occur.)

If 3included as a parameter, the listing
will be double-spaced.

30

Languages and Processors: BCPL

May 1971

CR Check reentrant.

32222 Using BCPL_ under TSS

The compiler is invoked by typing BCPI tc the Command Processor. The
compiler then waits for lines of the forwm:

I=input;B=binary;C=compass;0=gcode;N=name;T;CR

All parameters are opticnal and wmay appear in any order, TIf the
parameters input cr compass are TTY, the 1input 1is taken <£rom the
teletype or the COMPASS program printed on the teletype, respectively.
Except for T, the meanings of the parameters are the same as above but
the default values are as follows:

I TTY

B L {i.e., BINPUT 1s I=INPUT or BBCPL if I=TTY)
C 0

0] DCODNE

N Same as 1 BCPL if I=T7TY

T causes the compilation times to he fprainted.

After each compilation BCPL waits for another line and exits when FIN
is tyrped.

3.3 DIAGNOSTICS

There are three types of diagnostics given during compilations: parse,
translation and dJeneral.

A parse diagnostic occurs when a relatively simple syntactic error 1is
detected during the early phases of cospiling. An up arrow is printe?
under the last character read in before the error became apparent. A
brief description of the error is printed. Only one error (the first)
on any given line is reported. Errors reported on lines following the
one containing the first error snould be regarded with suspicion since
the compiler does not recover very well,

A translation diagnostic occurs in the later phases of compilation and
reports errors such as use of an undeclared identifier. Each error is
briefly described and a representaticn of the relevant portion of the
parse tree is printed,

A few general Jdiagnostics may occur at any time. They 1include such
mishaps as table overflows and missing input files.

31

Languages and Processors: BCPL

May 1971

APPENDIX A. Reserved_Words_and Tokens

The following list of words and symbols are treated as atoms by the
BCPL syntax analyzer, The alternate forms may be used to avoid
multirle punching.

ITY Standard Multiple Punch Alternate
AND
SHIFT N 4 11-5-8 ASHIFT
BE
BREAX
CASE
DO THFEN
DEFAULT
END 7-8-9
= EQ
=, LEQ
FALSE
FINISH
¥OR
2 12-5-8 GE
2. LGF
GET
GLOBAL
> 11-7-3 GR
e LGR
IF
INTO
< 5-8 LE
<. LLF
LET
& A 0-7-8 LOGAND
H v 11-90 LOGOR
< 12-0 LS
<. LLS
LSHIPT
LV
BANIFEST
* # (apostrophe) NE
*. L 2 LNE
NEQV
\ - 12-6-8 NOT
OR ELSE
RENM MOD
REPEAT
REPEATUNTIL

REPEATWHILE

May 1971

IIX

SHIFT K
SHIFT M
&«

A string constant is delimited by doulkle quotes (0-6-8)

Standard Multiple Punck

RESULTIS
RETURN
SHIFT

RV
SWITCHON
TABLE
TEST

TO

TRUE
UNLESS
UNTIL
VEC
VALCF
WHILE

P+ o+
[

(] R I e IR TN R YR 7,

i
\%
L

i
les

t
5

.C.'QB

constant by single quotes (11-6-8).

Languages and Processors:

->

BCPL

and a character

33

languages and Processors: BCPL

May 1971

APPENDIX B, Graphic TTY Character Representation

. — S T — — —

ASCITI Printer TSS ASCII|ASCII Printer TSS ASCIT{ASCII Printer TSS ASCIT

char Graghic Code IChar Grarhic Code]Char Graphic Code
1]
blank blank 0] @ - 40] # 100
! < 1] A A 41 1 a A 101
n ¥ 2 | B B 42 i b B 102
L = 3 i C C 43 | ¢ C 103
$ $ 4 j L D 4y y 4 D 10U
) 4 5 i E E 45 | e E 105
& A 6 { F F 46 | f F 106
' # 7 {1 G G 47 | g G 107
{ { 10 { H H 50 { h H 110
)) 11] I 1 51 poi I 11
* # 12 1 3 J 52 I J 112
+ + 13 | K 53 { k K 113
v ’ 14 { L L 54 [L 114
- 15 i M M 55 | m M 115
. . 16 1 N N 56 | n N 116
/ / 17 b Q C 57] 0 0 117
0 0 20] P P 60 | p P 120
1 1 21 | © Q 61 | g o) 121
2 2 22] R R 62] r R 122
3 3 23 1 S S 63] s S 123
4 4 24 ! T T 64 { t T 124
5 9 25] O U 65] u U 125
6 6 26 | ') v 66 { 1 v 126
7 7 27 | % 9 67] W W 127
8 8 30 ! X X 70 { . X 130
9 9 31 ! Y Y A | y Y 131
: : 32 | 2 yA 72 |z vA 132
: : 33 I I [73 I { { 133
< < 3y i\ \'4 4 (R | blank 134
= = 35 .] 75 |}) 135
> > 36 7" A 76 |~ blank 136
? 2 37 1 -> 17 | rubout blank 137

{

34

Languages and Processors: RCPL

May 1971
Takble 2
Non-Graphic TTY Character Representation
Internal ASCII Xey Combination

Character Representaticn Systext Representation Function
NOL 140 %2
SOH 141 %A
STX 142 %8
ETX 143 %C
EOT 14y %D
EN 145 %E
ACK 146 %F
BEL 147 %G 3ell
BS 150 %H Backspace
HT *%T¢ 151 %X Horizontal Tab
LF 152 %J Line Feed
VT 153 %K Vertical Tab
PP 154 %L Page Eiject
CR "*N!? 155 M
SO 156 %N
SI 157 %0
DLE 160 %P
DC1 161 %0
DC2 162 %R
DC3 163 %S
DCY 164 ®T
NAK 165 U
SYN 166 34
ETB 167 L34
CAN 170 %Y
EN 171 ®Y
SUB 172 %Z
ESC 173 %]
FS 174 %
GS 175 [
RS 176 %
us 1717 R

35

May 1971

lanquages and Processors: BCPL

APPENDIX C The Ruu-Timo Environemat

——— it o B A T o o T D TS ST Ve, A O e D i W

Storage Allocation and BRegister_ Usage

Unlike any programs loaded by the SCO®E loader, BCPL object progranms

begin at
commaon.

1008.
Unde

The last program 1is fcllowed by the first word of blank
r normal conditions a special program HEAD should be

loaded before any BCPL programs. The following registers are used by

BCPL prog

B1
B2
B3
BY
BS
B6
X0-X5
X6
X7

ramsz

alvays coataios 1

alwvays contains -1

scratch register, used for all calls

scratch register, used for all non-local transfers
always contains the first common address + 1
contains the dymamic stack pointer (>B5)

scratch registers

alvays contains 0

used for all non-zero stores

Depicted below is a core map with certain special locations noted:

0

o]
(9,
[
A4

B6 ->

Communication area

HEAD

3CPL

PROGRANMS

<~ GLOBALO

GLOBAL ARER

STACK AREA

e e s e ceer A e e s s b e od

p—q—-“’-_q-“—-ﬁ-a—qu*qn-q

36

May 1971

The

notation

follows:

1.

Languages and Processors: BCPL

APPENDIX D. Syntax of BCPL

used below in defining the syntax of BCPL is defined as

1. A class of elenments is represented by a notation variable,
consisting of underlined lower case letters.

2. Literal <characters are represented by upper case letters or
special characters,

3. The vertical bar denotes an alternative.

4. Braces { 1 denote a repeatatbtle group.

5. Three dots ... denote optional repetition of the immediately

preceding syntactic unit.
6. The £ollowing are nct represepted:

a. conmpents,
b. block delimited tags,

C. graphic escape saquencas allowable in strings,

d. allowable dropping of ; and DO according to preprocessor

rules,

e. synonyms for certain systen operators (see
Appendix A),

f. restriction on nsage of certain constructions in certain

contexts,
Je required blanks.

Identifiers, Strings, Numbers

digit::= octal diqit 1819
string comstantt::= "characters < 128%

character constant::= ‘character £ 8!
octal number::= octal digit...B
number::= octal nuamter | digit ..,
identifier? ::= letter {letterjdigit}...
Qperatorcs

addressop ::= LV | BV

multop :z:= * | / | RENM

addop ::= + | - | *. | -.

shiftop ::= LSHIFT | BRSHIFT

37

Languages and Processors: BCPL
May 1971
relop ::= = { # 1 <1 > 1 <12 =« 1#] < | > 1 L1 2.
equep 3= EQV | NEQV
3. Expression
element 1= character constantistring constant jnunber|
ideatitier | TROE]FALSE
primary _expr ::= (expression)|VAICF blockjelementlprimary expr
{expression list)
yector expr ::= pripary expr ...
address expr3 ::= vector expriaddressop address_expr
Bult expr ::= address exprimult expr multop address_expr
add_expr ::= mult expriadd_expr addop mult expr
shift expr ::= add exprishift expr shiftop add_expr
rel expr ::= shift_expr {(relop shift expr} ...
not expr ::= rel expr| -—not expr
and_expr ::= pot_expr { not_expr} ...
or_expr ::= and expr fand_expc} ...
€dV_€XPr ::= CL_eXPpr {egy¥_op OL_€XPL} ...
a

4.

5.

- — o i . oo . € e

o ———— i G —

expression} ...

Lists_of Expression_and_ldentifiers

- ——3

exp _~list ::= expressionlexpression, exp-list
expression-list 2:= nulliexp-list
ide entifier, n=-list

n=-list s:= identifier{identi
napme-list ::= mu

Declarations

— - . -

manifest—item* ::= ideantifier = constant-expression

manifest-list ::= mapifest-itemipanifest item; manifest 1

s <, i o S SO s e ——— v o D e e e s o e | i

manifest-declaration ::= MANIFEST[manifest-list]
global-item ::= identifier : constapt _expression
global-list ::= global-iteml|global-item; global-list
glcbal-declaration ::= GLGBAL [global-list]

= eqV_exprlegv_expr -> conditional,conditional
= conditional |TABLE constant _expression{,constant

ist

external-item ::= identifierj|ideptjfjer = string comstant
external-list ::= external-itemjexterpal-item ; external-list
external-declaration ::= FXTERNAI[external-list]
simple-definitjon ::= p-list = exp-list

vector-definition ::= identifier = VEC constant—expression
function-definition ::= identifier () = expression
routine-definition ::= identifier () BE block

definition =:= simple-definitionivector definition|
function _definiticniroutine definition
simple-declaration ::= LFT definition

decl-tail ::= AND definition|AND definition decl-tail

ot

§
-t
23]
=3

‘Qa
I
4]
’J-
=
ﬂt
fad
H-
o]
t=]

simultaneous—declaration ::= simple-declaration decl-tail

38

Languages and Processors: BCPL

May 1971

6.

8.

declaration ::= simple-declarationi{simultancous-declaration]
global-declarationimanifest-declaration
declaration-part ::= declarationldeclaration declaration-part

eft-hand-side Expressions

LHSE ::= identifierjvector—application|RV address_expr
left-hand-side_list ::= LHSEJLHSE; left-hand-side-list
Coemands

assignments ::= left-hand-side list ::= exp-list
simple—command ::= BREAK|RETUBN]FINISH

goto-command ::= GOTO expression

routine-command ::= fumction-application
resultis-command ::= RESULTIS exiression
switchop-command ::= SWITCHON exrression TNTO block

:= assigamentisimple-commandigoto-command|
routine-commandiresultis_command|
repeated-cospand|switchon-command|block

repeatable-commpand REPEAT
::= repeatable-command REPEATWHILE expression
Le

peat-command |repeatwhile-command|
repeatuntil-command
:= TEST expression DO gommand OR command
= GET string-constant
IF expression DO command

test-command
qet-command

if-coamand :

- . D v . 2 o

»
-
»
.

= UNLESS gxpression DO command

WHILE excressicn DC command

until-comman UNTIL expression DO command

for-command : FOR identifier = expression TO expression DO
command

uniabelled-ccpmand ::= repeatable-ccmmand|repeated-command|
test—copmandiif-commandiget-command|

Al e D s TS U oy, A S >

S, and _Labelled Conmands
:= identifier :

gggézﬁrefig CASE constant-expression :
default-pre = DEFAULT :

refixicase-prefixjdefault-prefix
lied-commandiprefix command

e e e e ey

39

Languages and Processors: BCPL

May 1971

- A — - . = — A S

1 See 1.2.2 for farther restrictioas on strings and character
constants.

2 An identifier may not b2 a reserved word. See Appendix A for the
list of reserved words.

3 The operands of LV are restricted as per 1.2.6 Addressing__Operators.
4+ A constant _expression 1S a conditional evaluable at compile tinme.
Specifically, it cannot contain identifiers which are not manifest or
the operators LV, RV, VALOF, vector application (.) arnd TABLE.

S The lengths of tha two lists must bhe equal.

Lo

