P e e ptede i snie L M ¢
e g A

1
iy 90
b

Re Lore Crtleln

yilam Sty ST

| T% sz«

TSS Vet Mt/

DIPTSR ISR SRR A A

=

el

Table of Contents

System Entry/Exit-Operation
Allocation of ECS

Capabilities and Capability
Kile8.. <« o » & « o » = & 2
ProcessSes « « s« o o o o &
Subprocesses.
Class Codes « « + &« & « « &

Maps. « . « + &
Cortrof Clamnclea

Time Sharing Standard Text .

Line Collector: s i + « & =

Teletype I/0 Functions .

Interaction . . .

-Lists .

. . . .

s91

System entry/exit - Operation Interaction

Control passes from the user to the entry point (USERCAL) of the system
entry/exit routines when the user executes a CEJ instruction. Control
returns to the user (at S.RETU) at the end of the system entry/exit routines,
again by a CEJ dinstruction. Thus the system runs in monitor mode, while
the user runs in user mode. The function of these routines is to determine
the reason for the user's call upon the system (i.e., the operation he wishes
to perform), to collect and check the parameters needed for the operation,

to transfer control to the proper system action routine specified by the
operation, and to handle the return to the user after the system action is

completed.

Operations are ECS system objects which control the calling of system actions
or subprocess call actions, and provide the mechanism to facilitate ''layers"
in the system. Internally, an operation consists of one or more orders,

each in the same format, prefixed by a fixed sized header. Each order
specifies an action and consists of an action number, which is an index

in a jump table of ECS action addresses; parameter information, which is
used by the system entry/exit routines as explained below; and those para-
meters for the action(s) of the operation which are fixed for each call

(see Figure 1).

The parameter information consists of a variable-length sequence of bytes,
one for each parameter to indicate its type. The parameter specification

types and their descriptions follow:

PS.UCAP user—supplied capability (which must match the type and
option bits stored in the operation)

PS.UDAT user-supplied 60-bit datum (no checks are performed)

P5.FCAP fixed capability (both words of a capability are stored in
the operation, and no corresponding information is taken from
the user's input parameter list)

PS.FDAT fixed datum (a 60-bit data word is stored in the operation,
and always passed unchanged)

PS.ACAP any capability (a capability is expected from the user, but
no type or option checking is to be performed on it)

System entry/exit - Operation Interaction 2

PS.NONE none (when an operation is created, all parameter specifi-
cations are initialized to "none'", but they must be fixed
with the various actions supplied before the operation may
be used).

A bit in the operation is set if the action involved is parameterless; in
this case there are no parameter specification bytes. When present, the
3-bit parameter specification bytes are packed 19 to a word, with special
bytes to indicate "end of current byte-word'" and "end of all bytes'". Fol-
lowing the byte-words come the parameter specification data-words: a word
containing option bits and a capability type for PS.UCAP parameter specifi-
cations, and the fixed parameter (a two word capability for PS.FCAP bytes,
a 60-bit datum for PD.FDAT bytes), but nothing for any other type of para-

"sub-

meter specifications. If the action specified by the operation is a
process call" or "jump-call", a flag bit in the operation indicates the
presence of a class code (name of the subprocess to be called), and the

class code will appear after the data words in the operation.

In addition to the above mentioned information, each order of an operation
contains several fields used to 'traverse' the operation when it is being
interpreted or changed. There is a total-number-of-parameters field, which
is cumulative for all orders from the first through the current order, as
well as a cumulative-total-number—of-capability-parameters field. Also,
each order contains the length and origin (relative to the beginning of

the operation) of the next order.

At system initialization time, operations for all available ECS system
actions are created. In addition, operations may also be created for par-
ticular subprocess calls or jumps. The user of the TSS may call upon any
of the system action operations for which he has been given a capability-
The system actions created at initialization allow the user to create

and manipulate ECS objects, e.g., create, read and write files, and
create subprocess call or jump operations etc. (See individual documents

and below for details.)

On entry to the system entry/exit routines (at USERCAL) the origin of the

process descriptor (see Processes) has been picked up in Bl by the exchange

System entry/exit - Operation Interaction 3

jump. The origin of the process descriptor will remain in Bl through

all system actions. First, the system and user clocks are updated. The
difference between S.OLDTM, which contains the value of S.CHARG from the
last time it was updated, and S.CHARG, which runs whenever the interrupt
system is not running, is added to the system total user time (S.URSTM) in
system core and to the user's total user time (P.USRTM) in the process

descriptor.

The CEJ instruction which caused the transfer of control is then examined

to find the address of an input parameter list (see Figure 2). It is ex-

pected that the CEJ which the user executed was in the upper two parcels
of the instruction word. The low order 18 bits of the 30 bit CEJ instruc-
tion are extracted and interpreted to locate an input parameter list. If
the 18 bit field is negative, the complement of the low order 4 bits spe-
cify which register in the user's exchange package contains the input para-
meter list (IP list) pointer (e.g., -3 = B3; -10 - X2). Otherwise, the 18
bit field is taken to be the IP list pointer. This pointer is checked for
legality (i.e., must be positive and less than user FL) and an error is
generated if necessary. Finally, the IP list pointer is saved in the pro-
cess descriptor at P.IPLIST in case it is needed to form a stack entry for
a subprocess call. Also the stack manipulation flag (P.OLDP), which con-
trols the updating of the old stack entry in case of a subprocess call, is

reset.

Next, the first word of the IP list (called IP0) is expected to be, and is
interpreted as, a full C-list index of the operation for the desired action.
The corresponding capability is fetched by calling GETCAP (note that a nega-
tive or overly large C-list index will cause an error to be generated). This
capability is checked to insure that it is a capability for an operation; if
it is not, an error is generated. The first order of the operation is read

from ECS by reading the fixed-sized header and then reading in the first

order.

The parameter specifications of the first (and possible only) order of the

operation are used by OPINTER to form an actual parameter (AP) list in the

Q

System entry/exit - Operation Interaction 4

process descriptor starting at P.PARAM. This list consists of the two
actual words of each capability parameter and one word for each datum
parameter. Parameters which are fixed in the operation are copied
directly to the actual parameter list. User supplied parameters are

drawn from the IP list, which is expected to contain in successive words,
C-list indices and data parameters. C-list indices are checked to assure
that they fall in the range of the full C-list and are used to fetch the
actual two words of user-supplied capabilities. User-supplied capabilities
are checked for the correct type and required options unless the parameter
specification is "any capability'. User-supplied datum parameters are
transferred directly from the IP list to the AP list without any checking.
If a "none" parameter specification is encountered, an error is generated

and parameter processing is terminated.

For operations which are flagged as being parameterless, the interpretation
of parameter specifications is omitted. After the completion of the actual
parameter list (AP 1LsL), the operation is checked to see if it requires a
subprocess name and parameter type bit masks (i.e., it is a subprocess call
operation). If so, the subprocess name is copied from the operation to
P.PARAMC in the process descriptor, the number of parameters is stored in
P.PARAMC-1. In addition, the input-parameter list address is stored in
P.IPLIST and the F-return count, which is now zero, is stored in the top

stack entry.

Finally, the ECS action number is extracted from the operation; it is used
as an index to jump into the ECS action jump table starting at ACTIONL

where there will be a jump to the proper entry point for the desired action.

Upon successful completion of an ECS action, the ECS action routine normally
returns to the system entry/exit routine to return control to the user. The
only exceptions to this are the case in which the user process has hung on
an event channel or exceeded its quantum, in which case thegevent channel)
routine exits to the swapper, and the case in which an F-return has been
made. An F-return results when a situation arises which is not serious
enough to cause an error but does not permit the action to be carried out

normally.

System entry/exit - Operation Interaction 5

There are three points in the system return sequence to which an ECS
action may return: SYSRET, TOUSER and S.RETU. The normal return begins
at SYSRET. This return updates the user's P-counter in accordance with
the user supplied P-counter coffset which is stored in the low order 18
bits of the CEJ instruction word originally used to call the system.
The legitimacy of the new P-counter (old P-counter + P-counter offset) is
checked and an error may be generated. Falling through to TOUSER the
normal return updates the system time clocks at S.SYSTM in system core
and P.SYSTIM in the process data area and checks to see if the user's
quantum has run out. If S.QUANT is positive (quantum has run out) the
swapper is entered at SWAPOUT. Otherwise, an exchange jump (CEJ) is exe-

cuted at S.RETU to return control to the user.

If an F-return results, either from a subprocess call action or an ECS
action, control transfers to SYSFRET, and the IP list whose address is the
top entry of the stack or P.IPLIST is consulted. The count of the number
of orders in the operation kept in the header word, is checked and if re-
maining orders exist, the F-return count in the stack is incremented, and
the next order of the operation is interpreted. This proceeds as previously
described, except that the parameter specification of all orders up to and
including the current one are used to form the actual parameter list. If
any one of the subsequent orders terminates normally, the return is through
SYSRET as described above. If the F-return count reaches the number of
orders in the operation, then the return is to TOUSER and behaves the same
as the return to SYSRET except that the user's P-counter is not modified.
(This return is used by the subprocess calling, subprocess return and

process interrupt action routines.)

If the action resulted in an error, control transfers to E.ERROR where
error processing, which involves calling a subprocess in the user's process

to handle the error, is initiated. (See Subprocesses.)

The entry S.RETU is used by the swapper after a process has been swapped
in to transfer control to the user; it consists only of the CEJ instruc-

tion.

System entry/exit - Operation Interaction 6

Creating an Operation

When an operation is created, each of its parameter specifications is
initialized to '"none', and the operation thus may not be invoked (unless

it is parameterless). There are two actions for creating new operations.
The first creates an operation of order 1 to call or jump-call a designated
subprocess. The second action creates an operation of order N. It is
supplied with an operation of order N-1, which is copied with a new order

appended, again to call or jump-call a named subprocess.

ECS system actions are also available to copy an existing operation and
then to modify the parameter specifications as well as to destroy an

operation.

In order to specify the parameter specifications in an order of an opera-
tion created in any of the ways just described, a set of actions is
provided. Each takes as parameters an operation, a parameter specification
index (for which purpose the order-boundaries of the operation are ignored),

and further information in certain cases. The actions are

ACAP change a PS.NONE to a PS.ACAP specification (no further
parameters need be supplied)

UDAT change a PS.NONE to a PS.UDAT specification (no further
parameters)

UCAP change a PS.NONE to a PS.UCAP specification (two additional
parameters are required, a type and an option bit mask)

FDAT change a PS.UDAT to a PS.FDAT specification (an additional
parameter, a 60-bit datum, is required)

FCAP change a PS.UCAP to a PS.FCAP specification (an additional

. parameter, a capability index, is required)

Note in the last two cases that "fixing' a parameter specification requires
two steps, changing the specification first to a user-supplied type and then

to the corresponding fixed type.

The UCAP, FDAT, and FCAP actions involve reallocating the operation in ECS,
since in each case one extra word is added to an order of the operation.
Also, the cumulative-total-of-capability-parameters field must be updated in
the affected order, and all fields after it, in the case of the UCAP and
FCAP actions.

3 June OP@, Fations IR

Leagth of | number of
+i. at'jocdit‘ orde:"‘s ot < o 1
i‘;'t bt — - T
PS.MASKL
Az N

4}0-[,};; <P¢U*?¢“/‘{L v(;‘(st, < Cumdhve cAit] < Cunulchor FL
?Rﬁ {5 dc_t\u'vi > Lunsthh tegoitoncid> mln.l:?lﬂrnt- >

0| SComdlerie bisck |KAPLst D wth, | Vischl pavamehes
‘JU& (}s’lﬂsfé\7 cuo 'hJIlJ'Nt >' Zﬂ,g c) ber >

-0-K Lensth " of <O G of

nedt eoder > X order > < Aetion nombtr;"
Fanieter coe
t,)p:‘(,c’ﬁ(ﬂh“\ '
rJ,_ 1!@,, N
f’ammder
- A &u ti

«

.bc’fz A,C‘@f ,’ﬁ

i)) [optint] \/

T g
®
e el g
) /
I Q} ‘
: " ¢ g ‘/’7 /{": 2 &4 i :’/'/ {'/

ff fe (L, e . Bl Thes o4
y: , 4, ',r e

L A’i';: 3 le

-~

bE, Jung 70 Crevations 2/2

Faraneter- #?4% bd Mack i O=datim , [= copdbily o ok (adid abao
waer fuwr Wiy oo the AP Lot)

/Z’/ endli gpfcftuulwk B/'Q CMM’ i g/cdﬂ»/ w);fff :L)_a /)
= o= Ps.NONE (w”up?c%&;)
3= PS.UDAT (Luu—ag] ‘d daturm

4 PS. AT (/Vwa af ,ML)

- < RO [Iixad co. :wu
6 Ps. DLK k(/(2% - b‘ﬁcalz)
7" 5, ICAP (wawr- w ‘\’azfv.édc/)

Ruraneter Specifeatin Data ward formatse

G0-pt _datum (PS. FDiT)
Sgtien 2ype (95, FaAP)
wh met
£ TTom
= e (500 w3 o
ophicm tupe (7. UCHR) & “miadl Sphons e

First
order

Second
order

System entry/exit - Operation Ineraction

Figure 1
Operation
LENGTH OF NUMBER
1st ORDER | OF ORDERS ,
1st bit l I ’l I l
»
25
4 Spticd Types Ptr to lst-| CUM CNT OF | CUM CNT
20, = subprocess [PS DATUM CAPABILITY OF
call or PARAMS PARAMS
< Jump Length of | Origin of | Action #
408 = parameter- Next Order | Next Order
less actioﬂ 4131211
.
~ PTR to lst
Action Type —» [PS DATUM
4
: .

3

7/

Operation
header word
Parameter type
bit mask

Parameter Specifi-
cation Bytes

- P (Length in words:

(# of params this
order)/28- / 9

Parameter specifi-
cation data words

» (one for each

PS.UCAP and PS.FDAT;
two for each PS.FCAP)

4— Class code (present

only for subprocess
call or jump)

System entry/exit - Operation Interaction

Figure 1 - Operations (con't)

Parameter type bit mask: 1 = capability; 0 = datum

Parameter Specification

Byte Values

Parameter Specification

Data Word Formats

0 - end l 60-bit datum | (Ps.FDAT)
1 - last byte this word
2 - PS.NONE (unspecified) | option bits [type] (PS.UCAP)
3 - PS.UDAT (user-supplied datum)
4 — PS.FDAT (fixed datum) -
5 - PS.FCAP (fixed capability) option bits l;ype I
unique name 3IMOT I (PS.FCAP)
' index
6 - PS.ACAP (any capability)
7 - PS.UCAP (user-supplied capability)
<PTR to 1lst PS DATUM>::= pointer relative to start of that order

<CUMUL CNT OF PARAMS> ::= total number of parameters through that order

<ORIGIN OF NEXT ORDER> ::= origin relative to operation header word

S9

Figure 2

System Call

S1 47 7

CEJ

7 3 //]
ris

N

mw ai 2”

OUEAR BLOCR S [T cLorlérx PTR]; i
A—Ubt.oc:()j T Wvl £ iIf.Awos

M.aéM)W

FRANE BLock
SI125 5128

FREE BLOCKS

RS

BLpCK S1TS

DAE 41
brece Loy con w,,,.,,,ﬂwz j E , fu,c
O,

D Ths :/(,ﬂj //7

1) ﬂzi__é_ﬁda WM@%«ZI cpﬁ_/'

SR AP ATENIS 272?‘ I PALA
ue,aj L zf-eu@ /«/{az

VQ(/}L .| m.ﬁ“,
QC@N f"/ 50- .,‘ | 4'1 4 'w @»’éé H L.

ATR VS % (//c (CC'WKK*’? .;;,f%s)
.u/" ‘??yc(gf

ctd (ihehs ool e s U vt e ;*_|
ol Lole //z» 4)/4/ /u'u‘zf‘l&(/(;/ 7¢2 /A:omzz
‘§ // A { AN CF A I .“,,,.--,r i8N 8

COMPACTIFTGATEON, INCREMENTAL

Basically, the compac’tf;gkrfekex'~ (herinafter refered to as "C") is just supposed to
push all the objectsto one end or the other of memory so that the free space

all merges into one nice contiguous usable piecees Even if C were allowed to
proceed from start to finish without fear of interruption, the task tims stated
is impossible because "nudged" blocks make it virtually impossible to eliminate
all gaps from the block structurees Thus, even after C has run to completion,

the free space will, in general, consist of some number of free blocks smaller
than about 1008 and one big free block containing what's lefte Schemes to avoid
the unpleasant situation where someone has made a request for which there is =mffk
sufficient free space but it can't be coagulated into a large enough block will

be discussed latere

C's problem is vastly clouded by demands from various people that they be allowed
to do something while C is trying to fix up ECS, There seem to be four types
of code clamoring for special treatment:

1) The interrupt code. We don't want to lock up interrupts for the second
or so that complete compactification is likely to require. Fortunately,
this is easily handled because only event channles and process deserip-
tors need be in shape for the interrupt codes Thus, the interrupt code
can set I.WAIT and C can pause briefly to let the interrupte code run
in the usual manner, with no great special manipulationse

2) Another CPU, Without going into detail, access to x most objects should
be easy to engineery.¥IZHIWEK Breations and deletions seem difficulte

3) A special process (SPEED FREAK), A process with a demand for fast response
might be allowed to run while C was dormant and ECS wasn't really in goeod
shape, if the process didn't make certain demands on ECS structure, in
particular, creations or deletionse C caild then be reawakened to finish
its worke

i) Any old processe This fragments into two situations:

a) We let C accumulate at least enough free space to satisfy the demand
of the process mf which is waiting for space, but we don't necessarily
let C compact all of ECS. Thus, the demanding process is gotten off

&} our backs in the normal manner, while other processes are perhaps
spared annoying delays.

b) We just let C do some fixed amount of collecting. If there isn't
enough space to satisfy the process which precipitated the compacting,
it is put in some abnormal state and other processes are allowed te
run, thus guaranteeing that 3 her processes ¥k (which don't make
any demands on the allocator) are spared annoying delaySe

. e -

o 7 A & Vi N 7. /
Lok e ﬁ/ T compacZot wrdl fe o atle o oty eicth Lvie Fopgh
[

ot

Of these, only 1 has received much thought, and fortunately it is easy to make it
worke No special facilities for implementing the restricted access refered to in.
2 habebeen provided (or even thought about)e La presents no special problems to
the system, as there are no funny processes to worry about; one just has to
provide a C which knows how to quit before it'!s finished and worry about whether
or not it's sensible/efficient/practical/good/bad/disastorous to do partial

compactificatione (C has been provided with the appropriate handl t is not
- cw%/as) S K- NPl ER”
From the point of view of G, Lb #s—essier—bhem the less powerful 3, because C
could simply stop compacting and clean things up and quit, leaving someone else
the task of doing the right thing for any processes left in an awkward statee
Fucure calls of C would jast start form scratche 3 represents a half-way house,
intended to minimize the pain of the awkward state processinge The process P,
which precipitated compacting, is suspended. The special process SF is run
under restrictions that assure that SF won't make untoward demands on ECS
(these restrictions and their implementation are discussed in the SPELD FREAK
document, soon available)e Then P is restored, C is fired up and completes,

P is in a normal state again and the system doesn't have to worry about ite.

Muche
+ . + .. - & ~ o
a + oo vy >~ ~ - ~ '
| ‘L - ~ L v UA AT iU 1€ A VL ¢O o { nite
G t "o o N % 5 Ve oo V) C + — =0 o
L) 4 9 ~ Lo Ce CJd LIOCEe e J v Ol e lay
A R, - . =] . . i & 1 y
S0 oam: \ o y
C 8¢ C G i€ C cne LOCator),
" B " A
- noAT =kl " i ~ 1
4 4 NIOVLLSIN = & 4 \,,7, (S e ne ie
out - - t] SR ~F T ‘ + 1 .
) 1 - : [AUDO ¢ 1
0O o1sl=) > =Y ro) 2 Lhe 14 » ¢ o roc
~ -+
ilg
= = = o, - .
z 1o a . Mes((| ; . KR ut
L = 1 Liie= LV, v
t vt amacnta ~ afe na +ha T 0O0O0T anh o oo
Lil > a4 A J C . LeoW\L) - o L A0 Al ~
P o 2 = e T I 2 4
(1 = 6 - () N as
¢ o WU F Uy 4L CLUC
7 &
~ 3 s 1.
E ~ - -~ +tHhl a
3 i . S L DLC e

COMPACTING STRATEGY

1) A sultable starting address is found (usually the bottom, see

the descriptions of the N and M controllers),

-5 S kocK isa0f.

The first free space above the starting address 1s located and

objects above that are slid down one at a time, A new free chain

and new ECS statistes are accumulated and the old ones are revised,

a) "Nudged" blocks, These are located at the next available

address whach 1s a mult of 100g, Space will in general
exist between the beginning of the nudged block and the
end of the Xax preceding block, It is incorporated in the
new free chain,

b) "Small" blocks (less than I.,FIT). An attempt is made to
put these into slots in the new free chain, If no fit,
handled as in c,

¢) Other blocks, These are just slid down,

3) After each object, I,WAIT is examined, If it's non-0, I,LOCK
is cleared and C waits for the interrupt as usual, After the
interrupt, I.,LOCK 1s set again and compactification continues,

4) Termination, If M or M is satisfied, or if I.COOL gets set,
C patches the 0ld and new free chains together and puts the
new ECS free space statistics back, It leaves the free chailn
pointer pointing at the free block that it has constructed,
ignoring the small ones caused by nudged blocks, If I,COOL
caused termination, a special exit is taken (currently to
DISASTER); otherwise exit is to the caller,

FRE Al relle ooy #lock
B AL

F/l&(
A
o L
Afd‘wa,éé—uffwda&f

Aé {ch o Lloeks «.u(on/&(eﬁ« W AR

wake 10 condon 7?;},&) L,2,3% =, 10
Ok Popon (. CLLIST) KMALLOC, |
A,‘ l 3 ‘{(Z/S?/
A2~V Wy
ya

e
- 3

A4S jm.l}f

FCStuLL (W-fd uldwwﬂ—«ﬁowt
G A~ fa ‘”/J
A a /ﬁz

A€ l'ulawo":)

ALLOc Al Bloth cencseseoc
A2 Jeern A genesere

Al O ety
Ai’-l W‘a—@
A3 GC Zype (wam)
100 ood '3«/1.“63
Al M@O M
ALl " "

fuaS’O
A2 ‘ellreede SO-IF MNELK

COMPACT cl 1N armit e ~ F8

c2 17 2Lop
é:;{;’
o lhyie | wd pymatlen

CZM

) 4
_.. 0 /Wd?,,,—?/ %M%j/« L P a ;»’.‘tr,C)M
e ‘ }
| fosd PTE] yesk /V/JC r featent

ﬁE/}Aé(;C o

3 H< IPpAD

| o

//' Tuvzr“'ix*(,) / O~ TP P4 () smtiome
S FTR)
>y Lot Laaa® /404 Zary

4 jﬂe | PO

fﬂm%/ﬂfév\
& 0 512040

—

1) Jock AR S
2) reed g dged 7 aj‘ P
7&) /LZJ /\M,/({,‘h n,f”wf:z

p{\)/_:V': ’p‘te._,, 0//}' ?7&2.&2?'%

/ 7o i crpve e
/ \\/

é) HEAD &— AMCXT

~) 1= TAIL ¥
7 A2 M& ~ \1#%5 &) TAIL <~ ppe L

| e ,
& |
, - -
7 p -'/‘,nﬂﬂftﬁ(. /\v’:)"f‘ /&(=
CEEE P NEXL g Lol PREV) ynaTore LF

10) Mﬂwf; rREY " pExT,

1) o le ond A L. CN/’“A/V

<

? 12) itk fp

e "?) o ({’///vCC‘@'
7 -+ //."z[&‘{/ ——

3) /_\—Z/é/’iyé /!/&T’C‘L?é; ('D"T e e T MITT 540 -~ /7A -"/% Ma75
MOTHEADL n ' ,,)

B e, R
F (? |) A
' f‘wj'c rj /A/@Yﬁ"é‘Ld ‘/a. -7‘/;#7

2 e B
R FSEFSt SO0B

‘]L S,0Pe— SLOP+ 398~ FNDS 2

5 S0e«—. ;aés

-
. S P,
8 wunihony WEC) GI% FPTR

T SOB<— SoBS2ECHRES)

S e

- :
133 M{Fpm ol 227 gy
SI2E(Pl)e— S12ECFas)rS0p 1D AR R R s

N nd it PRE /(- priar
FStnrFo i HER =t 70 o)

Accoc ©

ALLOC

a9 renileP?

/f,u;e- M@’O
T aélfanle/ rbg.

MAKEOBY o)

N Ak alloeal M%W d OD

2) 2eyo €— .ﬂf.;_tﬂ/-jw/?O)
FUND
ne,,,gé EGALP CK=T

3) ?J/VIFJIA,O/QT v e ccf({,e A2

(~0 EC.ABPcK = 0) /Mﬁ) pé:uu 6«/)

C’VJ O S | 72 A o it)
4) (<Vﬂ,¢é M&TW | 27N l o 1 Y& = //’07‘.-6,\'{::/_

)
g I AL L e LS
?53{) C/(Lo?la/ J/S n CAlABYO)]
£r) ALLOC

7) M a/éémaﬁa}waé st A Ao AL Zﬂ/‘h@
) /wa//%z A0

%?az‘ a//% L P 35)) s L

ub

) =t Hew-Bmamorof
/0) Mﬂ/l_ fTR% My?//j Wi J Wf,’@-

“’) FYP;IMOT' leAD1 TAIL

3 ch;a 42‘:4})4

EC.S e

Al ECSKA v FCSFL f&éﬁ)7;&4,@ | ﬁ..%'m.,‘* P PP
mwfwé. ootr)d, | Bk | Aoells oo /%7/4,/#4
/W MZA% O | Z ol oy ECSFL-/| | | |

.”IV.,.‘ﬁﬁﬁ | "ﬁﬁ'f’ﬁ,‘;;_lJ

| 4 el 4 —

T P«
' FPmp———,
g
4 e
| ——p
(] 1 :

» | G4
S| azgcw@/

N IRy Bers
; a
EEEE eu""% YR, —HH

b ;;1‘;-@%/*/ i ==
1 | | e dira]%La | : %
mae

N @ﬁwwh -
T zg,w
e Ao Z
/%%M Méf/vl 3
i
o ?F

ALLOCATION OF ECS

ortion of ECS contain? sysjem code and certainqother specialized
ystem cells. The rema%nder of ﬁﬁs i divided into |blocks of three varle-
objects, syee blokks, and ffide blocks j i Py

A VY L[\ pemarT

Acontains an entry

MoT

for each object in ECS (see Figure3). Each entry occupies one cell and
contains a pointer to the object as well as the "unique name'" associated
with the object. Except for the special case of " " all refer-
ences to an object are made through the MOT entry. The unique name must be
checked against a "unique name" provided by the user in his capability
before allowing access to the object. This insures protection even after
an object has been deleted and the MOT entry has been reassigned. The

pointer in the MOT enables the relocation of objects during garbage

C . ,
collectioni// W L{L¢L4 chf(fr
i TR .

The unused entries in the MOT are linked in an "available space list', to which
a pointer is maintained in ECS at EC.ABPCK. The next available ''unique
name', issued serially, is kept at EC.ABPCK+l. A system disaster occurs

when the MOT "available space list'" is exhausted or the next available

unique name exceeds 299 w1,

~Obtects—are—the-true—residente—of—RES—and-are-classified—as+ATTocation -

Each%zéizgéégﬁoccupies one block except files, which constitute a tree

structure of blocks. The root of this tree is the file descriptor, the

actual object. The leaf nodes (data blocks) and the other nodes (pointer
blocks) are classified jointly as file blocks. Each file block is located
by a single pointer, guaranteeing ease of relocation for file blocks as

well as objects. \
ol ;
Each cont%guous portion of unused space in ECS forms a free block, which

is linked into a two-way circular list. Pointers to this, the Free Chain,

are maintained -in—two-cebis—at BEARACK— (See Figure l?.) %:
=5 il I

Allocation of ECS 10

-~/ V)
v/

?Lﬂ(/*f A

The Allocation block is the object which regulates ECS allocation and

Allocation Blocks

CPU usage. An Allocation block can be provided with e-sumcf—moncy—emd—

a portion of ECS space, which can only be obtained from another alloca-
tion block. Eagéy object is associated with an allocation block'-ehese'dwﬂ?
ObJeCtiX?Ei,¥iB§e9,to §h§’§;l%§atlon block in a two-way circular list.

The allocation block heads this list, and each object has a backpointer

to its allocation block. The objects of ECS, therefore, form a tree.

The root of this tree is the Master Allocation Block which is created at
initialization and provided with -an—infinite—amoont—ermoney;—end all of
ECS.

The allocation block will be bilTledfor-CPU=time used by its descendant
processes,and—will be-charged rent on the ECS space occupied by its °~
descendant objects. FUND is the routine which charges this rent and must be
called whenever the size of a descendant object is to be changed. It must
also be called periodically to prevent deficit spending. -As—ef—this—wxiting.,
pe%icy-decis;ons_a;e_pead&ng—regardtngha&ieeat1enrblocks-%e—gr,l_wn
Hf—anmattocattorbilockrunrs—out—of-momey). 4771‘Z£‘7j>54‘ e

o

‘&/((/f'(_,;’1

f/ L(-(f/ e /
€ e e
FUND is called with an allocation block, and an increﬁénE}%B ECS space.
It compares the master (S.MASTR) clock with the "time of last bill" field,
updating the latter, nd char ing rent for the interim on ECS space in use.
Mtc"‘f‘ Zoc €Ly
"ECS in use" are updated. "ECS in use' cannot exceed
"M._Wm—mtmeeﬂd%‘ (See Figure 5/)
: (%—{L'n'ﬁ' 26@ FC i
6:’
FUND has three entry points:
X7)
FUND - B2 ... Increment to ECS space /
B3 ... Return link : /
X5 ... 2nd word of capability for alloc bk Fi?}y.ﬁjf.
1%) ~FUNDX7 - B3 ... Returmlink . Y 4 /ﬁfi.
5 X5+ 2nd-word of -capab.- for—atiee—bR \ [

X7 ++-increment to ECS-space \ ’

/ FUNDB - B3 ... Return link) J ST T
AP ... S.ABLOCK - (mplloc4 Tk >/
X@ ... ECS address of alloc bk
X7 ... increment to ECS space

écmé/mwm M EEREE
;:i:‘mﬂ% T ,u,"wfm ,ﬁﬁllf‘fi-

/) M;ZV/;L PE =R PR N
de » 1/v¢:/4 cE b =7 B FoT.
. 77 s = - 2

/

N ;Mﬁﬁzmga@z; Bk o frrid
= | e : %Q}QJ%@ 440/67(«/7:/1/7‘ |

o a— \ +
— - —_— . B
|
{ |
= e e TSNS | S SEEE. !
e - — -

Allocation of ECS i 8
!

Ll&ck Manipulation 3 Q{&M

1 [i

tssystém iniﬁialization tﬂme tLe following blbcks are c#eated the
ﬂaster Allocation Block, two zero-length free blocks, anp sevekal fiee
blocks (max. size = pr7 4 1) consisting of the rest of/ ECS. After that,
block strdéture/of ECS is 1n/the hands of four rOutinés

ALLOC creates a block of specified s?;

((lfA(‘ oM
The free chain is scanned forfa block of sufficient size. If
none is found, a is called. Other-

wise, a determination is made whether the free block is suffi-
ciently larger than the requested size to justifyrsplitting it
up. If so, the new block is taken off the-beginning of the free
block, whose size field is updated. If not, the entire block is
used and is removed from the free chain& The allocator's word is
written and a pointer to the block is stored at a caller-specified
cell. Finally, the block i1s zeroed.
DAE On entry: §7_ size of block 6‘«//'5{(’5"“5")
Zi:kﬁ B3 - type of block (l=pointer block; O=data block or object)
: B7 - return link
X5 - ECS address of pointer to be set.

REALLOC changes the size of a block (always an object)

“First it is determined if a new block will be required (it will
not be if the increment is negative or less than the slop). If
not, FUND is called with the increment, and the "size in use'
field is updated. Otherwise, FUND is called with the total size
of the new block, and ALLOC is called to find the block. FUND

/{; ’ /1is again called to defund the original block (without this double
=) 72' " call, a system diaster would occur if ECS were saturated). The
N w) contents are transferred from old block to new, FREE is called
v/ /r/[”nt' to release the old block, and the pointer in the MOT entry is
A A NEC updated.

On entry: X1 - increment
X2 - MOT index of object
X6 — return link

FREE inserts a block into the free chain

The block is merged with either or both adjacent blocks when
they are free. The pointer to the block is zeroed.

On entry: B7 - return link
X5 - ECS address of pointer

GBGCOLL ,—whern—written,.will compactlthe block structure. |
* ﬂf.a/&/vv‘\ (‘/((,G/ZArZ% N\CLCJJ/AJ /2 f.'»z ez f)q,;r C%A /]C{V/Z z?((lr'fd{f oe|
flﬂ F'[v /{"C’Lm‘\:'o& ,;—"é’%) 72-14 v ”;!Z. cCom fjﬂ'/z\ /\,&2 {, o1, »‘4‘::) o D) o) /, : /// /

/ N) T LA
é/_/._'rhfy\j (4 _(*nlc,r" a-<X N v

Allocation of ECS 12

Object Creation and Destruction

MAKEOBJ creates an object .
FUND is called; an MOT entryA%s created; ALLOC is called. A
capability for the object (all option bits set) is created and
stored in "CAPAB". The list associated with the father alloc bk.
is updatede.§fhe header word is written].

On entry: B2 - size of object to be created(ax/a«n{@"?"J‘M/W
B4 - return link >l Que °r_-"'1"‘“/w"(ﬁz
X5 - 2nd word of capability for alloc bk (father) ~C)
X7 - type of object

On exit: X5 - address of first usable word

DELOBJ destroys an object
The father allocation block is found, and the object is removed
from its list. FUND is called to defund the space; FREE to
release it. The MOT entry is added to the MOT free list.

On entry: B7 - return link
X5 = 2nd word of capability for object to be

On entry:

RTRNFIL deletes
¢d1lls FUND and FREE.
On entry: B7 - return link

X5 - 2nd word of capab for alloc bk
X6 - ECS address ol polnter

Allocation of ECS 13

Miscellaneous Routines

Four ECS actions:
NEWUN changes a unique name
This is the system '"Indian-giver"

g
U’Lél OZL‘M = D : C-List Index of Object whose unique name
is to be changed.

CREALBK creates an allocation block

APl = C : Father alloc bk
AP2 = D : Index for new capability

.CCCLOA constructs a capability (all option bits set) for the
newest-born child of the alloc bk.

C : Allocation block

AP1 ;
D : Index for new capability

AP2

4 DONATE transfers space and money from one alloc bk to another

, /) APl = C : Alloc Bk (DONOR)
CLZ AP2 = C : Alloc Bk (DONEE)
/} AP3 = D : ECS space to be transferred
e a e

= — —— — "'\7

hW-ones af/(" (ﬁ(ﬂ'(/v ,"{"'(’?Qﬂf e ,»Wa‘/

e ok @0 ;
A((AZ% M/g ;’{

P 6/’/

Allocation of ECS

MOT entry

ECABPLK PTR 25 féﬁ}auu4z;6¢ ‘&7‘;5

Loit surom (alls
M 0T 2l

Figure @z MOT entry

59

21 20

unique name

pointer
to object

Pegire 34 MOT puret

£7E

- IR 7% JL&ZE[A&&:@&QéZL_

14

latte ffDQ.agg,/lz;;r

(EC. moT™

MITSIZE

Allocation of ECS

Figure ‘*

15

= S

\\
™ 21 ¥
Free block tr t t
s ///////////4} . gree ;l;ex SYZE <———pointers point here
7 ptr to last | ptr Ao(next free
/7// | O :i:gk free block /bl/ogc)+ 1
, go/ 20 7 SIZE
E
oer \\
AeTaed TYE Lok
G et
17 Q1
1
Object : 5
,//////////41 si:: 0 Mot indexI SIZE F*‘“—_Allocator's Word
:ii;k TYP lMOT Index, Mggx Egie?ggéx Header Word (Alloc Bk
iy lAlloc Be | pacdt 1t ’ Chaining Word)
8./2/
[4 1&1 Obi (4 7
/’ FIRST USABLE WORD e
|
Pointers 47 /7
point here
i
— DAE LA
N 1P B 2 o
Fil ' 3
e block 4 I | size in l Back SIZE
| | | use | pointer
block .
E W77E Fi # of pointers in use
bits 046
’ or # of map references
first pointer or
data word ,///
Pointers _// // SIZE
point here ‘
. & fArides ¢ M.
D- Aot { dalo flriles o) L1
| "Z",t_m J [/ ,ﬂj ,m,,dq/ e on (OO «cn/‘/%
59 58
Block BiéQ \L e <l (1 if the preceding contiguous block
1 if block is free in froe

0 if block is not

free

10

if the preceding block is not free

s —————

Allocation of ECS

16

Figure S"Allocation Block

e—— e\

Allocation Block -\\\\\

loc Word (see object)

He;Eéx\yord (see objes;)//r

————j5> Allocate S in use
ofe; i
pofafded %. I e
N TAIL Ny ¢/ 4)
time last bill $ $ $
used for CPU S use or rent

N

vorn |

ALLOCATYR'S

MmyT P —

MEADE R

"VJ'IQ -

| RESERVED
S PACE

SPACE
/N U SE

HEAD PTR

| e IR |

Twme 0oF

L L Asy— fled

| craras FIELD

C ONT

5 [

P o

-

L] H

DISCINT J 4 5

r__éwf—iw&zé@ﬁ

CaVLQQLA NN

— —-wﬂ_-—-———_._‘ S

(frace

d/nv CH

/Af‘«f-_-

)

—a,

) QLLW// o Hamat /DQoowx/ W A {/@i
REALLOC /zz_o%(».f? /

ES - ;mu(¢ O/Lw-’?f s T

s . 7
ﬁ //Zﬁ’lw ofe,.z 15/7;72/%

777 JEEE SRR b B WONSC o ~IRY D 4 -
s i sl e %
4) operalicin
w g/M ,,,,L{,:.v,f/z S e e pfy ’fm
L(O/,.Z /ébﬁ[;A Toe Ao, /ZLj o
c//\/Aﬂ}) o Zg s e € ¥ geena "
e oomal oo 2y Aot oo

wrth, ol Alpe 72,
_ ,. Py AN SRR o).
17 W%b;%“ wet BestL, 2 Uf,{m vy %@

BCITFLSPBESFL, ;

/)M_,.,/ < :\M/,ee ,M(ﬂ) b 4 M\OJ M :\

i{ECSFLu <ECSFL,
o

/de 2{2;’ o/\ 9 %724{/' | 2z N
TS y/;;acl}: gcsit?) /Z %) C/%f %%‘(,M«)Y%j modZo/r\
‘\ %M)&%&f% /Z;ﬂ'/:rwﬁ(m
\ .9 et
/_avr')[?VuCMGf’U,/’ Z«M-(
\\/7 Mroth az srveh 2% ;M

\
\

3\) %(/’/” ﬂzrﬁ,; / / z /1-"—«’ 7z C'/)O(Jﬁz-c‘g

1) ECSKA ¢ECSFL aront smeit H

|k st o AT LT

‘ ; %47/42 [% Aﬁm-{,z/ ﬂ//[:%%)/h
y :&/Z 2//6 (’n,o»;zj A Y e ? ‘0// Z /4\,,2’1/>

m—— — | —

‘J‘UVJ 117 ‘Lﬂ'uu”“e CA-M/’“”“ ”L,“»%,iq ‘
gy protess HLares ,J—';T/-CM wi |
(+ a CW‘# "‘\ &-l NS ag ‘/‘4(,(4 TL#_ ,}Q"f\t" ok p e

V | ' O W,

') ‘J‘:'K N1 puiess se Lot wiva pest pun will cgaier (e
Cvrﬂwfétj e yfsf;

il) Mmd N Serd T ’7‘)“)‘61" Cles i Sf‘llm;wﬂ/SIvQM

'vi) hau) H /‘VL/JJ ca« j/uzal ?wa-.‘/‘r_ Lvl,'v‘w/

| Ol i Ght ec {,s‘ﬁm’l:)-
P

5—&7&' et | @ g “/..[.Z'W“(‘ré"
aut)‘(oL b JL» s L5505 | .
valess Ohe otTheer uaulS « bloca fism e

howy 5450-1‘%(_"0 wwe [alse

YIS o 2l up an . BX. ‘l’ﬂ(’/{, L
| Q\r@g oLl T CP ot INITY® S il

/’A/éz | oA bapd [T TP T T T T ET
il oy | || 6EAO}£M*' SN I SN I O O S S S
IR 72:,«) L EESINIT & et C/m%vfpa’ %7@

ﬂmn@ aﬁf s 37{945 ‘

T/\(/71’2)///2J o{ %’ XJ / a¢4f«,c4z.S’CN// WERE

i |

Sl ARITH. T [
A S A I A L% .SCMI‘.’,, [1 I s
I ek | | | |

}Wu? G\)(g4C/(f"aM /V?/z /’/ aéﬂcr-eeb

: 3m cneeloe bt Aol | d oA | o
= ! ‘ 1
_____ - 1 1 | s e
| i T
S-SNE SIS P! [e i vrf.‘..__.T_ S TESN, L
. - o o B S :
— e e B e o
! . il 1P l

17

Capabilities and Capability-Lists

User access to all objects within the ECS system is controlled by capabilities.

A capability identifies the object it refers to, specifies the type of the
object, and the set of allowed actions on that object (options). Capabilities

are grouped together in capability-lists (C-lists) which are themselﬁes objects

within the ECS system. Individual capabilities are referred to by their index
within a C-list. Since. the capability, residing in a C-list, authorizes access.
to an object, the user is never allowed to fabricate a capabilit;f' The system
creates a capability with all options allowed when an object is created. Sys-
tem actions are provided to permit the user to examine a capability, to copy
capabilities between C-lists and within a C-list, and to downgrade the option
mask (see System Actions). Thus, the user can transfer the right to access an
object and can curtail that access, but he may never manufacture that right or

increase the set of allowable actions on the object.

CAPABILITY

A capability consists of two 60-bit words (see Figure 1).- The first word con-
tains the type of the object to which the capability refers and a bit mask
indicating the allowed actions on the object. The type field occupies the
lower order 18 bits of the first word and must have exactly 9 of the 18 bits
set to allow the testing of options and type bits with one instruction (the
implication function). The remaining 42 bits comprise the option mask. The
meaning of the bits in the option mask, of course, depends on the type of the

object.

The second word contains the information necessary for the ECS system to
access the object (or, in the case of a class code, the object itself).

The system uses the low order 18 bits of the second word, which contain’ the
master objéct table (MPT) index, and the high order 39 bits, which contain

the unique name of the object. The remaining 3 bits of the second word are unused.

Capabilities are created by the allocation routines at the point when storage
is allocated for a new object. The new capability with all options allowed
is placed at CAPAB and CAPAB+l by the allocation routines. The routine
creating the new object then moves the capability to its user-designated

position in the user's full C-list by calling PUTCAP.

X agme ol Tesle o M(mn Asad) aa ﬂfﬂﬁ e vaon.

Capabilities and Capability-Lists 18

CAPABILITY LIST

A capability list (C-list) is a sequence of capabilities and "empty'" posi-
tions (see Figure 2). It is prefixed by the total number of spaces for
capabilities. '"Empty' positions are simply two zero words. Each C-list is

filled with "empties' upon creation.

A C-list is assigned to every subprocess within a process. (See Figure 4). For
every process there is defined a sequence of subprocesses called the full path. Cor-
responding to the full path, the full C-list is defined as the concatenation

of the C-lists belonging to the subprocesses in the full path. When referring

to capabilities within the full C-list, the capability index is interpreted

as if the C-lists in the full C-list have been joined to form one long C-list.

The full C-list is implemented by maintaining a full C-list table within the

process descriptor (see Figure 3). The full C-list table is a sequence of two
word entries each of which identifies a C-list and the length of the C-list.
P.CLIST in the process descriptor holds a pointer (relative to the origin of

the process descriptor) to the first entry in the full C-list table. The full
C-list table is terminated by a zero word. The first C-list (called

the local C-list) in the full é;list is copied into core with the process while

the remaining C-lists remain in ECS. P.CTABLE, in the process descriptor,
holds a bointer to the end of the full C-list table (the zero word), the number
of entries allowed in the table (maximum length of the full path), and the

size of the core buffer for the local C-list (maximum local C-list size).

Three routines are used to access C-lists. GETCAP is used to fetch a
capability from the full C-list. PUTCAP copies a capability to the full
C-list. If the capability falls within the local C-list, it is copied to both
the ECS copy and the in-core copy of the local C-list. Finally, ARBCAP

is used to copy a capability to or from an arbitrary C-list (not the full
C-list).

Capabilities and Capability-Lists 19

Figure 1
CAPABILITY
option option
bit 42 4/ bit O
¥ ¥
OPTION MASK TYPE 1%% worp
. IM@T nd
S 7N
UNIQUE NAME 7} INDEX 2"~ WORD
Figure 2

CAPABILITY LIST

LENGTH Number of Capabilities in C-list
OPEIONS e ~I Capability (Index 0)
UNIQUE NAME Mgt f
OPTIONS o ~L-Capability (Index 1)

A
UNIQUE NAME // MAT J
/ /
OPTIONS TYPE A
> Capability (Index = LENGTH-1)

UNIQUE NAME ///IMOT

Capabilities and Capability-Lists

Figure 3

FULL C-LIST TABLE

P.CLIST
Orig full
C-list S T
|
~a LENGTH
e
UNIQUE NAME ﬁ Iﬁggx
LENGTH U
LENGTH
] MOT
A UNIQUE NAME’égINDEX
I
| |LENGTH| LENGTE | END OF j’LENGTH
e 2§sr c TSZLE i /7] Mot
= | UNIQUE NAME é TRDHEX
ZERO WORD

20

} LOCAL C-LIST

}2nd C-LIST

} LAST C-LIST

END OF TABLE

Capabilities and Capability-Lists

SUBPROCESS DESCRIPTOR (C-LIST DATA)

o LV ¢ LA
g / 4 / ’/] ,"l’//
1 L : / L
2 74/ ’(r/ e e ,// ‘ 7.4 4
/ /
3 £ £ L
/C=LIST
4 / LENGTH
MOT
5 |C-LIST UNIQUE NAME INDEX
)) / 4) P s -’
R VA 7 YWIAVEN

Figure 4

22

Files

A file is an ECS system object, containing a sequence of addressable
(60 bit) words, used to provide storage for code and data. In order to
permit a large file address space and, at the same time, make efficient
use of ECS space, ECS files are organized in a tree structure. The
"leaves" of the file tree are called data blocks and contain the

addressable words of the file. The non-terminal nodes of the file

tree are called pointer blocks (see Fig. 3) and contain links to either

data blocks or other pointer blocks. With this tree structure, only the
necessary pointer blocks and data blocks are allocated in ECS. Empty or

non—-existent portions of the file are not allocated until they are needed.

For any file, there is a sequence of positive integers, (1‘,81,...,Sn)

n > §, which describe the shape of the file. Each S,, for j < i < n, is

s
the number of branches in the file tree at nodes of lzvel i (the root of
the tree is at level '; all nodes connected to the root are at leve11L;
etc.). Each Si for i > ‘, must be an integral power of 2 (note: this
does not apply to the first shape number S.). The last shape number,
Sn’ is the size of the data blocks. Thus, the number of addressable words

n
in a file is given by L = 131 Si . The words of a file are addressed by

integers which may range from 0 to L-1 .

The shape of a file is represented by the dope vector for the file
and is stored in the file descriptor (see Fig. 2). The file descriptor
is pointed to from the master object table (MOT). It contains the dope
vector, the length of the file, a pointer to either a pointer block or a
data block (g::%.level file), and the MOT index and unique name of the
Allocation block which funds any changes in the ECS space occupied by
the file. The dope vector contains instructions which are executed to
obtain the path through the file tree which leads to a particular address
within the file. When a file is created, only the file descriptor is

constructed, and the file may be destroyed only when it is in this state.

Files 23

Pointer blocks (Fig. 3) link the file descriptor to the data blocks in all
files with more than one shape number (n3>4D. Pointer blocks are con-

structed only when needed to link to data blocks. The allocation infor-
mation which prefixes each block in ECS is used to provide a return path
through the file tree. This backpointer contains the absolute ECS address

of the single word which points to the pointer block (in the file descriptor
or in a pointer block at the preceding level). A count of non-empty pointers
within the pointer block is also maintained in the allocation prefix to

the pointer block (note: the counter is greater than 0; otherwise, the
pointer block is not needed). The word following the last pointer in the
pointer block contains a negative number which is a relative pointer to

the first word of the allocation prefix.

Data blocks (Fig. 4) contain the addressable words of the file.

The count of maps (see Maps) which reference the data block is maintained

in the second of the allocation words. d N*" <

File actions

When a file is created, only the file descriptor is formed. Data
blocks may be subsequently added, one at a time, to hold data or procedures.
When a data block is added to a file, it may also be necessary to create
some or all of the pointer blocks between that data block and the file
descriptor. Data blocks may also be removed and, again, one or more pointer
blocks may be deleted if they are no longer needed to link to the remaining
blocks in the file. A data block may not be deleted if it is referenced by

an entry in some subprocess map (reference count # 0).

Files may be read and written. This action transfers words between the
address space of the running subprocess and the data blocks of a file. If
a transfer is requested which involves a file address corresponding to a
non-existent data block, the transfer proceeds until the non-existent file

address is encountered and then an FRETURN is initiated.

MOT

DESCRIPTOR

B |
|
_

File Shape = (2,2,4)3-)

Files 24

FILE TREE

LEVEL 3

LEVEL) —

|
LEVEL i///”l a?LEVEL‘* (Data Blocks)
: “ ' Sz.pointers &

A T

&

Sa pointers <%
J [] sy %
gy
| —— S)
ROOT of

FILE TREE

N\

S;unﬁ)'g

Figure 1

Files 25

FILE DESCRIPTOR

£ T
3 [= N |
C |
< PQINTER Pointer to Root of File Tree
<ALLOCATION BLOCK > Allocation Block Identification
< LENGTH > File Length
< §th DOPE WORD > h
by
v
7 7 |
| j Dope Vector
"< nth DOPE WORD > ;
SHAPE = (*,sl,...,sn)
< POINTER > :: = ! + 0 If root doesn't exist
12 . 18 3 21
or | 0000 |0 1 |0]| ABS ECS If root is pointer
1 ADDR block (n > §)
12 6 18 3 21 i
or l 17778 0 1 |0|ABS ECS If root is Data Block
| | ADDR (a=§)
39 3 18
< ALLOCATION BLOCK> ::= [Unique Name [//] MOT Index |
> 8
< LENGTH > ::= (maximum file address) + 1 = II i
i={
n
< Pth Dope Word > ::= [AX6 & | M0 0 | JP B7| &=] log, (5,)
. 2 1
i
n
< jth Dope Word > ::= | AX6 & MXO m JP B7 i L= z 1og2 (Si)
\ i=i+1

n
1
wn
|
[
g
\'
ol
~

A

SX6 S JP B7+4!

nth Dope Word >

or SBS S B B7+5 S

]
721

-
~

[=]

I

-

~—

Figure 2

Files

POINTER BLOCK

Pointer block at level k

’_3 18 21 18
b8 s
Z?B;tL"JEE$¥§?~/ ¢ &&Jxaefjj'
Poin

| # Pointers

in Use

Pointers point :

,
/

< kth Pointer >

here — < 1lst Pointer >
l
|
|
!

< end flag >

Shape = (Qb,sl,...,sk,...,sn)

26

ALLOCATION PREFIX

Sk Pointers

< jth pointer > ::= + 0 Corresponding pointer or
(1 <8.) data block doesn't exist
ok 12 6 18 3 21
or 0000 |0 j 10 ABS ECS Corresponding pointer
POINTER block (k < n-1)
12 6 18 3 21
or 17774/ 0 [j 0| ABS ECS | Corresponding data
|| POINTER block (k = n-1)
< END FLAG > L= —(Sk + 1) Relative pointer to
first allocation word

n

"4

Figure 3

Files

27
DATA BLOCK
Shape = (w, Sl’ T ,Sn)
. 21 18
J <I2E BLoCK 1
! A N BACIK TR 1;?2‘_ ’]I
R Allocation Prefix
| Tvee |, # MAP
T References ’ .
Pointer points
here : lst Data Word
i
S Data Words
£ i
g
o
S th Data Word ‘
= <l
Figure &
O ‘{ /6[0 [e (“ceftl (’(”V‘z:/!jlrrwa { /{r’((P LV?/(Q
PC:E)F - | / v
l " " " "
DIRTTY =

O Y rhe Ahoth ookl o wnillor mi Ayl
Vi A o he ki he

28

Processes

Processes are the active elements of the ECS portion of the time sharing
system. Only within the context of a process may code be executed and
system actions initiated. A process consists of a set of central regis-

ters (exchange jump package), a set of subprocesses organized in a tree

structure, a call stack recording the flow of control among the sub-

processes, and a set of state flags describing the state of the process.

Swapping: Periodically, a process with its running flag set (see below)
will be swapped into CM to run on the CPU. When this occurs, the process
descriptor and local C-list are read in, and the entries in the full pro-
cess map are swapped in from the indicated files in ECS to the indicated
regions in CM. The exchange jump package of the process is loaded into

the central registers of the CPU and the CPU is allowed to compute for
awhile or until the process hangs. Then the central registers of the

CPU are copied to the exchange jump package of the process, and the process

is swapped out.

Process Descriptor

The data necessary to maintain and run a process are gathered together in

the process descriptor, which is stored in two sections: the fixed length

process descriptor and the variable length process descriptor. These two

sections of the process descriptor are copied into CM when the process is
being run on the CPU. While the pracess resides in ECS (See Figure 1), the
fixed length descriptor and variable length descriptor are separated by

the process queuing word buffer (see Event Channels). Information about
the size of the queuing word buffer is contained in the first word of the
process descriptor (P.ROHEAD). Data necessary to access and move the
variable length descriptor are contained in the second word of the process

descriptor (P.ROHEAD + 1).

When the process descriptor is copied to CM to run the process on the CPU

(see Figure 2), it is preceded by a scratch area (used by the system while

Processes 29

performing system calls) and the actual parameter area used to pass the
parameters of system calls (P.PARAM). In addition, the local C-list

is copied to CM following the fixed length descriptor and preceding

the variable length descriptor. All pointers within the process

descriptor are computed relative to the beginning of the scratch area. The
absolute CM address of the scratch area is maintained by the system in

S.USRBL in system core and in Bl of the system exchange package.

The fixed length process descriptor is divided into the read only descriptor
and the read write descriptor. The read only descriptor may not be modi-
fied without locking out the PPU interrupt system (I.LOCK). It contains
(see Figure 3) the state flags of the process, process interrupt information,
and process scheduling data. The read/write portion of the fixed length
descriptor contains the process exchange jump package, data and pointers

used to access and modify the variable length descriptor, and a few words

of global process data.

The variable length process descriptor (see Figure 4) contains the full
C-list table, the call stack, the subprocess descriptor table, logical map
and error selection mask (ESM) storage; and compiled map storage. Organiza-
tion of the variable length descriptor is maintained by pointers and values
in the fixed length descriptor. When the process is in CM running on the
CPU, the variable length descriptor is separated from the fixed length
descriptor by the local C-list buffer, which is large enough to contain

the largest C-list assigned to any subprocess in the process. Both the

call stack and subprocess descriptors contain pointers into the variable
length descriptor. These pointers, like those in the fixed length des-

criptor, are relative to the origin of the process scratch area (P.SCR).

Processes 30

PROCESS DESCRIPTOR (IN ECS)

D | }

READ ONLY
DESCRIPTOR

X FIXED LENGTH
DESCRIPTOR

READ/WRITE
DESCRIPTOR

'

PROCESS QUEUING
WORD BUFFER

@){},.’{F

. y M N
Py P-r‘h*/',a‘/

/“\Af\\

<—— ZERO WORD

VARIABLE LENGTH
DESCRIPTOR

Figure 1

F

P.PARAML EQU 40B
P.SCHEDL EQU 5
<Z:ili§?2L EQU %
.
ORG 0
P«SCR BSS P.SCRL
%k
P.SCR2 BSS P.SCR2L
P+ TEMP1 BSS 1
P «TEMP2 BSS 1
P.TEMP3 BSS 1
P.TEMP4 BSS 1
P.TEMP5 BSS 1
P.TEMP6 BSS 1
P.TEMP7 BSS 1
%
BSS 1 DEAD CELL BEFORE ACRUAL PARAM AREA
P.PARAM BSS P.PARAML
P.PARAMC EQU *=1
*
*
* PROCESS READ ONLY DISCRIPTOR
sk
P+.ROHEAD BSS 2
P+.SCHED BSS P+ SCHEDL
%k
* SCHEDULER CLOCKS
sk
P.USRTIM EQU P+ SCHED+1
P.SYSTIM EQU P« SCHED+2
P«SWPTIM EQU P+ SCHED+3
*
P.PROCRO EQU *=P+ROHEAD
E3
%
* PROCESS READ / WRITE DISCRIPTOR
*
P.RWHEAD EQU *
P.XPACK BSS 16
P.CLIST BSS 1
P.CTABLE BSS 1
P.STACK BSS 1
P.SUBPDT BSS 1
P.MAPESM BSS 1
P.MAPSIN BSS 1
P.OLDP BSS 1
P.INTERR BSS 1
P.IPLIST BSS 1
BSS 1 DEAD CELL BEFORE LOCAL C-LIST BUFFER
P.PROCRW EQU *-P+RWHEAD
P.LOCALC EQU ®
%
USE *
%
sk
PS.TEMP SET PePARAML/ 60
IFNE PePARAML»PSe TEMP* 605 1
PS<TEMP SET PSe TEMP+1 « ROUND UP
PS.MASKL EQU PSe TEMP « LENGTH OF PARAMETER BIT MASK AREA
, LIST L
sk
* BO TTOM

31

TOR IN CORE

*
P« SCRL
I1.PAUSE
*

I .NUNCH
*
I1.NUSUB
*

*
*

S.USRB1

2Ky
-
=
b/
?DH
g 2
=
b
“
A o
5 HE—
IS :Q
) k)
@ !
g 2 " o
= B Y z 5 4
— ~ > oD 1) 40
S g o - & e
£ - 38 5§ Ei B 4%
< > TF— B Y ——P — i O —f = 2
9 o < f—— ——C] o
m R Rt f
. 7 | K
S \\"'i l\ ~ —_) ,
&) I ! |
o ' 2
) I 5
EQU 50B
EQU 300 LOOP TIME (APROX 2 MICROSEC PER LOOP)
FOR PAUSE FOR PPU INTERRUPTS
EQU 5 NUMBER OF CHAINIAG WORDS TO UNCHAIN
BEFORE PAUSE FOR PPU INTERRUPTS
EQU 5 NUMBER OF SUBPROCESS PROBES IN ECS

DURING INTER-PROCESS INTERRUPTS
BEFORE PAUSE FOR PPU INTERRUPTS

Figure 2

Processes 32
FIXED LENGTH DESCRIPTOR

14
MWFIb&dV t State flags
AN 7 process state flags
P 2 P = something ''pending"
\ 12 18“'“"”“P%SC‘""____>A' on swapin; check
P.ROHEAD i | o-puf_proc wdr LEN_GTﬁ.l W,1,D,& ¥V
? f I ECS VAR | p "
' W= ke- itin
; {/ 'ORIGVAR| DESCR | Uk “wake=up we f 2]
gD SCR | LEN | 1 1 7+ R = "running" /s, _M@
, P.SCHED | 0 schedﬁler dat; %&O'q /»fi | . ey I = "interrupt" e
P.USRTIM, K | i READ ONLY
N p.gySTIM , Process clocks. user time ! DESCRIPTOR = D = "destroy"
«4* P.SWPTIM | Zz’lzte‘;‘i:‘ime @.SCHEDL P .PROCRO E = 0 = ECS process
5 R 1 = pseudo-process
P.XPAEk: F | 13 & C = process "in core"
i ~ - " 1"
Z/ exchange jump WDS. &: V = "event
l package
|
; FULL
N N TOTCjoR e
P.CTABLE | oS = 8 e ‘
| STACK TACK TQP QF
v C-STACK 1T Iggn SRe6TN | TOEA%K
\ ; ‘ SUBE OQORIG ER READ WRITE
P.SUBPDT | G BPUSURD TABLE of SUBP oo MEITE
'Q | ORIG LENGTH LENGT -
P.MAPESM | |60MP MAPY COMP MAR 7 P .PROCRW
0 MAPSIN | — S MAPTESM | ©-
P.OLDP ! FLAG ~FOR i
' } BP_CALL) DETRE 0% FARST |/
P.INTERR | e |isugp ncee | T
; LAST TP
PJAPLESE 4 o LIST SR
, ENGTH LO
P-LOC“*C; [N - | | At
f LOCAL C-LIST
, BUFFER
Lol

7

s e d 4—‘
Gl {

— s P
<Q-BUF> ::= size of process queueing word buffer ;qmax number of queuing words + 1
<PROC MOT> ::= MOT index of process
<PROC LENGTH> ::= length of process in core [includes process descriptor (Fig.2)] +

maximum full address space]
<VAR DESC LEN> ::= length of variable length descriptor
<ECS ORIG VAR DESC> ::= origin relative P.ROHEAD in ECS of variable length
descriptor = Q-BUF + P.PROCRO + P.PROCRW

Figure 3

3 ' i /’ -
’ +/ - /- . /. PR N ey ;
W i) Lothe Mo pronspgen o oo Tl pro< from -
J é [) -
_7) el //c Lot ,{ﬂ e Cllieceq am (orine) eperla
) o]

Processes

VARIABLE LENGTH DESCRIPTOR

2o ljparie -
" /
LOCAL ~_— [V&
C-LIST ;
BUFFER \ + . !
{ | =reea? /
] ﬁ/ P.CLIST b odinndl
I &(\/1 l 8 LIST JI
C-LIST) e P e
—/ 7 2 L
TABLE LOCAL C-LIST 5?" —_—
TNy P.CTABLE 4/, 4N
f "LEN C=LIPT_LF} RIG FULL!
(/ 1 / 2 (2 7t n | BUFFER cEfE@ LE C-TABLE f
ZERO - o #lag £ Lo
wm,l DOF STAS, <

CALL | TOP OF STACK :l[.
STACE. I - R |~ T END o’F‘“']“E‘l‘C“GF JTOP 0
) el g / Vz __lsTaeK ¢ | STACK |
4 / R A
b |l e i) w - = (/%
- —_— ——If,
l N / 7 F ke oo
? | FIRST SUBPROCESS
| l DESCRIPTOR
SUBPROCE L
DE,?:KRIIJ;TOR/ ,{ P,; SUBPDT
[g\/‘f P %‘r] SUBPI ORIC~SUHP NUM
LAST SUBPROCESS ! A g | TABLE | SIBP
DESCRIPTOR A2/ Va2t 4
__DEAD —
)) A . s X |
§ FIRST LOGICAL MAP
MAPS & __FIRST ESM |
|
| »
I {
' T , MAPESM
| LAST LOGICAL MAP i ORTS ey me
4, e
LAST ESM e
Q FIRST COMPILED MAP il
'FER
COMPILED o i
MAPS / L/
| ' o0
! LAST COMPILED MAP
¥ BUFFER } BiEaee i

Q@

Processes 34

Process State Flags

Eight flags describe the state of the process. These state flags, stored
in P.ROHEAD (see Figure 3), are used primarily to control the swapper,
but are set and checked by other routines (event channel, process inter-
rupt, and destroy process). Since the state flags are used to indicate
the '"state" of the process, they must never be modified without the PPU

interrupts first being locked out to prevent 'test and set' overlaps.

The eight flags function as follows:

The E flag indicates that the process is actually a pseudo-process and
is used by the event channel routines to distinguish

between genuine and pseudo-processes.

The "in core' flag, C, is set whenever the process is actually run-

~-—~——————-———‘—*‘~—EIEE*SEZE§E)CPU. This flag is checked by the process

interrupt routine.

The "pending action' flag, P, directs the swapper to interrogate
the "W'", "I", '"D" and "V'" flags. These four flags

cause the swapper to:

=
|

(the wakeup waiting flag) unchain the process flow from the
event channels;

I - check the "ancestors" of the current subprocess for an inter-
rupt subprocess;

destroy the process; and

modify the swapper return because of the arrival of an event
for the process.

The "running flag'', R, indicates that the process is scheduled to run
or is running on the CPU. The running flag (R) and
the wake-up waiting flag (W) interact in the event
channel routines as well as in the process interrupt
routines. They are used to permit the process to
"hang" on several event channels and still be able to

accept an incoming event.

Processes 35

SUBPROCESS TREE AND FULL PATH

The subprocess tree is organized so that each subprocess references only

its predecessor (see Figure 5). For each subprocess, the term "ancestors"
refers to the sequence of subprocesses which starts with the subprocess

and terminates with the root of the subprocess tree. Note that a sub-
process is always an "ancestor" of itself. At any given time, there are
two distinguished subprocesses within the process. They are known as

the current subprocess and the end-of-path subprocess. The current sub-
process is always an "ancestor' of the end-of-path subprocess; the sequence
of subprocesses from the end-of-path to the current subprocess (inclusive)
is called the full path. The end-of-path is defined dynamically by the

flow of control among the subprocesses. The current subprocess may be

considered to be the subprocess currently in control., The end-of-path and
current subprocesses are reassigned whenever a new subprocess is called.

The subprocess being called (the callee) becomes the new current subprocess.
-If the callee is an "ancestor" of the old end-of-path, then the end-of-path
remains unchanged. If the callee is not an "ancestor" of the end-of-path,
the new end-of-path becomes the same as the callee (i.e., the full path

consists of a single subprocess - the callee). See Figure 5a.

The full path defines the sphere of protection invoked by the current sub-
process. The access into the current subprocess permitted to other objects
within the system is controlled by the full C-1list. The full map determines
the configuration of the address space available to the current subprocess,

and the full address space is the size of the address space available to

the current subprocess. The full C-list, full map, and full address space

are defined by the full path. The configuration of the subprocess tree defines

the static relationship between the subprocesses (subprocesses closer to
the root may be given the privileges of their descendents) while the full
path dynamically controls the boundaries of access applied to the current
subprocess. This system of controlling the bounds of protection allows
the construction of processes which may exercise varying degrees of pro-

tection while maintaining synchronization between the subprocesses involved.

Processes

SUBPROCESS TREE

36

SUBP 1 | | SUBP &4 !
/\J A \\\A
vd ‘\
il ’ R PO \ﬁ\\.
SUBP 3 | sugp 5 | | susp 7 |
A
|
S |
| SUBP 6 ! " SUBP 8
‘*\
\
; ————2>——-aﬁ
| SUBP 9 | SUBP 10
Figure 5
FULL PATH EXAMPLE
CALLING SEQUENCE CURRENT SUBP i END-OF-PATH SUBP FULL PATH
|
SUBPO SUBPO | SUBPO | SUBPO
SUBPO calls SUBP9 SUBP9 ! SUBP9 SUBP9
SUBP9 calls SUBP6 SUBP6 g SUBP6 | SUBP6
SUBP6 calls SUBP4 SUBP4 l SUBP6 | SUBP6,5,4
SUBP4 ealls SUBPO SUBPO l SUBP6 SUBP6,5,4,0
SUBPO calls SUBP5 SUBP5 ’ SUBP6 SUBP6,5
SUBP5 calls SUBP3 SUBP3 | SUBP3 | SUBP3

Figure 5a

Processes 37

CALL STACK

The call stack records the flow of control among the subprocesses. It
contains the information necessary to reactivate a subprocess when con-
trol returns to the subprocess after one or more subprocess calls. Each
stack entry is two words long (see Figure 6). The current subprocess,
the end-of-path subprocess, and the P-counter must be saved at the time
of the subprocess call to reconstruct the full path and to re-initiate
processing where it was terminated by the subprocess call. The address
(within the full address space of the subprocess) of the input parameter
list (see System Entry/Exit) used for the last system call initiated by
the subprocess, and the count of orders processed in the operation used
in the last system call are retained to enable processing of F-returns.
Finally, three flags a@re used to conttol the return of-control to

a subprocess. The "interrupted" flag indicates that the subprocess

was interrupted and that the P-counter is not to be modified in

the usual way (see System Entry/Exit). The "forced F-return" flag indi-
cates that F-return action had been interrupted and instead of returning

to the current subprocess, F return action should be initiated. Finally,
an "inhibit interrupt' flag is used by the interrupt machinery to inhibit
the interruption of the current subprocess by itself. P.STACK is used to
control the call stack and contains the stack origin, stack end, and top

of stack pointers relative to the incore process descriptor. The P-counter
and input parameter list address in the top of the stack are not always
maintained since the P-counter is in the process exchange package (P.XPACK)
and the last IP list address is maintained in P.IPLIST. Each subprocess

is assigned a maximum stack pointer value to prevent the stack from being

filled to such an extent that the subprocesses closest to the root of the
subprocess tree cannot be called to rectify the situation or to handle

errors.

Processes

CALL STACK

38

W R W
A UNRUNY A T
__’_—_—.—-———
‘ /
/ /
N
HR SR T SN
_I__’r_4 - i
/ A ;
- K?ilﬁTﬁﬁﬁ f SsﬁEéIN TQ%AEE‘l P. STACK
RN NN T N ! ‘
! < JLAST IP |
N\ J11eT ADDR P. IPLIST
Forced Freturn
/ STACK ENTRY
Interrupted R e
4 Interrupt Inhibit

T |F RETURN| END OF
1/7 ~COUNT__PATH SUBP| SUBP.
L”.”)////’?44Annn

¥ _Reduce path

1CURRENT Wod O

| P-COUNTER o' ‘

Figure 6

Processes 39

ERROR PROCESSING

The use of improper parameters in making an ECS system call is detected by
the ECS system and is considered to be an error on the part of the pro-
cess making the system call. The process must be informed of the exis-
tence and type of the error and in addition is given some control over

which subprocess is to handle the error condition.

Associated with each error detected by the ECS system is an error class and

an error number. Furthermore, associated with each subprocess is an error

selection mask (ESM) (see Figure 7) indicating which classes of errors the

subprocess is prepared to handle.

When an error is detected, it is first assigned an error class and error
number. Then the "ancestors' of the current subprocess are checked (starting
with the current subprocess) to find a subprocess whose ESM indicates it

is willing to handle this class of errors. Finally, the subprocess which
accepts the error is called, and is passed the error class and number as
parameters of the call. 1In addition, in the ESM of the subprocess which
accepts the error, the bit corresponding to the error class of the error

is turned off to avoid error loops (i.e., a subprocess makes an error,

accepts the handling of the error, and makes the same error).

Processes

40

ERROR PROCESSING AND PROCESS INTERRUPT

SUBPROCESS DESCRIPTOR (error processing data)
(process interrupt data)

interrupt flag

~

NN

\

AN

N\

‘\\\Y\\\'

NN

\\\B,

R
DN

N

LERKRUP
DAL

NN

\\\

N\l _pag

\‘Tw\ NONNA

v\ N\ \
N\ N
NN

\ %\
AN

ARRARY \\\\\ \\\\
W\ ESM MAX ERROR \
PIB & CLASS~+

Class

P.INTERR

7] NUHPEND

co s

ERROR SELECTION MASK (ESM)

Class 0 Class 31
VA ‘
: NN\
N BN
//; T \L
32 Class 63
Figure 7

Processes 41

PROCESS INTERRUPT

Two mechanisms are available by which one process may affect the execution
of another process: the event channel, used to synchronize otherwise
asynchronous processes; and the process interrupt, used by one process to
force the calling of a specified subprocess (called the interrupt subprocess)
within another process (called the interrupted process). “Fhus—ome—process

4uu1_£a:ce—a—second_pxeeess—to—ente;—a—speeiéieé—sabpreeeeev—~Fufthetnmnnr,

'Ehe interrupted process will not enter the interrupt subprocess until the

interrupt subprocess is an "ancestar" of the current subprocess. In this
way, the interrupt is given a "priority" based upon the position of the
interrupt subprocess in the subprocess tree of the interrupt process.

With the process interrupt, an 18-bit interrupt datum is passed as the

parameter of the call of the interrupt subprocess. Once a subprocess
becomes an interrupt subprocess, and until that subprocess has been called
as an interrupt subprocess, interrupts to that subprocess are disabled
(i.e., additional interrupts specifying that subprocess have no effect).

It is also possible to disarm interrupts which are the same as the current
subprocess (recall that the current subprocess is an "ancestor" of itself ‘
and thus could interrupt itself). When an interrupt subprocess is called,

interrupts are automatically disarmed for the current (= interrupt) subprocess.

If the interrupted process is "hung" when a process interrupt is initiated,
the "ancestors' of the current subprocess (in the interrupted process) are

scanned to see if the interrupt subprocess is among them. If the inter-

rupt subprocess has ''priority" over the current subprocess, the "wake—up Lfs n/,w

waiting", "running", and "interrupt" flags are set in the interrupted

process and the process is scheduled to run. ORereve Z%L nkanuf ﬁé{;%
prs T‘Q/L[C‘—- & e O3 Ny e Oy —,/r‘ Lol *l \.V‘\'ﬂ'— ,()'T{'”“" 2 PXI{’

_// ;A -y 1TspP X% we. 4

At every normal subprocess call and return, the number of pending inter-

rupt subprocesses (P.INTERR) is checked. If there are interrupt subprocesses
waiting, the "ancestors'" of the new current subprocess are scanned to see

if any of them are interrupt subprocesses. To facilitate this scan, the
first bit of the subprocess descriptor (see Figure 7) is the "interrupt
pending' flag. The interrupt datum is also stored in the subprocess

descriptor. The "interrupt inhibit" flag (interrupt disarmed) in the

2

V 41/ 2 08 T2 AU e ~x { - - : ! s vy
1L

f.

Lol e

Processes 42

stack is always checked if the interrupt subprocess is the same as the
current subprocess. An interrupt subprocess call may also be initiated
either when the "interrupt inhibit" flag is reset, or by the swapper,

where a scan of the "ancestors" of the current subprocess is performed

whenever the "interrupt" flag i1s set in P.ROHEAD (see Figure 3).

TRANSFER OF CONTROL

In general, there are six ways in which control can be transferred from
one subprocess to another in the subprocess tree of a process. These may

be grouped intc two categories:

L. Subprocess call or jump: a new entry is made on the call stack, *

the full path is recomputed, parameters of the call action are

passed, and execution is initiated at the proper entry point of

the called subprocess. There are three kinds of subprocess calls:

normal, interrupt and error. (See Subprocesses: Subprocess Calls).

2. Subprocess return: using an existing stack entry to obtain the

new P-counter and the full path, the processing environment is

reconstructed and control is returned to the subprocess. There

are three kinds of subprocess returns: normal, F-return and

forced F-return (see Subprocesses: Subprocess return).

/

43

SUBPROCESS

Every process 1s constructed as a set of related subprocesses in order to
permit dynamic control of the privileges and protection applied to the process.
The envelope of protection/privilege associated with a process may change as
the process executes, but all changes in protection can be seen as_being syn—-
chronous with the process execution. It is only through a subprocess transfer

that the envelope of protection/privilege is modified.

SUBPROCESS DESCRIPTOR

The data necessary to describe each subprocess is gathered into an eight

word subprocess descriptor (see Figure 1). The subprocess descriptors are

stored together in the subprocess descriptor table in the variable length process

descriptor (see Processes). Each subprocess has a name by which it can be iden-
tified and accessed. This subprocess name is a class code, the value of which

is stored in the subprocess descriptor (word 1). In addition to its own name,
each subprocess must maintain a link to its "father" in the subprocess tree

(see Processes). This link is maintained in the descriptor (word 0) as a pointer
to the parent subprocess. Process interrupt (words 0,4) and error handling in-

formation (word 6) are also maintained in the subprocess descriptor.

Associated with each subprocess is a local envelope of protection/privilege.
The local C-list controls access to other objects within the system, while the

subprocess map dictates the contents of the local address space. Information

concerning the limits of the local address space (word 0), identification of
the local C-list (words 4,5) and the subprocess map (words 3,4) are maintained

in the subprocess descriptor.

The subprocess entry point (word 2) is the address, relative to the local
address space, at which a normal subprocess call will initiate execution of the
subprocess. The maximum allowable stack pointer (word 6) is used to avoid the
filling of the process stack to such an extent that more privileged subprocesses
(i.e., subprocesses nearer the root of the subprocess tree) cannot be called to
rectify the situation or to handle errors. The sum of the lengths of the local
C-lists and subprocess maps of all the subprocesses on the path to the root of
the subprocess tree is maintained (word 2) to help compute the relative origins
within the full map and full C-list of the calling subprocess during subprocess
transfer operations. Finally, the last word of the subprocess descriptor is used

to maintain a list of the maps which have: been swapped into CM while the process

is running on the CPU.

Subprocess 44

SUBPROCESS DESCRIPTOR

Figure 1
INTERRUPT FLAG
MAPIN FLAG
SD-RAFL WORD RA + FL- RA PTR TO v
FATHER
“[«._ WORD SUBPROCESS NAME
. ! -
.G WORD 2 |ENTRY) o~ | MAP - C-LIST =
= POINT ORIGIN ORIGIN .
~[).MAD WORD COMP BUF LOGICAL COMPILED | , .
SIZE)~ MAP PTR MAP PTR | ~ —° :
<9+!*T WORD INTERRUPT | # LOGICAL< |C-LIST .
DATUM ' | MAP ENTRIES|LENGTH
a0y 15T WORD 5 C-LIST UNIQUE NAME /| C-LIST |.
‘AMOT
, . -
005" WRD 6 ESM ¢/ | MAX ERROR [MAX STACK
POINTER | CLASS POINTER
£0.M-“worD 7 -0- MAPIN
|LIST LINK

WORD: O Interrupt flag: interrupt pending for this subprocess
mapin flag: set if map of subprocess has been swapped in
RA origin of local address space (relative to process CM origin)
/
Sreeyend 2 RA + FL end of local address space
. T vwcal @ Ptr to father: 1link to father in subprocess tree (relative to process
_///ﬁ CM origin)
WORD 1 subprocess name: the class code used to identify the subprocess
WORD 2 entry point: address relative to RA to begin execution on a normal
subprocess call
Map origin: sum of "# logical map entries'" of all "ancestors" except self
C-list origin: sum of '"C-list length" of all "ancestors' except self
WORD 3 comp buf size: number of words allocated for the compiled map buffer
logical map ptr: pointer (relative to process CM origin) to logical
map of subprocess
compiled map ptr: pointer (relative to process CM origin) to compiled
map buffer
WORD 4 interrupt datum: interrupt parameter if interrupt flag set

logical map entries: number of swapping directives permitted in
logical map

C-list length: number of capabilities or "empties" in local C-list

Subprocess 45

WORD 5 C-list unique name and MOT index: identification of local C-list

WORD 6 ESM pointer: pointer (relative to process CM origin) of first error.
selection mask word

max error class: maximum error class which is possible to recognize
in ESM

max stack pointer: maximum permissable stack pointer for the subprocesses
to be called

WORD 7 mapin list link: if mapin flag is set then link to subprocess whose map
is swapped in below this subprocess in CM. If this
subprocess is at the end of the map chain; then zero.

Subprocess 46

SUBPROCESS TRANSFER

The envelope of protection/privilege applied to a process is modified by
switching control from one subprocess to another. Subprocess transfers fall
into two categories: subprocess calls and subprocess returns. A subprocess
call causes a new entry to be made on the call stack, the full path to be re-
computed, parameters of the call to be passed, and execution to be initiated
at the proper entry point of the subprocess. A subprocess return wpascagemse
rrremetehe=ane draws the full path and P-counter from an existing stack entry.
In each case, the processing environment must be reconstructed to reflect the
new full C-list, full map, and full address space. This reconstruction requires
the swapping of one or more subprocess maps, the re-building of the full C-list
table (see Capabilities and C-lists), the fetching of a new local C-list and
setting of the full address space limits.

SUBPROCESS CALLS =
Rt ynp call

There are three kinds of subprocess calls. The normal subprocess callAis

initiated by calling on the system in the usual manner, using an operation (IPO)
whose action is "subprocess call". A normal subprocess call may also be initiated
as the result of F-return action under the control of a multi-ordered operation

(see System Entry/Exit - Operation Interaction).

The error subprocess call is initiated by the ECS system or by a user
request and will call the closest '"ancestor" of the current subprocess which
has the proper error class selected in its error selection mask (ESM) (see
Processes, Error Processing). Finally, an interrupt subprocess call is initiated
whenever a subprocess which is an interrupt subprocess has priority over the '

current subprocess (see Processes, Process Interrupt).

For all subprocess callgt a new stack entry is constructed and the new pro-
cessing environment is established. The P-counter and last IP list address of
the current subprocess are stored in the old top of the stagfr. Then cells 0 and
1 of the full address space are zeroed. These cells are used in the event of
hardware arith errors and to simulate SCOPE system calls. Next, the origins
(relative to the new local environment) of the address space, C-list, and map of
the calling subprocess are computed and stored in cells of the full

address space. If the calling subprocess is not a member of Jthe new full-path

f—
call olyosp T reche a mos MJ%@%JJ

wse thygod [o gaemp coll detine.

Subprocess 47

(see Processes), then these cells are zeroed (see Figure 2). Following the
relative origins of the caller's address space, C-list, and map, the parameters
of the subprocess call are copied to succeeding words of the subprocess address

space.

For a normal call, the parameters of the call are first formatted in the
actual parameter area (P.PARAM) of the process descriptor by the system entry
mechanism. These parameters are drawn from the user's input parameter list
(IP list) under the direction of the operation being used for the subprocess
call (IPO). 1In addition, the system entry routine places the name (class code)
of the called subprocess at P.PARAMC, the number of parameters at P.PARAMC - 1,
and a bit string denoting the types of the parameters at P.PARAMC - 2. After
establishing the correct processing environment for the called subprocess, the
parameters are transfered, under the control of the parameter type bit mask,
to the local address space and local C-list of the called subprocess. Datum
parameters are simply copied to the next parameter cell in the local address
space. Capability parameters are copied to successive positions in the local
C-1list and the index of the parameter in the local C-list is stored in the
next parameter cell in the local address space. On completion of the parameter

passing, execution is initiated at the entry point of the called subprocess.

During all subprocess transfer operations, if the interrupt pending count
(P.INTERR) is non-zero, the "ancestors'" of the current subprocess are checked
to see if any of them are "interrupt' subprocesses (word 0 of subprocess des-
criptor). If so, the subprocess transfer operation is terminated and an
interrupt subprocess call is initiated. As part of the termination of the
previous subprocess transfer operation, the "interrupted" flag is set in the
stack entry corresponding to the subprocess that was to be executed (if F—return‘
action was interrupted, the "forced F-return'" flag is set in the stack instead
of the "interrupted" flag). 'As with the other subprocess calls, the processing
environment, a new stack entry, and the origins of the previous subprocess are
constructed for the interrupt subprocess call. The interrupt datum from the
subprocess descriptor (word 4) is stored in cellég)of the new local address
space, and the "interrupt inhibit'" flag is set in the new stack entry.

Finally, the interrupt subprocess is entered 2 words before the entry

point specified in the subprocess descriptor.

X—Wﬁ 8D, GC%W

Subprocess 48

An error subprocess call 1is initated by the ECS system or by user request.

An error subprocess call passes as its parameters the error class and error
number which describe the error causing the call. Also, the bit in the ESM of
the error subprocess corresponding to the error class mug%~be reset to avoid
error loops (e.g. subprocess makes error — gets called as error subprocess -
makes the same error — gets called as error subprocess - etc.). The entry to

an error subprocess is one word before the normal entry point.

SUBPROCESS RETURN

Like the subprocess call, the subprocess return must construct a new
processing environment before returning control to the user. The return routines
re-activate a subprocess using information left in a stack entry. The full path
recorded in the stack entry is sufficient to reconstruct the processing environ-
ment. The P-counter from the stack entry, along with the "interrupt' flag,
control where in the subprocess execution is initiated. The normal return
requires the P-counter to be modified by the low order 18 bits of the CEJ
instruction which originally caused control to pass to another subprocess (see
System Entry/exit). If the "interrupted" flag is set, the P-counter is not
to be modified. Finally, the "forced F-return" flag in the stack will cause the ¥
subprocess return routine to transfer to the F-return routine (see System Entry/ ;

Exit - Operation Interaction). >

STATIC STRUCTURE

SUBP 0 SUBP 1 SUBP 2 SUBP 3 SUBP 4
Father oot | SUBP O | SUBP 1 | SUBP 1 | SUBP 0
Subp origin (RA) '100B | 3008 350B | 3508B 3008 {SUBP O l
local addr space (FL) 12003 " 508 100B . 250B 150B =2 ' \f‘*\\
C-1ist length | 108 | 20B 5B 158 258 SUBP 1
C-list origin ! 0 | 10B 30B 30B 10B \\&\
map length i 4 5 108 6 3 .EEEE_%_‘J | SUBP 3 |
map origin 4 118 11B 4
Subprocess Tree
DYNAMIC STRUCTURE
CALLER
ADDRESS ADDRESS ADDRESS CALLER CALLER
SPACE SPACE SPACE C-LIST MAP

SUBPROCESS CALLS FULL PATH ORIGIN LIMIT ORIGIN ORIGIN ORIGIN

SUBP 0 subp 0 1008 3008 -0- -0- -0-
SUBPO calls SUBP2 subp 2 3508 450B -0~ -0- -0-
SUBP2 calls SUBP1 | subp 2,1 3008 450B 50B 20B 5
SUBP1 calls SUBPO subp 2,1,0 100B 450B 200B 10B 4
SUBPO calls SUBP3 subp 3 3508 620B -0- -0- -0-
SUBP3 calls SUBPO | subp 3,1,0 | 100B 620B 250B 308 118
SUBPO calls SUBP4 | subp 4 3008 450B -0- -0~ .
SUBP4 calls SUBPO subp 4,1 100B 450B 200B 10B 4

Subprocess Calling Example

Figure 2

ssaooadqng

6%

50

CLASS CODES

A Class code is a protected 60-bit datum by which a user may identify himself
or some ECS system object. Within the ECS cyctem, class codes are used as the
names of subprocesses (See SUBPROCESSES); in the future they will be used to
identify users within the disk system and will be called access keys.

The 60-bits of a class code are divided into two 30-bit parts (see Figure 1).
The upper 30-bits constitute the ''permanent part' and are assigned by the sys-
tem when the class code is created. Once assigned, the permanent part cannot
be altered. The low order 30-bits of a class code, called the 'temporary part',
are set by the user and may be altered by him any time.

Since each class code occupies only one word, they are not allocated space of
their own in ECS, but instead each is kept in the second word of the capability
which refers to the class code. Since the second word of the capability usually
contains the unique name and MOT index for the object, this choice of location
for the class code seems reasomnable.

There are two system actions connected with class codes: The first allows the

user to obtain from the system a new class code. The system keeps a counter for
generating the ''permanent part'" of a class code, and each time one is requested,

the counter is incremented and a new and unique class code is generated. The -
second action allows the user to set the temporary part of a class code. He

must already have a permanent: part, the capability for which (with the proper option
bit set) he supplies as the first parameter. The second parameter is the 30-bit
datum which is to be inserted into the temporary part of the class code. The

3rd parameter is a C-list index to return the updated class code. A class code

is destroyed only when the capability is destroyed by being written over.

Figure 1. Class Code

59 18 0

OPTIONS TYPE

Permanent part Temporary part

51

Associated with each subprocess is a map which directs the swapping of the
subprocess address space between central memory and ECS files. A map con-
sists of a fixed length sequence of map entries each of which is either "empty"
or contains a swapping directive. A swapping directive (see Figure 1)
designates a contiguous portion of an ECS file, a CM address within the local

address space of the subprocess, and whether or not that section of subprocess

memory is read only (not to be swapped out).

When a subprocess is to be swapped into CM, each non-empty map entry is pro-
cessed in sequence and a file read action is effectively performed to copy
the section of the file designated by the swapping directive to the local
address space of the subprocess starting at the designated CM address. When
a subprocess is to be swapped out, only those swapping directives not marked
as ''read only'" need be processed. Note that there is nothing to prevent
several swapping directives from designating overlapping areas in CM or in a
file. The results of overlapping swapping directives may be determined by

remembering that swapin/swapout processes the map entries in sequential order.

To minimize the time spent in swapping maps in and out, the logical map

(sequence of '

'empties" and swapping directives) is 'compiled", or converted,

to a form containing the absolute BCS address of the sections of ECS files
referenced by the swapping directives (see Figure 2). Since one swapping
directive may span several data blocks in a file, the size of the compiled

form of the map will reflect the need for additional entries in the compiled
map. Both the number of entries in the logical map and the number of words

to be allotted for the compiled map are declared when the subprocess is created

and may not be altered.

The absolute ECS addresses in the compiled map are sensitive to changes in ECS

due to garbage collection. Thus, the map must be re-compiled whenever a

M
aps 59

garbage collection is in progress or has occurred since the last re-compilation.
A word in ECS (GARBCNT) indicates whether or not a garbage collection is in
progress and contains the number+l of garbage collections since system ini-
tialization. Each compiled map contains, as a prefix, the count of garbage
collections at the time the map was last compiled. This count is compared

with GARBCNT whenever the compiled map is about to be "executed" and will

cause a recompilation if the counts are unequal. A recompilation of a map

may be forced by setting the count in the compiled map prefix to zero.

Access to both the logical and the compiled forms of the map is through the
subprocess descriptor (see Fig. 3). The subprocess descriptor also contains

thé number of entries in the logical maps and the size of the buffer allocated
for the compiled map. In addition, the subprocess descriptor contains a flag
indicating whether the map for that subprocess has been swapped into CM and a
chain pointer used to keep track of which subprocess maps are in CM. The
origin (relative to Bl , the CM process origin) of the subprocess address space
(RA) and the origin + length (RA + FL) of the subprocess address space are also

available to the map machinery in the subprocess descriptor.

The maps of the subprocesses in the full path are concatenated to form the full
map in much the same way as the full C-list (see C-list) is formed. Each map
however, is swapped relative to the address space of its subprocess, as if it
were the only map being considered. The address space of the running subprocess

is enlarged to form the full address space, which includes the address space(s)

of all other subprocesses in the full path. The code and data in the maps above
(in the full path) the running subprocesses may be accessed as if the address
spaces of the other subprocesses were simply added (one after another) onto the
end of the local address space of running subprocess. Note, however, that the
data and code within these maps i1s not relocated to reflect the new addresses

used to access them.

Maps 53

Map Actions

When map entries are to be changed, care must be taken when the map involved

is part of the full map. In this case, if the map entry involved is not

empty, it must be swapped out before it can be replaced. The new entry

(if there is one) can then be constructed and swapped in. Note that overlapping
map entries will behave oddly since the portions swapped under one map entry
may be partially or completely overwritten by the area swapped under a sub-
sequent map entry. At the present timg the entire map is recompiled, since

a change in the logical map may change the length of the compiled map. Incre-
mental compilation is not precluded by the design since the logical map con-
tains pointers into the compiled map; however, the implementation of this

feature has been deferred.

Direct User ECS Access

To allow the user an ECS RA and FL, so that he may access directly an often
used segment of ECS, the current subprocess is permitted to have one direct
ECS access map entry. If present, it must always be the first map entry, and

may reference only one file block (due to physical limitations).

The Direct Access Entry (DAE) is implemented as a regular map entry (as far
as the map compiler is concerned) except that the CM address part is always
zero and the DAE flag bit (appearing only in the first map entry) is set.

Two special ECS system actions are available to set/clear the DAE flag bit.

54

Figure 1 Logical Map

< file > or < empty > MBPFILE .
o > = i A) y k "’1}]/' g "_"_
<R/0 FLAG(iZ < Fiis addvesg > MP. FAflst logical map entry
'I” KOMPILE PIROKCM. ADDRY| <WD CNT>| | MFoEAPK
<Direct -1
Access Entry 2nd logical map entry
Flag>
/ /
74 74
!
] last logical map entry
-0 end of logical map
< empty > ::= +0 Denotes an "empty'" map entry
39 18
Z |
< file > ::= UNIQUE NAME /| MOT INDEX file identification -
< file address > ::= 0 » 2°%0 -1
< R/O FLAG > ::= 1 = read only; 0 = read/write
< compile ptr > ::= index in compiled map buffer of first compiled map
entry for this swapping directive
< CM ADDR > ::= CM address within subprocess local address space
< WD CNT > ::= word count
Note: < CM ADDR > + < WD CNT > < length of subprocess local
address space
<

DAE Flag > ::= 1 -- this is a direct ECS access entry (Legal only for first

entry)
0 = regular map entry

e : 18 0
GARBCNT | [////1/7 /71700 7/ ACOUNT(>0) € OMpcniy
(in ECS) K
set if garbage collection in progress
MP-(’:J&\% fé"} : /"}' Er
i fl', it s 1% 7.3
- : Ml o f s T 7
/7 ///// /| <SPACE> |<COUNT> | PREFIX | Aol ovap | eompad”
T MP.CMAP
‘lqucs ADDR><CM ADDR3<WD CNT> A
T%ECS ADDRI<CM_ADDRI<WD CNT>
<R/0 FLAG>__~
: } Compiled map words (:
<DAE Flag> k |
<LAST ENTRY> l
/<ECS ADDR<CM ADDRY<WD CNT>|
+ 0 END
= .
< COUNT > - J 0 = must recompile
>0 = map is good if same as GARBCNT
< SPACE > ::= number of un-used words in the compiled map buffer
< WD CNT > ::= number of words to transfer

A

A

A

A

A

55

Figure 2 COMPILED MAP

Lagunp

last entry >

CM ADDR > ::= CM address
ECS ADDR > ::= absolute ECS address to start transfer

R/0 flag > ::= read only flag{

relative to CM process origin (Bl)

0 = read/write

1 = read only

DAE flag > ::=1 - DAE (legal only on lst entry in compiled map)

swapping directive

::= 1 == last compiled map word corresponding to a particular

~N oWy O

SUBPROCESS DESCRIPTOR (MAP DATA)

/MAPIN BIT

i ra+rl w7
L /

V4 ¢ i / 3)

/ / Y W, / / ’/,

7 . & s 4 4 d / /s
. { COMP BUF | LOGICAL [COMPILED

SIZE

L
f -0 = MAPIN
! LIST LIN

DAE B =
uE it (151 if'gfg has DAE (must be in first entry))

Figure 3

56

| et %f <« O
or M;,,m

l ‘2‘5“ /‘ﬂft Z /A?/dy(,,f/ ./'d’?c’?rymfa-é

&n)’/ ﬁ% M@?ewm/) g | "—Lj
L Do S etz

Loy | npadl ?)ZJ‘MT | —

l

— W /é‘/)\m;.zﬂo
l/

cleap 1
L 2l tans corpacp POy i Aogomsef

f‘o"@fwm%ﬁ% ”fw%

RO
‘, J’ ol ity fiTonF
’ LD Qe;f / /C(f/ﬂ e 41/ (rﬂ/

m<MAP2 Lo

9e el Do it
L 4&7’ /ézgf C{fhr Nty ;/?»

ﬂ@(f \d. £ ‘;"!.5'0(?,7 AL ,V/ (’f\/j""igé./ 23 _,2/
Neatlote (enio (o

X {£L— 2 f/»"fz' / %
ol &

57

EVENT CHANNELS

Event Channels are ECS system objects used to synchronize running pro-
cesses as well as to implement '"block' and "wake up'" mechanisms. Basically,
a user process may request an event from a particular event channel. If the
event channel does not have an event, the user's process is blocked (stops
running) until some other process sends an event to the event channel. The
exact mechanisms of sending and receiving events will be described in full
detail.

The event channel (see Figure 1) consists of a three word header followed
by the event queue. The event queue is a circular buffer controlled by pointers

and values located in the first and third header words.

First header word: The "in'" and "

out" pointers in the first word are
manipulated to point relative to the beginning of the event channel. The
"in" pointer always points to the location in which an event is to be put
should one arrive. The "out'" pointer points to the location of the next

event to be removed from the event queue. The "in" pointer will equal the

" "

out' pointer when the event queue is either empty or full. Therefore, the
number of empty places in the circular buffer is maintained in the third
header word. Finally, the length of the entire event channel is recorded in

the first header word.

Second header word: The second header word is used to maintain a queue
of waiting processes. When a process requests an event and the event queue
is empty, the process is added to the process queue. The process queue is a
bi-directional list through the processes on the queue and the event channel
(see Figure 2). The high order 30 bits of the second word of the header, called

the process queuing word, hold the forward pointer while the low order 30 bits

hold the backward pointer. Each pointer consists of a Master Object Table (MOT)
index and a queuing word index. The queuing word index, in the high order 12

bits of the pointer, is an index relative to the beginning (in ECS) of the process
which is designated by the MOT index of the low order 18 bits of the pointer.

Event Channels _-’ (58

n

Within the process, at the location indicated by the queuing word index,

there should be another process queuing word with forward and backward
pointers. The queuing word index is stored in such a way that the unpack
(UXi Bj,Xk) instruction will result in the true queuing word index in the

B register. Furthermore, if the pointer refers to the event channel, the
queuing word index will unpack to a in the B register. For example,
the pointer: 2061810001238 refers to the 6l,-st word (in ECS) of the process
with MOT index 1238. Similarly the pointer: @ 003218 refers to the pro-
cess queuing word of the event channel with MOT index 3218. If the process

queue is empty, the process queuing word in the event channel will point to

the event channel itself (e.g., (17758 003218 17758 003218) Y.s

Event Channel Routines

It is important to note before discussing the event channel routines that
they are one of the few places in which there is interaction between the ECS
action routines and the interrupt system. Since the interrupt system may
call upon the event channel routines at any time, it is necessary to lock
out the interrupt system while manipulating event channels and to release the
lockout upon completion of any.event channel manipulations. To lock out the
interrupt system, it is only necessary to set I.LOCK (in system core) non-

zero. To release the lock, simply clear I.LOCK.

Sending Events
Events are sent by user processes by the interrupt system. An event
Af‘u Ui T
— consists of two words. The }rst word Q/the % ffthe process which
40-. 7;(‘) L ro el o

is sending the event.’ The second wo%d is a 60 bit datum prov1ded by the sender ’
of the event. A response is always given to the sender of the event to indi-
cate the disposition of the event (see Figure 3). For a user process, the

response is returned in X6. N e

A == - e e ~

If the event quéﬁe of the appropriate event channel is not empty, then e

// it may or may not be searched for an event duplicating the new event. This
6£7 /o is to allow for the elimination of redundant events. If the event queue

search was desired and if a duplicate event is found, a response is given to

\

\ the sender indicating that a duplicate event was discovered, and the event

“gending routine returns. _—

Event Channels 59

s

///////;;/;;/;;;licate event checking was requested or no duplicate eve;;—;;;sii:>

(J;fg?nd the event queue is checked to see if it has more than one empty slot.
If the event queue is full, the sender of the event is notified that the queue
is full, and control returns to the sender of the event. If there is only
one slot left in the event queue, the datum word is replaced by a special
"you lose" datum (-0) and the sender is notified by the “you lose'" response.
This "you lose" datum allows the process which ultimately receives that '"you
lose'" event to discover that the event queue had been full and that informa-

tion was lost.

If the event survives thedupticate—eveat—ehecking—and- the full event
queue conditiong, it is copied into the event queue and the pointers are moved
to reflect its presence. Again, the sender of the event is notified of the

deposition of the event.

If the event queue 1s empty, the process queue must be checked. (Note
that if the event queue is not empty, then the process queue must be empty.)

The process queue is scanned for the first process which does not have its

"wake-up waiting' flag set, i.e., has not already been handed an event, received
a process interrupt, or been marked for destruction. If such a process is
found, and it is not a pseudo process (used by interrupt system to interface
with the event channel logic and other purposes), the 'wake-up waiting" flag
is set on that process. The P counter in the process exchange package is incre-
mented and the event is copied to X6 and X7 of the process exchange package in
ECS. Note that the testing and setting of the "wake-up waiting'" flag must not
be interrupted by any other access to this flag. If the process is not running
("running" flag) the scheduler is called to schedule the process to run. If the
first process without 'wake-up waiting'" is a pseudo process, it is removed from
the process queue; otherwise, it is not removed until the process is swapped in
to run. Also, in the case of a pseudo process, the event channel routines return
to UNHUNGl in the interrupt system.

Finally, the "running", "event'", and "pending action" flags are set in
the process. The "pending action" flag, the "event'" flag, and the "wake-up
waiting' flag are used to control the swapper and the routines for hanging a

process on several event channels, process interrupt, and process destruction.

If the process queue is empty or has no processes without 'wake-up
waiting'', and the event queue is empty, the event is copied to the event

queue and the appropriate response is passed to the sender.

Event Channels 60

Getting Events

A user process may attempt to get an event from an event channel. If the
event queue is empty, the process may wait ("hang" or 'block") until an event
arrives before resuming execution. Also, a process may attempt to get am event
from any one of a set of event channels and, in the absence of any events, the
process may discontinue execution ('"hang'" or "block") until an event arrives
for one of the event channels. If more than one process is awaiting an event on
a single event channel, the first event to be set to that channel is passed to the

first process while the other process(es) continue to wait.

The mechanism of getting an event or hanging (waiting for an event to
arrive) begins with a check on the event queue of the event channel. If the
event queue is non-empty, the head of the event queue is removed and the

event is passed to the process (in X6 and X7 for a user process).

If the event queue is empty the process must be added to the queue of
waiting processes (process queue) using a process queueing word in the ECS
image of the process. The '"running" flag in the process is cleared and the
process is removed from the scheduling queue (de-scheduled). Next, the P-
counter of the process is decremented by one. This is to allow for the possi-
bility of a process interrupt causing the process to resume execution. In this
case, when the interrupt subprocess returns, the process will re-execute the
exchange jump, which calls the system to try to get an event from the event
channel. When the process has been chained on the process queue, the system
and user clocks are updated and the event channel routines exit to SWAPOUT in

the swapper to swap out the process.

When an event arrives for a process which is hung on an event channel,
the event sending mechanism will set the appropriate flags and schedule the
process to run as described above. The swapper will detect the "event" flag
and return through SYSRET instead of TOUSER of the system entry/exit routines.

The swapper will have already removed the process from any process queues on

which it had been hung.

Event Channels 61

To get an event from one of a set of event channels, the event channel
routines must interrogate the event channels one at a time. If an event
channel has an empty event queue, the process is queued in the process
queue of that event channel using the next queuing word of the process. The
sequence of "in use' queulng words in the process must be terminated by a
zero word. Between the interrogation of event channels, the 'wake-up waiting"
flag is checked. If this flag is set, an event has arrived on one of the
event channels which has already been interrogated. If an event has arrived
or an event is discovered on an event queue of an event channel, the process
is removed from all the process queues on which it is already chained, and the
event channel routines exit to the system entry/entry mechanism. When interrogating
the set of event channels periodic pauses must be made to allow the interrupt
system to run. Otherwise, the interrupt system might be locked out for an
intolerably long time. If, after interrogating the last event channel, the
"wake-up waiting' flag is not set (note that the interrupt system is still
locked out), the process is descheduled, the P-counter is decremented, and

the event channel routines exit to SWAPOUT in the swapper.

Figure 1

EVENT CHANNEL

59 53 48 36 BACK POINTER

ag 18
{ OBE_POINTER EHINTER P8TIETER E%E%EHC th
gQﬂuf Lot éz CH WD | PROCESS |CH WD] PROCESS
R) I _MOT I MOT PROCESS CHAINING WORD

H
"y NDEX ND
EMPTIHS
N_QUEIIE T
L\ gvent
EVENT DATUM
/ / }EVENT QUEUE
35 4
l f% EVENT
EVENT DATUM J

1

/
|
\
\
\
\
i
\
\
\

Event Channels

Figure 2

PROCESS QUEUE EXAMPLE

e . S
B e \\
-—-——:——— . S ‘/
,//’/”/,,,// e e
/ ~) T I —_i: g
/ o e
4 FO i
INTER RS
i * EERES SN . S CK
—_— NTER
CK
EVE POINTE
C
[y
¢ [T PROCESS PROCESS
FORE
\ POINTER
\\\ == 11
\\\ J—= " T]
! 7
N
\\\
“~FORE_POINTER I N
T——— o
Figure 3
RESPONSES TO EVENT SENDER
CONDITION RESPONSE

EVENT PUT IN EVENT QUEUE
EVENT PASSED TO A PROCESS
"'YOU LOSE'" EVENT PUT IN QUEUE

EVENT QUEUE FULL
~—DUPLICATE EVENT-FOUND

[I w@r—'

62

BAC
POI

R

63

TIME SHARING SYSTEM TEXT STANDARD

The System Standard Text (Systext) is the standard method of storing coded
information for the Time Sharing System. Information in Systext format exists
in a file (a semi-infinite array of 60-bit words) and is terminated by an end-
of-information word. A Systext file is composed of lines, which contain
character coded information, and segments which contain no information and

are called sloppy segments.

Systext Lines

A line is a sequence of 7 bit ASCII characters terminated by the control
character CR (= 1558). There is no limit to the length of a line and they
may be split across file block boundaries. Each line is packed left-—justified
into successive 60-bit words, 8 characters (56 bits) per word. The first 4
bits of each word serve to signal the beginning of a line: for the first word
of & line these leading bits are 1001; for all other words in a line they are
0000. Consider the line ABCDEFGHIJ CR which would be stored in Systext as:

1001 |A|B|C|D|E|F|G|H 0000 |I|{J|CR|*|*|* |* %

Characters which follow the appearance of CR in a word are ignored.

Multiple blanks in a line are compressed by inserting a count of the number
of blanks rather than the blanks themselves. The ASCII character ESC (=1738)
is reserved for this purpose. Whenever ESC occurs in the Systext file, the
character following it is interpreted as a blank count, 'n' (0 £ n < 12810) .

On output these two characters are replaced by n blank characters.

Character Representation

The internal ASCII code used in System Standard Text is the external ASCII +
1408 (mod 2008). The conversion is performed by the system I/0 routines (see

Time Sharing System Text Standard 64

p. 73). This scheme maps blank onto 0, 0 onto 20, and A onto 41; .
See Table 1. Non-graphic characters, however, are not allowed to occur in
System Standard Text. (CR and ESC in the contexts described above are
the only exceptions.) Therefore, the character 7% has been reserved as a
special prefix for representing non-graphic characters; if the graphic fol-
lowing a 7% maps onto a control character under the mapping: internal
ASCII + 1008 (mod 2008), the pair is interpreted as that control character
(see Table 2). Otherwise the 7 leaves its successor unchanged. So

%% represents 7% and /M represents CR .

Sloppy Segments

A sloppy segment in the Systext file is a group of n words (0<n < 219y

that are to be ignored. The first and last word of such a segment is of the form:

—INDEF
|6000 n
59 47 18 0

where n is the count of words in the segment. The system ignores the
middle 30 bits of this header word and the succeeding n-1 words. A sloppy

segment may not occur within a line and cannot be split across file block boundaries.

End-of-information

The end of Systext is signaled by an end-of-information (EOI) word of the

form:

4000
59 47 0

The low order 48 bits of the word are ignored.

Table 1 65
Graphic TTY Character Representation

CDC cDC
Internal ASCII Printer Internal ASCII Printer
TTY Character Representation Character TTY Character Representation Character

[0 ¥ R 62 R
. 1 v S 63 S
" 2 ¥ T 64 T
3 = U 65 U
$ A $ v 66 \'
% 5 7 1% 67 1%
& 6 ~ X 70 X
' 7 # b g 71 Y
(10 (z 72 Z
) 11) [73 [
%* 12 s \ 74 r~
o 13 -] 75]
5 14 J ¥ 76 4
- 15 s “ 77 >
. 16 ’ 100 #
/ 17 / a 101 A
0 20 0 b 102 B
1 21 1 ¢ 103 C
2 22 2 d 104 D
3 23 3 e 105 E
4 24 4 i 106 F
5 25 5 g 107 (o]
6 26 6 h 110 H
7 27 7 i 111 15
8 30 8 j 112 J
9 31 9 k 113 K
$ 32 - 1 114 L
3 33 H m 115 M
< 34 < n 116 N
= 35 = o 117 0
> 36 > P 120 P
? 37 & q 121 Q
@ 40 < r 122 R
A 41 A 8 123 S
B 42 B t 124 T
C 43 o] u 125 U
D 44 D v 126 v
E 45 E w 127 W
F 46 F X 130 X
G 47 G y 131 Y
H 50 H z 132 7
1 51 I { 133 (
J 52 J | 134
Ilf 22 k } 135)

L
M 55 M ~ 136 ¥
N 56 N rubout 137 ¥
0 57 0
P 60 P
Q 61 Q

Non-Graphic TTY

66

Table 2

Character Representation

Internal ASCII

Key Combination

Character Representation Systext Representation Function
NUL 140 Z @
SOH 141 7% A
STX 142 % B
ETX 143 % C
EQT 144 %D
EN 145 Z E
ACK 146 Z F
BEL 147 % G Bell
BS 150 % H Backspace
HT 151 21 Horizontal Tab
LF 152 %z J Line Feed
vT 153 %z K Vertical Tab
FF 154 Z L Page Eject
CR 155 %M
S0 156 % N
SL 157 % 0
DLE 160 Z P
DC1 161 % Q
DC2 162 % R
DC3 163 % S
DC4 164 % T
NAK 165 %z U
SYN 166 %V
ETB 167 %W
CAN 170 %z X Delete Line
EM 171 Y
SUB 172 % Z
ESC 173 Z [
FS 174 %\
GS 175 %1
RS 176 % 4
us 177 % <

67

THE LINE COLLECTOR

The line collector collects a line from the TTY using the previously typed
line as a template. It maintains two lines simultaneously, an old one and
a new one. The old line is the last line received by the Teletype (or

from INITIAL) and is local to the virtual TTY buffer; it may possibly be
empty. A new line is constructed from the old one using the characters
typed in from the Teletype. To visualize the process of constructing each
new line, imagine two cursors or pointers, one called OLD which runs over
the old line and one called NEW which is positioned on the new line as it
is created. Normally when a character is entered from the TTY, it is
appended to the new line and both cursors advance on place. If certain non-
graphic characters, called Control Characters (see Table 3) are entered,
the cursors can be manipulated so that, for example, characters are COPIED
from the old line to the new one, or parts of the old line are SKIPped, or

the cursors BACKUP over undesired characters.

The most obvious application for the line collector would be in conjunction
with an on-line compiler which performs a simple syntax check of each line
as it is entered. If the line is bad it output a diagnostic, rejects the
line, and calls on the line collector. The user edits the old line which

still resides in the virtual buffer and resubmits it to the compiler.

The Line Collector 68

The line collector permits the following actions to be performed via the

*
appropriate control characters ;

%*
Operation Control Characters Action

Accept The current new line is accepted
as is.

Advances the printed paper to a

fresh line. Spaces to the current
position of the New cursor, prints

a copy of the remainder of the old
line, and on the following line prints
a copy of the new line up to the cur-
rent position of the cursor.

e.g.: remainder of old line

current new line
+
(New cursor)

Concatenate and Concatenates the remainder of old
Accept line onto the current new line and

accept.

Concatenate, Print Concatenates the rest of the old
and Accept line onto the new line, prints

it out, and accepts.

Tab Set/Release @ Sets (releases) a tab stop at the
current position of the cursor in

the new line if entered an odd
(even) number of times.

Tab @ Inserts blanks up (both cursors ad-
vance) to the next tab stop.

If entered an odd number of times

. since the beginning of the first line,
R @ the cursor in the old line is not
moved on Backup or normal entry

operations, thereby allowing the
insertion of characters into a line.
0dd numbered entries of the control
characters are echoed by < .

Fven numbered entries return the
cursor to its normal action and

are echoed by >

If the first key specified is , the second key must be pressed

while the first key is still depressed.

The Line Collector

Concatenate and CTRL
re-edit

HIFT

D@
©

Special CR CTRL

O,

Panic
CTRL

®@
©

69

Concatenate new line with remainder
of old line and make the concatena-
tion the old line, positioning the
cursor at its beginning.

Identical to except that the
line collector notifies the calling
routine that this line is special.
(Can be used to switch modes, i.e.,
to leave ''append mode'" in the
Editor.)

Interpreted by the PP, this command
sends an interrupt to the process.
May be used to get a process out of
a loop or to get its attention.

For each of the three actions Backup, Copy, and Skip, the distance can be

specified in 6 ways (see Table 3).

In the descriptions which follow, a word

is defined as a sequence of one or more non-alphanumeric characters delimited

by non-alphanumerics; when looking for the beginning of a word, the cursor

passes over all non-alphanumerics until it encounters one or more consecutive

alphanumerics. Next character entered refers to the first occurrence in the

The Line Collector "

line of the next character typed in after the control characters. If at any
time an edit request is made which cannot be fulfilled, the line collector

echoes a bell instead of the graphic specified.

Operation Control Characters Action

Backup one @ Cursor in the new line backs up
character (erases) one character* <« is

echoed on the printer.

Backup one @ Cursor in the new line backs up
word (erases) one word*¥ <« is echoed

once on the printer.

Backup to next CTRL @ Cursor in the new line backs up
character entered (erases) up to but not including

the new character entered® <«
is echoed on the printer.

Back to and

; o up. ” Cursor in the new line backs up

including next ; X
(erases) up to and including the

character entered)
next character entered®¥ <« 1is
echoed on the printer.

Backup to tab Cursor in the new line backs up
(erases) up to the preceding tab

setting¥ + 1is echoed on the line
printer.

Backup to edge Cursor in the new line backs up
(erases) up to the left edge, thereby

starting the line anew¥* <« is
echoed on the line printer.

Copy one <E£E;) (::::) The next character in the old line

character is appended to the new line, and
the character is printed.

Copy one The next word in the old line is

word appended to the new line and is
printed.

Copy up to next 3 @ @ Characters in the old line up to
character entere but not including the next character

entered are appended to the new line
and printed.

The old cursor moves simultaneously with the new cursor.

The Line Collector

Copy up to and
including next
character entered

Copy to tab

Copy rest of
old line

Skip one
character

Skip one word

Skip to next
character entered

Skip up to and
including next
character entered

Skip to tab

Skip to end
of line

EOR
B

1

Characters in the old line up to
and including the next character
entered are appended to the new
line and printed.

Characters in the old line up to
the next tab setting are appended
to the new line and printed.

The remainder of the old line is
appended to the new line and printed.

Note that @ @ @ ‘is equi-
valent to @ @ above.

Cursor in the old line moves ahead
(skips) one character¥ $ 1is echoed
on the printer.

Cursor in the old line moves ahead
(skips) one word¥ § is printed
for each character skipped.

Cursor in the old line moves ahead
(skips) to but not including the
next character entered% $ is printed
for each character skipped.

Cursor in the old line moves ahead
(skips) to the position immediately
after the next character entered.*
$ is printed for each character
skipped.

Cursor in the old line moves ahead
(skips) to the next tab setting.*
$ is printed for each character
skipped.

Cursor in the old line moves ahead
(skips) to the end of the line%¥ §
is printed for each character skipped.

The cursor on the new line moves simultaneously with the cursor on the

old line.

‘tng nasd

o~ -~ /W
i <
l c
e o~ T XY
3 v 3 .
/a” S - = W
e LS . g
' N
! y —_ & =
o= vm > X s “ W N
N : LS P i \
.M 'S O 5 A n L
B S 2 9 .
9 \ 4 2 - .w 3
NG Q. . U /_rﬁ f m
S ~~ ~. N
Ey - , |
4 \ ,./
\ / \ \
\ \
3 oo 294y / \ \ \
M. e N\ = . \ \ \
«lN\ OL3jT TS 7377 NrV\.\. \ N
bl A \ \
\V.—m,.-qcu Twﬁu.wl 4 Y k » , 1 @
; a8 2N N - \ - \ A z
7 N [AW TN e A e KA e
A3ns ; ! I] J A ;o ; . = 8 / . S
/!(\4\\ .,//A& / \,\ /V, i \ r/lm\\ /,/!*.\\. \ %\ M , - S b el , ~— =
R 4 / | ; P A = o ¢
wos £ &% Gl =3 TS W g5 = ¢ o : YLD
gost L 4 S ALY, 0% iC32, uuwx. 2o R
N N L ~ e \ - ,. ~ = Pt)
- |,// \MI»/ > \n\!/ A \\.\AiJl/.. \\\”/ \ A 2 =) 0
% J NS - \ :
¥ { 471) ==y » (i St bl o J gy
/ T s /&& N e LA ol i SIS T i
i B (b.\.\‘ ‘IFW\\\ P - =y *!/ T \\M/ \ e
[> i ™\ \\\.r/// O \ M\. \® \l h | | - - , .ﬂ "
L= @ i i <+ \ J
. \ { } | {) (/ V / \ Y% / t ,/l\ ,/:\ /.(
AR A , / VAR VRN,

U..th&\wn\by»vx ‘ 21 ¢ T OUTLeI I
MQ\UUU? 3 oL a 05

~

ﬁ| =y —
sup oy |wn) o ey ey wdgery (76
¢ 29/90/

cdi

- hdo~

i:uq?u

Teletype I/0 Functions

The TS System I/0 functions are a set of reentrant routines which should be
loaded into a continuous section of core. If absolute images are used, they
must reside in the right part of core. To initialize these functions, one

jumps to .TTY. ON with

Bl set to the base of a 1338 CM word data area (TTYBUFF) for
this teletype.

B2 set to the index in the C-list for the TTY file.
(B2)+1 is the index of the CP to PP event channel
(B2)+2 1is the index of the PP to CP event channel.

X7 is set to the return address in calling program.

I/0 operations are performed upon strings or lines where a string is a sequence
of characters and a line is a string terminated by a CR character. Every

string or line is quantified by a two word entity called a string descriptor.

The first word of a string descriptor points to the word base address of a given
string; the second word indicates the length of the string, or for a line,
the upper bound on the length, since the terminating CR character signals

the end of a line.

Output

To output a string described by the string descriptor DESC, DESC+l1 the following

macro call is invoked:

.PUTOUT MACRO TTYBUFF, DESC
SB1 TTYBUFF The data area for the TTY
SA4 DESC+1
+ SX7 *+1
JP PUTL
ENDM .PUTOUT

PUTOUT outputs characters up to and including a CR or until the length spe-
cified in the second word of the descriptor is exceeded, whichever occurs first.
Lines with blanks compressed as well as uncompressed lines may be output by

.PUTOUT. 1If a CR 1is encountered, a LF 1is also echoed.

NOTE: 1If the flag at TTYBUFF + FORCE (FORCE = 238) in the TTY data area is up,
the TTY buffer will be flushed (PP is notified that there is something in the
buffer) each time ..PUTOUT finishes. This kind of call-by-call flushing

Teletype 1/0 Functions 74

is expensive and should be suppressed when possible. Therefore, if a large
file is to be listed, the FORCE flag should be turned off until the last line.
With the flag off, lines will be forced out only when the TTY buffer becomes
full. Initialization leaves FORCE up.

A single character is output when a macro call to .OUTPUTC is invoked:

.OUTPUTC MACRO TTYBUFF, CHAR
SB1 TTYBUFF
SX1 CHAR
+ SB7 *+1
JP PUTCTTYT
ENDM . OUTPUTC

The output buffer is flushed when a macro call to FLUSH is invoked:

FLUSH MACRO TTYBUFF
SB1 TTYBUFF
+ SB7 %41
JP FLUSH
ENDM FLUSH
Input

Teletype input is significantly more complex than output. The routine
INGET is called to get a line from the TTY:

INGET MACRO TTYBUFF
SB1 TTYBUFF
+ SX7 *+1
JP GETL
ENDM TTYBUFF

INGET causes a new line to appear as the string described by the string
descriptor stored at TTYBUFF + NEW (NEW = 1018). This new line does not
yet have blanks compressed and the first four bits of each word are zeros.

INGET obtains the new line from the teletype using the line described by the
descriptor TTYBUFF + OLD (OLD = 768) as a template. To modify the template

merely involvesupdating the OLD descriptor and its image with desired new line.
The line must not exceed 86 characters in length since that is the maximum

length of a line which INGET can return.

Teletype 1/0 Functions 75

A call to the following macro enables the user to detect the reserved

control character Z U .

INGET. MACRO TTYBUF, COMMAND
SB1 TTYBUF
SX7 COMMAND
LX7 18
SX6 *+2
+ BX7 X6+X7
JP GETL
ENDM INGET.

If the line gotten from the TTY buffer is terminated by 7% U dinstead of CR ,
then control returns to COMMAND rather tham *+1 . This allows the TTY to
earmark certain lines as special. For instance, consider a file editor which
allows lines to be appended to a file. There must be a way for the user to
signal which line is the last line to be appended to the file. However, every
key has a pre—-assigned meaning or can appear in a line; the only exception is

Z U . Thus the editor could designate 7% U to terminate the last line of the file
and control will return to COMMAND.

The input buffer can be cleared (the contents are removed and discarded) by a
macro call to CLEAR:

CLEAR MACRO
SB1 TTYBUF
o s SB7 *+1
JP .CLEAR
ENDM CLEAR

Since these routines should suffice for most circumstances, the following

esoteric features can be ignored by the majority of users.

The routine GETS concatenates characters up to and including the next break

character (see p. 4) onto the string described by the string descriptor DESC.

All but the break character are echoed; the break character is returned in X1.

GETS is called as follows:

- GETS MACRO TTY,DESC \
SB1 i 8 8
SA4 DESC+1
SB6 1
+ SX7 *41
JP GETS
ENDM GETS

Teletype I/0 Functions 76

There is one anomoly connected with GETS; if no check were provided, it would
be possible for GETS to accept a string that was long enough to clobber storage
when it was concatenated onto the string described by DESC. To avoid this,
GETS expects DESC+2 to contain an upper bound on the length of the resulting
string. If GETS receives a string which when concatenated would exceed this
upper bound, it returns in X.CHAR the negative of the first character in

the string which causes the bound to be exceeded.

The routine GETCTTY gets the next character from the TTY buffer placing it in
X1l; it is called as follows:

GETCTTY MACRO TTYBUF
SB1 il

+ SB7 *+1
JP GETCTTY
ENDM GETCTTY

GETCTTY does not echo the retrieved character even if the SOFTECHO (= 218)
flag in TTYBUFF is on. (The SOFTECHO flag signals that the PP has not been
able to echo a character and therefore that GETS should.)

The macro call to NEWBREAK is used to switch from one table of break characters

to another.

NEWBREAK MACRO TTYBUFF,I
SB1 TTYBUFF
SB2 I

+ SB7 *+1
JP NEWBREAK
ENDM NEWBREAK .

If the break table is switched, it should be restored to break table #2 before
using GETL. Other routines will work with any break table.

Table Number Characters which signal a break

none
any character
non-graphics
non-alphanumerics
non—-numerics

S LN =O

dﬁﬁz’,’ 1969

TS Interrupt System

Introduction

The Interrupt System, which provides the sole interface between user processes
and the outside world, is divided into two parts, the Central portion consisting
of the code proper, and the PPU portion comprising the actual communication with

the external devices.
The Interrupt system uses several objects which reside in ECS:

1. Files and event channels, which provide the immediate interface between
the ECS System and the Interrupt System. "They are seen by user level
processes and appear just like ordinary files and event channels, except

that they are stationary in ECS.

2. Pseudo-processes, which are used by the Interrupt System to simulate
processes for hanging on event channels. (They are also used as a con-
vient storage place for information not being used.) Pseudo-processes
are seen by user level processes only in that events are taken from, and
placed on, event channels by something unknown.

I Central Memory Portion

There are two sections to the Central code of the Interrupt System. The
first, Initialization, sets up ECS at the beginning of time, sets up a few
things in Central Memory and disappears. The second section consists of a
collection of routines which work with individual devices, plus some miscellaneous

"stuff".

l.1 Initialization of ECS

The routine INTINIT constructs in ECS all objects needed by the Inter-
rupt System. This is done at the beginning of time so that they will be
in a position in ECS such that they never have to move. When INTINIT is

called, there must be no gaps in ECS.
INTINIT is called at 2 different times:

1. At INTINITA , early in initialization before more than a very few
things have been constructed. It is used to construct a file to con-
tain C-list indices into the master C-list of interesting things con-
structed later.

TS Interrupt System -2

At INTINITB for the actual construction of objects. It first
constructs a file to be used for the interrupt queues needed by UNHUNGI.
(See 1.2.2) (No user ever sees this file, and in fact, its Master C-list
entry is destroyed.) It then calls the Device Routines to construct

the objects for each of the various kinds of devices. Currently there
are two separate kinds of devices: MUX and the simple devices.

The Device Routines first call the routine NEWCLASS, which initiates con-

struction of a class of objects. (Each type of device is considered as a class

of objects, associated with which is an interrupt queue and a file in ECS con-

taining pointers to the pseudo-processes. See Figure 1.)

NEWCLASS — This routine sets up all classes of objects. It expects five

parameters:

1.

24

and 5.

the location of the Interrupt Queue Index within the prototype pseudo-
process for this class of objects,

the location in Central of a pointer in ECS to the file containing
the locations of the pseudo-process for this class,

the location in Central pointing to the interrupt queue in ECS for
this class of devices,

the interrupt index for this class of devices,

the number of devices in the class.

The Device Routines then call MEg, MPC, and MFILE which are specially

provided for INTINIT, to construct the particular objects in ECS used by the

Interrupt Routines.

MEC

MPS

- This subroutine constructs an event channel and leaves the capa-
bility in the Master C-list. It is entered with the count of the
maximum number of events expected in the event channel at one time.

- This subroutine constructs a pseudo—poocess. It is entered with
the size of the process in words. It makes no permanent Master
C-list entry; the Master C-list entry is destroyed at the end.

It returns with the absolute address of the psuedo-process in X5
and the MOT index and unique name in X&.

MFILE- This subroutine constructs a one level file with a data block whose

size is given in X6. It leaves the entry in the Master C-list and
returns with the absolute ECS address of the data block in XO.

TS Interrupt System : -3

ECS e ' g
— . Device File
File of interrupt C-list index
i of 1lst object
for this class
in Master C-list
—=

File of

pseudo-

processes

(absolute)
[
[
[3

Pseudo-
process
Bt S—1—interrupt index
|] (absolute address)
absolute address)
Figure 1

In summary, the basic function of INTINIT is to create a file in ECS
available to user processes which contains the first C-list index of an object
belonging to each class of interrupt devices (INTINIA), to create a file

(never seen by a user process, in fact removed from the master C-list) which

TS Interrupt System =4

1.2 Interface between the Interrupt System Central Code and the ECS System

Central Code

1.2.1 Calls from the Interrupt System to the ECS System

HANG -

This routine is called to hang a pseudo-process (or process
when called by other routines) on an event channel. It expects

the following parameters:

1. the address of a scratch area it can use
2 a queuing word index to use, found in the pseudo-process,
3. identification of the pseudo-process

4, identification of the event channel to be used.

EVENT1 - This routine places an event on the specified event channel. It

expects the following parameters:

1. event channel to be used

2, identification of process or pseudo-process sending the
event

3s event datum

4, origin of scratch area including an address relative to
this origin to which the disposition of the event is
returned.

1422 Calls from the ECS System to the Interrupt System

UNHUNGT - This routine signals the arrival of an event to a pseudo-

process. It expects the following parameters:

1. return address

2. origin of scratch area

3. the absolute address in ECS of the pseudo-process
4

5 the event received.

UNHUNG1 looks into the pseudo-process for data: first it uses
the address specified in word 4 of the pseudo-process to chain
it on an interrupt queue designed for each particular device.
The interrupt queue is maintained by two words in a file in
ECS. (See Figure 1.) The first word points to the absolute

address of the first pseudo-process in the queue, and the

TS Interrupt System -2

second word points to the last one in the queue. Pseudo-
processes are chained on the queuing word (word 2) in the

pseudo-process.

Next UNHUNGl takes the Interrupt Index (also found in word
4 of the pseudo-process), which points to a particular

device, and stores it in I.WAKE when I.WAKE has gone zero.

The Interrupt System calls this routine when it has tried
to hang a pseudo-process on an event channel (using HANG)

and gets an event back immediately.

Figure 2

1st Part of Pseudo-Process

59 56 54 L8 36 18 0
1 1 0 0 7 7 7 7 MOT index of 0 0 0 0 0 0
the Pseudo-
process

Queuing word (Pointer to next pseudo-process - used by event channels
and interrupt queues)

Zero word (stops chaining words - used by event channels)

LAY

Interrupt queue Interrupt
address Index

Event word 1 (placed here by UNHUNG1)

Event word 2 (placed here by UNHUNG1)

.

1.2.3. Interlock Facility

The Interlock Facilityis used to prevent interrupt code from referencing
event channels while ECS is doing so. The cell I.LOCK 1is set non-zero
by the ECS system whenever the ECS system is about to work on event channels,

and is set zero when the work is completed.

TS Interrupt System -6

Currently, the interrupt system always checks the cell upon entry to any
of its code, and if it is non-zero, quits immediately. (Eventually the
interrupt system could be more discriminating and only check I.LOCK
when it was about to work on event channels. This could be used by

interrupt routines desiring immediate access to a file and only a file.)

1.3 The Central Interrupt Routines

The basic operation of an ordinary interrupt routine involves the following
actions:

If working with event channels (or if the coder was lazy), an Inter-
rupt Routine first checks I.LOCK. If I.LOCK is non-zero, the
routine must promptly jump to location zero within a few microseconds
(1ike 4 or 5). If I.LOCK is zero, the routine proceeds to do what-
ever it was planning to do. When finished, it jumps to zero, signalling
the end of the interrupt.
An interrupt routine gets a pseudo-process off of the appropriate inter-

rupt queue by calling DINTQ, with the absolute address in ECS of the queue.

DINTQ either returns with an indication that there were no pseudo-processes on

the queue, or it unchains the first pseudo-process and returns its absolute

address. (The event can be found in the pseudo-process.)

IT The Peripheral Processing Unit Portion

There are two areas to the PPU portion of the Interrupt System. The first,
the Master PPU, serves to synchronize the Interrupt System. The second area
consists of the indiiidual PPUs which handle the individual devices. In some
instances, several devices are handled by one PPU, and in at least one instance

(the disk) one device is handled by 2 PPUs.

2.1 The Master Peripheral Processing Unit (MPPU)

The master PPU handles the synchronization of the Interrupt System with a
large loop, starting at MLOOP, which performs the following actions hy means
of a succession of return jumps:

1. Calls a routine which checks for the status of the user; e.g. arith

errors, or RA+l 0 (indicating a simulated SCOPE call). If either

of these two conditions holds, the PPU calls the ECS system via a
monitor exchange jump (MXN).

TS Interrupt System ~7

Checks I.WAKE to see if there are any calls on the interrupt sys-
tem from the ECS system.

Checks a channel, INTCHAN (as spelled in listing for MPPU), for calls
on the Interrupt System from the other PPUs.

Calls a routine to update the master clock in Central (S.MASTR) which
is run in steps of one microsecond and contains the true time in
microsecond since the system was started. This routine must be
entered at least once every 4 milliseconds.

Calls a routine to update the clock S.QUANT which signals the end
of a quantum for a user program by going positive (over-flowing).
In this case, a monitor exchange jump (MXN) is sent to Central.

Calls a routine to update a charge clock, S.CHARG, which is updated
whenever user code or system code, but not interrupt code, is running
in Central.

Calls the routine DOINT to check a table for pending interrupts.
(MPPU maintains in the table a list of those interrupt routines which
have been signaled via either the ECS system or INTCHAN and have not
yet been called.) If they are sending interrupts, it scans the table
for the first one pending and having found it, finds the P-counter in
a table in Central, copies it into an exchange jump package located
in Central (at I.BOX in the routine GENLINT), and then performs

an EXN to that package. Since the table is ordered by interrupt num-
ber, those with low interrupt numbers are called first. It then
enters a short loop of 12-24 milliseconds and checks the P-cuunter.
If it is zero, MPPU assumes that the Interrupt was unsuccessful due
to I.LOCK being non-zero when checked by the Interrupt Routine.

It then goes away, and will make this interrupt call later. If the
P-counter is non-zero, it assumes that the interrupt routine is run-
ning. It then continues cycling through this short loop, watching for
the P-counter to go to zero, checking now and then for new interrupt
requests coming in on INTCHAN or in I.WAKE , and recording them.
It also maintains the master clock (but no other clocks). When the
P-counter goes to zero, it restarts Central with an Exchange Jump
(EXN), and updates the master clock (S.MASTR) and charge clock
(S.CHARG) to compensate for sloppiness at the beginning and end of
the routine.

2.2 General overview of How a User Event is Transmitted into Action by an

Interrupt Routine

l.

The user sends the event to the event channel.

If the event channel routines detect the fact that there is a pseudo-
process hung on that event channel, they unchain that pseudo-process
from the event channel and transfer control to UNHUNGI.

TS Interrupt System : -8

2.2

2.3

2.4

2.5

2.6

2,7

UNHUNG1 looks into the pseudo-process (word 4) and finds that the
interrupt index is - which it stores into I.WAKE.

UNHUNG1 finds (word 4) what the absolute address in ECS of the inter-
rupt queue is and chains the pseudo—-process into that queue as
described.

UNHUNGL also places the events in event word 1 and 2 in the pseudo-
process.

The master PPU then discovers I.WAKE # 0, records this fact in its
own tables and sets I.WAKE back to zero.

When a suitable time occurs (hopefully before too long), it does an
XJ to the appropriate interrupt routine as determined by its own
tables.

The interrupt routine then does various things, including calling the
general routine, DINTQ , which takes the pseudo-process off the inter-
rupt queue and passes it back to the interrupt routine.

Finally, if when the event was received by the event channel, there
were no pseudo-processes hanging, the event is stored on the event
channel queue, and later, when the interrupt routine desires to hang
a pseudo-process on an event channel, the event channel routines
return with the event, and UNHUNGl1 1is called by the code associated
with the Interrupt routines themselves.

11/5/69

S—device user interface

This interface will be used for devices such as tape drivers, printers,
card readers, card punches and the console display. For each devices the inter-
face consists of one file and two event channels. The 2 event channels are

called req and rsp.

An individual request on a device will be a call for a certain action
to be taken on one or more buffers within the file. The buffers will be spe-
cified by giving the address within the file of the first word of the first
buffer, the size of the buffers (all must be the same size), and the number
of buffers. Also associated with each request will be an error recovery bit
which must match the value of an error recovery flag associated with the device.
Each time an error occurs on the device, the error recovery flag will be
changed in value. Thus more than one request may be sent at éne time, and
if an error occurs on an early one, then the rest will be ignored. Finally,
the request will contain an index to allow the user to associate responses

with requests.

A response will contain a bit to signal the presence or absence of an
error. An indication will also be given if the request was ignored, either
for bad error recovery bit, or bad action. If the request was not ignored,
a count will be returned to indicate how many buffers were acted upon. If
an error occurred, it occurred on the last buffer acted upon. The response
will contain the index of the associated request. Finally, the response
will contain 2-12 bit bytes of status information, which for devices on the

6681 will be the 6681 status and the device status.

The actual request is made by sending the following event on the event

channel req.

11 12 12 12 12

Field Size
Field number

S-device user interface 2

Field Contents

. action code, request will be ignored if equals 0
. file address of lst word of lst buffer
. buffer size

1
2
3
4, count (number of buffers to be acted on)
5 user index

6

’ error recovery bit, request will be ignored if does not match

error recovery flag associated with the device.

The actual response will be the following event on the event channel rsp.

Field size
3 4 3 2 1 Field number

Field Contents

1 user index in request

2 1st status byte (for 6681 devices, 6681l status)

c 2nd status byte (for 6681 devices, device status)

4 count of buffers acted on

5. 3777B if request is ignored [fields 2,3 and 4 will equal 0]
4000B if an error occurred

0000B if no error occurred

f | Ecs | 'LléT.‘

Q g Y /Vﬂém

v : il P
vj—'?ca =% vy g

2o D
g(/ /”()‘p,d‘ .,6’2/61-(_,{- {\ = -

- . > . :) Liet
Wﬂ#"'ﬁ'ﬁ%ﬁr ciep llcalr C Se o ;E’ ’2 w2 I rer /&Zﬁ»(/oZ)
, &

7 w4 / .
‘7/ ﬁ?b ./f/uf/):f [g = {{/ (7'%3//):/’ (=7 MJ/ i i mmv??{‘/ x oy

(OAW‘(’?}' mo7 J“‘Cé/,é' %uwﬂ;(;y_c

r‘ P‘-

/ / ¥ 7/'.
9@ N e O\ o CleAnn

)

e/
Bﬁjé’"4~/ g g ot - £

//;vac‘ P 7 <~ v o L S 2 o ok

/[
5 . ey = o/ c//éwwp ceele &
el S L i /l{)&rt =
,,) s F : T e - 7 g Y
——IL/ /!/C /7000 ,{’7 e pp— /! ct rﬂ/l /'},’d 7 EC “/ ,/./ A ’/{/",, ; /’(/- (_,t’/_.') E ;—4’70.4(/

’/
Lata,) L

e /C/C/ rra o= = oy g =g 5’ L2 Ze :ZEC— &CC,,/I/,

. Alere / ﬂo;r/ a/ a "i/ . el / C‘L - 3’2‘1() ; PPN 25

) g C .o P T ,&,//n A & s /: g ,
/j/ hc? mgﬂc({' = L«u-'\.«)—\f/@@ac& oo 7W¢/‘L é""
L ; = —3/ / Z
7‘%//5 "L O R r;"fw_»/,/\" L7 _zZoer] CABnrels
& PRI
A /6) 72 Lo VM

D/dw ¥ nlloontew: o’ CF Mo

= A i

ié) W@/C@/@: "(‘%ﬁ%m.‘ g ;‘M;/‘Tg,—u,,f

p— M e . e N p—

Q(?V) ’éj]c' v&/ /}M A?[Z 7(7 ‘;?_;E-oc G = /’.rzo’t&é_’, Ll‘é(/-ze‘,,(?;/ 07 P

folt Clorre—Glasscait— 2 fap
—a e o A e T NS)

3/\450/’ M C4KUCN/ 1 [ﬁf{/fz(z.‘_ P Lffrvﬂ—v'
e lhlolyseom | A e ,(,47‘7,4_“ ~ ﬂ/;’ca.?,é%—

p N BV A T L

— | v 4
U TTT [z & /{IL CE Led/ 7772 7407 T 7] &’ Y 7 /\
%) Mﬁ% F’ /A er v -’-,(,Zﬁ’)] ("(v/(,'é’& .éf:/('* /‘ (‘,/ Lot - F/ Pl (/“,n d (&4«4

I 3D Men . ST bonsre | A
‘ ﬂﬁ/&@) =

2¥) dn prote i iked g alie | A oA
e b cnedler) oo T
‘ .A/lrd? & /7 ; ﬂ., ;;_/ [[i'.f:/e:ﬂi? L{/) Z

WA | AarksmaTsl i c{mL}i/L.rlsz?,c,, /i

/a/xg: (,[a/r wc&_ = % 1

o Tnayd Lot X WL

/zﬂé; e A =& (f?s/&f/
/ZU { v~__j_ < %%Zﬂ/r "’KLL$ /vg',,,_?'é-

da/tz:.ﬂ

Y,

/4

ﬂ_/f 7{2/.7(//& cére - //MA -

7

I/ y / .
s 5 # /
DO O f‘/ Az’ _/L' / A L/0 f/ﬁ/ (s

V4
/4 RB A f‘c‘? fi&({(rxs% B /Q,J(’/(, ((2 loCe s

Qé(!,l (/v& a

o J,; 7— : '1 ﬂ; - / “' 2 (Al y PNon 2 = ?
_ }/ / | » £X
') 2 tha 4 QK . KE

/f/l«%fm A ﬂm B % o

uu@wm%f/’é A f' P A '“7ﬂf‘u-2a
Ther wpile /u‘&éa,@ PROCESSOI) > —bGLiAISS) ol 2e

¢

—

’

(7

RE 5 LT oot 4 crmda o Proese ologe,
R EEcS 75/; ﬂ
SAL Ap
X1 L
PL N WToirls” g of i Toneitsen 1%
SAL BL+Ppppa Nt /Lt/tﬂf/?/“]f/f aéJZZin}é X4
5} X& ECS addn of peenel [daa o XY
SAZ DALTPPACAMIE o cﬂé;é‘ }{2

<)

‘ LX3 20 3 61*3 /)én,@b,’.‘z' /, J/Z Y—B
mxé 20 ’ /. '
"y
SAL];LCC__{ o {' /(/'A((‘
-—) e 557 “:Pa”wal:’3 \[a\ - 7 ?{/%IC—‘*»' T‘IUCWE_\/' e
kL o B} T 2 SUDINT
(feore ordlons) z

FUTINTOS Ly | |

NG X1 PUTINT & ﬁ/;{ﬁ- At e ,:fz/ L

: ok Crce ot 7‘ ?Z—- RPN
Din okl peplace BGLILDOD lrg PROCESS 0087 sf.

Bye X3 Y 4,/,,%7(5 e T

X & 4 7é¢;/_2 o//é //«04 Hto e

NG XC, PUTINT & Prrua= A on £,

ﬂ/ée" a/wzl—(g(’ Cmmm?:'—/m\ fMU: A0T2(gﬂ_

\\

T_IDENT

Py

ENTRY-__

DBlvUA

STU0A

EXT " “wiomp

.

NAME VFD

3u/m\0,30/2

o LIUA PAFA— T —

e S odirrce s 8,57 57
SBh- M3 N OpRoco
S82 w16 MOPROCE,
SB83 16 boop cond /.n 16 parttn.
SAl - (k. il o [T
SA2 B2
MX5 V) Clzar peom /m,«-/&afé . '
Sioas xs k5411 < Dern e 16 o105, 7. fnger ek,
BX6 X1 Maoe [/ @'meyq_
BX7 X2 X
BX3 X2=-X1 \ Co“‘?*""’ [Jﬁﬁ}“
- IR ok spis by pioms omiF i B
SA1 B2-R3 - | Peck o oA Heoo waZ”{ZM |
SA2 B+83
SA6 B2-83 dape LA 7., Bl laiee, > endih
SAT BA~+B3 st
5B3 B3-1
NOrfac3
NE B350 s MEGTP

ERROR1

Ek Y5 Norac € é%%@/{ﬁf
| N kT 0r54 STR Leo 7 pcv

S100A ’; | 22&.

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA

QuuQuullLulLOuU

QuuuuLvuOOULU :B

QUiITTI7777 777177117717

o77777777777777777777{> | l/l) C,L;,gg B1 74 RY§ .
-;L}7¢4%i?5;: Ve et M

052525252525252525252 €

052525252525262525252.

025252525252525252525
025252525202925252525
(O1SAVIV]VIVAVIVRVEVIVIVIV)

052525252525252545252
QVITTITITTIT7ATTTTICTT7
Q25252525252525252525
052525252525252525252

OvuluuuuQulLUL

02525252929‘5¢525¢525“e)
¥/

S Bkl

QIFITHI T 11T LNRILT T

[v9) 5»A¢,~}g LGP~ MU i

2 3) ﬁa{fg Je f 50 Ae

J

QrITI7iT7 eI 7T \Qr 82

025252525252525452525
QuUQuUuUUULLLY

052525252525252525252
025252525252525252525
OQIITTT77I177777171717
052525252525252525252
(SLS1V10L VIV GLVLVIVAVIVIY

0252525252525£5252525
Q25252525252525252525

052525252525252525252

052525252525252525252

\

\

cmm—

| 9y
V/sASTRY 7}

;(TZ 0/5#57

DATA 077777777717 777777777

DATA OFTTTITITAT T T TT T LT
DATA (O IVIVIVIVIVAVRVIGIVAVAV) s
DATA QuUUOUUOUOULULU <
e
NoRoce B -
ki chongs i 5 s Comip goes T K022
e e —————— e T T ———

X The coAe ﬁt/z,'zgv; here Y M&n at A/;"(’ﬁC(o«’
Pl o | B
X Moy Zo1.

AN D alé B3 =0y game masde I ‘A,.,,,JM,,_MZT;; %ém
Zrk place v e (i Siis 23
fdtcz « At Ale oo 7, Ao 1z S/
C”
7’

fr\ Mz, Thi }Zt'o; e A e 4_4.&52(* A
2) 316 73 @)/é M- Y0) %m
MI6L-083 %ZC"{”*MM"HB'3/M/%

&A—tuf'soz‘ﬁﬂw uM e o e)/3 (2/7’ %
Aoz 7% ,&Z,ﬂo‘ XA~¥y X2 el e

%,Lav %, [r')‘-tj f" L Vi P
. \/\ g —~

(/;/ (. <ﬂ {7 {_,7-64 @ZM\ 3

\ / 7
yd

—~——

————

L od
-
AL xe
2 ; X2 i
. X2 —X
0w X2, MK3EX
PL

L 7gss o
ooz ﬂ]' P '
In otpre

344

Sy?2
Na

N C

x2-4

A

el A 7,4-44/(eeaslon.

|

reck! P’/{’L{’(74/{“746 (:/‘ff, . éWf’dﬁ;

- _ J
.S.rh 2 aNne L et .*J(O E Z é{x A’/l/la‘Y ~ 7/1/43"/4,/(,0)

)

//ll/{(‘ f‘) a 2 fz//: Pk i Ao el .?//L;?' ﬂ%j .
d/twﬂlf’\e/

—Dw-a) b . 'GP s o gl b
M/t”/lm%-é / b /dq @6/(2»'6, @7

hes 7, Ao ﬂmwﬂmy@w/ﬂﬁ‘j Th#e einAsk

¢ /\M 7 e pecse e « e SPW
= wone ph ¥ Aore 4, Aé«ﬂwzég, /‘;Zzi%ﬁ
o e U T avomocta A S
R (. 0711-:’1/ by T frce & reg
S S S gy (,Jn-l v

Mq C/Z'—((ur, ;

) The Cl mng Ao 5 e 7l z{
ke ﬂ/y’%‘ ow% CM/M /‘&r %cr/ 47
ECS cotle A a;/@ R =

" \:de Py vy £ /%-z A . : e

YA e Tk of ﬁﬁz o

Z2p d‘{a\ﬁ Z % ﬁ&f e :
.2) E C y ~ l(‘:j /{€ ﬂ% %"‘ ‘—’Y ! eRe=2L
Mﬂ’[‘ﬁ 2= . ’41’ 42{'(0;') /‘.4 /:« b . "12/

gy s B e ST et

M M mi;jﬂ/f . J‘ d Aerze ; :/7'",;,42;“,;

T —

/ﬁ< i e A

Q/l[zr 2
reolet 223 f 12 (5/ BB A /

Vo £ i et
oA feTiers L5 by & doeine. For
%,&/mg///(ol e

)%L e SFz o
ﬁ%%c@/ 4 ijﬂkz/&‘

>$¢Cfif”‘ ;’—7/““"“7’
a) 7‘/)4,5(414/ T

/)«mcc/wz/m-, 1//
Lo /J T
.,
5)% S¥ /-er// /%/7(R c{%
z//ﬁﬂé{’ﬁ "M{M oédfﬂ,
/M a ot
/ﬂ‘m
JK R e - 7 / 3/‘ /%—
Mw 1boin Bof 7

j) Mm.f‘ Lovd eom i—LOOK/lM (a_oJL(?

9@@&{%75«? . S

O A process onay Lo fﬂ” ¢
[} /(/ZZ'@; G\ _EF
2) - W«co&mj Bt Z;/?((/&?d
3) %Co»\uj Meaf—/
}‘ﬂw)om-e MWQ&@ 1/6 / [TQ»”W
2«3 Ll 4 ,./7(/4/1,/4 Wf{a’z © we mﬁc&/

7).

)J\}Q—ﬂ”‘/zzl?fzf (fﬂé M% /éf/wp?_—’

&ﬂ?& C/a/éé ﬂ ﬂ//C(C&é'? /
pehedilon leche ok Ko« SF merheys,..

J.
6) he él"’/%é (’/’ e \/ fomve /?L/v—uu
zv/jf'”w ,-Lé"zr?/,a s,/ -
’) tae
) cj..Eﬂ.
co M%é /67044/ émJ/>M ”,(‘L

M

M T

Chapter XXimvlde of the
Continuing Interrupt Hassle

We're all aware of rukblings of discontent withthe current interyuptstructure ad
several people have seen fit to propse sweeping alterations in cture .

3 I think of the interrupt structure as fulfilling two widely
different mmmsbrchwmrrkiomx categories of taskse, First, tasks without which we
cannot write the system as currently envisionede Second, zx if a useful, coherent
structure can be evolved to hand® system necessities, it would be nice to make it
available f ar non-essential tasks. A poll of available staff gives the following
list, to which additiions are ardently soliciteds:

A) SYSTEM NECESSITIES

1) Major/minor panic from TTY

2) Initiation of forced swapout

3) Acecounting interrupts (eg, too mach ecs timexspace)
i) Forced logout for system shutdown

5) Tiwmen
B) USER TOYS

Arguments that a particular item deesn't belong in list A will in generalpm only be
heard if the arguments are given in a quiet tone of voice (or in writing), and if they
are accompanied by a fairly detailed method of implementing the featurein » me other
fashien.)(Item Al is a necessity in the senset hat without it, the system would be
hideouse

The only one of these which has been tackled in detail, to my knowledge, is Al with
which Howard has been valiantlemy struggling fa the last few weekso. Hex claims that
the objectives he has specified for cleaning up the call stack and getting to a
debugger and suchlike other things cannot be implemented with the current logice And
he has an extensive proposal for a redesign. There is at least oneother (partial)
proposal in the air, namelj , Bruce's "linear interrupt priority" schemee

I wuld very much like to avoid the situation where a new implementation of interrupts
is coded for Howard which turns out to fail to handle the other cases, so I want to
provoke at least minimal discussion of the other system necessities before mmxfimaiixe

Teciesigr coding of second=-generation interru;tyq is Begune

e n,oﬁw

P/'asz. wvﬂﬂm P y 9 Lee ' 70
Diak

&F a2

M " BEAD ghoatt

e

w O ."!7,""37' O er:
NoAea
) Qead tenvess muas) fe el T oot of frolin By

oy B30

TTY interrupts are aimed atthe BEAD ghost
BG runs with interrupts continuously inhibited
a panics won't tdke while B BG is running £ until it Jedoeoccoekfxaffxidm
ceases being the top of the s tack
b if more than 1 interrupt arrives while BG is on the top of stack, all but
the first ill be lost

Some system routines are protected from panic interrupts by the priority schemej
since no current proposal extends protection from callerto callee, thedisk's
potential acces to the line collector, et al, is gravely complicatede

System routines below the BG run with interrupt always armed; they protect themselves
occassionally by setting t he inhibit bit

Loops in the directary system can lock out imkmrxmpix panics for arwitrarily long
periods of time (roughly controllable by a parameter specified how and by whom?)
The time #mXmx required by the disk is unknown?, se delays in panics due to the
disk are an unknown quantity o

The forced swapout interrupt must be aimed at the f-return r/w node, or above
Accounting interrupts and system shutdown can propably be aimed att he beadghost""\"
Howard's algorithms depend heavily on the tree-scan feature of processing call-wi the
interrupt type interruptsy it would be niee if external interrupt processing were
consistent, but it's out of jointwith Bruce's linear scheme,

It isimpossible to imitate the tree structure riority scheme with the linear schemes

e haw | an wiez
Jf‘ﬁd‘f’"” M/z oy .)
Vo e g ey L P

X WUprard ogpa
*fvvy%hlamzll

7 Joe 170
ECS OPERAT ION TIMING

Operals Splown e , ea,

DISPLAY wsER clocks 279

WRITE | woRD , ahepe (2,2,2,1) “H#S
WRITE S’VﬂKDS) " 1313

WRITE | WwokD, LA’,&) Hi
WRITE & WORDS, " “Hi14

] - - ———— - -~ =

r L B i s :‘*P‘T!ﬁ:;

: | ! ! | | il ! _

1_ | 18 4 + H { i . + + I + 2 »,Apl"i]l '?Qr

B R) W N S S I -

o | | INTERRUPES || | | | | | | | 1]

R | | TERES S—-— L = | S | e e B sl o I [| e (L [: PR I—
L A) G:NERaL conGiderationS, or, the confliet, | ([| | | | | |

1) Three categories of interrupts are envisioned. In orderx

rofi-decreasing- ur'genéy’ theyeper—+—+———+ 1 ——1— | -

bl] e)The Slftem wants to!do something to the. pnocess because~—

| 1; he's used|all his money | |
~— T T TT—TT T 1T T 3% peopltethaye to*be#swaoned Uut to umnjam ECS__ [T & s
. 0 | | - | These interrupts must be honored in a hunqy,Wha_;WAﬁw,;_ﬂ__

b) The user semds an interrupt from his TTY., [(Two |legel | |

e e rofurgency currently exist, CSP and BRnKKW?‘Eﬁq IgsqerF 1
o r L1 1 |these interrupts takeleffggt | the better 3he¢syuiemﬁ_ r_g__

loioks,
+———t—+——+—r—T—¢)+ The—user—hes given*qr end =z camabilitrtm‘ 1'£n13<131"1*uﬁ‘1:”+ T el
bbb him, [but only wants it to strike under certain S o
, ' conditions, | It doesn t matter if thils type ofwinterrupt‘
S ~nmmr1ﬁrﬂme. —— — i

R ¥ N O N 2) There exist manipulations which _gnnﬁt Dbe Lenmlnatedﬁgpaqe_h__g_
| | fully in mid-stream, Here the difference between interrupted
et and termineted makmxxitxaXf should be mentiomed, MdstTthiﬁgs
| A | .can be interrupted, provided that they are later allowed,togAﬁg_
S0 A finish without having been disturbed in|any way in thr%i teriq:_
4 Rsemmlen of things whichtshoultdntt be‘tETmﬁnateﬂfat” '
- F_*_ﬁ};mes are | F_g__
1T 1 [| \ ? the DISK SYSTEM “when it's twiddling poinbers ; } |
- b} the DIsK “YSEHM- when‘it‘ﬁ intan ungzinly posture| with — [
7 | respect th having somethi half-way amapged.inL iuiL___—
T T [I I " 1 | e)Y|the LINE ¢OLLE TOR ‘when iﬁ s |twlddling | pointens |
8} a-DAPA-BASE PBATER; when—ttt's updating—+— T+ T
The last one ooses serious problems, because | itpig a - | L
manipulation which must Ye ﬁnvokable by | the user, [f
St L L 1 1 &) lngs -orderlig-termination requirement confilicts wth the semi=] T
|instantaneous res agn§egrfouireme t, Any solution 1nyQLM&B,
'a compromise in that some small time intervql mus eventually
L+ 1 L L 1 | lbeiallojed for grpedful éﬁmp}etion:of manipulations requiring
graceful completipn. Two radically differgng,styleshgl_+-, il o
| 'solution Have been discussed: |
Attt t—1—t+— B} tSohe-sort-of GLOBAL INFERRUPT HINHIBIT BIT,ror GEIB, T T
which can be set looalgy to| guarantee completion ofiL 4
lecritical operationss A bug which leaves this bit
set indefinitely is intolereble, so that “ome*mechanism
| of 1imiting the lengph of time that it 1_;§ﬂ1_mgat_ L
1 1 | | I T T T lexis% I the] ystpmﬁ An impljmentation of| this| mef_Ed 1
bbb L igldiscusded iﬁ~Glbelow that this sbheme‘implde
‘ that allinterrupts are| sq_Ject tc some min%mum delay| [

— + + {- 4 —d

B whenever any critical manipulatibn is| in progress,
L b) Making use of theleurrent 1n£errupt—macninery, interrupts
which must be honored fast are directed to an apc rogrig}ely
“peestigious node of the suoprocess tree (sUcrl aB wne| rduil,
e ane aneePUPh-YecUPs IEmedigtely and then the SPfielding

\ ‘the interrupt has to decide what the hell _to do, ijh it

TP -
| " 'The bookeeping and implementation seem to be a ghtpare,
. L but this method is mentioned beceuse it makes it T
poseible to decide to interrupt something gnd then | |
T [Tet 1t termfﬁéﬂé Iater' afglng ‘potentially| greater
gep -than methed a4 A+ +—+—+—
25 (10! 1mp1ementation‘is given in Do

—— e}, —e

—_— - e e — 4 -+ —

t

|
“—_— .

Eoans

R e e o L s o rerepe [—— ;
. . N | |
| ‘ i \
B) Current interwupt structure., '
1) Subprocesses are arrangel in & tres, | nodes abdve a igiven

node|are ¢alled its ancestdrs,
% L-Bt:li »

|A nude is lan anceswor @ | | |
laveriupus | ase “iriieCueuw LO a pa.(‘u.n.uu.l.al SUnDaucgon,

— Calleu i@ 1OGeErIupt JES8, An [inmterrupt [subprocess |
. __|__|doesn'tl actually start exeqution until it |becomes an ancestor |
| ofl the subpriocess curnently executing, called tha current
i “‘vapracvsr**ee et T 1T bt
] T - 3 er) T [T 13
T R T , roott— 11T T T B O TR R s
A N
———— " +——171 i - =t :
s y = . \ - | T, (. A J’,‘, S I } -
| | | ! ‘ ‘ ‘Iiu
T 0 TTT 11T 11D current suﬂbrocéss 11
TT T T T T T I rirrr ANEEREEN T
) I O, S (S) () I IR Ll |
. ‘ 1 { |] ‘ 1 I‘ *
e e o " — ——7—— — e - — —;—f~—f I — —— —t ’f B s S B & o S| i 4?“;
e - -~ . filg 1 - subprocess tree,- xnterjuptSﬂdirect
\._ﬁﬂ_L Lt te ngprocessJin the shaded aresa dtr
] right away, modulo the IIB explaiﬁed
= i e e =TT 1 in~2~-other+interrupts Wa‘.’ﬁ.:“~
= =l Y MY S— =S
) ‘Local 1ntermpt inhibit bit (IIB). When an in errupt L
. rl—subproce isfflredLup,gan IIB 1 “EEk sutomatic liyﬂse w~*r‘*%—
R T, _|which prevents the sub rgcess from | rdciev any urthgr‘ i
interruth. “The IIB ay Lf the subgro@eas gurms j
. —rand doesn - haVe any-effec if the—edbnro ess has’ --r"
BN .another subprocess &biCh 1s| executing, ' The II%_ Y beLs Pt
' and reset by expllcit syﬁt éallsgfrom within x ihe uub rocess
—titeelfs i —+— | N .
[| | | 3) Interrupts arrivingéfdr gim b 3:3. u xXxukpnmx snx a_ pen 1&5 1
interru“t |subprocess are!lost|an ave no lef edt°‘ theyfirst '
- —— '—min%erprt+%o &Pr*ve_fer~a—subprocess—wi h*the IIB*sqt~isj T-l—
| remembered, subsefuent| omes are lost, e
4) THoward justly observes that the tree structure for 3ubprq;e sés
=t -+—+eserves e second fuhetion; namely, it*determines how .
L1 _nodes coexist in mimrage CM, |An undesireahble effect of hi_¥ﬂi
('eecond use of the tree is that a subprocess which! ig logica ly
ot tan- -eneestor-of some- other‘sp may be put: "off to the sidett,
| | |80 as not to cramp it's (logical) descendents core, | To = | |
. ‘sallvage the interrupt logic, the ancestor must be split |]
—t Hintoa smell-—pileece;+to- intercep% interrupts, end e main]
_plece off to the side which is called by the small uiege | |
T 1T 1 [This resulte 1n al ﬂroliferation of uubprocesqes. T
N I e == T — e (S T
S e e e i R o T e e 4— - _T_ﬁ.w —_ — =1 -+ | 7'4__1.__
2 = - | - . t s
;T- SIPRESIN V— — ——e e s — e — + ~+— i ,‘?_‘ —
4———[_]—*—*—**—‘—4 — . — el ——— — —— = = 1T 11T T i-—f—'—f‘——

| R e [T U T) e i e B | D —————
S SN NS S N [S S N W ' A S S5 'SE08 S M S W S R T R (4
BRSSO S O A O O 5 -5 0 O W
S-e | SEer L1 s - S S T S A |SEP S| , | | | A [(R {) Sde
! ; | @) Butler Lampson's (BCC's?)|global intenrupt inhibit with timer | L; v

‘ solution,
—T—J—Af——f~¥}—B&dieally;wtherefksfaAGIIQthichtmay be et and cleared by
| | | sysgtem |calls, Associgted with the| GIIB| i3 a real-time

e e e |ty e L A B, | £t il FioE el B Hie (B oadie I el St siceoud S NS, SN
] timer which is bet to LIM whenever the GIIB is set, |If
S+ -+ the timer runs out while the GIIB is stilli.set, error | | |1

| | processing| is initiated,

1 | 1 2) BCC allows a subprocess to set the GIIB even when 1t has |
-———————— - —- ———alpready been set by & ealling Bpe HBOy - - - + - 4
Foul ' a) the actual time| that| interrupts are locked out may by | |

] ‘ ~ LIM#*#(depth of call stack)), roughly,| | e
- - - - — — D) the GIIB hes -to be maninulated in the;callqstacﬁ,-bn*,4__4__
L. . | . | some other stack, || L bl
=N 3) The stheme makes it hedesgary for Eﬁi’systém periogically| | |
—+—T1—T—T1————tortepeh—pvery proopss in thens#s . {opr evepry .process o i !
.- e list of processes with the GIIB set) to update theitime*.l
1

1T T T T Wnen thmaprmmesxxisxfiredxudtimer rung out, the|[offending
B g e Dass: S o e proeees~mus%~be»firegwup»and eprP_ppécessins.initiatedr_#~4—4_—
| 1 | | | @God knows what becomes of pEmdimg any interrupts pending | L
| on [the progess, Also, error procesging has to é‘béﬁémﬁéé T
- | | %o .prevent undesireables £rom intercepting|the error, | | | |
|| 4) A big objection tqithe'i@glementaticn‘of'thisis¢heme4is: |

the stack of timers - 1s At |really necessary? | | [|

. \ . -

P P R T USRS R AN S i s T | ==
O T [N T o [[S TN . | | . 1
—7-——7—7—, | { [|

| | w \
== 1 S ! ! ¥ M IR A - { i :.. - 4 = 4L L ! . | - »7T_ 4 —
1 \
| — — e e + — 4 S o
J | [
T - e 1
| - R " 1 B] e 8 O [e
[4 ;j ‘
o T 4 - - L 1 - S I
- o [I - ik | i %
- — - v — 4 — ! - % _‘T =t [l 4
S R i = o (T b s = i == T
. | ||
— — e - 4 7_T T_
— 1= ! = | o |5 i r .
1 1 | 9 B
. e ,.4,1; = { 2
= - S | B — t t t | = t- *Al =1
| |
by e | i | O e e e B | f |
i | || \ i { ||
T G - T * t { 1= 1 T ==l r—~*r*4‘*ﬂ
‘ [
= [777 +— — : Lt e et e - ‘ 3 1‘ .;’___.‘ R WS E—
| | |
|

| T . o - 1 e PR Il . 1 b —t
e 1 — —i L e R +—
S (SR e U *%k*”ﬁ'—# T =1t T 1 I 1 110 T—‘ i T 1 | '—r—;f—
—_— . . _— - - . —_—— —— — —T-—_—A- —?——T——
| - S T 1 N .- . ﬁ[T¥ﬂ__T_

| |

L ! ' 1 | e et o \ ‘ ; CON IR, (SN R £ I e I

— | | i]]
i i | | N = 1 s S S S .| |- P NS S :
l I 1 l - ‘ 1
- 1 1| . [| . s B I U S P S | I 5O

|

|
——

|

T‘ about really implementing this scheme, but al rough idea follows,
S L T4 48 a~$heopetically interesting solutaon, asit allows |
| the pogsibility of "susoenq;ng"‘critical manio¢1ationSIfor || !
"later completion and avoids locking things up absolutely| ‘“‘f’!
ST L1 S . —every-time- a‘manipulation‘deemed_cpliicaloisobeingfmerformed
u (Gonsider the & case where the system has decided to destroy i ’
7 the process absolutely; it no longer seems too| important|to | | L
Ll | | 21lcw the LINE COLLECTOR to terminate gracefullyd | | | | | | |
. 10 Interrupts are handled as at present. Important 1nterruptﬂ ‘
T 7T Tare directed to sufficiently prestigious ﬁod"ﬁf”fﬁﬁ‘t?é EE

)_The ma gic, allhknowing subprocess solution. I can t Vet exci} q_

4 ——

S—— NS e e— — - -

. | 2) The prestigious subprocess (PSP) is responsible fi I e
| idiosyncracies of his dependents, He decides what to do, |
T T T T T T a) Iff PSP decides to process the interrupt fIgﬁ?*éway, FENT 1

L | there are no problems ' (unless, of courge b
| b} If the PSP decides something critical might fhaire to *T !
T [7 1 T T 1 7 7" be wrapped up pefore proceséﬁﬁ§+fﬁé Iﬁteffugt "he *aW‘_
L L L L | | sets some kind of real-time timer and does a spe P—ﬁT—
call of the critical sp, warning it to tidy wup, |If
\ 7 the critical sp returns in time, fine, | IT ﬁot we*%é*‘ S
4 1 ix the sameLbag.asgwhen C's timer runs- out.Jff+ f»fpnj s S

R/ G5 55 A 0 I 1 e 5 N O 0 A ol .__L,-f,o‘.,; o Y

e — e s © 4 4= 3 — e . 2 1-

. Afg) Conclusions. As of this writing, we are short on,cqncluaions
Everyone secms resigned tO\implementing some| sart| of GIIB wit
rsomersort of-timer; but vanious- people are Thill trymt to | T
conjure solqtions simpler than,d i - E S S S (R T R
] ‘ |
—+——+—t+—tAdbsotunder- d&scuﬁsion-is the*poﬁvibl&*organization of the"f’ N
' |subprocess tree for the "typical usen", vis=a-vis han

, of various categories of interrupts, Nothing worth writ n51 ;
————+——tdewWn has emerged from ithese disc stdnsray yet, (PEOpIelare T T
, still proposiing radicalhﬂlterations of tha cunrent in$ernupt L
qtructure. Boo-hiss,) ' ‘

- S— | 4 't | B—— = — — | B T 1 ! = _¢_ —1 3 i | S S—— S M S TSR — . T,fi.;i;wff
|

|
S— ___i‘__a.'_
|

MC / 5(,//7 2, D/j« /M&e@ |
s Ly [
| E ack C&“ shck ew‘\\r i"\as CQJ”
wh«."\ TS ﬁ;«a-w own Mm‘*‘-:rrufﬂ't]o*\;j
whizl. s ‘Q(P\r*k'\l;-\ da Gl o This
pYvcass «— s'ﬁw—‘k =0 .
L1k sb)bnc.o.ss selts /7 et >
Vv«m(\/a\);lwn@
L clear Mo yeddd 7 O
F rehrn T josses
e,lﬁp’iz = L1
ca(l = caop F e "“}?'Mou UCJ
Mberihed owed

ay S'QT l. ownca. MQP{’W‘ MU5+)7—€
Se.—(—. /“"Dm. ot el

’]C %vd)V\Arbrrv}o-r' WAL
T clea— Fmlcos
W e T saeed gk
whal jetet —{H 2 Tk bj
€ horne 1 ks

i /&Ja«'\"s "h F)-CM;I' ‘}Ww\mdp,\ W 1w *r/rrqlnw)

[l f < (T)
2 pYoCasses c haimed

. w\\v\u'tis chaid 17k
§€U/~(‘CL\Q.0Q

\ o QO Marels ‘70

EVALUM'\ION OF WORK YET TO BE DONE ON THE ECS SYSTEM AS OF 30 MARCH 70

STUFF NEEDED FOR THE OPERATION OF THE DL SK SYSTEM

1) Allocation mod 6l for DAE map entrues (Vance)
2) Compactifier (Vance)
7 3) Change to movex block operation (Paul)
‘ a) Check map reference count
b) Return dirty bit in X6

sz 72l) Change probe operation to return # of map refs in X7 (Paul)
/.7 5) New operation to turn off/on map entries for a subprocess (?)
6) Implementation of two new parameter types, block parameters and return parameters
A 7) Indirect C-list (Bruce) (Bruce)

S‘baff IMPORTANT 0 THE OPERATION OF THE ECS SYSTEM 7

1) Find descendent of subprocess (Dave) —

2) Change map compiler to do F—return in case of missing map block instead of DISASTER
ety (Paul & Bruco)

3) Change to change unique name operation vis-a-vis option bits e R e

i) Get more system code out of central and into ECS (Vance) %

-

STUFF WHICH WILL BE NICE WHEN IT GETS DONE, IF IT EVER DOES

(1) Set temporary part of class code
2) Put check in PUTACT and PUTECS for length of ACTIONL

) Implement accounting of CPU time

) Reset end of path to self

) Get the option bits into the operations (Vance)

) Fast actions

) Implement the error return operation

) Fix up CCCLOA (what does this mean?)

) General destroy operation

) Send interrupt to pseudo-process (Howard, is this still needed?)

g Move £ixsx CLASSCNT to ECS

) Fix

) Fix

)

)

)

)

)

A\

|

|

|

|

1
1
1 Check fixk GARBCNT in subprocess enviromment establishment at the point of doing the
direct access map entry
up the O-level file name hassle (Paul)
error returns from OPINTR
F-return when subprocess to be deleted is not a leaf (Bruce)
In process and subprocess creation, correct test of lower limit for entry point
Design and implement display process descriptor operation

3
N
5
6
1
8
9
0
1
2
3
N
5
6
1
8) Ineremental map compilation (Paul)

1
1
1
1
1
1

STUFF ON WHICH THERE WAS NO IMMEDIATE CONSENSUS

1) Provide date and real time
2) Move from one allocation block to another
3) Move an allocation block to another allocation block

11() ’ 1“ ke . o

e

N0 Mearnesy ' 70
2

Disagreements as t o the above classifications will be cheerfully discussed, IEe=perhaDs
gamgssy People indicated as being somehow responsible for performing changes may try
to wriggle out of it (volunteers for mmwgmxmjmeix unassigned projects will be
courteously received)e

I left the meeting without and understanding of how the file block dirty bit wasto
perform kibocfmmekiamy its functions It was supposed to be maintained by the ECS system
and somehow save the disk system the trouble of writing out blocks from read-write files
unless they had actually been altered. Exactly what is the proposal?

ALLOCATION BLocKS

Much thinking has been going into allocation blocks, ECS space accounting, and CPU time
accountinge Here is a semi-solid proposale

1) CPU time should be taken out of allocation blocks and put , probably, into the
process descriptor, Several reasons

a) AB's are really to control ECS usage and the current CPU time stuff is

just a hopeful, incompletely evaluated after-thought

b) If a process is allowed to run at different weights, the time has to be

accumilated separately for the different weights (and you don't want to
keep a weight in the 4B)
2) CPU time should be counted down. When a process zkmmk is swapped in, if it has
no time in the slot currently being charged, an error is generated and either
a) if there's more than one pool of CPU time, control is switched to
another pool to cover the processinge If the last pool runs out, it's
an error error or the equivalent, and the process is shut down, perhaps
destroyede

b) if there's only one pool of CPU time, the process is loaned epiilon time

by the swapper and marked bankrupte If it's already bankrupt, error errors
The system operation which puts money in the CPU time pool clears the
bankrupt signal
In both = methods, it is anticipated that the initial error will be intercepted
by = mebody competent to straighten things out, like a very priveleged system
accounting subprocess. If the user intercepts the error inone of his own
subprocesses and blows it, he gets hade
3) ECS space accounting in AB's is to be changed to charge for the amount of ECS that
the AB has tied mp, not the amount that it happens to be usinge The latest
model allocation block will contain 3 space parameters, 2 time-aEmmspace integrals,
and the invisible time of last bill fielde (See fige 793-42Bo03f)

a) UPPER BOUND - can be set arbitrarily and doesn't reflect any real memory

anywhere, It is used to control somebody you don't trust.

b) CHARGED SPACE - this is available to the AB on demand and is the amount
charged fore Space xmmxim added to this field comes from
its father AB and increases may fail for lack of space
in the father or for exceeding the local limit.

¢) SPACE IN USE - space currently in use, may not exceed charged space or

an error is generated.
Nice guys and poor guys will try to keep charged space dwon around space in usej
rich guys may keep a lot of charged space in case tthey might need it, ImExER=RX
Meaningful increases to charged space will presumably entail a call on a
priveleged system boutine to get space from a system pool, and delays may result
'cause space imn't availablee ’

d) CONTINUOUS T8 - starts at O when the AB is created and buklds up

continuously. Facility to display it will be providede

e) DISCONTINUOUS TxS - I don't like this field for reasons explained below,

When it is displayed, it is reset to Oe
A DAEMON process runs periodiegally and touched the AB's, to prevent deficit

spending. Bruce wants to use the discontinugus ield charge the guy right
asay, so.that if the system crashes, he stangs cgargedafgr some TS, which he

@R DI AP NS B U 1 A A BB IS O . IR 1 PR DOAUDISEA. T DO

Bt i e L e g R e et

3 fsuz/ “0
i

may or may not have derived any benefit frome The guy will almost certainly
complain bitterlye I think that the continuous field should be used by the
DAEMON to check against deficit spending, but that the DAEMON should do
nothing in the normal case, leaving the log-off procedure to do all the

actual charginge

FIGURE 793-42B.03f

J ALLOCATOR'S WORD \3 TSTF ISR el
oy GARD 3 ORBITECTS

MIOT ﬁ-—————a
P EHAK&’ED SPACE SFACE IN USE

PTRS TO ALLOCRTION DLOCK — CHAIN
HEAD (¢i08sT) TAIL (NEVEST)

TIME OF LAST BiLl\UPPER BOUND

CONTINUOUS T xS

DiscoNTiVupus T x S

B n +3ima .~ e 2~ ~ 3 - 4 3
1f the time of last bill is kept in units of nicro-seccnas/1cih,
20 bits allows about 16 days of running, f this is deemed
insufficient, speak now, More bits may be used or the units
can be changed,

I3 <3?n@7’50
2

ALLOCATION BLOCK OPERATIONS

A)

B)

c)

D)

E)

Create allocation block (no change)
IP1 €¢: father AB (OB.CREAB)
IP2 D: C-list index for returned capability

Transfer charged space
IP1 C: Donor AB (OB.GIVE)
IP2 C: Donee AB (OB.GET)
IP3 D: Space to be transfered, or donation
fails if CHARGED SPACE+DONATION exceeds UPPER BOUND in donee
or DONATION exceeds CHARGED SPACE&#SPACE IN USE in donor

Set upper bound
IP1 C: AB (new option bit)
IP2 D: new upper bound
fails (or F-returns) if new upper bound less than charged space

Read discontinuous T#S

IP1 C: AB (new option bit')

I1P2 D: where T*S ie returned (or return it in X6%)
resets discontinuous T#S to O and returns updated value

Display AB
IP1 C: AB
IP2 D: buffer
updates both versions of T#S, doesm't reset discontinuous T#S

Return capability for nth object on the AB (no change)
IP1 C: AB (0B.GOD)

1P2 D: full C-11ist index for returned capability

IP3 D: number of desired object (n)

Destroy AB (no change)
IP1 C: AB (OB.DSTRY)

123 %»«;/’70
3

DIRTY BITS

In order to save the disk system some unnecessary writes, it was
decided to provide a dirty bit on file blocks which would enable
the disk system to tell whethker or not a block had to be copied
back out to the disk, The final specs were:

1) File blocks are created clean
2) Blocks are dirtied by
a) File writem, including ones with words counts of O
b) Being put in a map RW
c) Being put in a direct-access map entry
3) An operation to test and reset the dirty bit will be
provided,

{ AWK AAXXKX AXERH HRX I XREXRAREFXKXXX
Hg %Eﬁi aavﬁ24§%¥%£%§§%z?fzia:aaﬂllﬁ?ALZﬁ&.
With this machinery, it is claimed that blocks from a file opened
RW will not have to be written out to the disk if

1) Somebody just scans through the file and doesn't actuzlly
write in some of the blocks

2) A block hasn't been written in since it was last written
out, due to a pseudo-close or somesuch mechanism

Just for some concrete examples,

I3 7 20

DELIVERY OF INTERRUPT DATUM

It is proposed to alter the location where the interrupt datum is
delivered from IPO (cell 6 of the subprocess) to cell 2 of the
subprocess, Current delivery clobbers the first input parameter,
Any objections?

CHANGE TO CHANGE UNIQUE NAME OPERATION

It is proposed thet CUN be altered to have 2 parameters:
IRAXXXEA X EXXXEXX AHABX X ARX BN PR EX XXX RBEEHNANIX
) 05 2006) ¢
1P1 C: capability Bor object (OB.CHNAM)
IP2 D: C=1liet index for return of new capability,

This is a funny thing from the polnt of view cf the user, since the
0ld capability becomes no good after the operation, but it allows
the system to do its option bit testing in the usual place Instead
of in the CUN code,

CHANGE UNIQUE NAME AND MISSING MAP BLOCKS

A block refered to in a map may be caused to disappear by the use

of the change unique name operation, The question is, what should

the map machinery do when it encounters a map entry with miss ing
blocks? The only answer secms to be that &he offending map entry
should be zeroed and error processing should be initlated, This

1s unpleasant, as the error is go ing to be discovered in the swapper,
but it seems like there is no alternative, How about 1it?

S

ALLOCATICN
B

Work on the allocator (initially undertaken to write a compactifier)
has revealed certaln problems:

1) The documentation 1is scanty and not overly helpful., For
example, the purpose for the two O-length free blocks isn't
mentioned, how compactification is to be ([incrementally)
achieved 1s left as an exercise, ete,

2) There are bugs
a) Free blocks are merged without due regard for limitations
on their size '
b) Interrupt objects are scattered through core in such a
way as to make keeping them fixed during compactification
a somewhat bewildering problem
c) There are miscellaneous quirks in the initialization.

3) ObJects are limited to 2%#17 - 1, This limits DAE's to
2##17 - epsilon for O-=level files
2##16 for other level files

4) The top and bottom of ECS are both fixed by various factors,
This makes it difficult to dynamically change the size of ECS,

It's easy enough to fix the bugs and improve the documentation,

And the top of ECS can be freed by various ploys which can be simple
and Inefficient or medium difficult and as efficient as at present,
The stopper is item 3, Extensive rewriting will give a factor of 4;
extensive rewriting plus an additional word or redsign of the
allocation chain are necessary to completely unrestrict object sizes,

It is roughly true that the redesign and changes necessary to deal
with 3 and 4 are internal to the allocator and can be redone later
without affecting other code (the main possible exception is the

file code, which shares one of the allocator's words), I feel that
it is smewhat a matter of style as to whether we fix these things now
or later, but I would like to have some commitment on item 3 right
away.

INCREMENTAL COMPACTING

It ies deemed desireable that the compactifier should be designed in
such a way that some process may run whi®g@ compactification is in
progress, Namely, a speed freak shouldn't have to wait for
compactification to complete before running, There seem to be two
different schemes which allow suspension of compacting in mid-stream;

1) To tell the compactifier in advance only to ¢o so much and
then to check for speed freaks when it returns, You could
tell it to collect n objJects ofr example, But you have to
understand that it may get into something bilg that it has
to finish,

2) To have a flag which the compzctifier looks at which tells
it to stop as soon as possible, I prefer this, as it is
more efficient, There is still a 1imit to how fast the

compactifier can react, but Xk controcl is better than with 1,

R ————

: _ ' B o 20 Gped 0 |
/

“4DDITION TO DIRTY BIT SPECS

~. Howard points out that it should be mentioned that move block
6 carries the dirty bit along with the block,

KARL'S OBJECTION

With respect to the blurb on allocation last time, Karl says that
the objects in ECS are set up so that one object can be moved amrd
without necescsitating the relocation and/or mascaging of some large
fraction of ECS and that's all there is to incremental compacting;
he was annoyed that I said incremental compacting was left as an
exercise, since it 1is obvious, trivial, etc,, how to do it,

Karl is right about this, What I was objecting to was a lack of

any sort of general déscription of the problems that were supposed

to be handled by incremental compacting, like speed freaks, interrupt
code, compacting during the idle loop, etec, This lack is no doubt
not ascribable to Karl as it seems to be a more or less general
cuality of the documentation, I'm putting together a little blurb

on the compactor which may be out next week,

Meanwhile, if Kerl isn't mollified by this, he can submit his own
disclaimer for next week, OK?

ALLOCATION DECISIONS

Last week, we decided to do whatever was necessary to
1) fix the existing bugs
2) free one end of ECS
-3) provide an incremental zzmpazkdPiwithx compactor which will;
a) massage some number of real cells or collect some
number of free cells or both (see compacting document)
b) do the normal I,WAIT/I,LOCK logic to allow interrupts
c) monitor a2 new cell (I,COOL?) which will cause the
compactor to suspend compacting when the cell gets
set and take a special exit (for to run speed freaks),

It was decided not to do the engineering necessary to make it

pos§ib1e to create arbitrary size objects (unless it somehow falls
out)., '

BENT FILES

A1l talk about speedfreaks, lincremental compacting, etc.,, 1ls vacuous
unlecss we get to the bottom of the bent file problem, I would like
to hear exactly what the problem 1s and a decision as to what's to
be done about it,

CPU TIME ACCOUNTING

I would 1like to have Jim Grey order Howard and I to figur out how
CPU accounting is going to be done, Discussion of the properties
and problems of CPU accounting is in orger,

GLOBAL INTERAUPT INHIBIT

Solid proposals and decisions for implementing the GIIB are in
order, Alsc, the configuration of the user's procese tree vis-a-
vis interrupt handling could use some clarification,

M— W@Q—_
2

DIRECT ACCESS REVISITED

At the 17 April disk system meeting, the old headache of DAE's
was discussed again, It was realized that we were into giant
headaches and going around in various size circles, so we backed
off and started all over again, What the nelil are pAn's guoa Jor
anyway? The only use that the participants could suggest and
defend was to give the user access to a large,fast address space,
(Proponents of other uses, please step forward at once,)

On the basis of the "large block" theory, the following decisions
were tentatively made:

1) At the ECS level, blocks have to be created nudged, as
opposed to created first and then nudged later, This
avoids falrly unpleasant problems encountered when trying
to find space to relocate a large mm block,

2) At the disk level, big O-level files and only big O-level
files are always created nudged, Thies is falrly restrictive,
but it is adeguate to the only use so far proposed for DAE's,
(A side kludge is that big directories will be implemented
as multi-level files unless we want them nudged, but that
seems OK.) "Big" remains to be defined exactly,

REALLOCATION

Currently, when an object is being reallocated, if it can't be
expanded in place, 1t 1s briefly charged to it's father allocation
block twice (while another place for it is being found and it is
being relocated), This has at least two bad consequences:
1) It makes it slightly difficult for you to control accurately
the space used by some untrustworthy subprocess.
2) For every user in the system, the disk system has to either
give him space for 2 process descriptors or be very tricky
about allocation/changes to the process descriptor,

The reason behind the double aX¥m charge 1s to avoid locking up
ECS 'cause of space problems, Ik Mechanisms for avoiding the
double charge and not causing a disaster are under consideration,
There seem tc be only 2% m kinds of mbjezkx things which get
reallocated :

1i Process descriptors

2) Operations
2%) Maybe nudged blocks, pending the outcome of the DAE debate,

Since 1 & 2 are small, they could usually be handled by "hidihg"
some number of cells of ECS and counting on these for the relocation
of small objects; larger objects could be doubly charged as at
present, or handled out of some kind of system space pool (with the
possibility of failure, since there may not be enough system space),

Anyone have a nice solid idea?

All Watched Over by Machines of Loving Grace

I like to think (and

the sooner the better!)

of a cybernetic meadow

where mammals and computers
live together in mutually
programming harmeny

like pure water

touching clear sky.

I like to think
(right now, please!)
of a cybernetic forest
filled with pines and electronics
where deer stroll peacefully
past computers
as if they were flowers
with spinning blossoms.

I like to think

(it has to be!)
of a cybernetic ecology
where we are free of our labors
and joined back to nature,
returned to our mammal
brothers and sisters,
and all watched over
by machines of loving grace.

o ro————

o— R —————

B

1 June '70

RECONSTITUTED LIST OF THINGS TO BE DONE ON THE ECS
LEVEL QF CAL TSS

$tuff needed for operation fmr of the "Septmeber System"

Allocator=compactifier (vance, endof June)
Implementati-on of block parameters and return paremeters (Bruce, BNG#*)
Indirect C-list stuff (Bruce, done and tested)
Set tempprary part of class code (easy)-
53 Return capability of specified type
*F;,6 Change map compller to do error instead of DISASTER in case of missing
map block

OO =

(Paul, ?)
7) Get option bits into the operations (Vance, easy;
8) Implement the error return operation (Bruce, BNG
9) Date and real time (Keith, ?)
10) Find descendent of subprocess (Dave, written but not in)

1) Eéx.mZwauwMJsz{aA ope s (fondk)

Stuff needed for the "Real System"

1; DAE entry stuff (just won't be avaidiable in Sept)
2) Operation to turn on/off map entries for a subprocess (no subprocess
deseriptors in the Sept directory system)
3
4
2
Other stuff

Move system code out to ECS (Vance, in progress)

2 Change to change unique name oper vis-a-vis option bits (NA in Sept)
Message channels

1) Make PUTACT and PUTECS check the lenght of ACTIONL

2) Accounting of CPU time

3) Operation to reset end of path to self

4) Fast actions

5) Fix to CCCLOA (thies is easy and a lot of code will be affected by

it, so I'1l get it done)

6) General destroy operation

7) Send interrupt to pseudo-process (written, but not in)

8) M ove GLASSCNT to ECS

9 Check GARBCNT at point of doimg DAE when establishing subprocess
environment

10) Fix error returns from OPINTR

11) F-return when subprocess to be deleted isn't a leaf (Bruce, %0

12; Display process descriptor and subprocess descriptor operations

13) In process and subprocess creation, test for lower limit of entry

point correctly
14) Incremental map compliation (Paul, %)
15) Move object (Allocation block) from one allocation block to anothesn

#BNG = before national guard

XK waa Ahee ?”'7 y Aa foc/:;im.eap ot/ NEWUN 2o polonsell

SRRRRERE:: sanaN Car

1 rFeb 'T1

Questigms on which you are invited to expressopinions in| the next
few deys; ' 1 - ——

1) should |exiternal interrupts|do a|tree | search similar to internal

| interrupte?| Thet is, if the target subprocess|of an internupt

has Interrupt disabtmed, should thel interrupt be sent to its neanest
ancegtor with interrupts armed? ’

|2)! Should |error numbers (or| input paremeters) be relocated to lavoid
the current | conflicit on subpriocess calls?

3)| Should | the ¢rder|of parameterss be [invenfed when doing a subprocess
calll from a high|level of a multi-level operation? | |That|is, if we|
rare processing the third order of an operatilon, the parameters of
| order 3 would be |put 1n |subpriocess| core first,|followed by |the
parameters of lorder 2/and order|i, B i ' ‘

4) should falkcility for ECS actions | to return parameters be provided?

5) Shoulld |the number of error|classes be increased (from 32%) |or made:
| variable?

6} Dees anyone have any thoughts on sita¢k full lerrons? (Like the disk
folks,)

.+ The 64,1,0 error that c¢an oc¢cur during disk loading or recovery is
caused by|the disk not destroying an empty file beflore 1t tries|tqg
[bring it in, [] ' T |

ARCHIVE PROPOSAL

.—

| Om the first of éach month, a system tape|and a disk dump tiape will
|be| made and put in the vault,| The|three most recent dump tapegs will
be kept; only the most recent|system tape will be kept,

‘ ECS'modificg}ion st 1 | 11 1 {

Appended 1s| a 1ist of | EdS modifications from last year with the
'completied| stuff indficated and| the ptuff thet| seeme to be no langer
important/also| indicated| (but| with|/a |[different mark!), GComments zre
appropriate,

s

|]

= ! } | | b ;]] t ‘ 3

Malp ernor|laogic | | i
I , ’ : | | | | | | } | 1

i Separation of change unigue rame count |from compaction count. It

| has [been [suggested that [two countg be 5ept on the complled [maps

I The compactién cou t cts the sagme way the gurrent count dges, i e.

‘ ﬂhe'count isn't jas| large 3gs the current number of "ompactibns,

, +he,map is recomplled. ,

|

| f | |
\

' The new count, which ﬁidht bg ¢ lled the "map 1nvalidation 'count",

. or somesuch descrinti e name, would be |compared dgainst a count, |

' whiqh is malntianed by the| system and incremented by one| each time|

‘- the lunficue name of fa file which'hac a block 'in a map is changed,

{ Whenever |the map| cqde| finds the| local gount on a map to be |behind |

| the |glidbdl count, it bhecks Qhe logical map to see if all the| files

| still existy [If| 80, it repets the locgl count to the [global count, |

‘,If lot, it recompilestthe mag and flags the subprocesg for|a map |

| errgr,

l | ; | | | ‘ f ! | |] | ')
II Ha dling of| the map error,. Bec use swapout of a eubprocess may |
oceur dsynchronously with respeat Qo execution of the subprocess),

iE is deemed unsuitable to sign 1 the error to the processiat/ the |

| time that it is digcoyered, \Rather,| the error 1s remembered and

| not signaled uﬁtnl the subprocees in gquestion becomes part |of| the

f Ihll map lagain, | (Thie means right away if it ie becoming part of |
the;funl path when *he error is detected of course,)

1 | [

1
| S SR |

" e

A 1 June '7

d{CQ?STITUTiD LIST OF THINGS TO BE DONE ON THE ZCS
LEVEL CF CAL TsSS

pit
o
H

I needed for operation fnz of the "Septmeber System"

N

751:.

NTh f/r.ftd-,nc’ZB: ;/f(o af’f’lff-’-{?“‘v' C /’éw,«_)
N
Vz_ /(/t [,C/VCC/5 L/W‘-eg (/bﬂ)la(Tt\) /(/14,[,)\’\’,‘{ C‘\ Sl ‘I(t?/'

Y o

X
?

) Allocator-comnactifier (Vonce, endof June)
) Implementatl n of block naramcters and return naramecters {Bruce, BNG*
) Indirect C-list stuff (Bruce, done and tested)
| f o &+ = 5 » o
4 4) sSet vOﬂlJPgP" part of clnss code (easy)- Bawee
| ./ﬁ) Return capablility of specifled tyne
51-& *X_6) Chonge ! map comnilcr to do error instecad of DISASTER. in czse of missing
4 man bloclk (Paul, 2)
4 [V?) Get optlon bits into the operations (Vance, easy
| ;}J Implement the error return operation (Bruce, BNG
9) Date and real time (Keith, ?)
| v10) Find descendent of subprocess (Dave, written but not in)
vi)) F

! ! Stuff needed for the "Real System"
: WeD1) DiT entry stuff (just won't be avaibable in Sept)
i | NS2) Overatioa to tura op/off map entries for a subprocess (no subprocess
! \ Cescriptors in the Sept directory system)
. ¥5) Change to change uﬁvcuc name oper vis-a-vis option bits (NA in Sept)
! TPL) love system code out to ECS (Vance, in progress) K
NS 5) llessage channels
f ;47
'
OCther stuff
£ 1) iake PUTACT and PUTICS check the lenght of ACTIONL
' P 2) A CO“nt¢ﬂF of CPU time
T,NS =) Oneration to reset end of nath to self
NS 4) Fast actions
v’ 5) Fix to CCCLOA (*niﬁ is easy and a lot of code will be affected by
it, so I'1l get it done)
NS €3 General decstroy operation
;,Z) interrupt to pseudo-vnrocess (written, but not in)
8) CLASSCNT to ECS
TP 9) Check GARBCNT at point of doing DAE when establishing subprocess
environment
£ 10) Fix error returns from OPINTR
US11) F-return when subprocess to be deleted isn't a leaf (Bruce, 20
£12) Display onrocess descriptor and subprocess descriptor operations
| IP 13) In process and subprocess creation, test for lower limit of entry
nolnt caorrectly
: NS 14) Incremental map compliation (Paul, ?2)
: NS 15) liove object (Allocation block) from one allocation block to anothed
! [4
#*BNG = before national guard
AX waa e dovea Ao He pos ‘T' el el NEWUN 2. /\C/dv"-"“f’(’?
9, J ¢ i

22 *Fof 71

Naw STACK LCGIC

The manipulation of the call stack 1s being extensively revised, The

most significant cnanges.are:

1) Wnen a subprocess does a system call, the p-counter in the stack
will point at k& the XJ, not one beyond 1it;

2) A p-counter qualifier will indicate whethér the subprocess was

a) about to execute the inst at p=counter
b) in the middle of the inst at p-counter (presumably an XJ}
¢) almost finished with the inst at p-counter "

3) A return imstewetden which will modify the p-counter qualifier
of the =iagkxmriryxrziurnsdxim previous stack entry as part
of the action will be provided.

4) The interrupt inhibit bit xnxxhxitapxu will always be set when
a new top of stack is formed, sc that the current, running
subprocess will automatically have interrupts inhibited, An
operation¢to expliciﬁ#ly segrand clear the bit will also be
provided,

5) The forced f-return and interrupt flage will disappear, I would
like to move the interrupt inhibit bit from its present position
if no one objeuts,

A complete description of the display sﬁack operation and an "internals"

specification for the new stack should be available soon,

Is there any enthusilasm for an action to display stack entries from

—sgome-other proeess? . — . R P ¢

*Qﬁfms?ﬁz@_a,ﬁ@d’/f % zﬂlh,o Sailiors -

THE LATEST WORD ON THE EXCITING STRUGGL: TO OVERCOME THE ELUSIVE

BLOCK#GONE#FROM#FILE#IN#MAP/CHANGE#UNIQUE*NAME#OF*FILE PROBLEM

(CONSIDEREU IN CONJUNCTION WITH TURNING MAPS ON AND OFF)

Maps now have two counts on the compiled part and a new rlag on the
logical part

1) a local BADMAP count

2) a local COMPACTION count

3) a map on/otf flag.
There is in addition a new flag on subprocesses, but it is very elusive,

It says qhi‘kr or not the subprocess 1s suffering from a pending map

error, whexhe

To begin with the map on/off flag

1) An action to turn off the map of a specified subprocess will be
produced in due course, It will decrement the map count on
all kimzks file blocks used by the map and set the bit to off,
(One gets an error for trying to turn off the map of a subprocess
currently in the full path, Is that OK with egerybody?)

2) xxyimgxit®m doing anything that might cause a subprocess with its
map turned off to swap in Qill cause én’ error, as discussea
below.

3) The operation to turn the map back on will be fraught with all
go rts of hazards stemming from missing blocks and files, but
if one is lucky, it will find everythlng present that 1is
necesgsary and increment the map count on all the relevant

file blocks and turn the bit off,

Nhén one changes uniqgue names on a file, if the file has a block in
a map, the map count on the block 1s cleard and a global BADMAP count
is incremented. This teaves some map, somewhere,sitting around with
one of 1ts files ripped off, This may later lead to an error as
discussed below,
4
\
I regret that I must also mention that some careless code may callously
destroy a e-list that 1s the local c-list of some linnocent subprocess,
thereby causing sald innocent subprocess grave emparrasment, (When the

current swapper tries to bring in such a subprocess, it destroys the

process!) But have no fear, rellef is at hand,

How is one to see one's way out of this quagmire? Well, let's start
with the hard-working swapping code, MAPOUTZMAPIN, which do the bulk
of the systeme swapping work, Here comes this subprocess to be
swapped out/in, If the two local counts on the compiled map are up=
and the map 1is on,
to-date,Athe swap proceeds, But, 1f a count is off, further action l1s
taken
03 if the map 1s off, an error is signaled to the caller (no_swappin
1) if the COMPACTION count is off, the map is recompiled r compiling
2) if the COMPACTION count is OK, but the BADMAP count is off,
2 check 1s made to see iff all flles in the logical map are
still present; if so, the count is updated and the swap
proceeds, but if not, the map is recompiled.
Whenever the map compiler encounters a missing file in a logical map,

it zeros the map entry and proceeds with the compilation, KX Tt Lo

_exits with a signal if a file was gone, MAPOUT/MAPIN return this

i signal to whomever called them, The map is then swapped (with a

e

bossibly newly zeroed entry),

Now, if we're swapping, we're either swapping in or out, if you see
what I mean, So, suppose we're swapping out and we get one of these
funny errors from XARAKX MAPOUT, what the nhell do we do with itg
Remember thét the subprocess we Just swapped out may not even be
part of the full path currently, ror reasons that are classified
(the president knowgbest though, you may be sure), Well, we
1) mapefxizxaxBISARTER ignore a mapoff error, Because you can 3
only turn off the map of a subprocess that is out, This
means that the mapoff condition was detected on swapin
and the appropriate error generated as describled later,
2) If a file was gone, since the entry was zeroed, the subprocess
will swap back in later wlth nary a whimper, so we flag the
subprocess at this point for a pending map error,

And that about covers swapout,

But what about swapping in? Here we ean encounter three different
hassles while immm Jjust doing our Job and minding our wwn buisness,
1) If the local c=list of the currnet subprocess has been ripped
off, we generate the appropriate error right away,
2) If the logical map of one of the subprocesses in the full path
is turned off, we generate the appropriate error,
3) If MAPIN reports that the logical map of one of the subprocesses
in the full path has had a file rippedq off, we also generate
BT SITOr. R e
4) Last, if we see that one of the subprocesses that we are
bringing in has a pending map erpor condition, we again

generate the file-ripped-off error, The flag is turned off,

But what if they all hapoen at once? Only one gets reported, namely

1) the c=-list error if it occurred

2) failing that, the type of map error occurring on the subprocess

closest-to the current running subprocess is reported,

Well, I sure am glad to have that off my mind. Oh yes, I forgot to
mention that when the map compiler encounters a missing block when

it's compiling a logical map entry, it is still a DISASTER,

_ CONTROL OF GPU TIME

Two new features are being imolemented for processes, a tlmer and an
assoclated message mechanism, Time may be moved between the CPU time
field of an all@cation block and the timer of any of 1ts owned proceses,
When a process 1s swapped out, its timer 1is decremented by the ——n
time it Just used, and if the result 1s negative, the process 1is

descheduled; the negative residual sits in the timer,.

The message mechanism, which 1s set by a separate system action mfxix,
consists of an event channel and an event, When a process 1ls descheduled,
if the message mechanism is set, the swapper sends the event on the

event channel (any errors, such as event channel gone or fuli, are

ignored). If the message mechanism is not present, nothing further

is done,

The operation which moves time into a process timer lmcrements the
current timer, If the ximme process is descheduled and the timer

goes positive, the process 1is rescheduled,

I heavily favor creating processes descheduled, but it 1s not too late
to argue for an additional parameter on process creation to initialize
the timer (that is the only alternative that I can cee), A gracefdi

phase=in will beprovided in any case,

	Spine
	Errata for Internals Manual
	CAL-TSS Internals Manual
	Contents
	System entry/exit
	Allocation of ECS
	Compacting, incremental
	Compacting strategy
	REALLOC problem
	System initialization

	Capabilities and capability lists
	Files
	Processes
	Subprocess
	Class codes
	Maps
	Map compiler

	Event channels
	System text standard
	The line collector
	Teletype I/O functions
	TS interrupt system
	S-device user interface

	Pending fixes, etc.
	Code to insert
	ECS TEST
	My writeups
	2 CP disaster sheet
	Speed phreaques, scheduling, and compactification, etc.
	Chatper XXimvlde of the continuing interrupt hassle
	Projected disk process profile
	Random ramblings
	ECS operation timing
	Interrupts
	Disk meeting
	Evaluation of work yet to be done
	Allocation block operations
	Dirty bits
	Delivery of interrupt datum, etc.
	Allocatoin, incremental compacting
	Direct access revisited, reallocation
	All watched over by machines of loving grace
	Reconstituted list
	Questions on which you are invited
	Appendix to reconstituted list
	New stack logic
	The latest word
	Control of CPU time

