

WK\ ~ - ,ru__ (Ar_ :IV\U -s~ ~':.k.lM.

: ~tu. i Cur1ru.-l'C!j ¼'YMU~ LM-l.'1..w ,-:;s

1.1. ~\~ -~~ ~tl

1. L A+ U..,. Uvtsuk ; 'Jo\:. ~IU_~ CL1Ari ~

1. 3 ~~>le. ~ '>SU!I<..

1.4 ~)o~

C~tu ~ - ~~~~ l~cl.J:t~
t l ~k

Z. ~Wlw

3 ~~~'?>

4 ~~r-ou...~SL~

~ ~,,k 3 ~ \v..hs~ s~

4
.l.,. ~~ E~

· i ~ ~m~ (~Lk Sd.ct.w >
. ~ 0C.D?£ S mul.a.tu<

3 . '-\ ~°'i~ .I./o (Gern>E t1 Dutu PrPe)
6 . S '&:'f\~ Dcxec,,~ t;_s+ (l)U~)

3,Co ,._.. ~

t::---7

:1es ~~5./v ~ ·
J

;

/ .

a "-°tj '{ •, /, ~/1 /';_ I

{ft_~.Z (r , r' , ,r./'--------;--. - t

(J r

C

;;r-_ '(J
I' .,,. I ~,

)

r , ,: r. 7 -L ;Ir

--- /, 'l yt..('"r,

I

;z; 'r. ' 1
If , L /i'r • I I ,,.

....:

..
/l I. i1' ,-; ,

(J

,.

I'

ff I ;r

[n r .

J) I I ,,,

- er r

- (I'

,, ~
-1 -

r ,.. 1 r- ,/4-
r /j - ~

~ctr, /,_j!r

IO t ,f~

I)

I:) -72e
_,.

1"n'l t ti-

I h) /

I

f

l"fy l'1

~;;,
~ -, r 'fr /<r 'Y ✓ l- - ✓ /-?A',

l ,,,. u ,,, ,,,-r.:-~

,.--,./ (i" / .- -I /
t"/rf,

. . '

l

- '7() ii 11) - ~/)'
tJ r : clys A

) f;q_ '3, Z ~ '..., ~
I -._ ■

• • • • • I I _,. • . i: ~ .. '. . . .

1 zJ ~ ;· 10 ._ ;~ · f/1 i./
(. .fa1 ✓ 7

F.d- '/ 33) f IQ - ~ ~f ¥.15

3'-f) f /{- ~· ~ l t)Jj_ ~

3 s-) - m A 8(< (7IA.,r u .

:iZ:) '
~~_...._-~

. -
·r-•T) ~ 2 :/2 ~--,,---

Zero a c a)ab il ity

E" nt ry pt: : cp zro
e c s r e s i oent
cle c k : c apab

Pl H: Index in full cl i st of the capability

ction:

Fill the t wo words of t h e indicate d cap ab i lity wjth
z e roes .

Errors

2 4 l neg clist index
2 5 1 clist i ndex too l a r ~e
2 6 1 not a cl i st capability (ind i r e ction)

mob.mmM1'001lmmJUUilmmmJ11MMMmm111mtma11u1uitmnntJ>tB~mi:lmim~mmmmmm
8 0 1 clist go ne from mot (indirection)

Find Nth Son of a g iven Subprocess

ent ry p t: f son
c cs res jden t
d ec k: subp roc

Action

Returns a class co d e f or the son with the same op tion
bits as in the origi nal class code for the father .

Hoes an F- return if alleged f a ther has no Nth son.

Errors

4 1 Alleged f a ther does not exist

~

J...I-J._1 V \....!..L...:..\.....i J. L '.J.. . .1 .•.• d .. I.,

E. •• vr .: v

.._; t -- .
V

.
-) v., ... ,:) .J.J w .1: I _______ _ I

L " ~.f
... e

,.,
'.J:.::cr:zx

IK 17 0

0

l 1 l
....

3 ' • r Jc L
)_ i] w .J ~ w (_ L. J

':r'P ..1...C'::!n ~.
,., ,..+
"

., .
+., y ... ri:-f"' t ',"" .. " re .. ., ~ t .:.no. :: 8 "t~C .:..::-:..e:: -.,,:i _ .,__

-,...J, I., :: ..:\1
,...
.... - - t, - t"

' ' c:. ... T - 1 .!. ~ l l 0 .L L L . ~ Vf-.Jl! -; , -
V

. '\. . ! •
-'2 ~~

n a
-) L

C lac ... : ~i ,.i2J.' ~ --
... '] L, n.J ~ "I., v ...

t ' l - ... ~ .,..a..l,1L) . ..,,.,.._ C V '-"11 red .
:tn Lf7 3o~z .. 0

41-)
:..)V L _).::, C' ~ t.:,

'-' -- ':i..t.. .c[l .. u. 1,;;: I
U,.l Lv~ . c, c, , ...

r t L-V ~ V . I• "· •

..,
...1...,-_,)..L.......,.i'J.

.! sn ::.,: ;: = v ,
G.1,:: =

-ts:..~ t

., . ~ t 1_U~' . 01 \J. tP vr CC

.,_ _:, ·.·~rc.l ! N follo··::. .'---'
c- J.. ,__.tur- r ll . ""°',.-.r•iz -':i" ·

:: ,J ,, I"'L.- '""'u1--11ed ..J.
0

~ e
dl..J- Qr of r1~,t~, ("

'I

;/ j Gd

et -

"' V

7

-
"" V.r:' v•-•~.1,."\, • .r.: - U °'1-J..J e

C. : J · ..,

't:1:..-.,ie
~.L-- :~J

t G I

.L
V

er

w

:."i-<.-G. .
..., ::.n

C)

ol
0

! • • a.vearte

l., :

~I - tJ .
t .e t; e cf' ".!, ,

n .

I .

1?1 D:
IP2 ,.. .

u •
L-::_i j):

.. t -
,J . ~

L;_ uO
• 1

-'--U.

,_;

ty ,:iew ,

to exlr
~ • .y, ,,.;;.::, t.1 J..

3 t l..,[se

·at~li t - - ---

'<-

+ ..., .
y e ••' L ,._,._;:

...

L..i... ... _:i,._, V,:..'l

i

tr.e

r-

---- -----
Pl 1.,,1..l

..... o is
01 ti.e c·- 1 ir..;,

1.-~l-. ...:_, 1.4_-:, d:.; 11 t .1. ~

t

AuLu

r:.:: u
"'c,ur..1BQ Cr

zrrx ,.
c.,v ..LJ:.,, '

0- ~=- ~.

........ e •

,. .. _

',-1 \..,,;... .,1,. __ -.- \J L..:-J....,.LJ ;...J".J4.- ... _\\., ..J......i--,_; •

·,~ ...J. s
....,_"l '"8v

- '---'- C

or·

:l rt C -f.' ::_c,

ec:.:,,ie
i:-i.

.p

':o

the
t;

.,__~ 0) } • 1' 18

1: u'+ 1
l u .tm..;er ,.__,:; u. • t

::.._,::i:di~t-::l,;

n
inoru~r . ~~~ cJ

~ s tl . _

....,;_._UC.1.

v.. · t'U.L

•
•

..A.' t~1. ... vi

- -""t :.: -'- ~.L __. u..

• ..
•

LE: t ,L,~ t.lu ... ~::..1..1d ... ~ i.._t.,;.r· t ..
J tvic o r~~ion . l~~n x ~1ot

I '"
f o l O'.v r."

:--e .one)
~ es':: I'',H.o•l

::t, ::..ly -
:.. .1.1 .,,.e idu .:.c

v _.J ~l.:,c . c·
'.;.."'B-\f j_ 0L1

n t· e
- OJ.~ l'l1

"'d, -,
-. '

t:.0.r .
t

+ ~·..i...ot:.

If l)

I-r --.,J • .i..•-_jJ\.

C

-'.:, __ c

a
3

'i t,

lJ. :._.:=.__:_tie
inJ I c ~ L,ci ind.ez i

"'--~~. .i.c.ved .

r.

0

•
•

•
•
•

C

...... .I. .1..,, te~ .. ,-
r0c-:;

' + ..

E. u.

in
... : e n

... C ...;rV1 . .::_

e i· t ly
C i::' ':'..81'.'G

re

s

.,.
,.-,1,.,,,l\,,,,l'..;.~.J.. J. j\..,..,, ""· - -.--.J..-

I..,

Rat 'l';l

.LJ : K..?~r:..f~ ..&; ..lie. 1 -rJ: r. ~-UID: ,..,

"lG. t.c

//" ,::;

i--,.::tlirn
• 'O '- 1 t

OJ t

If

-L
y

t:l1" Cr., Cl,

".t=-o:. .ere
:_e :=__ i ~ J....--'

0:."':.·or e i t:1e'l";
•

fj ~: :' i C t ::_)11

forn

~u1J
0-L.~ t c..,f :L._2, r..

..:roviued t
c::, rr

!1' - t
::;-.

0 i 'Jc.,.u A1
.,..
.l.

~ y, ...1...-.... ~-

011 c,.} - O'i

V '
ot

0

v1.e

tr t~ 1-:.e
,C l.,PV);;_._ • .:. •• 6 cl

:..~eE",
... cu:.."r,

C t - 1

"0 0

i.rt1ed in t J

"'

"J

:,iL U . .l

:t ri t

c 2r2 tion
etc::.

C lr

C •

I'-

C

I'-

u~ . :;:::~'"I)
~God

-1, ,.,

_it,·"

. .:_11 ,,._ __ ar:;ed

CAL Time-Sharing System Users Guide

November I 969

Computer Center
University of California

Berkeley

•

TABLE OF CONTENTS

User-System Interaction

Requesting a System Action

System Actions

Allocation Blocks ...•

C-list Actions

File Actions .

Process and Subprocess Actions

Map Actions •

Event Channel Actions

Operations

1

1

6

6

8 ✓ - d <t-~ 7-c. 1.,1. 1•

12 ~ lll

20 -r:

40

46 V

50

..,

Appendix A Summary of Actions .•.......... 58

Appendix R Options

Appendix C Error Classes and Numbers

66

68

User-System Interaction

The ECS portion of the CAL Time Sharing System provides a number of

actions which are available to the user so that he can interact with

the system. The actions apply to the objects created and maintained by

the ECS system: files, maps, allocation blocks, event channels, capability

lists (C-lists), operations,processes, subprocesses, and class codes. A

record is kept in a table in ECS, called the Master Object Table (MOT), of

all objects existing at any given time in the system. Each entry in MOT

gives the name of the object and its ECS location.

The user makes a call upon the system by setting up the appropriate para­

meter list for the action he wants to initiate, prior to passing control

to the system entry/exit routines by executing a CEJ instruction. (The

CEJ, Central Exchange Jump, causes the current contents of the 6400 central

processor's registers to be exchanged with a similar 16 word package in

Central memory.) The system entry/exit routines determine the nature of

the user's call, collect and check the parameters needed for the action,

transfer control to the proper system action routine, and finally, return

control to the user (by another CEJ, which restores the registers) after

the system action is completed~

Requesting a System Action

The CEJ instruction used to call the system supplies the information required

to initiate the action and return to the user. (See Figure 1.) In parti­

cular, it is expected that the CEJ was in the upper 30 bits of the instruc­

tion word; of these 30 bits, the lower 18 bits are used by the system to

locate the user's input parameter (IP) list. If this 18 bit field is nega­

tive, the complement of the low order 4 bits specify which register in the

user's exchange package contains the input parameter list pointer (e.g.,

-3 + B3; -10 + X2). Otherwise, the 18 bit field itself is taken to be the

IP list pointer. This pointer is checked for legality (i.e., it must be

positiv e and l ess than the user's field length) an<l an error io generated

if appropriate.

J

a)
. ,o-~~~ ' ~] 0

).) A. .. ~ J,N.;1: JZ 12•:6
· ~ 1, i 2i;;a, rr: . .

C·
#P-'tfA

£At.I-/ ~ di-IE •Ju .. •• H 1>tFot..l-4"v•~C,
-keh entry in the input par eter (IP) list is @ieti lili5 .a lii'1aliii& lieea it~

sift aR i ndex :i.R1ie t:lte us e.r's capakilit!J l i st (C list) , designatiug a

£apabi),i,,qt_, Each capability residing in a C-list authorizes access to a

particular object in addition to giving the object's type (file, process,

event channel, etc.) and the set of actions allowed on that particular

object (option bits).

(called IPO),

2-

t

The first parameter, that is, the !_i r.s t £ o!!? i e l list

is always expected to be a . u11 !'Li -c...= ; l J

This parameter, after being checked for legality €t us s; ••

1 · 1 0 c&C-/~~
11a be

-,,sttiJ a and wa thin awe range of e:lw f dil.: • list,-_ is used to fetch the

capabili ty for the operation which specifies the action to be performed,

and the nature of the parameters of the action. (If the capability is not

for an operation, an error is generated.)

Operations are ECS objects which direct the transfer of control from the

user to the system when the user calls upon the system. They identify the

action(s) to be taken by the system and direct the passing of parameters to

the system or between user subprocesses (see SUBPROCESSES). An operation

consists of one or more orders, each of which designates a particular sys­

tem action, and a set~ ~\ rameter specifications which indicate the type

(capability cy: datumj of each parameter required for the action and the

required options for each capability parameter. Basically, the parameter

specifications in the operation are of two genere - parameters which are

permanently "fixed" within the operation and those that are to be provided

by the user. When an operation is first created, before any of its parameters

have been specified, all parameter specifications are typed "none". Before

the operation can be used, all of its parameters must be specified using the

!ictions -provided_' for spec;ifying operation. parameters (see p. SO). If the

action is parameterless, the operation contains no parameter informati on.

The system entry/exit routine reads the first order of the operation and

uses the parameter specifications to construct an actual parameter list.

This list consists of parameters which. are "fixed" in the operation and of

user-supplied parameters drawn from the IP list. The IP list should con-

3

tain, in successive words, datum param(fters (_indicated below by "D: ")

which are transferred directly to the actual parameter list, and C-list

indices (indicated below by "C: r,) which designate capabilities in the

user's full C-list. Two words are copied to the actual parameter list

for each capability parameter (~apabilities are two words long) and one

word is copi.ed for each datum parameter. During the construction of the

actual parameter list, errors will be generated if 1) a c~list index is

bad (i.e., is negative or outside the full C-list); 2) if the type

and options (indicated below by "OB.x") in the capability do not corres­

pond to those specified by the parameter information in the operation

(this checking is not performed if the parameter specification i s "any

capability"); or 3) if a "none" parameter specification is encountered,

in which case parameter processing terminates.

After the actual parameter (AP) list is completed the operation is checked

to see if the action is a subprocess call or jump. I f so, a flag bit will

indicate the presence of a class code (the subprocess name) in the opera­

tion. In this case, the operation also contains a parameter type bit

mask indicating the type (capability or datum) of each parameter. The

system entry/exit routine places the class code from the operation, the number

of parameters, and · the bit mask into the user's process descriptor in the

act1::1al _parameter list area.

Finally, the ECS action number is extracted from the operation and is used

as an index to a jump to the proper entry point for the desired ECS action.

When the action is completed, control returns to the user.

Under some conditions, when the normal function of an ECS system action

cannot be carried out but the condition is not serious enough to warrant
I

the generation of an error, an F-return will result. If this occurs, the

count of F-returns initiated for the operation is increased, and the

operation is checked to see if it contains any more orders (which are spe-

cified as alternative actions). If so, the next order of the operation

is interpreted. This process is identica.l to the one j~st described,

except tha t the actua l parameter list contains the paramet ers for all

orders u~ to an<l including the current one. If the F-return count reaches

the number of_orders in the operation, control is returned to the user.

There are two different waya in which control is returned to the user

depending upon whether an action completed normally (possibly after one

or more F-returns) or the F-return count became equal to the number of

orders in the operation. The normal return causes the user's P-counter

to be incremented by the number · supplied by the user in the low order 18

bits of the CEJ instruction word originally used to call the system. The

new P-counter must be positive and less than the user's field length; other­

wise an error is generated. When the return to the user results from an

ultimate F-return, the user's P-counter is left unchanged.

Figure 1 System Calling Instruction

I I I

(AP) list Interaction (assuming no fixed parameters*)

Datum

Index for a
Capability

Datum

Datum

Datum

AP

[

specifies operation ·to dire construction
----)~ of AP lis.t and transfer o control to prop

ECS action code.

Datum

Datum

the AP as they are encountered

r

5

Errors: The use of improper parameters in making an ECS system call is

considered to be an error on the part of the proce·ss which is making the

call. When an error is detected, it is first assigned an error class and

number. The class identifies the type of the error, while the number pin­

points the particular error within a type. Furthermore, associated with

each subprocess within a process is an error selection mask (ESM) indicating

the classes of errors the subprocess is prepared to handle. The "ancestors"

of the current subprocess (seep. 31) are checked (starting with the current

subprocess) to find a subprocess whose ESM indicates it is willing to handle

this class of errors. The subprocess whi h accepts the error is called and is

passed the error class and number. Execution in the error processing subproc­

cess is initiated at the normal entry point-1. A precaution is taken against

error loops; the subprocess which accepts the error is temporarily disquali­

fied from accepting any more occurrences of the errors in the same class.

Error
Class

2

2

2

2

7

7

7

7

8

7

2

2

10

2

Possible Errors during System entry/exit processing of
an ECS system action call

Error
II

2

3

0

1

3

2

0

7

0

1

0

Error Descri tion

The IP list pointer address is negative

The IP list pointer address is greater than the user's
field length

C-list index negat~ve

C-list index too large (not within full C-list)

First parameter (IPO) does not point to a capability for
an operation

The operation does not exist

"NONE" parameter specification encountered

Type or options bad for a capability parameter

C-list does not exist

IP list extends passed user's field length

The new P-counter is negative on return to user

The new P-counter ex~eeds the user's field length

No subproces.s to take error class

e,o

6

Sys.tern Acttons

All system actions which can currently be requested by the user are des­

cribed below. All actions are calls upon the ECS system except for the

subprocess call and return actions. A summary of required parameters and

possible errors appears in the Appendices.

Allocation Blocks

An allocation block is an ECS object which regulates allocation of ECS

space and CPU usage. An allocation block is provided with a sum of money

and a portion of ECS space, which can only be obtained from another alloca­

tion block. (At system initialization a Master Allocation Block is created

and provided with an infinite amount of money and all of the space in ECS.)

Every object is associated with an allocation block; the objects associated

with each allocation block are linked to that allocation block in a two-

way circular list headed by the allocation block itself. The objects of

ECS, therefore, form a tree whose root is the Master Allocation Block.

Each allocation block is billed for CPU-time used by its descendant processes

and will be charged rent on the ECS space occupied by its descendant objects.

There are four actions which the user can invokE:_to manipulate allocation blocks.

He can 1) create an allocation block, 2) transfer funds from one allocation

block to another, 3) request the capability (with all option bits set) for

then-th object in the list of an allocation block, and 4) destroy an allo­

cation block.

A. Create an Allocation Block C -C I

IPl C: Allocation Block (OB.CREAB) tdO

IP2 D: C-list Index for returned capability
I

When creating an allocation block, the user must first specify the index of

the allocation block which is to provide the ECS space occupied by the new

allocation block. The second parameter provides a C-list index where the

system can return the capao.ili.ty for the newly created allocation block.

. - SB~I/ED S,~

. .· 66 ra. ,~ ..

JO

~r-z.~~)/2t12
~ ~

~

~

...... Tr~

~~4118~ ~I-JI~
o. J7µ

"'::'IV"2..~~~

7.~
AB ~

,~N Y-Mf_, .,,~,<~ ~

./h5LA/3

2 4
A8
A:O

J

F
(03.

C-

~ ~""~✓fA ,J,,
~~~~....a!! ---11~.rl.!_~ ~ 7 





) . 



I. 

l 

IP! 

.l/Jl 

IP3 

This. action returns to the user the capability for any desired object 

whi.ch is a first generation descendant of an allocation block. The first 

parameter is the index of the capability for the allocation block 

to which_ the object is associated; the second 

8 

parameter specifi.es a C-list index where the system will return the capa­

bility, and the thl.rd parameter gives. the position in the list of the 

desired object. If this index is zero, a value of one is assumed and the 

capability for the first object in the list is returned. If n exceeds 

the number of objects in the lht £or the specified allocation block, an 

F-return is made. If the capability is returned, a11 options bits are set. 

Possible errors: 

Class II Descri:etion 

6 0 Allocation block does not exist 

2 4 C-list index is negative 

2 5 C-list index exceeds full C-list 

2 0 Index for object is negative. 

l 

l 



EC. FLIX/. - A(~ at-,,,c uLJ.. ~ ~ 
(;Atf.6C T-,,.,,,...J,,(A.-~~f~+I 
COM GN-t - . . --- .,., I 
CL/-1 C~IT - ~~~ 

IA TI-tG-Afr -~ . 

~~µoT/7.-
. ~ ~ ' /4/4 ~ 

F/t& . t)_ ·~ ~,~- ~ 
~t~ ~ 

~~~ 
T~ ~A_J

~
~ St~~~!:e5 ~ ~

:,

7 -
Possible errors while creating an Allocation Block

Class II A1b0 DescriEti~n

"3 6 0 Allocation hlock does not exist

'-fO 6 1 No ECS available in that block

s e, 6 2 :We 1B9R9Y Q,Hiiil.:J.ae 18 ia l!~m I! ele@~l

£0,70 2 4 C-list index is negative

t O' 1 2 5 C-list index exceeds full C-list

Transfer funds (and/or space) from one Allocation Block to another C .

!Pl C: Allocation block (.donor)
IP 2 C : Allocation block (do nee)
IP3 D: Space to be transferred
IP4 D: Money to be transferred

(OB.GIVE)
(OB.GET)

Money and/or ECS space may be transferred from one allocation block to

another using four parameters. The indices for the capabf lities of the

donor and donee allocation blocks must be given as well as the amount of

money and/or space to be transferred.

Possible errors:

Class Modifier DescriEtion

C.

6 0 No suc·h allocation block

6 1 Money specified for ECS not available

6 2 Money specified for CPU time not available

2

2

0

0

3

4

Money specified for ECS is negative

Money specified for CPU time is negative

Return caEability for n-th object in Allocation Block*

IPl C: Allocation block (OB.GOD)
IP2 D: Full C-list index for returned capability
IP3 D: Index of desired· object lnl.

D. Destroy Allocation Block C-bELA8

LPl C: Allocation Block to be destroyed (OB.DSTRY)

When an allocation block is destroyed, there must be no objects associated

with it. The ECS space and money owned by the allocation block as well as

its expenditures are reflected back to the allocation block which is its

father in the tree. If the allocation block~ be destroyed still has objects

in its chain, it cannot be destroyed, and an F-return is made.

Possible errors:

Class

6

0

I I C-List Actions

Description

Allocation block does not exist.

User access to all objects within the ECS system is controlled by capabilities.

A capability identifies the object it refers to, specifies the type of the

object, and the set of allowed actions on that object (options). Capabilities

for objects accessible by a given subprocess are grouped together in capability­

lists (C-lists) which are themselves objects within the ECS system. Indivi­

dual capabilities are referred to by their index within a C-list. Since the

,,

Cl 30

C{_ 1.()

C..L'-1()

9

capability, residing in a C-list, authorizes access to an object, the user

is never allowed to fabricate a capability. The system creates a capability

with all options allowed when an object is created. System actions are pro­

vided to permit the user also to create a C-list, as well as to examine a

capability, to copy capabilities between C-lists and within a C-list, and to

downgrade the option mask. Thus, the user can transfer the right to access

an object and can curtail that access, but he may never manufacture that

right or increase the set of allowable actions on the object. He must ask

the system to perform these for him. -
AC-list is assigned to every subprocess within a process. For every process

there exists a sequence of subprocesses called the full path Corresponding to

the full path, the full C-list is defined as the concatenation of the C-lists

belonging to the subprocesses in the full path. When referring to capabilities

in the full c-list, the capability index is interpreted as if the C-lists in

the full C-list were joined to form one long C-list.

A. Create a C-list (.CCL/St

IPl
LP2
IP3

C/,r.O

C: Capability for allocation block (OB.CRECL)
D: Index in full C-list to return new capability
D: Length of new C-list

A capability list (C-list) is a sequence of capabilities and "empty" positions.

Each C-list is filled with "empties" (zero words) upon creation. To create

a capability list, the user must supply the index of the Allocation block

which funds the space occupied by the C-list. In addition to the length

of the new C-list, the user must supply an index in the full C-list for the

capability for the new C-list.

Possible errors while creating a C-list:

Class Modifier Description

Allocation block does not exist

No ECS available

No money available

CL :O,$"/

CLW1((

CL ?(J .,-,2__

6

6

6

2

2

2

2

II

0

1

2

4

5

0

1

t~ C-list index is negative

~~ C-list index exceeds full C-list

3 Length of new C-list < 0

I - 3 Length of new C-list exceeds core buffer area

{, L /00
10

- ··
I t[_lj. cO B. Display a Capability from the Full C-list C- OSPCAp

D: Index in full C-list

When referring to capabilities within the full C-list, the capability index

used is interepreted as if the C-lists in the full C-list were joined to

form one long C-list. Thus, the index of the desired capability is all

that is required to display it. The two words of the capability are returned

in X6 and X7.

59
,.,

0 (~ 7jf(' ~&v,• X6 = I option mask type I
,u I '7

(!. .
59 21 l 7 0

X7 I unique name !~ MOT index I
Possible errors while displaying a capability:

j -, Class ti Modifier Description
r ~ 1r 10)11 1 2 4 1 Capability index negative

[,UJW,· i 2 5 1 Capability index exceeds full C-list length

OSP-1

To display a

index within that

returned as in B-

Possible errors

Class

5 1

'lity for C-list
in the C-list

Description

which the full C-list, th

for the C-list and the

The capability is

from aribtrary C-list:

Capability index negative

Capability index exceeds C-list size

D. Copy a Capability within full C-list and Decrease the Options

D: Index of desired capability
D: Index of destination C-list entr _
D: Mask of options to preserve~~! Old §ettem 1.8:--=:1::glliDDBU".~)

The user can copy a capability from one location in the"full C-list to

✓

4 cLt3()

conl

c cu32
C CLr!,3

11

another and in doing so may decrease the number of allowed options. Recall

that when an object is created, a capability is returned which has all the

option bits (the high order 42 bits of the first word) set. The user must

indicate the C-list index of the capability he wishes to copy, the C-list

index where the altered capability will be placed, and a bit-mask which

will be logically "ANDed" with the option bits of the original capability

to produce the option mask for the new version of the capability.

Possible errors while copying a C-list and decreasing the options:

Class

2

2

2

2

E. Co12y

1Pl
1P2
IP3

ti Modifier Descri12tion

4 1 Index of desired capability is negative

4 2 Index of destination C-list entry is negative

5 1 Index of desired capability is too large

5 2 Index of desintation C-list entry too large

capability from Full C-list to Arbitrary C-list (and vice-versa) C.c,1PtJe,f,
c O<A,. r , _..,,.... ~ °;:;>C· CAP11.J

0••1' • 2. V
C: Destination (source) C-list (OP.CPYIN, (OB.CP OT)).t;I',v, ,;//./1 2
D: Index within destination (source) C~list of capability
D: Index in the full C-list of source (destination) capability

In order to simply transfer a capability between the full C-list and an

arbitrary C-list two parameters are required to indicate the location of

the capability in the arbitrary C-list, and a third to locate the capa­

bility in the full C-list.

IH Possible errors:

cc.u~o),;;1
l~'J/ri3

,-r; J ' ~ 7

ff~, I S°"'f

Class

F.

8

2

2

2

2

II

0

4

4

5

5

Modifier

2

3

2

3

Description

C-list does not exist

IP2 is negative

IP3 is negative

IP2 is too large ·

IP3 is too large

Change Unique Name ,j ::i;:!.,,7 , C- J,Jt:51,,/IAt,/

--+P.:i--F11~ f':=1,~-,,iii't<:.,,--nrn'l'i""'iPicrr- ,(-e B.eHNAM)

This action allows the user to change the unique name of an object. The

system generates a new capability for the object with all option bits set,

,C ! ~ef~ C,01$~CI./IYA~)

: ~p~~

Ct- (I

D-' , '3

12

thereby invalidating all old capabilities for that object. The capability

for the object whose name is to be changed must carry the option bit which

allows such a change (OB.CHNAM). If the object is a file for which there

are references in any map entries, all such maps will be recompiled.

Possible errors while changing unique name:

Class

8

G.

II

1

Description

No such object

Destroy a C-list

LPl C: Capability for C-list (OB.DSTRY)

C · (}El.CL

The user may destroy a C-list when he no longer needs it; only the index

of a capability for the C-list is required. If the C-list to be destroyed

is in the full path of the user's process, an F-return is initiated and

the C-list is not destroyed.

Possible errors while destroying a C-list:

Class

8

If

0

Description

C-list does not exist

I I I File Actions

Files are organized in a tree structure (see Figure 3). The leaves of the

tree are called data blocks and contain the addressable words of the file.

The non-terminal nodes of the file tree are called pointer blocks and con­

tain links to either data blocks or other pointer blocks. Empty or non­

existent portions of a file are not allocated space in ECS until they are
I

needed, The user can create a file, add and/or delete parts (data blocks)

of a file; he can check for missing data blocks and read the shape (para­

meters of the tree structure) of a file; he can transfer data blocks of the

same size within a file or from one file to anothel,l and finally, he can

read (write) information from (into) a file.

0

FILE TREE

LEVEL.l,

□
LEV EL 1 I

LEVEL 1_
1

(1 !~ rr -----'-
: 7 ') LJ ¾_ pointers n?---;;- s, pointers ~·

LJ '--------'! ~ . -.o"~•

13

-<,,0 LEVEL l:L (Data Blocks)

.◊<.,Q; p ""l
o,-,,

.q. {!
0 ~ s'i~
. I I

FILE
DESCRIPTOR

ROOT of i . C:)"y

FILE TREE ~ ~~~--ii>u s e

I I

LJ
File Shape = (2,2,4) 6J)

Figure 3

□ ~LJ

\

A. Create a File

IPl C: Capability for allocation block (OB.CRFIL)
IP2 D: C-list index to return capability
IP3 D: Number of levels in the file
IP4 D: Pointer to a list of shape numbers

14

When a file is created, only the file descriptor is constructed (see· Figure

4). The file descriptor contains a pointer to the root of the file tree

(initially zero since no data or pointer blocks exist). The user supplies

an index for the capability of the Allocation block which is to fund the

ECS space occupied by the file. Identification of the funding allocation

block is also kept in the file descriptot The user must also supply a

C-list index where the system will put the capability for the file being

created (all option bits in the capability for the new file are turned on).

The last two parameters indicate the 'number of levels (n) contained in the

structure of the file .tree, and a pointer to a list of ri• shape numbers (S.i_

through S), the first n -l of which indicate the number of branches from
n

each block at each level; the last (Sn) gives the uniform size of all data
II tJf\lt! II • \

blocks in the file. A ~ level file (IP3 =.J2. consists of a single data

block of length Sn (n:f2 . Each shape number <4, excepted) must be an

integral power of two. The last two parameters are used by the system

to complete the file descriptor.

Figure 4 File Descriptor

<POINTER> Pointer to Root of File Tree

<ALLOCATION BLOCK> Allocation Block Identification

<LENGTH> ,File Length

} Description of file shape
(using Si's)

n
<LENGTH> ::= (maximum file address)+ 1 = TI

i =t,
s.

l.

Possible errors while creating a file:

Class

6

6

2

2

2

2

2

2

3

3

3

3

II

0

1

2

4

5

2

0

1

1

7

8

9

10

Modifier

4

3

3

4

Description

Allocation block does not exist

No ECS Available

No money 21rail8e le

C-li&t index is negative

C-list index exceeds full C-list

Pointer to list of shape numbers is negative

Level number n ~ 0
>~!~

Level number is too large

Pointer to list of shape numbers plus list
length exceeds user's FL

Negative shape number

Shape number exceeds 217

Shape number other than Sf not a power of 2

Total size of file is too large

B. Create a Block

IPl C: Capability for file (OB.CREEL)
IP2 D: Address of block in the file

15

Once a file has been created, data blocks of the declared length (Sn) may

be added subsequently, one at a time, to hold data or code. (See Figure 5.)

A count of the map entries which reference·· the data block is maintained

with each data block, (This count is important when deleting a block -- see

below). To create a block, the user supplies the index of the capability

for the file to which the block is being added, and the address in the file

where the block is to be placed. (~ ~ _;,,.,..,d.~ ~~.)

When a data block is added to a file, it may also be necessary to create

some or all of the pointer blocks between that data block and the file

descriptor. Recall that pointer blocks are required to link the file

descriptor to the data blocks in any file with more than one shape number

(i.e., not a zero level file).

Pointer points
here

-,

Figure 5 Data Blocks

-

D'

}¾,
fj MAP
Refe r ences

1st Data Word

S th Data Word
' n

} Alloca t i on Pref ix

J

S Data Words
n

16

Possible errors while creating a block:

Class II Modifier DescriEtion

6 0 Allocation block does not exist

6 1 No ECS available

6 2 :We meney 21railatlle

3 0 The file does not exist

2 2 2 The address of the new block is negative

2 3 2 The address of the new block is greater than
the file length

3 1 The address of the new block indicates an already
existing block

C. Check for missing blocks

IPl C: Capability for file
IP2 D: Address of block i n file

Allows t he user to check f or the presence of a block : The parameters required

are the index of t he capab~lity for the file to which the block belongs,

17

and the address within the file where the block is supposed to be located.

The number of missing levels in the path from the root of the file tree

to that particular block is returned in X6. Thus, if the block is pre­

sent, X6 +O;i if the n level file is empty, X6 + n; and if only the data

block is -missing (;!.ts pointer block is present), X6 +

Possible errors while checking for missing blocks :

Class

3

2

2

D.

II Modifier Descri:etion

0 The file does not exist

2 2 The address of the block is

3 2 The address of the block is

Read the Shape of a File

IPl C: Capability for file
IP2 D: Address of buffer for the shape numbers
1P3 D: Buffer size

1.

t/
Q~;« 3---R

negative

too large

The shape of a file is described by a sequence of positive i ntegers (9 ,Sl,

.•• ,Sn), each of which is the number of branches in the file tree at each

node of level i ct ~ i ~ n). Each Si (i > ~) must be an integral

power of two. The user can obtain these shape numbers by specifying the

index of the capability for the file whose shape he wants to read, and .the

address and size of a buffer for the shape numbers. The number of levels

in the file is placed in the first word of the buffer and the shape num­

bers (S f , ... ,Sn) are placed in succeeding words until either the buffer

is full or all the shape numbers have been passed.

Positive errors while reading shape:

Class

3

2

2

2

ti

0

2

0

1

Modifier

2

2

3

Descri:e tion

File whose shape is to be read does not exist

Buffer address is negative

Buffer size< 0

Buffer address+ size exceeds user field length

)

E. Read (write) a File

IPl C: Capability for file (OB.RDFIL,(OB.WFILE))
IP2 D: Address in file
IP3 D: Address in Central Memory
IP4 D: Count of words to be transferred

18

The action of reading (writing) a file transfers words between the address

space of the running (current) subprocess and the data blocks of a file .

In addition to the capability index for the file, the user specifies the

address in the file of (for) the desired information, the address in Cen­

tral Memory of the area to be read into (written from), and the number of

words that are to be read (written). If a transfer is requested which

involves a file address corresponding to a non-existent data block, the

transfer proceeds until the non-existent file address is encountered,where­

upon an F-return is initiated. The actions to read the shape of a file (D)

and to check for missing blocks (C) can be used to check how far the trans­

fer proceeded.

Possible errors while reading (writing a file):

Class

3

2

2

2

2

2

F.

ti Modifier DescriEtion

0 File does not exist

0 4 Word count negative

2 2 File address negative

2 3 CM address negative

1 3 CM address plus word count exceeds user's field
length

plus word count exceeds ~ 1 4 · File address h @~~
length

Move a File Block

IPl C: Capability for s ource file (OB.RDFIL, OB.DELBL)
IP2 D: Address in s ource file of source block
IP3 C: Capability for destination file (OB.WFILE,OB.CKEBL)
IP4 D: Address in destination file of destination block

File blocks can be transferred between files whose data block sizes (Sn)

are equal. In addition to the capability indices for the source and des-

,~

j

19

tination files, the system expects to receive from the user the address

of the source block within the source file and the address in the destina-

tion file to which the block is being moved. cl I~~~o ~m~ ~~

is referenced by a map, moving it (which de ~ s it from the source file)

would cause problems when swapping, therefore an F-return is made.

Possible errors while moving a block:

Class II
.3 2
3 3

Modifier Descr~ tion
6-4.A ~~ ~ ~
Block to be moved does not exist

3 4

2 2 2 or 4

2 or 4

Files do not have equal data block sizes

File address negative

2 3

IPS

File address too large

Source file (OB.RDFIL)
Address in source file
Destination file (OB.WFILE)
ddress in destination file

of words to be transferred

This

ECS file.

tination

number of words from one ECS file to another

capability indices for the source and des­

ects the user to stse'cify the sdurce and des-

tination addresses and the

Possible errors during a

Class II DescriEtion

2 File address is

2 2 or 4 File address is

0 5 Word count is negative

2 - 1 5 File address lu

H. Delete a Block from ·a File

IPl C:Capability for file (OB.DELBL)
IP2 D:Address of block to be deleted

count is too large

A block can be deleted from a file as long as it is not referenced by an

entry in some subprocess map (reference count= 0). The user must supply

IV

20

the capability index for the file and the address within the file of the

block which is to be deleted. If the block is referenced by a map entry,

an F-return is made.

Possible errors while deleting a block:

Class

3

II

3

Description

Block to be deleted does not exist

I . Delete a File

IPl C: Capability for file (OB.DSTRY)

When a file is deleted, it must not contain any data blocks, i.e., it must

consist only of the file descriptor. Only the capability index of the

file is required as a parameter.

Possible errors while deleting a file:

Class

3

3

II

0

6

Description

File to be deleted does not exist

File to be deleted is not empty

I

Process and Subprocess Actions

Processes are the active elements of the ECS portion of the Time Sharing

System. Only within the context of a process may code be executed and

system actions initiated. A process con~ists of 1) a set of central regis­

ters (called the exchange jump package), 2) a set of subprocesses organized

in a tree structure, 3) a call stack recording the flow of control among the

subprocesses, and 4) a set of state flags describing the state of the pro­

cess.

There are system actions to create, examine, destroy and manipulate the

elements of a process. There are also actions which control the processing

environment of a process by transferring control from one subprocess to

another and by controlling the error processing and external interrupt

status of the process.

-

A.

I /"

Create a Class Code (subprocess name) with new permament part
{

IPl C: Capability for class code

21

A class code is a protected 60-bit datum which is used to identify a subprocess

within a process and to identify classes of users to the directory system. The

60 bits are divided into two 30-bit parts; the upper 30 bits constitute the per­

manent part and the lower 30 bits, the temporary part. This action causes a new

class code to be constructed by the system with a pe~nent part that is iffer-
{ 7[i;>i-_ , ..,. ',I ._ 0

ent from the permanent part of all other class codeEjf· The new~ ass code is re-

turned in the full C-list at the location specified by the parameter of the action.

Possible errors while creating a class code:

B.

Only those detected during System entry/exit.

Set temporary part of class code {, . ;Jl.t,ITAP

lPl
IP2
.IP3

C: Capability for class code (OB. TEMP) /
D: C-list index for moElified elna de ,,,-,.kt· c c;_

D: New temporary part (30 bits)

The temporary part specified by the user is inserted into the class code

(lower 30 bits). This action may be used to create "classes" of class

codes which have the same permanent part and different temporary parts.

The class code with the new temporary part is returned in the full C-list

at the specified location.

C. Create a Process

IPl C: Capability for Allocation block (OB.CREPR)
IP2 D: C-list index for returned process capab~lity / rl
IP3 D: Number of event channel haining wqrds -(~k
IP4 D: Number of stack entries,- c.7 ,,.,,0 -f; <.

IPS C: Capability for class code o ninal s~cess (OB.SONSP)
IP6 D: Number of map entries in initial subprocess
IP7 D: Compiled map buffer size for initial subprocess
IP8 D: Subprocess field length
IP9 D: Subprocess entry poJ.nt

IPlO C: Capability of ·c-list for subprocess (OB.LOCCL)
IPll C: Capability of le for 1st map entry, (Read/Write: OB. WFILE,

OB.RDFIL, lciBPLMAP for initial subprocess
IP12 D: Address within file
IP13 D: Address in CM

)

r
J

22

IP14 D: Count of words to be swapped
IP15 D: Capability of file for 2nd map entry (Read Only: OB.RDFIL,

OB.PLMAP) for initial subprocess
IP16 D: Address within file
IP17 D: Address in CM
IP18 D: Count of words to be swapped

There are 18 parameters required for the system action which creates a pro­

ces s . The first four are used to construct the process descriptor whi le

t he rema ining 14 are necessary t ,o specify the initial subprocess which i s

created along with the process. As usual when creating any system object,

t he first two parameters required are the C-list index of the Allocation

block which is to fund the area in ECS where the object is to be placed,

and the C- lis t index where the system will return the capability for the

ob ject.

The data necessary to maintain and run a process are gathered together in

the process descriptor, which is stored in two sections: the fixed length

process descriptor and the variable length process descriptor, These two

secti ons of the process descriptor are copied into CM when the process is

be ing r un on the CPU. While the process resides in ECS (Figure 8), the

f i xed length descriptor and variable descriptor are separated by the pro­

cess queuing word buffer, used when a process is hung on one or more event

channels. Parameter

belongi ng t o t he process, is contained in the variable length process des­

criptor, Each entry in the call stack contains the information neces sary

to reinitiate p~ocessing where it was terminated due to a subprocess call .

The total number of stack entries the process can accommodate i~/ s,'.tplied , # ~~

(1. f Cl ~ 1 /(/'~ - """7~ ✓~,j by the user in IP4 when the process is created. t..u'4 J ' 6 '

Among the parameters defining the initial subprocess, the fir~t six (IP5-

IP1O) are used to fill in the subprocess descriptor and the last eigh t

parameters s pecify the contents of the two initial map entries (Read/ Write

and Read Only) which control the swapping of the local address sp ace . The

data necessary to describe a subprocess are gathered into the subprocess

descrip t or. The user supplies 1) the class code (identifying name) of the

PROCESS DESCRIPTOR (IN ECS)

' READ ONLY
DESCRIPTOR

d,
ijl

READ/WRITE
DESCRIPTOR

J
PROCESS QUEUING

WORD BUFFER

4
VARIABLE LENGTH

DESCRIPTOR

'J

Figure 8

' --,___ _

--

FIXED LENGTH
DESCRIPTOR

23

24

subprocess, 2) the number of entries which will be in the logical map,

3) the size of a buffer area which will be allocated to hold the compiled

map, 4) the length of the subprocess local address space, 5) the entry

point of the subprocess where execution begins when it is called, and 6) a

C-list index designating the local C-list of the new subprocess. The

logical map contains an entry f or each contiguous portion of information

which is to be copied between ECS files and the local address space in CM

of a subprocess at the beginning and/or end of the processing within that

subprocess. To expedite this procedure, the compiled map is generated

from the logical map, using the absolute ECS addresses of the sections of

ECS files referenced by the logical map entries. Since one map entry may

span several data blocks in a file, the size of the compiled form of the

map will increase accordingly. The length of the local address space

(IP8) of~ subprocess is the upper limit on the information copied into

CM under the direction of the subprocesses map. The local C-list of a

subprocess controls the objects which the subprocess can access.

ll101 4H- 1
tu<l<N' /<.;tw- "(

,« !.c /J~

, (n,.k,W
I t

. ...

The eight remaining parameters specify the contents of the first two logical

map entries, which describe the initial body of the subprocess. The first

map entry (specified by parameters IP11-IP14) defines a portion of an

ECS file which is copied into CM before processing under the control of

the subprocess is initiate~ and when this processing stops, is copied

back into the ECS file from which it came, thereby (possibly) altering the

content of the ECS file. The second map entry, however, defines a section

of an ECS file which is read into CM only, and will never be copied back

into ECS, thus protecting the ECS file from being altered. The parameters

include the C-list index of the associated ECS File(s), the addresses in

the file(s) and in CM between which the information is to be transferred

(swapped) and the number of words to be swapped.

The new process, after being constructed, is scheduled to run and will

begin' execution entey point of the initial

25

Possible errors while creating a process:

Class

6

6

6

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

D.

ti Modifier Description

0 Allocation block does not exit

1 No ECS available

2 No money available

4 C-list index is negative

5 C-list index is -too large

0 3 Number of chaining words >--@d~~I/ t--C ;✓,~ I
/ G

1 3 Number of chaining words too large (p, ~c

0 4 Number of stack entries < 1

0 6 Number of map entries< 2

0 7 Compiled map buffer size is negative

0 8 Length of local address space is negative

1 8 Length of local address space is too

0 9 or 15 Subprocess entry point < 2 - ®
1 9 or 15 Subprocess entry point exceeds field

2 12 or 16 File address is negative

3 12 or 16_ File address is too large

2 13 or 17 CM address is negative

3
,,--

13 or 17 CM address exceeds

0 14 or 18 Word count for map

1 14 or 18 Word count for map

Display Fixed Length Descriptor of a Process

IP1 C: Capability for the process
IP2 D: Address of buffer area
IP3 D: Size of buffer area

field

entry

entry

length

< 0

too large

large

length

L - t)

t ('I.

--

The fixed length process descriptor contains much of the information neces­

sary to maintain and run a process (see Figure 9). It is divided into two

sections: the read only descriptor and the read/write descriptor. The read

only descriptor shows tqe state flags of the process, the length of the

process, the length of the variable length descriptor and the clock times

consumed by the user, the system and in swapping, respectively. The read/

write portion of the fixed length descriptor contains the process exchange

I~ ye

26

jump package as well as data and pointers used to ma i ntain portions of the

variable length process descriptor: the full C-l i st table, call stack,

the subprocess descriptor table, logical map and error selection mas k (ESM)

storage, and compiled- map storage.

In order to display the fixed length process descriptor, the user supplies

the index for the capability for the process whose fixed length descriptor

is desired, an address within the user's FL where the information will be

displayed and the length of this area which, to hold all the information,

should be 23 words long. The system will copy as much of the fixed length

process descriptor into this user area as there is room for. The informa­

tion has the format given below in Figure 9.

Possible errors:

Class

2

2

2

2

II DescriEtion

2 Address is negative

3 Address exceeds user's FL

0 Length of area 2_ 0

1 Address plus length exceeds user's FL

Figure 9 Display of Fixed Length Process Descriptor

12 18

· -S-t-a.t.e._£lags__ -Pr--0ces.s
Length

User time

System time

Swap time

Exchange jump package

16 words

LEN C­
LIST BUF

LEN FULL
C-TABLE

LENGTH OF LENGTH OF
COMPILED MAPS MApq)ESM

18

VarMSB­
Length

NUMBER OF
SUBPROCESSES

NO. OF INTERRUPT
SUBPROCESSES

NO. OF STACK
ENTRIES

i

l
Read only
descriptor

Read/write
descriptor

'

27

Process State Flags

Eight flags describe the state of the process. These state flags are used

primarily to control the swapper, but are set and checked by other routines

(event channel, process interrupt, and destroy process). The eight flags

function as follows ~

The E flag indicates that the process is actually a pseudo-process

and is used by the ev~nt channel routines to distinguish

between genuine and pseudo-processes.

The "in core" flag, C, is set whenever the process is actually running

on the CPU. This f lag i s checked by the process interrupt

routine.

The "pending action" flag, P, directs the swapper to interrogate the

"W", "I", "D" amd "V" flags. These four flags cause the

swapper to:

W - (the wakeup waiting flag) unchain the process flow from the

event channels;

I - check the "ancestors" of the current subprocess for an inter­

rupt process;

D - destroy the process ; and

V - modify the swapper return because of the arrival of an event

for the process.

The "running flag", R, indicates that the process is scheduled to run

or is running on the CPU. The running flag (R) and the wake­

up waiting flag (W) interact in the event channel routines

as well as in the process interrupt routines. They are used

to permit the process to "hang" on several event channels and

still be able to accept an incoming event.
I

;&/ cJ~ r/.(, ~ (

E.

'I

Display, clock times

IPl D: Address of buffer area in user's FL

28

The current times on the following five clocks: real clock, user clock,

system clock, swapping clock, and quantum clock, are displayed in con­

secutive words beginning at the address supplied by the user. The buf­

fer area should be at least fiv.e words long since this action causes 5

words to be passed.

Possible errors while displaying clock times:

Class

F.

2

2

II

2

3

Modifier

1

1

Description

Buffer address is negative

Buffer address plus 5 exceeds user's FL

Creating a Subprocess

IPl C: New subprocess class code (OB. SONSP)
IP2 C: Class code of the "father" of the subprocess (OB. FATHR)
IP3 D: Number of map entries
IP4 D: Compiled map buffer size
IP5 D: Subprocess FL
IP6 D: Subprocess entry point
IP7 C: Subprocess local C-list index (OB. LOCCL)

The action of creating a subyrocess involves constructing the 8 word sub­

process descriptor. The parameters are similar to those required to create

the initial subprocess except for IP2 and the absence of logical map entry

parameters. The subprocesses in a process are organized in a tree struc­

ture in which each subprocess "points" only to its predecessor (''father")

(see Figure 10). For each subprocess, the term "ancestors" refers to the
I

sequence of subprocesses which starts with the subprocess and terminates

with the root of the subprocess tree. Note that a subprocess is always

an "ancestor" of itself. The term "son" of a subprocess refers to any

of the subprocesses for ,which that subprocess is the "father".

Each. newly created subprocess is linked into the subprocess tree at the

subprocess 'referenced by IP2. Note that since no map entries are made for

the subprocess at the time of its creation, they must be constructed via

the appropriate system actio~s in order to provide executable code and a

data area for the subprocess, before the subprocess can be used. Note also

29

I

that · since the first few cells of the subprocess address space are used

for storing the parameters of subprocess calls, they should be given a

read/write map entry. ~ 4,,/ -;t/r·,
Possible errors while creating a subprocess:

Class

6

6

6

4

4

2

2

2

2

2

2

2

4

8

4

II

0

1

2

0

1

0

1

0

0

1

0

1

3

0

4

JsuBP 1

I
l suBP 3

Modifier Description

3

3

4

5

5

6

6

Allocation block does not exist

No ECS available

No money available

Duplicate subprocess name (same as some other
subprocess in the process)

"Father" does not exist

Number of map . entries< 0

Number of map entries exceeds field length

Compiled map buffer size is negative

Subprocess field length< 0

Subprocess field length is too large

Entry point< -2-

Entry point> FL

No space for compiled map

C-list does not exist

I

Process becomes too big for CM size of machine

Figure 10 Subprocess Tree

Root of subprocess tree
SUBP 0

SUBP 4 I

I~
T SUBP 7

I SUBP 6 I SUBP 8

SUBP 9 SUBP 10

30

G. Display Subprocess descriptor

IPl C: Capability for class code 1 (subprocess name)
IP2 D: Address of buffer area
IP3 D: Size of buffer area

This action allows the user to display a subprocess descriptor in a designated

area within his own FL (see Figure 11). The system copies the subprocess

descriptor into the user's area starting at the address specified by the

second parameter and ending either with the last word of the displayed sub­

process descriptor (7 words) or the last word of the buffer area, whichever

comes first. The contents of the subprocess descriptor are described above

(p. 24).

Possible

Class

4

2

2

2

2

errors:

II Modifier Descriptor

5 Subprocess does not exist

2 Address is negative

3 Address exceeds user's FL

0 Length of buffer area < 0

1 Length of buffer area too

Figure 11 Display of Subprocess Descriptor

Interrupt Flag

18

FL

18

Entry Point

18

Map Origin

Class code for father subprocess

Class code for subprocess

C-list
origin

Compiled map
buffer size·

logical C-list
map entries length

C-list unique name

Error Selection Mask

32

Interrupt
datum

Max stack
pointer

C-list MOT

Max Error
Class

large

t=L

H. Subprocess Call

A normal subprocess call is initiated by calling on the system in the

usual manner, using an operation whose action is "subprocess call". A

normal subprocess call may also be initiated as the result of F-return

action under the control of a multi-ordered operation (seep. 4 above).

A new processing environment is established (described below) as a result

of the transfer of control to a different subprocess. At any given time,

there are two distinguished subprocesses within a subprocess. They are

the current subprocess and the end-of-path subprocess. (Note that the cur-

rent subprocess is always an "ancestor" of the end-of-path subprocess.)

The sequence of subprocesses from the end-of-path to the current subprocess

(inclusive) is called the full path. The end-of-path is defined dynamically

by the flow of control among the subprocesses. The current subprocess may

be considered to be the subprocess currently in control. The end-of-path

and current subprocesses are reassigned whenever a new subprocess is called.

The subprocess being called (the callee) becomes the new current subprocess.

If the callee is an "ancestor" of the old end-of-path, the end-of-path re­

mains unchanged. If the callee is not an "ancestor" of the end-of-path,

the new end-of-path becomes the same as the callee (i.e., the full path

consists of a single subprocess - the callee). See Figure 12.

The full path determines the sphere of protection invoked by the current

subprocess by defining the 'full C-list, full map, and full address space.

The access afforded the current process to other objects within the sys­

tem is controlled by the full C-list. The full map determines the config­

uration of the address space available to the current subprocess and the

full address space is the size of the address space available to the current

subprocess. The configuration of the subprocess tree defines the static

relationship between the subprocesses (subprocesses closer to the root may

be given the privileges of their descendents) while the full path dynamically

controls the boundaries of access applied to the current subprocess. This

system of controlling the bounds of protection allows the construction of

processes which may exercise varying degrees of protection while maintaining

synchronization between the subprocesses involved.

32

Figure 12 Full Path Example using Tree in Figure 10

CALLING SEQUENCE CURRENT SUBP END-OF-PATH SUBP FULL PATH

SUBPO SUBPO SUBPO SUBPO
SUBPO calls SUBP9 SUBP9 SUBP9 SUBP9
SUBP9 calls SUBP6 SUBP6 SUBP6 SUBP6
SUBP6 calls SUBP4 SUBP4 SUBP6 SUBP6,5,4
SUBP4 calls SUBPO SUBPO SUBP6 SUBP6,5,4,0
SUBPO calls SUBPS SUBPS SUBP6 SUBP6,5
SUBPS calls SUBP3 SUBP3 SUBP3 SUBP3

A subprocess call also causes a new stack entry to be constructed and

placed on the call stack. Stack entries are used to re-establish the

correct processing environment during subprocess returns. Cells O and

1 of the full address space are zeroed (these cells are used by the hard­

ware Arith Error mechanisms and to simulate SCOPE system calls). In addi­

tion, if the calling subprocess is a member of the new full path, the ori­

gins (relative to the new environment) of the address space, C-list, and

map of the calling subprocess are computed and stored in cells) ,1 , and &"'

of the new address space. If the calling subprocess is not a member of

the new full path, then these cells are zeroed. The parameters of the d
subprocess call are copied to the new address space starting in eel~,?

For a normal call the parameters of the call are first formatted in the

actual parameter area of the process descriptor by the system entry mechanism.

These parameters are drawn from the calling subprocess input parameter list

(IP list) under the direction of the operation being used for the subprocess

call (IPO). In addition to formatting , the actual parameter list, the system
-

entry routine places the name . (class code) of the called subprocess, the l,u./

number of parameters, and a bit string denoting the types (capability or

datum) of the parameters at the end of the actual parameter area. After

establishing the correct processing environment for the called subprocess,

the parameters are transferred to the local address space and local C-list

of the called subprocess. Datum parameters are simply copied to the next

parameter cell in the local address space. Capabili~ Y ar ete..rs~ are
~ ; • ,-tJJ-c 0

capi.ed to successive posi.tions in the local C-listl'and t lie index of

the parameter in the local C-list is stored in the next parameter cell

-

33

in the local address space. On the completion of the parameter passing,

execution is initiated at the entry point of the called subprocess.

Possible errors during subprocess call:

Class II Description

4 5 Named subprocess does not exist

4 6 No room on stack for subprocess

4 7 No room for parameters

4 8 Too many capability parameters

8 0 Local C-list does not exist

Subprocess Return

Like the subprocess call, the subprocess return must construct a new pro­

cessing environment before returning control to the user. The return rou­

tines reactivate a subprocess using information left in a stack entry. The

full path recorded in the stack entry is sufficient to reconstruct the pro­

cessing environment. The P-counter from the stack entry controls where

in the subprocess execution is re-initiated. The normal return causes the
~

P-counter to be modified by adding the low order 18 bits J f the CEJ instruc-

tion which originally caused control to pass to another subprocess. (See

p. 1 above.) !
Possible errors during subprocess return:

Class II Description

4 9 Stack empty

2 2 P-counter < 0

2 3 P-counter exceeds field length

Subprocess F-return

0

A subprocess (or the system) may initiate an F-return whenever F-return

processing is appropriate. F- return processing causes the operation which

called the subprocess (system) ' to be re-examined for additional actions

(see Requesting a System Action). The operation is located (after re-esta­

blishing the processing environment of the previous subprocess) by using

,,,.

L-

34

the "last IP list pointer" stored in the stack entry for the previous sub­

process. If the F-return count (also saved in the stack) is not equal to

the number of orders in the original operation, the F-return count is

incremented and the next order of the operation is processed. (Note that

the action of all orders other than the first is "subprocess call" or

? "subprocess jump".) Otherwise, control returns to the subprocess which
r

originally called the operation, but the P-counter of that subprocess is

not incremented as it is for the normal return.

Possible errors during a subprocess F-return:

Class

4

7

II

10

0

Description

Stack empty

7 1

IPO is not a capability for an operation (7/-57 ~ '!? ,,.- ,
Operation does not exist

~ IP list is too big
~,4

Subprocess Jump Return

IPl C: Capability for class code for subprocess to return to (OB.SPRET)
IP2 D: Number of stack occurrences of IPl to skip (O=l, -l=down to last)

The subprocess jump return provides a method for getting calls off of the

process call stack. The user specifies the class code for the subprocess to

which the return is to be made. In addition, he indicates the number of

occurrences of that subprocess in the call stack which should be skipped

in looking for the call which is to become the new top of the stack. Zero

indicates the first (most recent) call whereas -1 indicates the last (earliest)

call. Upon finding the proper stack entry, the stack is reduced to make

that entry the top of stack and normal subprocess return action is initiated.

Return with Error

IPl D: Error class
IP2 D: Error number

The subprocess which requests this action will be removed from the top of

the call stack and error processing for the error designated by the two

parameters will be initiated.

L_

IV

Possible error

Class

10

ti

0

Description

No subprocess to handle error

Modify P-counter of subprocess

IPl C: Capability for class code for subprocess (O B.PCNT)
IP2 D: Number of stack occurrences of IPl to skip
IP3 D: New P-counter

35

The user can modify the P-counter in a subprocess which has already been

called by identifying the subprocess, the number of stack occurrences of

the subprocess to skip (see H above) and the new P-counter. The P-counter

is modified in the stack and the new P-counter will be used the next time

that entry becom~ s the top of the stack. f the caller attempts to mo~

~ ter~ an !:.::Le~plH~'lI!crtte. ____ --~

{)

Possible errors while modifying the P-counter:

Class

2

II

2

Description

P-counter is negative , "''-(, • ft<.C ~ 1

3 P-counter exceeds ~s-er s
I r 0-,rG r -I c- ./ (

Display Stack

IPl D: CM address of a buffer area
IP2 D: Size of buffer area (~ 4)

The user may examine the call stack of a process. He must supply the address

of a buffer area and its length so that the system can copy the stack into

the specified area. The number of entries in the stack is stored in the

first word of the buffer. As many entries as possible starting with the

current top of stack are then copied into succeeding 3 word sections of

the buffer.

Word 0

Word 1

Word 2

The stack entries are reformatted.

'f::~~t::.;1.iclass code for current subprocess

~ class code for end-of-path subprocess

59 17 0

F-return IP LIST P-counter
count Address

-
Force -----1'~ F-return flag -------

In errupt Interrupt
flag inhibit flag

6

36

Possible errors while displaying stack:

Class II Modifier Description

2 2 1 CM address negative

2 3 1 CM address exceeds user's FL

2 0 2 Size of buffer area< 4

2 1 2 CM address + size of buffer area exceeds

user's FL

Display Stack Entry

IPl D: CM address of buffer
IP2 D: Desired stack entry

A particular entry in the call stack of a process can be examined if the

system is supplied with the CM address of a buffer area (each entry is 3

words long) and the index (relative to the top of the stack) of the desired

stack entry. Format same as in Labove.

Possible errors while displaying a stack entry:

Class

2

2

2

2

2

II Modifier Description

2 1 CM address is negative

3 1 CM address exceeds user's FL

2 2 Stack entry pointer negative

3 2 Stack entry pointer exceeds stack

1 2 CM address plus 3 exceeds user's FL

Send Process Interrupt

lPl C: A process (OB.SDINT)
IP2 C: Capability for class code for a subprocess (OB.INTSP)
lPJ D: An 18 bit interrupt datum

The process interrupt is one of the two ways in which a running process may

effect the execution of another process (the other is via an event channel).

The process interrupt enables one process to force the calling of a specified

subprocess (IP2) (called the interrupt subprocess) within another process

(lPl) (called the interrupted process); i.e., the first process forces the

interrupted P!Ocess to call the interrupt subprocess. However, the inter-

37

rupt is given a "priority" in that the interrupt subprocess will not be

called unless (or until) it is an "ancestor" of the "current subprocess",

that is, of the subprocess which is actually executing in the interrupted

process at the time of the call (or thereafter). Therefore, how soon the

interrupt subprocess gets entered depends upon its position in the sub­

process tree and the flow of control in the interrupted process. An 18-

bit interrupt datum (IP3) is passec_!vas th arameter of the call of the .,,..,.,.
interrupt subprocess. Once a subprocess becomes an interrupt subprocess,

and until that subprocess is called as an interrupt subprocess, all sub­

sequent interrupts to that subprocess are disabled (have no effect).

The disposition of the interrupt is returned to the user in X7.

X7 = 0 Interrupt sent and interrupted process is running

X7 = 1 Interrupt process currently "in core" of -ano-t:-h-eT" CPU ~

(Best try again)
R-r'T'.£?.

to

X7 2 Interrupt subprocess +s ~-~ = already e~

X7 = 3 Interrupt sent but interrupted process is not running

Since each subprocess is technically its own ancestor, it i s necessary when

an interrupt subprocess is called to automatically inhibit interrupts for

the current (= interrupt) subprocess. When interrupts are inhibited for

a subprocess, an interrupt to the subprocess will be remembered but cannot

cause the interrupt subprocess call as long as the interrupt inhibit is set
~ ,.11 /.4

and the subprocess in question is the current subprocess. l , (• r
2;:1Ll ·c ,- f __,6(~

At every normal subprocess call and return, a che,ck is made for waiting

interrupt subprocesses (subprocesses for which a process interrupt has

been issued but which have not yet happened to be the ancestor of any cur-

rent subprocess). If any interrupt subprocesses are waiting, the ancestors

of the new current subprocess are checked to see if any of them is an inter-

rupt subprocess. If so, the interrupt subprocess is called. Execution in

the interrupt subprocess begins two words before its normal entry point.
{

C

,(_

5

38

Possible errors while sending a process interrupt:

Class II Modifier Description

5 3 Process does not exist

4 5 Subprocess does not exist in designated process

2 1 3 Interrupt datum exceeds 18 bits

Set/Clear Interrupt Inhibit of Current Subprocess

These parameterless action(s) allow the user to clear the interrupt inhibit

flag which is normally in effect for the current subprocess if it was called

as an interrupt subprocess. The interrupt inhibit flag can also be reset

once it has been cleared.

Possible errors:

None.

Reduce/Restore Path of Current Subprocess

No parameters.

The user may reduce the path of the current subprocess, i.e., the chain of

subprocesses from the root of the path to the current subprocess, so that

it consists of just one subprocess, the current subprocess itself. Once

the path has been reduced, it may be restored again using this action.

There are no possible errors.

Set Local ESM (Error Selection Mask)

IPl D: Pointer to new ESM

The error selection mask, which determines which classes of errors a sub­

process can handle, may be set in the current subprocess by specifying a
0

pointer to the new ESM. The ESM is a bit string bits per word) in

which a 1 indicates acceptance of the corresponding error class; i.e.,

59 28 0

t
Error class 0 ~ :r:ror class 31

V

w

Possible errors while setting local ESM:

Class

2

2

2

3

Modifier

1

1

Set ESM in any subprocess

Description

Pointer to ESM < 0

Pointer to ESM > FL

IPl D: Pointer to new ESM
IP2 C: Capability for class code (subprocess name) (OB.STESM)

39

By specifying the name (class code) of a subprocess in addition to a pointer

to a new ESM, the Error Selection Mask for any given subprocess may be reset.

Possible errors while setting ESM in any subprocess:

Class

4

2

2

5

2

3

Modifier

1

1

Destroy Process

Description

Subprocess does not exist

Pointer to ESM < 0

Pointer to ESM > FL

IPl C: Capability for process to be destroyed (OB.DSTRY)

The system action of destroying a process requires only a parameter giving

the C-list index of the process which is to be deleted, The process will

be removed from any event channels on which it is waiting and its address

space in ECS released.

Possible error while destroying a process:

Class

5

3

Description

Process does not exist

Destroy a Subprocess

IPl C: Capability for class code of subprocess to be destroyed (OB.DSTRY)

A subprocess can be destroyed if it is currently a leaf of the subprocess

tret otherwise an F-return wi.11 be made. If the subprocess is in the call

stack, an error is generated.

,

/
1/

K

V

40

Possible errors while destroying a subprocess:

Class # DescriEtion

4 5 Subprocess does not exist

4 11 Attempt to delete subprocess in stack

4 11 Attempt to delete root of a subprocess tree

4 11 Subprocess is pointed to by another subprocess

Save (Restore) Registers

Ul D: Pointer to 16 word buffer for registers

The exchange jump package for a process can be saved in (restored from)

the user's area if a pointer to a 16 word buffer is specified. When the

registers are restored, only the programmable registers (A,B and X) are

restored.

Possible errors while saving (restoring) registers:

Class

2

2

2

3

Map Actions

DescriEtion

Pointer to buffer is negative

Pointer to buffer is too large (within 16 words of user's FL)

Associated with each subprocess is a map which directs the swapping of the

subprocess address space between Central Memory and ECS files. A map con­

sists of a fixed length sequence of map entries each of which is either

zero or contains a swapping directive. The user may zero or change a map

entry, and may display an entry from the full map or from the map associated

with any given subprocess. A swapping directive consists of l)_an ECS file,

2) a file address, 3) a central memory address, 4) a word count, and 5) a

read-only flag. Thus the map indicates what portions of which files are

copied to/from specified portions of the subprocess space at the beginning/

end of processing.

41

When swapping a subprocess, the entries in the logical map (see Figure 6)

are processed in the order of their appearance. To speed up the swapping

process, the entries of the logical map are "compiled" to absolute ECS

and CM addresses. Each file data block carries a count of all logical

map entries which reference it. This "reference count" is important

since the absolute ECS addresses associated with t he "compiled 11 map (see

Figure 7) are sensitive to 1) garbage collections and 2) deletion of data

blocks. Before any of the swapp i ng direct i ves i n a map are executed, the

"local garbage collecti on count' 1 is compared to the 11global garbage col­

lection count". If they do not match, the map must be recompiled since

some file block may have been moved in ECS.

A. Zero a Map Entry

IP! C: Capability for class code (subprocess name) (OB.CHAMP)
IP2 D: Index in logical map of the ~5•)
I,f') Ci e4ff k Lih.. ~ ~ (OB. fl.M4°

When zeroing a map-, ; ~tf;, t he user specifies th name of the subprocess

(class code) whose map entry is to be zeroed ~ nd~ he in~ex of the e~ ry ry . I/ I, ~,) ,,.,.r,,o ~-e j ~ rPJ ., ••'! ,.....-41!" ~ ...,.,,;,r;,,. •
in the subprocess logical map. ~ If t he map is part of full map and if 1t -- -✓

is a read/write entry, then that area is swapped out before the entry is

zeroed. The result is that when the subprocess address space is swapped

between ECS and Central Memory, the portion of the address space formerly

referenced by the zeroed entry will not be swapped.

Possible errors while zeroing a map entry:

Class

4

2

2

11

II

B.

II Modifier

5

2 2

3 2

0

)

• [:(create) a map

Description

Subprocess does not exist

Negative map index

Map index exceeds map length

Attempt to change or zero DAE (Direct Access

Entry)

:&P3 d4--.,tT~ ~~ ~
entry (read/write or read only)

IP! ~: Class code of subprocess whose entry is to be changed (OB.CHMAP)
IP2 D: Index of entry in logical map of subprocess
IP3 C: Associated file (read only: OB.PLMAP, OB.RDF~L;

{

OB.PLMAP
read/write: OB.RDFIL

OB.WFILE
IP4 D: Address in file

/)

11

42

IPS D: Address in CM
IP6 D: Word count of new entry

When a map entry is changed, care must b~ taken if the map involved is

part of the full map. In this case, the same procedure must be followed

as in zeroing a map entry. The new entry is then constructed and swapped

in. Note that overlapping map entries will behave oddly since the portions

swapped under one map entry may be partially or completely overwritte.n_by

-----the information swapped under a subsequent map entry.

Possible errors while changing a map entry:

Class II Modifier Descri2tion

4 5 Subprocess does not exist r rte/;;
2

2

4

2

2
1 l
~
I 1
21'

c.

2 2 Negative map index

3 2 Map index exceeds map

Missing block encountere

3 Buffer full C.,-r, ,,, /e/ ,,.,,,,," ~fr'))
I

2 4 Negative file address

2 5 Negative word count

.A- File address+ word count exceeds file size

k CM address+ word count exceeds field length

~~ .. ~ ~
Dis2lay a MaE Entry from the MaE of a Named Sub2rocess

IPl C: Class code of subprocess whose entry is to be displayed
IP2 D: Index of entry in logical map of subprocess
IP3 D: Address of a 3 word buffer

This action will insert into the 3 word buffer area tIP3) the current
I

contents of the indicated map entry of the subprocess specified. Note

that the length of the map (maximum for IP2) can be obtained by using

the Display Subprocess Descriptor action. The three words of the designated

map (see Figure 6) are copied to the specified buffer.

Possible errors while displaying a map entry:

Class II Modifier DescriEtion

4 5 Subprocess does not exist

2 2 3 Negative address for buffer

2 2 3 Buffer address+ 3 exceeds user's FL

2 2 2 Negative map index

2 1 2 Map index . too large

., ..,

43

Figure 6 Logical Map

<R/0 FLAG> 1st logical map entry

<Direct
Access Entr , } 2nd logical map entry

Flag> ---------1

)f

< empty > : := +o
39

last logical map entry

end of logical map

Denotes an "empty" map entry
1 8

< file > : : =I'---'U:...:c.N:..:::.IQ..:,,_;U:....::E:...._N=AM..:;::_E __ _.~=/J.,__j M_O-"T--=IND=EX~I

< file address> ::= O ~ 260 -1

file identification

< R/0 FLAG> .. - 1 ~ read only; 0 ~ read/write

< compile · ptr > .. - index in compiled map buffer of first compiled map
entry for this swapping directive

< CM ADDR >

< WD CNT >

: := CM address within subprocess local address space

word count

Note: < CM ADDR > + < WD CNT > 2_ length of subprocess local
address space

< DAE Flag> ::= 1

0

this is a direct ECS access entry (Legal only for first
I f'/

entry) .,., _Y 't /<".. .,,,/h,1 .
regular map entry

Figure 7 Compiled Map

<SPAC E> <OOUNT> PREFIX

<WD CNT>

ECS ADDR <CM ADDR <WD CNT>
<R/0 FLAG>

<DAE Flag>

<LAST ENTRY>

Compiled map words

·Ecs ADDR <CM ADDR <WD CNT>

+ 0 END

< COUNT > : : = f O ~ must recompile

\:o ~map is good if same as GARBCNT

<SPACE> - number of un-used words in the compiled map buffer

< WD CNT > ··= number of words to transfer

< CM ADDR > ··= CM address relative to CM process origin (Bl)

< ECS ADDR >

< R/0 flag> : :=

absolute ECS address to start transfer

read only flag Jo ~ read/write
\1 ~ read only

< DAE flag> ::= . l -- DAE (legal only on 1st entry in compiled map)

44

< last entry> ::= 1 -- last compiled map word corresponding to a particular
swapping directive

D. Display Entry in Full Map

IPl D: Index of entry in full map
IP2 D: Address of a 3 word buffer

45

The maps of the subprocesses in the full path are concatenated to form

the full map in much the same way as the full C-list is formed. An entry

in the full map can be displayed if the index of the entry in the full

map is given along with the address of a buffer where the entry should be

"displayed". The format of the display entry is the same as for named

subprocess version of Display Map Entry.

Possible errors in display entry in full map:

Class II Modifier Description

2 3 1 Index of entry too l arge (exceeds length of
full map)

2 2 1 Index of entry negative

2 2 2 Pointer to buffer negative

2 3 2 Pointer to buffer + 3 greater than user's FL

Direct User Access to ECS

To afford the user an ECS RA and FL so that he may access an often used

segment of ECS directly, the system permits the current subprocess to have

a single direct access entry (DAE). This DAE must be the first entry in

the logical map; it may reference only one file block (due to obvious

physical limitations), and is set and cleared via two special actions

described below. A DAE map entry has only two features which distinguish

it from other map entries: 1) the CM address portion is always zero, and

2) the DAE flag (in first entry only) is set.

E. Set Direct Access Map Entry

IPl C: Capability for class code (OB.DAE)
IP2 C: File (OB.FDAE)
IP3 D: File of block

----fP4 ;g.
' Word 8

This action sets the direct access ECS .entry in the map of the subproces§
1J.,e. ~.#ll) qi I ('. ~,- (' '/; / , .~~ ~ 'f

named by the first parameter. /l Toe fi-'l. e address mus c be the oeg1nn1ng" of

a block an:d the-word~~st be a multiple of 64 words since storage

handling in ECS is in 64 word blocks.

t VIO-

Possible errors while setting a DAE:

Class

2

2

ti

2

3

Modifier Description

File address negative

File is too large

~ tt------=1=------------W,~ count x-te-rrds

----2-----o----------W~ egatlve
Q f>,/,,,,1.. ~l,-,,,--1 ~•L-/

q

F. Clear the Direct Access Map Entry

IPl C: Capability for class code (OB.CHMAP)

46

b:1:-ock

This action clears the direct access entry in the map of a named sub­

process. The only parameter required is a class code (IPl). The action

is equivalent to A. above except that it may only be used on DAE's.

Possible errors while clearing DAE:

Class

4

11

II

5

2

Modifier Description

Subprocess does not exist

Attempt to zero swapping directive

VI Event Channel Actions

Event channels are ECS objects which are used to synchronize the behavior of

running processes as well as to implement "block" and "wake-up" mechanisms.

Events consist of two 60 bit words: the first identifies the sending process;

the second is a 60-bit datum. Each event channel should handle a particular

kind of event. The user can create an event channel, send an event, get an

event from an event channel, get an event from any one of a list of event

channels, and destroy an event channel. If the user attempts to get an event

from a channel which has no events, the user's process is either blocked (stops

running) until some other process sends an event to the event channel, or

F-return action is initiated.

A. Create an Event Channel

IPl
IP2
IP3

Vt~
C: Capability for allocation block (OB.CREEC)
D: C-list index for new event channel capability
D: Number of events that queue can hold

When an event channel is created it consists of a three wdrd header and an

event queue which is initially empty . The header wor~~used to maintain

47

the queue of events and a queue of waiting processes, which develops if

the queue of events becomes empty and processes request events from that

channel. When creating an event channel, the user specifies the name

of the Allocation block which funds the ECS space occupied by the event

channel, a C-list index where the system can put the capability (with all

options allowed) for the event channel when it creates it, and the length

(number of possible events) of the event queue.

Possible errors while creating an event channel:

Class II DescriEtion
i;v o 6 0 Allocation block does not exist

EV1 0 6 1 No ECS available

r:.Vgo 6 2 No money available q "2 ...
E=,Vt~ 2 4 C-list index is negative

~ • , ((ll

- ,#'f.)I) ::: l A-.:..;z:.
Ef/lld 2 5 C-list index exceeds full C-list ~ 1 a

(11'2.0 9 0 Lengtp. of event queue< 0
'';, I Evf3o 9 1 Event queue too large / C 1.. -

f=-V 1'-IO

~re:
ff/'1 pp -7

B. Send an Event
---- ...<.....:::::: ~

;

IPl C: Capability for the event channel (OB. SNDEV)
IP2 D: Datum part of event

These actions allow the user to send an event to an event channel. He

specifies the index of the capability for the event channel and specifies.

a 60-bit datum to be passed with the event. The system responds by indi­

cating _the disposition of the event to the user in X6. The following res­

ponses are possible:

Condition

100 Event put in event queue

'V Event passed to a process

ResEonse

~Ql "YOU LOSE" event put in event queue

1

2

3

4 J 30 Event queue full

- Duplicate e:ue~t fettnrl-------------.c;,_ ___ _

The first response indicates that all went well, and there was no pro­

cess a waiting an event in the process queue. The second response indi-

)/-

i)

48

cates that there was a process waiting in the queue and that it was

passed the event. The third response indicates that there was only

one free slot in the event queue (an event occupies two words); the

intended datum has been replaced by a "you lose" datum (-0) so that the '

process which ultimately gets the datum will be aware that the event

queue was full and that information was lost.

The fourth response indicates that no action was taken because the queue

was full. Th is returned only
f l I

a artj-1 f~r up~ic tef ev n s an~ a du lica e

I ' J V nd f'urther duon is / aken.

Possible errors resulting from sending an event:

Class

9

c.

II

2

Description

Event channel does not exist

Get an event or hang
~,::

IPl C: Capability for event channel (OB.GETRV)

A user requests an event from a channel using the C-list index of the

capability of the channel in question. If the event queue is empty, the

process must wait ("hang" or "block") until an event arrives before resuming

execution. If more than one process is awaiting an event, the first event

sent to that channel is passed to the first process while the other pro­

cess(es) continues to wait. The event is returned to the calling process

in X6 and X7. X6 contains the unique name of the process which sent the

event. while X7 contains the event datum.

Possible error while getting an event:

Class

9

D.

II

2

Description

Event channel does not exist

Get an Event or F-return
...1 o

IPl C: Capability for event channel (OB.GTEVF)

. fl
4..,,)L. .) 1✓ ,J ~ I

f 4f.., cJ_ ~I},,;.,_ ~ .£) r tt {,c ,

The user requests an event from a channel using the C-list index of the

event channel's capability. If the event queue is empty, an F-return

will be initiated in order to permit the process to take alternative

action. The event is returned in X6 and X7 as in C. above.

Possible error while getting an event:

Class

9

II

2

Description

Event channel does not exist

49

Ol E. Get an event from one of a list of event channels or hang (F-return) f??

IPl D: Pointer to list of C-list indices for event channels ~ B- ~
IP2 D: Number of event channels involved (OB.GETEV or OB.GTEVF .. ,J--

The procedure for getting an event from one of a list of event channels

is similar to that for getting a single event (see C. above). The channels

are interrogated one at a time and if their respective event queue is empty,

the user's process will be queued on the process queue of the event channel.

If an event subsequently arrives or is discovered on one of the event chan­

nels in the list, the process is removed from all the process queues on

which it has already been chained and it is passed the event. If no event

arrives or is discovered before the last event channel is interrogated,

the process must wait ("hang" or "block") until an event arrives on one

of the event channel (F-return).

When an event is finally passed in X6 and X7, the index in the user's list

of the event channel producing the event is ~:: ~ ~ X6.

Possible errors while getting an event from a list of channels:

Class

sa Jq,9

:s-q1J q'J 2

lc,l.!Jq~2

2

II

2

0

1

2

1

1

Modifier

2

1

3

Description .

Event channel does not exist

Number of, channels is ..negati•v•e .!'::. O
\

Number of channels exceeds the number of .A -.
chaining words in the process

Pointer to list of event channel indices is
negative

Pointer to list+ number of channels exceeds FL

~"'6~~ /-PA';41~-2
car Zjf C o" °, l~ hi /4 ~ •'

}

F. Destroy an Event Channel
,Jo

IP! C:Capability for event channel (OB.DSTRY)

An event channel can be destroyed. The only parameter required is the

C-list index of the event channel which is to be destroyed. If there

are any processes waiting on the event channel's process qu~ue, an F­

return is initiated leaving the event channel intact. ,/o

Possible errors while destroying an event channel:

Class

9

VI I Operations

II

2

Description

Event channel does not exist

so

Operations are ECS objects· which direct the transfer of control from the

user to the system when the user calls upon the system. They describe

the action:;to be taken by the system and direct the passing of parameters

to the system or between user subprocesses. (See Subprocesses above.)

Each operation is composed of an initial order specifying a desired action,

some parameter checking information, and when the action is "subprocess

call", a class code naming the subprocess to be called. The initial order

is followed optionally by a sequence of orders (containing similar informa­

tion) indicating alternative actions should all the preceding orders result

in F-returns. The user may invoke any of the ECS - system actions described

in this document, or can create his own operations of which the orders may

either specify subprocess call or jump actions or actions which are modi­

fications of ECS system actions.

The checking information in each order consists of 1) a parameter speci­

fication type for each parameter required in the actual parameter list

for the indicated action; 2) words containing the required option bits and

type for capability parameters to be supplied by the user; and 3) all fixed

parameters, whether capabiliti s or d a , Thia eh~~kin~ inf o~tmi-ti~n 1~

used by the system entry/exit routines when constructing the actual

parameter list.

51

The parameter specification types are:

none

Description

when an operation is created, all parameter
specifications are initial ized to "none",
and must be fixed-up using the various actions
supplied before the operation may be used.

any capability a capability is expected from the user, but
no type or option checking is to be performed
on it. (.. >/ r _

user-supplied capability the user must supply a capability whose type
and option bits include those set in the
operation.

·user-supplied datum the user must supply a 60-bit datum but no
checking is performed on it.

•fixed capability · both words of a capability are stored in the
operation and no corresponding information is
taken from the user's input parameter list.

fixed datum a 60-bit datum word is stored in the operation;
it is passed to the actual parameter list
unchanged.

There are two actions for creating new operations; the first creates an

operation with one order to "call" or "jump-call" a designated subprocess

and the second creates an operation of order N by adding one order to

"call" or "jump-call" a subprocess to an already existing operation of

N-1 orders. All operations constructed by the user specify "subprocess

call" actions or are modified versions of already existing actions. Actions

are also available for copying an operation and for changing the parameter

specifications in an operation.

A. Make a subprocess call or subprocess jump operation

IPl
IP2
IP3
IP4

IPS

C:
D:
D:
C:

D:

Capability for Allocation block (OB.ALORD)
C-list index for new operation
Type (O=call; nonzero=jump)
Class code of subprocess to be called by the new operation

(OB.CALOP)
Number of parameters to be used by the subprocess call

To create a new operation to be used for subprocess call or jump call,

the user supplies the index of a capability for the Allocation block

which is to fund space in ECS for the new operation.

52

In addition the user gives 1) the C-list index where the system will

place the capability for the new operation, 2) the type subprocess call

action (call or jump call) of the new operation, 3) the name (class code)

of the subprocess to be called by the operation, and 4) the number of

parameter specifications needed for the subprocess call. Upon creation,

all of the parameter specifications of the new operation are initialized

to "none" and therefore the operation may not yet be invoked (unless it

is parameterless).

Possible errors while creating a new operation:

Class II DescriEtion

6 0 Allocation block does not exist

6 1 No ECS available

6 2 No money availal>le

2 0 Number of parameter specifications is negative
t 1,

('

7 7 Too many parameters ~

J
2 4 Negative C-list index

7 6 Order too large ., d ~

B. Add an Order to an OEeration

IPl C: Capability for Allocation block (OB.ALORD)
IP2 D: C-list index for _new operation (order)
IP3 C: Capability for existing operation (OB.ADDOR)
!!1!11 ii •H • d I Iii ii iii ,~ lil iil ~ ~ ! ilfiilliiiilifi ~illililjl~

~
C: Class code of subprocess called by the new order (OB.CALOP)
D: Number of new parameters being added

This action creates a new operation of order N out of an operation of

order N-1. The first parameter is the C-list index for the Allocation

block which is to fund space in ECS for the new operation; the second

parameter is the C-list index where the system will put the capability

for the new operation. In the third parameter the user specifies an

already existing operation of order N-1, which is copied with the new

order appended. The last three parameters describe the new order by indi~

eating whether it is a "call" or "jump call" to a subprocess, the name

53

(class code) of the subprocess to be called, and the number of additional

parameters. The parameters of the new order will be initialized to type

"none" and must be fixed-up before the new order of the operation is used.

Possible errors while adding an order:

Class

6

6

6

2

2

7

4

2

2

7

C.

If DescriEtion

0 Allocation block does not exist

1 No ECS available

2 No money available

4 C-list index is negative

5 C-list index is too large

1 Operation has been deleted (doesn't exist)

5 Subprocess does not exist

0 Number of parameter specifications is negative

1 Number of parameter specifications is too

6 Order too large

COEY an OEeration of order n

IPl C: Capability for Allocation block (OB.ALORD)
IP2 D: Full C-list index for new operation
IP3 C: Operation to copy (OB.ADDOR)

large ---

The user can copy an already existing operation of order n (n ~ O) by

specifying the C-list index of the funding Allocation block, the full

C-list index for the desired operation, and the full C-list index of a

slot for the capability for the new copy of the operation. This action

is used prior to fixing parameter specifications of an operation to avoid

changing the original version of the operation.

Possible errors while copying an operation:

Class

6

6

6

2

2

7

II

0

1

2

4

5

1

DescriEtion

Allocation block does not exist

No ECS available

No money available

C-list index is negative

C-list index exceeds full C-list

Operation does not exist

54

D. Change a parameter specification, type

In order to specify the parameter 1spe6ification types in ·an orderl. of an

operation created by either A or B above, a set of actions is provided.

Each takes as parameters a C-list index for an operation and a para­

meter specification index (considering the parameter specification for

the first parameter of the first order as having an index of 0). Some

require additional information depending on the type of parameter spe­

cification being changed.

1. Change parameter specification from "none" to "user-supplied datum"

IPl C: Capability for operation (OB.CHTYP)
IF2 D: Index of parameter specification to change

Possible errors:

Class It Description

7 1 Operation does not exist

2 2 Index is negative

2 3 Index is too large

7 4 Parameter specification type is not currently "none"

2. Change parameter specification from "none" to "any capability"

3.

*

IPl C: Capability for operation (OB.CHTYP)
IP2 D: ~ ~~er specification to change
IPl D= ~.A
Possible er s. See 1 above.

Change parameter specification type from "none" to "user-supplied
capability"

lPl C: Capability for operation (OB.CHTYP)
IP2 D: Index of parameter specification ~ fo~
Jil>-l D: Capability type~.,;...~ l#-~ _
:u>4 D: Capability option bit maskJ;t,,t/4..,- 4'-~
The type of a capability occupies the lower 18 bits@f the Option bit/

Type field of which exactly 9 of the 18 bits must be set.* Table 1

This arrangement allows the validity of the entire 60-bit field t o
be checked in one instruction (using the implication function).

55

below gives the types for ECS objects currently available.

Table 1. Capability types

Object Type

Process 777
8

C-list 13778

File 1577
8

Operation 1677
8

Class Code 17378

Event Channel 17578

Allocation 17678
Block

The option bit mask stored in a capability occupies the upper 42-bits

of the Option bit/Type field and the meanings of the various option

bits is determined by the type of object the capability identifies.

See Appendix B for the name, description and relative position of all

option bits. The option bit mask is checked for all required option

bits. The positions of the bits are given reading from right to left;

thus bit position O is the low order bit of the field.

Possible errors while changing parameter specification type from "none"

to "user-supplied capability":

Class , II Modifier DescriEtion

..... 6 0 N

6 1 No ECS available

No

2 2 2 Index is negative

l 2 3 2 Index is too large

7 2 Capability type does not have exactly 9 bits set

7 1 Operation does not exist

7 2 Option bits bad

7 4 Parameter specification is not currently "none"

4.

5.

56

Change a parameter specification type from "user-supplied datum" to
"fixed datum"

IPl C: Capability for operation (OB.CHTYP)
1P2 D: Index of parameter spe.cifi.cation type
IP3 D: 60-bit datum word

Possible errors while changing parameter specification from "user­
supplied datum" to "fixed datum":

Class II Modifier Descri12tion

- 6 No Alloeation

6 1 No ECS available

2 ~ ailable

7 1 Operation does not exist

2 2 2 Index is negative

2 2 3 Index is too large

7 5 Parameter specification is not currently
"user-supplied datum"

Change a 12arameter sr,ecification type from "user-su1212lied ca12ability"
to "fixed capability'

IPl C: Capability for operation (OB.CHTYP)
IP2 D: Index of parameter specification type in operation
IP3 C: A capability

The capability supplied must agree in type and option bits with what

is already in the operation.

Possible errors while changing a parameter specification type from
"user-supplied capability" to "fixed capability"

Class II Modifier Descri12tion - 0 No Allocation block

6 1 No ECS available

6 2 No money available

7 1 Operation does not exist

2 2 2 Index is negative

2 l 1. Index is too large

7 5 Parameter specification is not currently
supplied capability"

"user-

E.

57

Note in the last two cases (.4 and 5) that "fixing" a parameter speci­

fication type requires two steps, changing the specification first to

"user-supplied" type and then to the corresponding "fixed" type.

Actions 3, 4, and 5 involve reallocating the operation in ECS, since

each requires inserting one additional word to the order.

Change parameter specification option bits for type "user-supplied
capabilityl'

IPl C: Capability for operation (OB.CHOPT)
IP2 D: Index of parameter specification
IP3 D: Option bit mas~

After the parameter specification option bit mask has been specified when

a parameter specification type is changed from "none" to "user-supplied

capability", this actio'n may be used to alter the mask.

Possible errors while changing option mask:

Class

2

2

7

7

F.

fl Modifier Description

2 2 Index is negative

3 2 Index is too large

1 Operation does not exist

5 Parameter specification type is not currently
"user-supplied capability"

Destroy an Operation

IPl C: Capability for the operation to be destroyed (OB.DSTRY)

This action may be used to destroy an operation created by the user.

The only parameter required is the C-list index of the capability for

the operation to be destroyed.

Possible error when destroying an operation:

Class

7

II

1

Description

Operation does not exist

I

B.

C.

D.

Appendix A

User supplied parameters (wlth option bits) for ECS system
and subprocess call actions

Create an Allocation Block

C: Allocation Block (OB .CREAB)
C-list index for returned

58

Allocation Block to another

IPl C: ocation Block (OB .GIVE)
IP2 C: All cation Block (OB.GET)
IP3 D: be
IP4 D:

in Allocation Block

IPl C: Al (OB.GOD)
IP2 D: capability ·
IP3 D·

Allocation Block C . 0ELAt3

IPl C: Allocation Block to be de troyed (OB.DSTRY)

II C-List Actions

A.

B.

c.

Create a C-list C, CCLtST

IPl C: Capability for Allocation block (OB.CRECL)
IP2 D: Index in full C-list to return new capability
IP3 D: Length of new C-list

Display a capability from full C-list c . Os PC/iP

IPl D: Index in full C-list

Display a capability from an arbitrary C-list C . [J S f/tl?./3,

IPl C: Capability for C-list
IP2 D: Index in the C-list

C-OONATc

D.

E.

F.

G.

59 .

Copy a capability within full C-list and decrea~e_ortions C , MVJ:CAP
< ' . '

IPl D: Index of desired capability

0-0 IP2 D: Index of destination C-list entry --IP3 D: Mask if options to preserve

Copy capability from full C-list to arbitrarz C-list (vice- versa)

IPl C: Index of destination (source) C-list (OB . CPYIN, OB . CPYOT)
IP2 D: Index within destination (source) C-list of capability
IP3 D: Index in full C-list of source (destination) capability

Change unique name in capability

IPl D: C-list index of object (OB . CHNAM)

Destroy a C-list

IPl C: Capability for C-list (OB.DSTRY)

C.CA'()tJ t1 T
C· C lfPIJ"\J

I I I File Actions

A. Create a File C ,Cf tL£

IPl C: Capability for an Allocation block (OB .CRFIL)
. IP2 D: C-list index to return capability
IP3 D: Number of levels in file
IP4 D: Pointer to list of shape numbers

B. Create a Block C , C 13LI{

IPl C: Capability for file (OB . CREBL)
IP2 D: Address of block in file

C. Check for missing blocks C. CHf<f.,t..l<

IPl C: Capability for file
1P2 j): Address of block in file

D. Read shape of a file c -RsosHP

IPl C: Capability for file
IP2 D: Address of buffer for shape numbers
IP3 D: Buffer size

E. Read (Write) File
C · f{F It..'=

a C , -./r-11-E

IPl C: Capability for file (OB . RDFIL, OB . WFILE)
IP2 D: Address in file
IP3 D: Address in GM
IP4 D: Word count

IV

F.

H.

I.

Move a block of a file C. Mt>Vt3L.I(

IPl C: Capability of a source file (OB.RDFIL, OB.DELBL)
IP2 D: Address of
IP3 D: Capability
IP4 D: Address of

source block.
for destination file
destination block

(OB.RDFIL)
source file

n file (OB.WFIL)
in destination fil

D: to be transferred

Delete a Block from a File C . J)e LT3,LJ(

IPl C: Capability for file (OB.DELBL)
IP2 D: Address of block to be deleted

Delete a File C,PE1..F1L

IPl_ C: Capability for file (OB.DSTRY)

(OB.WFILE, OB.CREEL)

60

Process and Subprocess

A.

B.

C.

Create a class code c.ccc

IPl_ @capability for --class code

Set temporary Eart of class code C,NL.JT,A,1P

IPl C: Capability for class code (OB.TEMP)
IP2 D: C-list index for modified class code
IP3 D: New temporary part (30 bits)

Create a Process c . cf'ROC

IPl C: Capability for Allocation block (OB.CREPR)
IP2 D: C-list index for returned process capability
IP3 D: Number of event channel chaining words
IP4 D: Number of stack entries
~PS C: Class code for initial subprocess (OB.SONSP)
IP6 D: Number of map entries in initial subprocess
IP7 D: Compiled map buffer size for initial subprocess
IP8 D: Subprocess field length
IP9 D: Subprocess entry point

IPlO C: Capability of · C-list for subprocess (OB.LOCCL)

0

IPll C: Capability of file for 1st map entry (Read/Write: OB.WFILE,
OB.RDFIL, OB.PLMAP) for initial subprocess

IP12 D: Address within file
IP13 D: Address in CM
IP14 D: Count of words to be swapped
IP15 D: Capability of file for 2nd map entry (Read Only: OB .. RDFIL,

OB.PLMAP) for initial subprocess

D.

E.

F.

G.

H.

I.

J.

K.

L.

M,

61

IP16 D; Address within file
IP17 D: Address in CM
IP18 D: Count of words to b.e swapped

Display Fixed Leni5th Process Descri2tor

IPl C: Capability for the process
IP2 D: Address of buffer area
IP3 D: Size of buffer area

Display Clock Times

IPl D: Address of buffer area

Create a Subprocess C , CSPl?OC

IPl C: Capability for new subprocess class code (OB.SONSP)
IP2 C: Capability for class code of the "father" of subprocess (OB . FATHR)
IPJ D: Number of map entries
IP4 D: Compiled map buffer size
IFS D: Subprocess field length
IP6 D: Subprocess entry point
IP7 C: Capability for subprocess local C-lis_t index (OB.LOCCL)

Display Subprocess Descriptor

IPl C: Class code (subprocess
IP2 D: Address of buffer area
IPJ D: Size of buffer area

Subprocess call

See Operations

Subprocess return

See Operations

Subprocess F-return

~
Subprocess Jump Return

name)

IPl C: Capability for class code of subprocess to return to (OB .SPRET)
IP2 D: Number of stack occurrences of APl to skip

Return with Error

IPl D: Error Class
IP2 D: Error Number

,(, t,,.-,01 f 1"l

f' o:
p o:

{\J ,.

0

f ~-

P.

(Q.

R.

s.

T.

u.

v.

w.

Modify P-counter of suhpro~~ss C. MOPf'C

IPl C: Capability for class code of subprocess (OB.PCNT)
IP2 D: Number of stack occurrences of APl to skip
IPJ D: New P-counter

Display stack c. fJ 1sps r

lPl D: CM address of a buffer area
IP2 D: Size of buffer area (.:_ 4)

Display stack entry C, DIS S/~r.f

lPl D: CM address of buffer
IP2 D: Desired stack entry

Send process interrupt C . PINT

IPl C: Capability for a process (OB.SDINT)
IP2 C: Capability for a class code of a subprocess (OB.INTSP)
1P3 D: An 18 bit interrupt datum

Set/Clear Interrupt Inhibit of Current Subprocess C ~ ~ ~ ,r 'i::/3
C. Ct..,(f1-,r,/3

No parameters

Reduce/Restore Path of Current Subprocess

No parameters

Set local ESM (Error Selection Mask)

IPl D: Pointer to new ESM

Set ESM in any subprocess

IPl D: Pointer to new ESM
IP2 C: Capability for class code (OB.STESM)

Destroy a process C - /JL f~tJc

IPl C: Capability for process to be destroyed (OB.DSTRY)

Destroy a subprocess

62

lPl C: Capability for the class code of subprocess to be destroyed (OB.DSTRY)

Save (restore) registers C. S,'\Llf.::

C · ~e;ST()R_

IPl D: Pointer to 16 word buffer for registers

V

63

Map Actions

A.

B.

Zero a map entry

IPl C: Class code (subprocess name) (OB.CHMAP)
IP2 D: Index in logical map of subprocess ·
IPl C: ~~...:.. ,.,.,,.,~.,;(~ (()B.fUIA/J~C,Mf0-1/ff{/ : .MK/IAPRt,,
Change (create) a map entry (read/writ, or read only) C.

C: . M PC. t-/1? (J : c,. A,f/(flt PRO
IPl C: Class code of subprocess (OB,CHMAP)
IP2 D: Index of map entry in APl .
IP3 C: Associated file (read only or read/write)
IP4 D: Address in file
IPS D: Address in CM

,J.. ~-~-(C-cU~l'Rltl
-~ C, CHltff~O

(OB.PIMAf>,OB.RDFIL,OB.WFILE)

Nf'{,e4-i~7 ~~~~e~e~,~~ ((1g_flJ#A~)
C. Display map entry from map of named subprocess C,O t SM4P

D.

E.

F.

IPl C: Class code for subprocess
IP2 D: Index of entry in logical map of APl
IP3 D: Address of 3 word buf f er

Display entry in full map

!Pl D: Index of entry in full map
IP2 D: Address of 3 word buffer

Set Direct Access Map Entry

!Pl C: Class code (OB.DAE)
IP2 C: File (OB.FDAE)
IP3 D: File address of beginning
IN D: Word count (mod 1008)

Clear Direct Ac~ess Map Entry

!Pl C: Class code (OB .CHMAP)

of block

C. DsFM/fP

VI Event Channel Actions

A.

B.

Create an event channel c . cr:uct,.{

IPl C: Capability for allocation block (OB.CREEC)
IP2 D: C-list index for new event channel capability
IP3 D: Length of event queue

Send an event (w:Ha/witbout dupJicat.e checking)

!Pl C: Capability for event channel (OB.SNDEV)
IP2 D: Datum part of event

VII

c.

D.

E.

F.

64

Get an event or hang C-CBTE

IPl C: Capab~lity for event channel (OB.GETEV)

Get an event or F·-return

IPl C: Capability for event channel (OB.GTEVF)

Get an event from one of a list of event channels or hang (F-return) DM~ETH
C . M4€TF

IPi D: Pointer to list of event channel C-list indices (OB.SNDEV ...)
(OB.GETEV or GTEVF ...)

IP2 D: Number of channels in list

Destroy an event channel

IPl C: Capability for event channel (OB.DSTRY)

Operations

A. Make a subprocess call or subprocess jump operation.

IPl C: Capability for Allocation block (OB.ALORD)
IP2 D: C-list index to return new operation
IP3 D: Type (O=call, nonzero=j ump)
IP4 C: Class code for subprocess called by new operation (OB. CALOP)
IPS D: Number of parameters used by the subprocess call

B. Add an order to an op~ration

IPl C: Capability for Allocation block (OB.ALORD)
IP2 D: C-list index to return new operation
IP3 . C: Capability for existing operation (OB.ADDOR)

c.

IP4 D: Type of , order (O=call, nonzero=j ump)
IPS C: Class code of subprocess called by new order
IP6 D: Number of new parameters being added

Copy an operation of order n (n ..:_ O)

IPl C: Capability for Allocation block (OB.ALORD)
IPZ D: Full C-list index for new operation
IP3 C: Operation to copy .(OB.ADDOR)

(OB.CALOP)

C· COPYOP

C - lAiJAT
Dl. Change a parameter specification type from "none" to "user-supplied datum"

IPl C: Capability for operation (OB.CHTYP)
IP2 D: Index of parameter specification

D2. Change a parameter specification type from "none" to "any capability" C-r!Clfl'

IPl C: Capability for operation (OB.CHTYP)
IP2 D: Index of ; .a.~ameter specification type

:rfl o:~A,t,f&
to change

65

D3. Change a parameter specification type from "none" to "user-supplied C -VCAP
capability"

IPl C: Capability for operation (OE.CHTYP)
IP2 D: Index of parameter specification type
IP3 D: Capability type
IP4 D: Capability option bit mask

D4. Change a parameter specification type from "user-supplied datum" to
"fixed-datum"

IPl C: Capability for operation (OB.CHTYP)
IP2 D: Index of parameter specification type
IP3 D: 6O-bit datum word

C ,F/XO

D5. Change a parameter specification type from "user-supplied capability" c.: . FIA c
to "fixed capability"

E.

F.

IPl C: Capability for operation (OB.CHTYP)
IP2 D: Index of parameter specification type in operation
IP3 C: A capability

Change Parameter Specification Option Bits for "user-supplied capability"

IPl
IP2
IP3

C: Capability of operation (OB.CHOPT)
D: Index of parameter specification
D: Option bit mask

Destroy an Operation

IPl C:Capability for operation to be destroyed (OB.DSTRY)

C ·/-f fJ (}tJfT ?

Object

Allocation
Block

C-list

File

Process

Subprocess

Mnemonic

OB.DSTRY
OB.CHNAM
OB.CREAB
OB.CRECL
OB.CRFIL
OB.CREPR
OB.CRESP
OB.CREEC
OB.ALORD
OB.GIVE
OB.GET
OB.GOD

OB.DSTRY
OB.CHNAM
OB.CPYIN
OB.CPYOT
OB.LOCCL

OB.DSTRY
OB.CHNAM
OB.CREEL
OB.DELBL
OB.RDFIL
OB.WFILE
OB.P~PA
OB.FDAE

OB.DSTRY
OB.CHNAM
OB.SDINT

OB.DSTRY
OB.TEMP
OB.FATHR
OB.SPRET
OB.PCNT
OB.INTSP
OB.CALOP
OB. SONSP
OB.CHMAP
OB.DAE
OB.STESM

66

Append tx B.

Optlons.

Relative
Description Bit Position

Destroy Allocation Block
Change Unique name
Create Allocation Block
Create a C-list
Create a file
Create a process ,
Create a subprocess
Create an event channel
Create an operation
Donor Allocation block
Donee Allocation block
Return capability of n-th object

Destroy C-list
Change unique name
Copy capability into
Copy capability o.,....._,._..._
Local C-list for initial subprocess

------!

Destroy a file
Change unique name
Create a block
Delete a block
Read .a file
Write on the file
Place portion of file in map
Direct ECS Access

Destroy a process
Change unique name
Interrupted process '

Destroy subprocess
Set temporary part of class code
Father subprocess
Subprocess may be jump returned to
P-counter of subprocess may be modified
Interrupt subprocess
Subprocess called by operator
Son subprocess
Create, zero, or change map entry
Direct ECS Access map entry
Set Error Selection Mask

O '
1 0

2
3 G:,

4 1"

5
6
7 !I

8 '-f /,'.)

9
10
11

0 I

1 '2

2 '1
3 '(I

4 2o

0
1
2
3 ,,
4 .,

5
6
7

0
1

0 I

1 ?
2 <..

3
4
5
6
7
8
9 ,,

10

I

Object

Event
Channel

Operation

Mnemonic

OB.DSTRY
OB.CHNAM
OB.SNDEV
OB.GETEV
OB.GTEVF

OB.DSTRY
OB.CHNAM
OB.ADDOR
OB.CHTYP

OB.CHOPT

Description

Destroy event channel
Change unique name
Send an event
Get an event (or hang)
Get an event (or F-return)

Destroy an operation
Change unique name
Order may be added to operation
Change parameter specification type

in an operation
Change option bits for "user­

supplied capability"

67

Relative
Bit Position

0
1 ~

2 il

3 ? 103
4 ~ :z.or;

0
1
2

3

4

,\J .f-l[Vj r_. ~

OPT I ONS 1000
ECSACT l LJOO 1045
J I :-1G EY 1000 105 1
GRAYC DE 7LJOO 1055
TYPES LJ OO 10 6 1
PRO CSYM LJOO 1065
DJTSYS 1000 107 1
ECSMAC LJOO 1075
A SC I I 1000 1 10 1
0 BB I TS 1000 1305
BLKBOX 1000 1LJ21
GETEM 1000 170 1
MASTR 1000 205 1
I OMAC 1000 2665
ALOCSYM LJOO 3205
L I ST COMPLETE
GE T, ERRNUMS ,, ERHNUMS , XTEXT
OBTA INED
F I N
BEAD HEE
C, ED I TU , S , El·-<NU hNUM~
ED I T
M/ E 0 SBLuCK ; P l O
* OT J<OU\iD
M/ E 0 ABLOCK ; P l O
E • AE LOCK EOU

* E 0 NOABLK EQU
E• NOECS EQU
is 3i:llid19lQ EQU
E 0 NuS\oJP EQU
E • NODSK EQU

--S AD6H1 E@U

*
L .stBF~OR £00
M; PL!

*
*
E 0 0PER EQU
*
Q

,.

6

0
1
2 E.NISUT

3..,, ·- ----

4

7

E.f\lOReS s-
E. Nl'-P ' E. JJdMIJr 7

E. lv()RLC r
E . Al fl P,A 11{ ' ~. cR~~I{ 10

AL LOCAT i uN rLOCK EH RL.) CLA~S

NU ALLuCAl lQ~ BLO CK
:\JUT ENUUGHll!;~0ACE T() c.1teA1l: oar.

"P&e:l l!e:lLEl PG3?HJ¥
NU S\oAPPFD ECS SPACE
c\iO DI SK SPACE

◊'I Tb'MP 'Ill I NCb~O. f:siJ OtlflI.BEb A'.P' 31'A€ E

EHHUR - N INTERPhET I G OPEHA II O~

OK
PSPACE, 20000
OK
C, DISK, S
DI SK HERE
GET , OBBI TS,, OBBITS, XTEXT
OBTAINED
FIN
BEAD HEHE
C, ED I TOR , S, OBITS
EDIT
Q

BEAD HERE
C, ED ITO R, S, OBBITS
EDIT
P lO

TITLE DEFINE OPTION POSITIONS
MACRO OPT , NAME

OB . NAME EQU : 0:
: 0: SET 2*:0 :

ENDM

OPTORG MACRO
I FC

: 0: SET

: 0 : SET
ELSE

: 0: SET
ENDIF
ENDM

* * ALLOCATION BLOCK
*
0 B• DST RY SET

OB . DSTRY SET
OB . CHNAM SET
0 B• CREAB SET
0 B• CRECL SET
OB • CRFIL SE
OB ° CREPR SET
0 B• CRESP SET
OB . CREEC SET
OB • ALORD SET
OB • GIVE SET
M; P l O
0 • GET
OB . GOD
OB. SLIM
*
* C- LIST
*

SET
SET
SET

N
NE , / N//
N

N

2

1
2
4
l OB
20B
40B
l OOB
200B
400B
1000 1::!

2000E
4000B
10000 B

OB ° CPYI N SET 4
OB° CPYOT SET 10B
OB . LOCCL SET 20B
*
Q

BEAD HERE
LOGOUT
EMPTY
LOGGED OUT
TRIM
OK

SET LIMIT FIELD

-:-. . .. -
- - ..

.
.- .;., -:
• ... - 'I •

~

, ..
--~•· .. : ~ . -·

..
• I

...
...

- ' - ..,

' '

.
I ,= - ~

"' ' .
•. .•• I

~ ■• ~-....... ■- ••• ■
- I __ ..

■ _. - ■ ■' I ~ -

•• 1 --=-~ I'll .. ·: -': . ..:. -
■ L ■■ I. t;::

.
■ • -· -· " •• f_ •

r •; ~•••:..:•• •. ,

;, . : :. ~1z.
. .. -

.,- :· .: :.::·~; -: ~/)()

-:-;··f"

r"
' ~ !&t/~ ~~~

_ '."' 1006
~-•r '~~
. - ' .,. ...

· · ·-•l iJd

r

Af..1 Class ;:1 Numb.ers

0

1 r-
2

0
1

2
3

4
5

(J,)

3

0
1
2
3
4
5
6
7
8
9

10

4

0
1
2
3
4
5
6
7
8
9

10
11

I 2_

Append ix C

Error Classes and Num~ers

Description

SCOPE call error class

Arith error class

Parameter or pointer error class

Parameter too small
Parameter too large
Param number is masked into errnum
Pointer/Ai. s negative
PointerUis too large
Pointer is masked into errnum
C-list index is negative
-list index is too large

r

~ is masked / into errnum .__-- ~ .,.;_. J vt.., ff~ A-..rV Jo 1

File-processing error class

File does not exist
Block to be created exists
Block is in map
Block to be moved does not exi~t
Block sizes not equal for move
Block to be destroyed does not exist
File to be destroyed is nonempty
Negative shape number
Shape number is too large
Shape number is not power of two
File size is too great

68

Error class for subprocess creation, call, and return

Duplicate subp name
Named father does not exist
Block in swapping directive missing
Not enough room for map
Process becomes too big
Named subp does not exist
No room for subp in stack
No room for parameters
Too many capability params
Empty stack (on return)
Empty stack (on F-return)
Attempt to delete subp in stack

,

Class. Numhers

5

a
1
3

6

0
1
2

7

0
1
2
3
4
5
6
7

8

0
1

9

a
1
2

10 a

11

a
1
2
3

Error class ~or process creation

Block missing in swapping directive
Not enough room for map
Process gone from MOT

Allocation block error class

No Allocation block
Not enough space
No more money

Error in •interpreting operation

IPO not capahility for operation
Operation not in MOT
Capability type or options bad
Param spec (any) encountered
Parara spec (any) not encountered
Shoulq be user supplied parameter
Order too big for scratch area
Too many parameters

Miscellaneous error class

Capability list not in MOT
Misc object not in MOT

Event channel error class

Event queue too short
Event queue too long
Event channel not in MOT

No subp to take error class

Error class for maps

Attempt to change or zero DAE
DAE attempts to bridge blocks
DAE action applied to swapping dir.
Bad w.ord count or missing file

69

...

	Spine
	Plan for CAL TSS documentation
	ECS Test
	Errors in manual
	New actions
	CAL TSS Users Guide
	Contents
	User-System Interaction
	Requesting a System Action
	System actions
	I. Allocation blocks
	II. C-lists
	III. Files
	IV. Processes and subprocesses
	V. Maps
	VI. Event channels
	VII. Operations
	Appendix A. Summary of actions
	Appendix B. Options
	Appendix C. Errors

