> THE LATEST WORD ON THE EXCITING STRUGGL- TO QVERCOME THE ELUSIVE

BLOCK*GONE*FROM*FILE*IN*MAP/CHANGE*UNIQUE*NAME*OF*FILE PROBLEM

(CONSIDERED IN CONJUNCTION WITH TURNING MAPS ON AND OFF)

Maps now have two counts on the compiled part and a new Ilag on the
logical part

1) a local BADMAP count

2) a local COMPACTION count

3) a map on/off flag,
There is in addition a new flag on subprocesses, but it is very eluslve,

It says'ihﬂ‘kr or not the subprocess is suffering from a pending map

error, whexhe

To begin with the map on/off flag B

1) An action to turn off the map of a specified subprocess will be
produced in due course, It will decrement the map count on
all kimegkg file blocks used by the map and set the bit to off,
(One gets an error for trying to turn off the map of a subprocess
currently in the full path, Is that OK with egerybody?)

2) txximgka doing anything that might cause a subprocess with its
map turned off to swap in w1ll cause an’ error, as discussead
below.

7) The operation to turn the map back on will be fraught with all
go rts of hazards stemming from missing blocks and files, but
if one is lueky, it will find everythling présent that is

e necessary and increment the map count on all the relevant =

file blocks and turn the bit off,




Nhén one changes unigue names on a file, if the fille has a block in

a map, the map count on the block is cleard and a global BADMAP count
is incremented., This deaves some map, somewhere,s&tting around with
one of its files ripped off, This may later lead to an error as

discussed below,
7
\
I regret that I must also mention that some careless code may callou 1y
destroy a e-list that is the local c-list of some linnocent subprocess,
thereby causing said innocent subprocess grave emparrasment, (When the

current swapper tries to bring in such a subprocess, it destroys the

process!) But have no fear, rellef is at hand,

How is one to see one's way out of this cquagmire? Well, let's start

with the hard-working swapping code, MAPOUTZMAPIN, which do the bulk

of the systems swapping work, Here comes this subprocess to be

swapped out/in, If the two local counts on the compiled map are up=
and the map 1s on,

to-date,Athe swap proceeds, But, 1f a count 1s off, further action 1ls

taken

g if the map is off, an error is signaled to the caller (no_swapping o2
)

-0

if the COMPACTION count is off, the map is recompiled r complling

no

if the COMPACTION count is OK, but the BADMAP count is off,

2 check is madéitorsee ifg aliuflles in the logical map are
still present; if so, the count is updated and the swap
proceeds, but if not, the map is recompiled.

Whenever the map compiler encounters a missing file in a logical map,

it zeros the map entry and proceeds with the compilation, KX Tt Lo

_exits with a signal if a file was gone, MAPOUT/MAPIN return this

signal to whomever called them, The map is then swapped (with a

possibly newly zeroed entry).




Now, if we're swapping, we're either swapping in or out, it you see
what I mean, S0, suppose we're swapping out and we get one of these
funny errors from XARBRXX MAPOUT, what the nell do we do with itg3
Remember that the subprocess we just swapped out may not even be
part of the full path currently, ror reasons that are classified
(the president knowgbest though, you may be sure), Well, we
1) mapefxizxaxBIZAETER ignore a mapoff error, Because you can
only turn off the map of a subprocess that is out, This
means that the mapoff condition was detected on swapin
and the appropriate error generated as describled later,
2) If a file was gone, since the entry was zeroed, the subprocess
will swap back in later with nary a whimper, so we flag the
subprocess at this point for a pending map error,

And that about covers swapout,

But what about swapping in? Here we ean encounter three different
hassles while ixmm Jjust doing our Job and minding our wwn bulsness,
1) If the local c=list of the currnet subprocess has been ripped
off, we generate the appropriate error right away,
2) If the logical map of one of the subprocesses in the full path
is turned off, we generate the appropriate error,
3) If MAPIN reports that the logical map of one of the subprocesses
in the full path has had a file rippede off, we also generate
BN STTOT,
4) Llast, if we see that one of the subprocesses that we are
bringing in has a pending map erpor condition, we again

generate the file-ripped-off error, The flag is turned off,

But what if they all hapcen at once? Only one gets reported, namely

1) the c¢=-list error if it occurred

2) failing that, the type of map error occurring on the subprocess




closest to the current running subprocess is reported,

Well, I sure am glad to have that off my mind, Oh yes, I forgot to
mention that when the map compiler encounters a missing block when

it's compiling a logical map entry, it is still a DISASTER,






