
Languages and Processors: BCPL

May 1971

Preface

This manual is not inten~ed as a primer; the constructs of the language
are presented with scant motiv~tion and few examples. To use BCPL on
the 6400 effectively one must have a good understanding of how a
computer works and be familiar with th~ operation of the CDC 6400 and
either the SCOPF operating system o.r CAL TSS. BCPL 1.s a usefnl
language but bas few provisions fee protection of the naive user.

1

Languages and Processors: BCPL

~ay 1971

Acknowledg€tnents

In the interest of mating documention of BCPL available quickly, large
portions of this manual were taken from a very well-written memorandum
by R. H. Canady and D. ~. Ritchie c.t Be 11 Telephone Labor-a toL i~ s.
Naturally any errors or omissions in this manual are the author's
responsibility.

The initial design and impl~mentation of BCPL were done by ~drtin
Richards of Cambridge University, England.

The implementation for the CDC 6400 was done with the assistance of
Richard A.cnoff.

2

May 1971

Preface
Acknowledgements
Table of Cont~nts

Chapter 1 - General Information
1.1 Language Chdracteristics
1.2 Properties o~ BCPL

1. 2. 1 Pc orJ ra III
1. 2. 2 Elements
1.2.3 Exrressions
1.2.4 Constant Expression
1.2.5 Table Expressions
1. 2. 6 Opecators

Arithmetic
Shift
Rela tiooal
Logical
Addressing
Conditional

1.2.7 Blccks

Languages and Processors: BCPL

1.3 Proc~ssor Environment (to be ~UPFlied)
1 •. l. 1 Ha r<lvare
1. J. 2 Software

SCOPE
TSS

Chapter 2 - structure of BCPL
2.1 Commands

2.1.1 Assignment commands
2. 1.2 Conditional Commands
2.1.3 Locping Ccmmands
2. 1.u FOB Com~ands
2.1.5 RESULTT~ command
2.1.6 SWITCH Command
2.1.7 Transfer of Control

2.2 Declacations
2. 2. 1 GLOBAL
2.2.2 Manifest
2.2.3 EXTERNAL
2.2.4 Dynamic Cell
2.2.5 Dynamic Vectoc
2.2.5 Function
2.2.7 Routine
2. 298 Label
2.2.~ Simultaneous Declacations

2. 3 r rt:'? pcocessor
2.3.1 Get command
2. 3.2 Comments and spa~es

Languages ani Processors: eCPL

May 1971

2.3.3 Insertion of •oc• or '~HEN'
2.1.4 Insertion of •;•

2.4 Additional Peatures
2.4. 1 Assembly Language Coding (to be supplied)
2.4.2 Library of subprograms

HEAD {to be supplied)
BCPLIO (to be supplied
FREESPACE (to he supplied)
Special TSS Functicns (to be supplied)
Input/Output Functions

Chapter 3 - Using BCPL
3.1 How to write a BCPL Program
3.2 How to co~pile BCPL

3.2.1 BAtCH
3.2.2 TSS

3.3 Diagnostics

Appendices

A. BCPL Reserved Words and tokens

B. ASCII Ccnvecsion Tahl~s

c. Run-!ime Environment

D. Syntax of BCPL

E. Programmers Checklist (tote supplied)

4

Languages and Processors: BCPL

May 1971

C]APTER_1_-_GENERAL_INFORMATION

BCPL is a programming language for non-numeric applications such as
compiler-writing an1 gener•l syste[s programming. It has been use~
successful!y to implement compilers, interpreters, text editors an~ 1

batch-processing operating system. lhe BCPL compiler is written in
BCPL and runs on eithec of the Computer Center's CDC 6400's.

The syntax is extremely rich, allowing a variety of ways to write
conditional hranches, loops, and subroutine ~efinitions, and th8reby
permitting the coostcuction of quite readable programs.

The basic data object is a word {60 bits on the 6400) with no
particular disposition as to type. A word may be treated as a
bit-pattern, a number, a subroutin~ entry or a label. Neither th~
compiler nor the run-time systl?m 1I1akes any attempt to enforce typA
restrictions. In this respect 9CPL has both the flexibility ani
pitfalls of machine languag€.

~anipulaticn of pointers and vectors is simple and straightforward.

All subroutines are re-entrant ~nd recursive since all aata are kept in
a stack. This feature ~s helpful for multi-programmin1 or applications
vhere recursion is useful (e.g., tree-precessing).

ld_i!.Qllfilll~-QL~CP_b

1.2.1 f.1:2g~g.!!!

On the outermost l~vel, a BCPL frogram consists of declarations:
•function•, 1 glcbal', •external', '!llanifest•, and 'label' declarations.
The constructs of a BCPL program will te described from the insi~e out.
The most rasic construct is the •element•.

elem~£!:-:= i!!.~.!llll!g~ I ch~9£1~!_£.Q!!§iini
string constant I numberf

TRfJE I FALSE

An !dentifie£ consist~ of up to 20 ~lphctnumeric charact~rs, thA firs•
of which must be a l~tter.

languages and Processors: B~PL

l!ay 1971

A .filllli! is a sequence of <iigits. r1.n .2~.l_£Ql!.2!.~ni he9ins w1 th or;t:a ,_
digits follo~ed by 'B'. The res~rved word TRUE denotes -0=777 •••.••
7778 {i.e., a word of 1 bits) and FALSE denotes +O. However, in an/
context where a truth valu~ is expected, any negative vRlue i~
interpreted as true.

A §tring _ _£Q!llliDt consists of up to 128 characters enclosed by 1111

double quotes. The internal ~haracte~ set is ASCII. ThP actual
character u can be represented in ~ string constant only hy the pair *"
and the character * can be represented only by the pair**· OthPr
characters ~ay be represented as follows:

*N
*T
•Onnn

is newline
is ho:rizontal tab (spac€ up to col11mn 11,21,31, etc.)
r~presents the octal character code nnn where nnn
is three octal digits.

A string is repcesent~d as a sequence of 1 bit bytes.
the characters are left jqstified, followed by a 1408.

In the last worrl

56 49 42 35 28 21 14 1 '.)

I

I I
I I A

I ' I- I
I I
I I
I I
1--1
I I
I IR

~ T------r-- ----,----.,-- -----1
I t I I I I I
I JS IT R II IN IG I
~ J J J I I I I
I -+------+-~---t-----+-----+----+-----i
I I I I I I I I
jI tN I IM IE IM IO I
I I I I I I I I

-f--------+-----+-----+----+-----+------i
I 4 I J I I I I
I Y I O 140 J i I I I I

~------'-- .L ___ ---1,. ____ J

Each appearance of a string constant generates a new static vector of
cells to contain the string. ?h~ value of the string constant is the
address of this vector.

A chara~!~£-~onstgn1 consists of up to B
quotes. ThP actual character ' can
constant only by the pair*'· The other
same as for a string constant.

characters enclosed by single
be represented in a chdracter
escape conventions are tne

A character constant is right justified in a word. Thus

'A'= 418 and '1C'=4243B.

The next construct in BCPL is the expression. Because an 1dentifi8r
has no type inforwat:ion associated with it, the type of Fin 81Pm~nt is

6

Languages and Processors: BCPL

t1ay 1971

assumed to be the type requireJ by its c~ntext.

All expressicns are liste1 below. e1, e2 and e3 repcesent arbitra.ry
expressions exceft as not~d in the descriptions which follow the list,
and to. t1, t2, €tc. repres@nt table constants {constant expressions,
string consta~ts, or parenthesiz~d table expressions).

primary

result
function
addressing

arithmetic

relational

shift

logical

conditionr\l
table

element
(e 1)
\'ALOF block
e1 (e2,e3, •••)
P.1.e2
LV e1
P.V e 1
+e,
-e 1
e1*e2
e1/e2
E)1 REM e2

e1+e2
e1-e2
e1 = e2
e1 le2
B1 < e2
€1 > e2
~1 .s e2
e1 ~ e2
e1 LSffIF1 e2

e1 RSHIPT e2

e1 t- e2

., e 1
e 1 v e2
e 1 A e2
el EQV eL
e1 NEQY ,::-;2

~, -> e2,<a3
i:'ABLE t0,t1rt2, ...

subscriptin9
address generation
indirection

Integer
(modulus)

remainder

not e<1ual

l~ft shift by ~2 > ()

bits
right shift by e2 < 0
bits
arithmetic shift or
e1*(2**e2)
not (complement) e1
inclusive or:
and
bitwise equivalence
bitwis.~ not-equiva-
lence (exclusive or)

The relativ3 binding pov~r of
(hig best)

the o~~ratocs is as follows:
VALOF
function
• (subscripting)
LV RV

7

May 1971

(lowest)

Languages and Processors: BCPL

• I REM
+
LSHIFT RSflIFT t
relat.ionals ,
~

" EQV NEQt.r
-) ,
'l'ARLF

The VALOF expression will bP. describ<?d in 2.1. 5, after the construct
~lock has been describ~~.

A constant expcession is any ~xprassion involving only constants ani
operators other than LV, RV, VALCF. vectryr application (.), and TABLE.

The value of a TABLE expressi0n is t~~ address of a static vector of
cells initialized to the values of th f.! TABLE constants to, t 1, •••
Thus table is closely analcqous to a string constant.

A TABLE constant is a string constant or a constant expression or a
table expression enclosed in parenth~~es.

There are two kinds of ad~ition and subtraction: short and long. Th8
long version is symbolized by suffixing a period to the symbol tor th~
short version.: i.e., the sh<Jrt or,era tions are writbrn

e1 + e2
while the lonq ace written

e 1 +. e2

e1 - ~2

e 1 -. e J

A short operation is ltndefin~d if the absolute value ot either of it,
operands or its result is qrEated tha~ 217. The long operations ~re
defined for any 60-bit q~~ntitigs.

Under addition and d1lbt:.:dc:tion -0 (=7 •••• 78) be~aves like +o.

In general, ~oltiplication, division and remainder are detined only

Languages and Processors: RCPL

May 1971

when the operands and results ar~ less than 2•a in ahsolut8 valuet.
The beha vioc of -0 is iind~f ined.

The integer remainder {modulas) operator is defined as:

A RE'1 B = .\ (A/.E) * E

In the expression ~1 LSHifT e2 (e1 ?SHIFT e2), e2 must evaluate to a
non-negative number. The value is e1, tr.1ken as bit-pattern, shifte 01
left (right) by e2 nits. Vacated positions ace filled with O hits.
The expression e1te2 calls for an arithmetic shift of e1 by e2 places.
If e2 is positive, e1 is s~itted left ciccular: if e2 is negative, e1
is shifted right with sign extension.2

As with addition and 3ubtractioo, there are two kinds
operators, short and long, which are symbolized in the
That is, ~h~ lon1 version is obtained by suffixing a
short version (,a.g 91 ~., ~., <., >., ~·, ~·>.
A relational expression of the foxm

e1 Rl e2 R2 e3 ••• e{n-1) R(n-1) e(n)

is equivalent to

of relational
same manner.
pe [' io<l to t hn

el R1 e2A e2 R2 ~3 A ••• Ae(n-1) R(n-1) e(n)

The result of relations involving -0 is undefined.

The effect of a lc':}ical opecatoc <lepP.nds on its context. There i:l.re two
logical ccntexts: •truth-v~lue• and 'hit•. T['uth-value context exists
whenever the result of th~ expression ~ill be interpreted as TPDE or
FALSE; any positive value means FALSE and any negative value means
TRUE. Each subexpression is interpreted, from left to right, in
truth-value context u~til the truth ?C' falsehood of the expression i3
determined. ~hen evaluation stops. Thus

1 In the cuccent implementation mul~iFJication by constants having less
than 7-bits in their abEolute value is accomplished by shifts an1 adds,
making pos3ibl~ 60-bit operands. Division or remainder by a constant
power of 2 is done by shifting or masking respectivPly.
2 On the 6400 arithmetic shifts are slightly faster than logical
shifts.

'l

Languages and Processors: BCPL

May 1971

e1"e2 A-,eJ

will be true if

e1 is true (negative) 1 in which case e2 and e3 are not
E:'Va lua ted

or if

e2 is true (n€gative) ~nd e3 is false (positive).

In 'bit' context, the , op~rator causes bit-by-bit complementation of
its operand. the other operators combine their operands bit-by-hit
according to the following tabl€:

y EQV NEQV
-~--------~---

0 0 JO i) , 0
0 1 IO 1 f) ,
1 0 IO 1 a 1
1 , I 1 , 1 0

Addressing_oeerators

The most interesting operators in BCEL are those which allow onE to
generate and use addresses. An address may be manipulated with integer
arithmetic and is indistinguishable from an integer until it is used in
a context whic~ requires an address. For example, if X contains thP
address of a vo~~ in storage, then

X+ 1

is the address of the next word.

If ID is ~n identifier, then associated with ID is a single word of
memory, which is callP-d a cell.

cell for ID
ID --- r- -,

l.-------'

The contents 0f this cell is called the value of ID.
the ce11 is called the address cf ID.

The iiil3r~ss of

An address may be used hy applying the operator RV (or$). The
expression

1 ()

Languag~s and Processors: BCPL

May 1971

PV e 1

has as value t~e contants of the cell whose address is the value of the
expression el. Only the low-order 1g tjts of el are used.

An address '!lay be generated by mean!: of the oper:-ator LV. Thn
expression

LV e 1

is valid only if e1 is

(1) au id en t if ie r- , in which cas~ the value of LV ID is the r1 '1.d re ss
of ID. (Note.: e1 may not be ;in external name.)

(2) a vector expression, in which case the value of LV P.1.P-2 i.3
el+e2.

(3) an RV expressicn, in which cas'? the value of LV RV e1 is e 1.

Case (1) is self-explanatory. Case (2) is a consequence of thP. way
vectors are dafine1 in BCPL. A vBctor of size n is a sot of n+1
contiguous words in me~ory, number~d 0,1,2, ••• ,n. The vector:- is
identified by the a1dress of wcra O. If Vis an identifier associate~
with a vector, then the contents of Vis the address of word O of the
vector.

v ---

ce 11 for v
f--------~
L---- _.,

The value of the expression

V.e1

------->

vector
(n+1) cells

.-----------1
I- ...
~ ...
I I
I I
t I
I I
~-----------1
1------------t

0
1
2

n

is the va 111~ of eel l n11mber e 1 of vector V, as one wo1111 e x:p,~c t. The
address of this cell is the value of

V+e 1

hence

LV v.~1 = V+21

1 1

Languages and ProcP.ssors: BCPL

May 1971

This relation is true whether or not th€ expression

V. e 1

happens to he valid and whether o~ not Vis an identifier.

Case (3) is a consequence of the fact that the operators LV and RV arH
inverse.

The intetfretation of

av e 1

depends on context as follows

(1) If it appears as the left-hand side of an assignmpnt
statement, ~.g.,

RV e 1 : = e2
e1 is evaluated to produce an address and e2 is stored therP.

(2) LV (FV e1) = e1 as noted above.

(3) Tn any other context: e1 is evaluated and the contP.nts of that
value, treated as an adoress, are taken.

Thus, RV forces one mere contents-taking than is normally 1emanded by
the context.

As a summarizing example, consider the memory configuration depicted

May 1971

below.

t
I
I
1 • l
1----------~

A •••• a ! c I
1----------t
t • I
I • I
I I
1---------i

c I 51
1------------~
I • J
I I
I I
1----------4

B •••• b j dl
t-- -----~
1 • l

J ' I 4
.. ----------4

d 4 7f
1----~--~---t
t I
I • I
I ~

Languages and Pr.ocessors: BCPL

a and h are the address of ! and B respectively. Then each of the

Languages and Pcocessors: BCPL

May 1971

following assign•ent3 in~uces the memory configuration shown adjacGnt,

A := 9

A := LV n

A . -.- RV B

t I
I I
}, ------1

A aJ df
1----------~
i I
f !
t---------..

cl s,
-4
I

I t
1---------f

p bJ di
~ ____ ..
I I
I I
I- ----1

d.J "71
J

I I
1 I
I-- ..

A a1 b1

' -f
t I

-I
cl 5f

t -----f
B bJ d' 1-----------..

t I
~----------1

d I 11 ____ ..
1---~----~

A a~ 71

·--- _ ..
I ' .. ____ ..

Cj 51
1-----~-------~
I I
I- -4

9 bl di
·---"-------t

, ,~

Languages and Processors: BCPL

May 1971

1----------1
d4 71
'------- _" ______ J

~ ~
A at Cl

f---------"--4
RV A :- B I t

i-- ~
c i a,

t ~
f--------------1

B bJ di
r-- -i
1---------~~~~

di 7f
L---- J

Note that

!.VA:= B

is not meaningful, sinca it would call for changing the address
associated with A, and that associated is permanent.

The expression

e1 -> e2,~l

is evaluate<l by evaluating el in truth-value cont8xt. If it is true,
then the expression has value e2, otherwise e3. e2 and e3 are never
both evaluated.

A block consists of one or moce commands and/or declarations, enclose~
by the symbols [called •seGtbca •, at the beginning and], cal le,~
•sectket•, at the end.

A sectbra oc sectket may he "tagged" with up to 8 alphanumeric
charactecs, tecminatHd by the first nori-alphanumeric character fol low
ing the sectbca or sectket. A sectbra or sectket immertiately followei
by a space is in effect taqged with null.

1 ')

Languages and Processors: BCPL

May 1971

A sectbra cdn be mdtched only by an id~ntically tagged sectke~. When
the compiler finds a sectk~t, if the nearest sect bra (smallest
currently open block) ,ioes not match, that block is closed and thP
process repeats until the matching secthra is encountered.

A block may be used wherever a command is allowed, and in addition is
required in a few contexts where a co~mand is not permitted. A block
may be usetl for two purpos,es: to group a set of commands vhich an• to
be treated as a unit, and to delimit the scope of declarations.

16

Languages and Proc8ssors: BCP1

May 1971

CHAPTER_2_-_STRUCTURS_OF_BCPL

1..L 1 COM ft A ND S

Commands ace sepa.ca ted by semicolons (;) • However, in most c3. sP.s the
compiler automatically inserts a semicolon dt the end of eacn line if
it is syntactically correct thecg (s~e Section 2.3).

The pair of reserved vocds QQ and !H!! are synonymous.

The complete set of commands is shown here, with e, e1, e2 and eJ
denoting the exfressions and c, c1, and c2 denoting commands:

routine
assign11ent

conditional

looping

for

result

svitchon

transfer-

block

Discussion of the 'routine' command
e1(e2, •••)

e 1 { e 2, e3, •••)
~!_Ece§§.ion_list :=

IF e OC c
UNLESS e DO c
TEST e DO c1 OR c2

WHILE e DO c
c !iEP EAT
c BEPEATUNTIL P.

c REPEATWHILE e

FOB N=e1 TO e2 DO c

FESULTIS c

exoression list --~------------

SW!TCHCN e INTO[•••)

GOTO e
FINISH
RETURN
BREAK

(...]

which calls the routine whose address is e1 will be def~rre1 to Section
2.2.1.

17

Languages and ?rocessors: BCPL

May 1971

The command
el : = e2

causes the value of e2 to be stored into the cell specified by e1. e1
must have one of the following forms:

(1) an identifier
(2) a vector expression
(3) a value-as-address expression

A list of assignments may te written thus:
e1,e2, ••• ,en :~ f1~f2 •••• ,f.n

ID
e3.e4
RV e3

where ei and fi are expressions. ~his is equivalent to

el := f1
€2 := f2

en :-= fn

IF E DO cl
UNLESS e CO c2
TFS! e THEN c1 OB c2

Expression e is evaluated in truth-value context. Command c1 is
executed if e is true (negative), otherwise command c2 is execute~.

WHILE e DC c
UNTIL e DC c
c REPElT
c BEPEATUNTIL e
c BEPEATliH!LE e

Command c is e .xecuted re pea tedl y until condition e becomes ""Rtr E or
FALSE as implied by the command. !f the condition· precedes the command
(WHILE, UNTIL), the test will be maae before each execution of c. If
it follows the ccmmand (REPEATWHilE, REPEATUNTIL), the test will be
made after each execution of c. In the case of

c Rf PH.T

1 'l

languages and Processors: BCPL

May 1971

there is no condition and termination ~ust be by a transfer of control
command in c. (c usually will be a block.)

Within REPEAT, REPEATUNTIL, and RFPEATWHILE c is taken aR short &c,
possible. Thus

IF e DO c REPEAT

is the sall!e as

IF e DO [c REPEAT)

b.1 • 4 FOB c .2.!!!..ll.!H!

FOR R=e1 TO e2 DO c

N must be an identifier. This command will be described by showing an
equivalent block

[!F.T N,t = e1,e2
UNTIL N>t DO

[c
N ;-:= N+1]]

Note: ThE d~claration

LET ID = e

delcares a new cell with identifier IC (see Section 2.2.4).

Note that tis a new identifier not occurring inc.

The 11ost unusual feature of this com11and is that the identif i(>r N is
not available outside the scope of the com11and.

The expression

VA LCF { •••••]

defines a •value block'. It is evaluated by executing the commands
(and declaration~) in the block, until a RESULTIS command of thP form:

PF.SUITIS e

is encounte?:"ec. '!re expresison e is evaluated and its value heconies
the value of the value block. Fx~cution of commands WLthin the v~lue
block cea~es.

languages and Processors: BCPL

May 1971

A value block must contain one er more RESULTIS commands and one must
be executed.

In the case of nestPd value blocks, the RESULTIS command terminatAs
only the innermost VALOF block ccntaioing it.

SWI1CHON e !NTO ~JQ~!

where the block contains labels of the fcrm:

CASE £2D§iIDl1_f!££~§§ion;
DEFAULT:

The expression e is first evaluated, and if a
constant with the same value, then execution
otherwise, if there is a default label, then
from there, and if there is not, execution
end of the SWITCHCN command.

or

case exists which has a
is rPsumect at that label;
execution is continnej

is resumed just after the

The switch is implement€d as a direct switch, a sequential SP~rch or
binary search depending on the number and range of the case constants.

GOTO e
fl NISH
.RETURN
BREAK

The command GOTO e interprets the value of e as an address, ~n1
transfers control to that address. The command FINISH ~a~scs an
implementation-dependent termination of the entire proqram. RETUFN
causes control to return to the caller of the routine. BRE~K cctos0s
executicn to be resumed at the point just after the smallest textually
enclosing looping command. The looping commands ace those with the
following key words:

UNTIL, WHILE, BEPE!T, REPEATiHILE, REPEATUNTIL and FOR.

There are eight distinct de-clarations in BCPL: GLOBAL, MANIF'ES'l',
EXTERNAL, dvnamic cell~ dynamic vector, function, routine, and l~bel.

A BCPL progcam need not b~ compil~~ in one piece. The global vector
provides~ means cf commqnication batw~en separately compiled segm 0 nts

2 ()

Languages and Processors: BCPL

May 1971

of a progrdm. The declaration

GLOBAL [~me : c.onstant-e.!l!ression]

associates the .identifier .!!.2.l!f with the specified location ill th?.
global vector. Thus Bg!g identifies a static cell which may he
accessed by M!!~ or hy any other identifier associated with the samci
global vector location. Global declarations may be combine1:

GLOBAL [n1:c1;n2:c2; •••]

Note the absence of a final ;.

The scope of a global declaration 1 j.e., the region of program
the identifier is known, is the region i•mediately following the
declaration up to the end of the sIDallest textually enclosing
except where the identifier is redeclared within that scope.

W he Cc:>

global
block,

An identifier may be associated with a constant by the declaration

The scope of this declaration is the saMe as foe a global declaration.
Within the scope of this identifier, use of the identifier is exactly
equivalent to using the £Qnstu~E£~.2!Q!l•

The constant-expressions in a multiple l!ANIFEST decliu:ation rtt:fl all
evaluated before the declarations take effect. Thus

MANIFEST [MASK=777B;NMASK= -,MASK]

is illegal (unless MASK has been declared in a previous MANIPPS7
declaration). Ho1i1ever

~ANIFEST [MASK=7778]
MANIFEST [NrL,~K= -, MASK]

will declare ?HUSK as --, 7778.

A "ANIPEST constant, like any constantr does not have an a1dress.
MANIFEST declarations may te combined exactly like GLOBlL declarations.

An identifier may be associated vith FNTEYs declared in other (indepen
dently ccmpiled) FCoqrams by the declacation:

21

Languages and Processors: BCPL

May 1971

or EXTERNAL [
EXTERNAL (

!!~.!!!~)
!!11!~ - .§.!r in.9_~~lliS;.U!].

In the first case the strinq-constant is assumed to be the same as the
name. The scope of. the~~!~ is th~ same as for a global declaration.
EXTERNAL declarations may be combined in the same manner as MANIFEST or
GLOBAL declarations. Every routine and function declare1 in a BCPL
program is declared an ENTBY (first se,en characters only).

The declaration

LET n1.n2, ••• , = e1,e2, •••

creates n dynamic cells {words) and associates them with the identi
fiers n1,o2,... These names ace known in the remainder of the block
containing the LET delcaration. They are also known in the expressions
e1,e2,... • They ace ll.Qi known within the body of any functi()n or
routine declared subsequently in the tlock.

[LET A = e1
LE'I B = e2
LET F(X) = e3
c1,c2; •••]

A is known in e1,e2,c1,c2, •••
Bis known in e2,c1,c2, •••
Pis knovn in e3,c1,c2, •••

The words reserved by a dynamic cell declaration are released when thP
block in which the declaration apreacs is left.

[LET A = 1
B ·-.- LV A 1

[LET l = 7
c ·-- RV 6] .. -

The effect of this program segment is not definea. In the curren~
implementation, it is likely that 7, not 1 will be assigned to c.

The declaration

Languages and Processors: BCPL

May 1971

I.ET N = VIC m

where mis a constant expression, creates a dynamic vector of m+1 cells
by reserving m+1 cells of contiguous storage in the stack, plus on~
cell which is associated with the identifier N. The scope of N is the
same as for a dynamic cell declaration. Execution of the declaration
causes the value of N to become the address of the block of m+1 cells.
The storage created is rele~sed when the block is left.

I...l-6 F~~£ti.£!!_g~£l~1:ati~n

The declaration

LET N (p 1 , p 2, ••• , pm) = e

declares a functicn named N ~ith m parameters. The parentheses ~re
required even it m=O. The scope of the parameter ndmes is th0
expression e. A parameter name has the same syntax as an identifi~r.

The first 1 characters of N will be declared as an ENTRY and ;ire thus
accessible to ether programs using apfropriate EXTERNAL declarations.

The function is invoked by the exFression

eO (e 1 .e2, ••• ,e111)

where expression eO evaluates
particular, within the scope of
invoked by the eir,ression

N (e 1,e2, •• ,em)

to the address of the function.
identifier N the function may

Irt
be

Each value passed as a parametex is copied into the argument list, even
if the expression for the parameter is a simple identifier. thus
arguments are always passed by value. The value passed may, of course,
be an address.

The declaration

LET N(p1.p2, ••• ,pn) BE tlo~!

is identifical in effect to a function declaration except that

(1) the body is a block rather than an expression
(2) no value is returned to the caller.

The scope of the parameter identifiers is the block.

2 i

Languages and Processors: BCPL

May 1971

The routine is called by the command

e0{e1, ••• ,em)

where the expression eO evaluates to the address of the routine. As i~
the case of a function, the routine N may be invoked by the command

N (e 1, ••• , em)

within the scope of identifier N.

Any function may be called as if it were a routine, but if a routine is
called as a function, the value returned is undetinej.

A label is declared by

A label dee larati en may precede any command or la be 1 declaration, hut
may not precede any other form of decldcation.

The scope of a label identifier is different from any other declara
tion, beci\Use it includes all of the SiDallest enclosin,J routin€ body,
function bo<ly, or LET block (whic1lever is smallest), includinq th,~
portion befoce th~ declaration itself.

Labels may be assigned to variables and passed as parametecs. In
general they should not be decldred global, but can be assigned tu
global vaciahl~s. Transferring to a lab~l after the block in which it
was declared has heen left will produce chaotic (undefined) results.

1.:.1..s..2~i mul ta~us_declara_t ions

Any declaration ot the foLw

LET-----

may be followed by one or more delcacaticns of the form

AND----

where any const:ruct. which may folJow LET may follow AND. l'l.s fc1r as
scope is concerned, such a sequence of declarations is treated like a
single declaration.

24

Languages and Processors: BCPL

May 1971

2. 3 PREP{WCESSOB

In order to make BCPL programs easier to read and to write, th0
compiler allows the syntax rules to be relaxed in certain cases.
Source t~xt input to the compiler is scanned by a preprocessor which is
capable of inserting semicolons and the reserved DO (or TH?N), wh~re
appropriate.

Thus the program~er normally can vrite BCEL programs without using the
command terminator (semicolon) and with fewer DOs than the strict
syntax requires.

The co•mand

causes the file identified by ••§lli!!Sl" to be included in the so11rc(>
text in place of the GRT comMan1. The translation of the string into~
file name, and the internal focmat of the file, are implementation
dependent.

Under TSS the string is interpreted as a directory entry. Under SCOPE,
the first seven characters of the string are used as the file name.

The chardcter pair // denotes the beginning of a comment. All
characters from (and including) // up to (but not inGlnding) thP
character 'n~wline' will be ignored by the compiler.

Blank lines {lines including only the characters •space', •ta.b', and/or·
•newline') are ignoren alsc.

Space and tab characters may be freely inserted except inside aP
element, inside a system res,ecved wcrd {e.g., VALOF), or insi1e an
operator {e.g., ::). space or tab characters are required to separat0
identifiers or system reserved words from adjcining identifiers or
system reserved weeds.

The symbol 110 is inserted batve~n pairs cf items if they appear on t h0

same line and if tbe first is from the set of items which m~y en1 an
expression, namely:

2'J

Languages and Processors: BCPL

May 1971

and the second is from the set of items which must start a command,
namely:

TEST ~OR IF UNLESS UNTIL WHILE GOTO
RESULTIS CASE DEFAULT BREAK RETURN
FINISH SWITCHON (

The preprocessor insBrts a semicolon between adjacent items it thPy
appear on different lines 3nd if the first is from the set of symhols
vh ich may end a command, name! y:

BREAK RErURN FINISH REPEAT
) !l.!~.!!~_g!]

and the s~cond is from tbe s~t of items which may start a command,
namely:

TEST FOR IF UNL!SS UNIIL ijfillE GOTO
SWITCHON (RV ~~!£n!
RESULTIS CASE C!P~ULT BREAK FE~ORN
'FINISH [

As an exa!llple, the following twc i;;rogram segments are equivalent:

IF A=O 00 GOTO I;
A:= A-1:

IF A=O GOTO X
A : = A-1

l~.!L..1_!§§~~~l.l_L~ngB~g£-£~di.!l!L.11£_£~-§~£.Eli~gl

1~£1-1J:~I~IY_2!_Sub££.Q.9.lg!~

Input.L.Q.Y12J!!-E.2J!ti11g§

The input/output facilities of eCEL are quite primitive and simple.

INITIALIZEIO(Y.SIZB) is a routine that sets up a free-space aroa in th~
vector Y of length SIZE. It initializes a global pointer to the buffpr
area (IOBASE) and the chacactec conversion tables (C6T07 and C7T06).

FINDINPDT(LPN) is a function taking a string constant tile name (LFN)
and returning a stream-Eoioter to be used by the input routines.
FINDINPUT initializea an input buffer and attempts to read a huffer.
load of the r.amed file. If no infcrmation is found, an error occiffs.

CREATEOO':'PU'!' {LFN) is a function takiuq a file ndm~ (L?N) an,1 r.eturninq
a §llilJ!=.I?Qin tm~ to be us€d by output routines. No testing of tttf~

Languages and Processors: BCP~

!'lay 1971

external file environment occurs, but a file may be opened any number
of times.

READCH(STEE~M,CH) is a routine which reaas the next character from an
input stream and ~tores it (indirect) in CH. Thus to get the chdracter
into a variable. A, one eyecutes READCH(S,LV A). If the strPam is at
an end of tae record, tbe chardct€r ENDOFSTREAMCij (= 144R) is stored.

WRITECH (STREAM,CH) is a routine ~hich writes a character onto an output
strea111.

READVEC{STREAM,V,N,EORl,ECRC) reads N words from STREA~ into V.C, ••• ,V.
(N-1). If less than N worris Cdmain in the STREAM the number of words
actually read is stot:ed (indirect) in EO RC and a trans fer to EOct L is
performed. Mixing calls of RFADVEC and READCH on the sam~ stream
produces undefined results.

WRITEVEC(STREAM,V,N) writ€ N
~ixing calls of WRITEVEC and
undefined c~sults.

words from v.o, •.• ,v. (N-1) onto STREAM.
iRI~CH on the same stream produces

ENDREAD{STREAM) closes the file and releases the buffer space asso
ciated with STBEA~.

ENDWRITE(ST~EAM) wcites cut
end of record, and releases
performerl until the file
opened.

anything remaining in the buffer, ~rites an
the buffer space. This action is not
has been closed as many times as it was

ENDOFSTREAM(STREA~) r~turns •RUE if the stream is at an end of record,
otherwise F' ALS E.

CLOSEALL{ performs ENDWRITEs and ENDBEADs on all open streams until
they are closed.

ABORT() pecforms a CLOSEALL an1 makes a standard exit.

~!her useful subco~!iE~§

PACKSTRING (V, S) packs characters V. 1,, V. 2, ••• , V. (V. 0) in to th.~ vector- S
(i.e., into s.o,s.1, ... ,s. (V.0/8+1)).

ONPACKSTRIMG(S,V)
N in V.O.

stoces the characters of sin v. 1, ••• ,V.N and stores

BCDWOBD(S) produces a left-justified, display-coded wo~d from a
strings.

ASCII(D,A} packs the displby-coded word D into vector A.

(long)

2.,

Languages and nrocessors: BCPL

May 1971

WRITES(S) Wt'it.es thP. charact<=>cs of S onto the output stt'eam OTJTPTJT (,1
global variable).

WRITEN(~l ~rit~s the number N onto the output stream OOTPUT.

WRITEO(N) write th~ ~lumber N (in octal) onto the output stre-1m OUTPUT.

The follovin':J glchal variables ace usBd by th~ I/O routines. Thc~y 'H::.>
declared in BCPLGD (see section 3.1.3).

IOBASE: holds pointer to tuffec area; initialized by !NITIALT
ZEIO, used by FINDINPHT, CREATEOUTPU'J', and CI.OSEALL.

C6T07: points to a ~isplay-code to ASCII conversion vector;
initialized by INITIALIZEIO, used by REACH and ASCIT.

C7T06: points to an outout str~am; used by wRITEN and wRITEO.

~ONITOB; points to an output stream for error messages; should he
initialized before any I/0 is attemptei.

Languages and Processors: BCPL

Play 1971

CHAPTER_3_-_USING_RCPL

A field length of 45,000B s~culd allow sufficient space tor th8
compiler to translate most programs. If the stack space needad grows
beyond the declared fiAld length, an ARITHMETIC ERROR MODE will
occur. There should never be an arithm~tic error for any other reason,
but there may be. The distinguishing characteristics of an arithmetic
error caQsed by stack overflow ace:

1. 86 contains a number relatively close to the field length.

2. 'Ihe offendinq iustruction is either
SA.i R6 + K

or
or

where
field

SA i Xi + K
SAi -Xj + Bk

i=6 or 7 and the effective address is greater than
lEngth.

thP

If these conditions are not satisfied, there is a bug in the compiler.

JiliJ_Usi ng_BC PL_ under _S,COP E

The four ccmmon files, BCPL, BCEL2, BCfLIO, anrt BCPLGD are public and
may be accessed by any user in the nocmal way. (BCPL2 is the secon1
pass of the com~iler.)

I!'!.e control~g

The BCPL comfiler is directed to translate a source deck by the scopr
control card:

LGO,BCPL,I=in...E.Y!,L=li§.ti.ng,e=_tina11,c=£2.!!!.Es!§f!,0=2£QQ~,N=gi!!!f,
T=,!f~g,SA,O,CR.

All parameters are optional and may appear in any order.

May 1971

interpretation is as follo~s:

Def a11lt
i~ll!~1~ Va_!]~

I INPU".I'

L OUTPUT

B LGO

c 0

0 OCODE

N {same as B)

'l' 0

SA

D

Languages and Processors: BCPL

Designates the fileset containing th,?
source code to oe com piled. If the
fileset appears to be empty, it i:.:;
rewound and tried again. The source d ':C {

is terminated by an end of recor-,1.

Designates the fileset on which the
source text, along with diagnostics an~
other information, will be writtPn. L=O
suppresses listing except foe di~qnostics
which will appear on OUTPUT.

Designates the fileset on which the rPlo
ca table binary wil 1 be written. R=1)
suppresses the output of binary.

O~siqnates the fileset on which a CO~PASS
version of the program is written. This
version may be assembled by COMPASS. C=O
suppresses COMPASS output.

nesignates the scratch fil~set to he usei
foe transmitting an intermediate ohiect
code between passes of the compiler.
This fileset is always rewound at thn
start of ccmpilation.

~ive3 a name to the binary and/or COMPASS
pcogram produced. I.e., N=n!m~ wouli
cause "!DENT Bl~~" to be the first linP
of the COMFASS program.

Designates a fileset on which a represen
tation of the parse tree will be writtPn.
T:O suppresses the printing of the tre0.

If included as a parameter, suppressPs
abortion of the job if the compiler tinds
ecrors in the source program. (.,,he com
piler often produces an executable [but
dangerous] program even when Prrors
occur.)

If included as a parameter, the listing
will ve double-spaced.

Languages and Processors: ACPL

r!ay 1971

CR Check ce~n trant.

The compiler is invoked by typing BCPI tc the Command Processor. The
compiler then waits foe lines of the for,:

All parameters are optional and may appear in any ord~r. If the
parameters inEyt or £9.!..E.9§§ are T~Y, the input is taken from th~
teletype or the COMPASS program printe~ on the teletype, respectively.
Except for T, the meanings of the pacam€ters are the same as above but
the default values are as follows:

I 'T'TY
B 'BI (i.e., BINPU1 is I=INPUT or gscPL if I=TTY)
c 0
0 OCODE
N Same as

.L. BCPl if .I=T':'Y

T causes the compilation t.imes to be f:r1.nted.

After each compilation BCPL Vclits for another line anr1 exits when FIN
is typed.

There are three tJpos of diagnostics given during compilations: p~rse,
translation and general.

A parse diagnost.ic occurs when a r~latively simple syntactic 0rror i:;
detected ~uring the early phases of comfiling. An up ~rrow is printe1
under the last character cead in before the error became apparent. ~

brief d~scription of the error is printed. Only one error (the first)
on any given line is reported. Errors reported on lin~s following the
one containing the first error sno11ld be regarded with suspicion sincf~
the compiler does not recover very well.

A translation diagnostic occurs in the later phases of compilation and
reports errors such as use of in undeclared identifier. Each error is
briefly Jescribed and a cepcesentatian of the relevant portion of th0
parse tree is printe~.

A few general diagnostics may occur at any time. They include such
mishaps as table overflows ~nd missing infut files.

.n

Languages and Processors: B~PL

~ay 1971

A PPENDI I A. Reserveti _ _words_and_Tok:ens

The following list of words dnd symbols are treated as atoms by thn
BCPL syntax analyzer. The alternate forms may he 11sec'l to avoi'1
multifle punching.

II1

SHIFT N

6
!

••
\

Standard ft u ll!.EJ:~l:l.!!£ h

AND

+ 11-5-8
BE
BREAK
CASE
DO
DEFAULT
END 7-8-9
::

=.
FALSE
'FINISH
FOR

~ 12-5-8 ~-
GET
GLOBAL
> 11-7-8
>.
IF
INTO
(5-8

i·
LET
,\ 0-7-8

" 11-0
< 12-0
<.
LSHIPT
LV
ft A NI.FEST , (apostrophe)
:;..
NEQV
-, 12-6-8
OR
REN
REPEAT
BEPEATONTIL
REPEATWHILE

Alternate

A SHIFT

THRN

EQ
LEQ

GE
LGF:

GR
LGR

LE
LLE

LOGAND
LOG OR
LS
LLS

NE
LNE

N0'1'
ELSE
MOD

]2

Languages and Proc,~ssor-s: RCPL

May 1971

III ~ndard l1Y 1 t ll.!~_f.J!!!C b Alif .. nrn.1~

BESULTIS
RETURN
SHIFT

$ av
SWITCHON
TAB IF
TEST
TO
TRUE
UNLESS
UNTJL
VEC
VALCF'
WHILE
+
+.

s.
*
I
,

12-8-7 . 2-8 ..
(

)
SHIFT K] 8-7
SHIFT M [0-8-2
~ --.

-> 0-8-5 ->
• .. • • • B

A string constant is delimited by doutle quotes (0-6-8, a n<l a character
constant by single quotes { 11-6-8) •

31

Languages and Processors: nCPL

May 1971

APPENDIX e. Gr~hic_TT.I_Character_Re.e.cesentation

ASCII Printer TSS A SCI I I ASCII ?rinter TSS ASCIIIASCII Printer- T SS ASCII

~hli Q;:~.Eh i,£ ~ !Chy g~.E~!f fodg 1£.h.iI \!Ii.Ehl£ [2:1~
l I

blank blank 0 I • -, 40 I :f- 100

! < 1 I A A 41 I a A 10 1

" • 2 I 8 8 42 I b B 10 2
t = 3 ' c c 43 I c c 10] -$ $ 4 I c D 44 I d D 104
I I 5 J E E 45 I e E 10 5
& " 6 t F F 46 I f F 106

• ., 7 t G G 47 I g G 107
({ 10 I H H so I h H 110

)) 1 1 I I ! 51 I i I 111

* * 12 I ,J J 52 I j .. 1 11 2

+ + 13 I f(K 53 1 k K 11 J
, , 14 J L L 54 I 1 L 11 4

15 l l'I t1 55 I m t1 11 ~
16 I N N 56 I n N 11 6

I I 17 i 0 0 57 l 0 0 1 1 7
0 0 20 I p p 60 I p p 120
1 1 21 j Q Q 61 I q Q 12 1
2 2 22 l R R 62 I r R 122

3 3 23 J s 5 63 I s s 1..::'.3
4 4 24 I T 'I 64 I t T 124
5 5 25 l 0 u 65 I u u 125
6 6 26 1 v v 66 I v v 126
7 1 27 I w w 67 I w w 127
8 8 30 I t x 70 I x x 130
9 q 31 I y y 71 I y y 1J 1 . 32 I z z • 72 I z z n2 . : 33 I ([73 I { (133 .
< < 34 ' \ " 74 I I b la nic H4
= = 35 I]] 75 l }) 1 3 '.>

> > 16 I A ,t. 76 I /V blank 136
? 1 31 1 -> 77 I r:ubout bVrnk 117

34

Languaqes and Processors: BCPL

May 1971

Table 2

Jon-Gra2hic_TTY_~haract£r_Be,Eresentation

Interna 1 I\SCII Key Combination
Cha~~~t Re.E_!.§gntatj,s;.r: s1stext_geEtesentation_ E.!!.!lCt!_Q!!.

HUL 140 I@
SOH 141 %A
STX: 142 ~B
ETX 143 ~c
EOT 1414 %D
EN 145 jE
ACK 1'+6 %F
BEL 147 IG 3ell
BS 150 IH Backspace
HT '*T' 151 II Horizontal Tab
LF 152 %J Line Feerl
VT 153 IK Vertical Tab
PF 154 IL Page Ej~ct.
CR '*N' 155 ,; !1
so 156 "N SI 157 %0
DLE 160 •u,
DC1 16 1 10
DC2 162 %B
DC3 163 ,;s
DC4 164 %T
NAK 165 \U
SYN 166 'iV
ETB 167 ~,;,

CAN 110 9' Y.
EM 171 IY
SUB 172 %Z
ESC 173 ,;]
FS 174 %
GS 175 '%[
RS 176 ' OS 177 ~~

J5

Languages and Processors: BCPL

May 1971

Unlike any programs loaded by the SCO!?E loader,
begin at 100B. The last program is fellowed by
common. under normal conditions a special
loaded before any BCPL programs. The following
BCPL programs.:

BCPL object programs
the first word of blank

program HEAD should oe
regist0rs are used hy

B1
B2
B3
84
BS
86
XO-X5
X6
X7

always contains 1
alvays contains -1
scratch register, used foe all calls
scratch register, used for all non-local transfers
always contains the first common address + 1
contains the dynamic stack fainter (>B5)
scratch registers
always contains O
used for all non-zero stores

Depicted below is a core map with certain special locations notei:

0 r-- ,
J Communication area l

~
I HEAD I
I -----------~
1 BCPL I
f I
I PROGFAMS I
l I
1-- ~

85 ->I I <- GLOB ALO
r-- -t
J GLOBAL AREA I

--------~
B6 -> I STACK AREA I

--'

Languages and Processors: DCPL

May 1971

APPENDIX D. Syntax_of BCPL

The notation used below in defining the syntax of BCPL is defined as
follows:

1. A class of elements is repre5ented by a !lQ!&tiO!L_Yi!.ri1,Q.lf,
consisting of underlined lowec case letters.

2. Literal characters are r:P.presented by upper case v~tters or
special characters.

3. The vertical bar denotes an alternative.

4. Braces { } denote a r:e pea table group.

5. Three dots • • • denote optional repetition of the imme,liately
preceding syntactic unit.

6. The following are not represented:

a. comments,
b. block delimited t~gs,
c. graphic esca~e s~quences allowable in strings,
d. allowable dropping of ; and DO according to preprocessor

rules,
e. synonyms for cB~t.ain system words and operators (see

Appendix A).
f. restriction on usage of certain constructions in certain

contexts,
g. required blanks •

.!l!!l.! : .: :::

.l.§!.!gI : : = A I B I I Z
gctal_g!,iil:!= 0111 ••• 1
g;iJli!::= octt11.1i3i~ 1819
§Yin~_fQ.!12.!:~!!.t'::= ncharacters ~ 128"
Ch!~~~1~_£Qll§t!n~::= •charact~r ~ a•
octal nnmber::= octal_rHgit. •• B
.!l.!!J!!!il: : = oct .a!..J!Y.!B~!: I d i.9!! , , ,
ide!!.tif!gr 2 ::= letlli {letterJriiqitJ •••

2. Qlifg_!:Qf§

adg!~§§QE ::= LV I BV
1Yl1Q£ ::= * I I~ REM
~ddQ2 ::= + I - I +. I -
§1!!!1.2£ !:= LSHIFT I RSHIPT

37

Languages and Processors: BCPL

May 1971

£~~.E ::= = f 'f <I> IS
~.9.!!££ ::= EQV ~ NEQV

) =. I# I <. I >. Ii· ~-

el~~l!! : :-= cbaractec ___ constantt string ____ constant I numhf!rf
i1~!titif£1TF.OE!FALSE

.Eiimary __ ~!£! ::= {~!.Er~ssiQn) fVAlOF blockjelementfErimary_exEr
(expression list)

vec1£!_~i.E.I ::= .E.rim~.£L~!l!! •••
adg!~filLe~.Ef 3 ::= ~~~Q.£_~XEr1adg£g.§§2£ ~11[~22-~1£1?£
mul~.E! ::= address_ex£.Itmult €X£r mylto,E address_ex.e_r
,li_g_g..!E.r ::= .mYlL~ll!l~dd_eJE! 21~2£ n1!.-~~Et
sh!f!_llR! ::= ~s.L~ll:l~hif~!.il .§!!iftQ£ g_Qg_e!(Q£
ru_expf : : = sh!f!_st!li {£g1oe 2.!!!!Ll!lHJ • ••
112.!-~~£! : := I~lJ.!.E£ I -, ,not-£.!.E!
a!l-4-~.E! : : = .n ct e .!.E! { no t-~!.E £} •••
.Q!'._~n.r : := g!1g_~.!.E! l~J!fl_g!.E!:l • ••
~Y-~~.E! ::= QI-~~.£! {~gy_QE Qf:_i!EI} •••
£2~di!12E~1 ::= ~g~-~!E!li~~-g~.EI -> ~2ngi!i2~,£Qngiii2n~!
exrression• -: := conditional I TABLE constan1. __ ex.E£ession {, constant

~.!.E!~§iO_n} •••

~ -1,!st : := exp~gfil?.!211 l~!~~§§JQ!!, !HI?::11§1
n~ression-li§! ::= nJJ!li~E:::!i§!
.n-1.ist .: : = idgnti,f ier: u.s~n1!!i~~, n:::li2i
!!U.f-lis! :.:= mulJ.1.n::J.i..§!

manifest-nem• : : = ideotif i€I: = cons tan t-e-xnressio r.
manifest-list::= manitest-item,~anifest_it~rn; man1test_L1st
~ifest-declaration ::= MANIFES'IL mfillifest-list J
gJ.obal-i ~il .: : = ident ifie:t: : £.2~1ru_g~{?£.2§§.i.Q!l
global-list :: = g_!obgl-ite,!!lglobri_!-.item; g_lobal:;:list
gl.QRgl-decl~~~tion : : = GLOBAL [3l21!.~l-!i21]
ll!~J;"Dai=i tit! :: : = j,Q,g!!1if ie! I i4s!!l.!i.!J&:t: = fill'.illiL£.Qil2!.~.!li
e1te[nal-list ::= external::itemJexteniill.-item ; external-list
~~al-~eclardtion ::= FX~ERNAl[~!te£n~1-li§!]
ru£I~~tllli1.iQ!! === ~li.§.t = g!1=11.21
vector:-~efinition ::= i~e~tifi~r = VEC constant-ex£ression
!JUl£!ion-def initi.Q!l : := i1gn ti!.i~r <) = g!1?££~.!2Q
routine-definition : : = identifier () BE hlock
definition -: : = sim.eJ.e-def ini tion I vector_def ini tion I

function definiticn11outine_definition
§imtle-declaratior. ::-= LFT 1efinit:ion
de£,l-t~i1 ::= AND definiti.2..ntAND ~g!.i!lit.iQll Qg£l=.t£i1
simultaneous-de£.l.aration : := simge-declar-ation decl-tail

:rn

Languages and Processors: BCPL

May 1971

declaration : : = sim.E.le-declara t ion I simul ta neous-declara tio n 1
global-declaration1manifest-declaration

declar:at ion-grt ,: : = dee la ration I dec,!ara tion declara t ion-gart

6. left-hand-side_EX£r~ssions

7. Colllmands
-~ii.~rn.i~nts ::= ljft=han4=~ig~_Jj§! ::= g!£=li2!

§.i..!!Le.l~~2llgnd ::= BBEAKIBETU8NfFINISH
.!I2l.2::£2£J!dl}~ ::-= GOTO ~~!t!:~§.§i2!!
U?Utine-command ::= functi,on-a,2,Elication
~§Y!i1s-command ::= 8ESOLtIS ~!£~g§SiQg
§.!!it£h.2ll=£Q!.!.s.!!1 ::= SWITCHON §!f&~§SiQll INTO Q1Qf~
~peatable-cfillm~n_g : : = ~§!@J!l~Il1 t §.!.!!£1g=£Q!!l!!.~J!Q I 1212=£2.!!!.!!l.fillQ I

rgytin~=.£2!.!~ndl£g§Q!1i.§_£2!!sn11
.r~12~~!~4:~<.?!.!t~n,gl §.! i tc.h2n=~Q.!!J!!g!!Q I !!12£!i

lll?~il=££•1!lsnd ::= ~~~ull~=~Q.Y~l!.9 REPEAT
ilR.ftatvhile-col!ll!a!l.9 ::= !'.iU!E;!at1!!l~=£.QJ!l1!~D.i! REPEATWHILE ~~.E!:~§.§12.!!
~eeat l,!I!,t il-C.Q!.!!HU1Q : ;:= !:~E~1~.2.!~=£.2!!U!!Q RE PEA TU NTIL g_!.E.£.g§§l:Q.!!
I~E~ated-£Qmmand ::= r~peat-commandl~~eatwhile-commandl

Ig£2.}l9Dti!-command
!!Hi1=£.0llmand : := TEST £!2£~§..§1.2.!l no ~!!!ngD.Q OR £.Q.ID.!!E!.!!Q
ggt-comman~ ::= GET §1£ing=.~Q!lfil~!11
.if-command::= IP ~2~22iQ3 on ~Q!!..!fil!g
unless=£Q!!l!.11nQ ::= UNLESS gJE£~~1Ql! DO £Q~~~.!!Q
xhile-£Q~ft9 ::= iH!lE ~££~§§!Q~ DC £Q!filgng
.!!.!l!il-£Q!!'!an_g ::= UNTIL expr§.§si.9.n DO £Q!1U!!~.!lQ
!Q!.=..£Q.m.msng ··= FOR ide.ntifi~ = g~~£g§§i2.!! TO ex_eression D0

co11mand
.Y!llabe1le~£~mmai~ ::;-£epeat~ble-Cfl!!,fillgl£gE.g~i~1::£.Q~fil~Il21

te fil.::.£Q1!1!£1!.Q f. if-co II m..§!l.9 I ggt.::.£2.!!~llQ I
~~1&1UL.£Q!J!!ndfwhile_c~!.!!aD.dl~D.!il=£Qfil!~n1

8. Labe].~fref i!~fu. and La]2,gJ:led C.9B!~JJdS
~h~l=Erefjz ::= 14~~ti!ig£:
g§,£.=£1:'ef y : := CASE £.Q.!l~Lt211!=~~.E;:~§Si.!2!l
def~ult-pcef i! ::::: OE FAULT ;;
..£Ief ix : := label-.ECef ix I case-..e~ fix I default-_eref ix
£.2.fil]!and ::= unlabelled-commalli1f~~€!iX command

9. Blocks
-£2miang_lis_! ::= command!~£!!~~~. £.2.!!!!l.a!!.Q_li§t

body::= ccmmand-listJJeclar:atio~-£artfdeclaration-£art;
£.2.!!J!~ nd -1 is.!

bl.£Ck : : = (h..95!1]
HQ.9.Ill : : = £.21.I

Languages and Processors: BCPL

May 1971

1 See 1.2.2 foI further r~stcictions on strings and charctcter
constants.
2 An identifier m~y not be a reserved word. See Appendix A for thP
list of reserved words.
3 The operands of LV are restricted as per 1.2.& Addressing __ o2erators.
• A constant __ exEJ;:ession is a conditional evaluable at compile timP..
Specifically, it cannot contain identitiers which are not manifest or
the operators LV, RV, VALOP, vector apnlication (.) and TABLE.
~ The lengths of the two lists must be equal.

40

