
....
..

The Cal TSS Interrupt System

I-) I

Gene A McDaniel
)

Tl-:2 INTERRUPT MAST£R LOOP

- - -

--

- -
-

c J,,/t!t..l(:

uar A~IT/1
< t"rcr.,

S(.J;)~ CAL.I.

9cr /rlh..(tu,t

te~ues rs
&.1t.o li'\lt

Ce.vzt-Y"'1-L

g er .rttre. f.
AeQ.c.u.s r»,

- or-1..~r
f,>Pu. (,,Ht•&

UPDAre..
__ ·- C >1_4"4-e,

C,t.cLJ(

PO PetlOIN4

- - - .Z:.N rerru1'rs

G£TINT

i G£T INTERRUPT RfG..UE..STS FROM DTHf..fl
It
1;

"
l ONLY GZ:.T ON£)

OTHer PPU s
TA~I<. T?l(ll ~ - • - - - -
5Pet.u '-

CH,+NN~ L.

~9Nofle.
!leQIJE.5i IF 1-4 - - • - • - - •

roo CJ<~

ser rt~L<
~ .. - - --- --enr~,

5eT Pe Nl>I ti 6.
i;.w.rerrc.,.PT ~ - -
r-LA(i

xi. -E--
rN rtttupr
U&ul.5r

~£TUR}(

PPU .s

C tJ :.:- ,- ' · • r , c r r. r •n r, 0 o
•• ·-I..-;\ • u,..:: .'"\. ::::. , •. ,'\,~ '') SC.OPE

-------I CUtO ::';?
I
! [..l.5 SYSR'.f ~ .. - - - -
l tS \'U~'"1•1.1,. !. j r. ·•·•·~"'I t

RE.AD
P-

-· I

R l-1D S. lh:.:A.

5RC~1
C£.tlTML

R£.TURM

NO

c.ouN r.u~

Pie. f>A ie.
POI<.

0£.Gil ARltrf
e.1titcR Mcr

Do
M'-:r

C..ALL

NO

PiePJ r_e_ FOi!

S<..oPS
MC:~

2lTU~N

I '

!\

G£TCM
INTE f\.R.U PT R..E Q.U E 5 TS

?tieo =?
NO l:Ni?N<.tw'T ~ - - - .. - - - •

Jlt..C:<sl\iUT,5

~;
I)Jrl(PT I/l/0€X.
rc,o GI o, > ll.e 7'lll/.

C.PU will ~ - - - - - -
eve nn.<A-L.L.Y
ti4Nc,.,.
se.e.
Glf.Nl-tNT

Ge.TC.M

R.tAO
r.,w4te

:r:N
CM

.... - - ... -

... - - ..

... -

~e:r '4Pf~
e."'r1t.v Ht
r/'ire.rru,r

TAC11.~

Ser
PeN01N<,
l:Nrerr-c.t1r

f:L.A~

c.L&q(

J:. WAI< e.
ae.~

G F:NI.NT

UPDATE

I..Ol\f~ N(W

Mt\StV\
c.t..ex.1e ro
c.tw-o

f\~P,STER. CLDCK 1n CENTRAL

CLO {.f<tJf W(;

V~t.U.t t>F
UARD1.1J4 Jl.e

l

NO

CL.OLK~N (..~
C.L.Oc..J<Nec.>

c. L..Ol-K O '-D

Cl.OC.!<Ot.0

C LOU~W .._ ___ ..,1

..

. '.

The CAL Timesaring system is imDlemented on a CDC 6400 with the

following system attributes: There is 32 K of central memory (60 bit words,

no parity bit) with a 1.2 micro second cycle time. Theprimary secondary

storage is ExtBnded Core Storage (ECS). ECS has a J.2 microsecond access

time and (with the UC Berkeley configu~ation) 1 word per 125 nanoseconds "?
trAnsfer rate. The CPU executes instructions in the range of .5-1.2

microseconds. There are 10 PPUs (Peripheral Processor Units) with 4K

of memory ad aninstruction time of lf microseconds. The PPUs are

asynchronous, used nrimarily for i/o and may communicate with each other

through channels or with the CPU through central memory or aninterrupt

(exchan~'e jump). There are three flav·1rs of interrupts to the CPU.

The EXN (executed by a PPU) is unconditional and causes the CPU to

exchan::-re states with a ''package" located in CM at a nlace specified by

the BPU. There are two conditional interrupts: CEJ ad MXN, executed by
.

the CPU and PPU respectively. If the CPU is in monitor mode, the CEJ

,

causes the exchanr-e jump to occur with a "package" which has been pre-determined,
0

if the CPU is in user mode, the "x-pack" specified in tne CEJ instruction

is exchan,~ed with the one currently in the CPU. MXN is a no-op if the

CPU is in monitor mode. When one of the conditional int~rrupts occurs

the CPllautomatically 11switches 0 mode. There is a 66)8 di'sk used for large

storage and a loeally manufactured multipl~xor which is capable of hadliling

256 teletypes simultaneously.

The s6ftware arciitecture was designed to reflect a highly modular,

•111ayered system". The bottom most layer is the ECS system(fully operative)

This should be understood in the context that it works pretty much as

designed, BUT the subnrocess call stack lo~1c is being redesigned.

'

2

Redesign and cod1ng will hopefully he comoleted in about six months
:;., ,v 'i..-

(incl·irling, tf>sting). The remaining layers considt of the Disk File System,

Di.rectory System, ~nd Command Processor. These layers are in partial stages

of cmmpletion. :vfostly comolete, I believe. The peeceding is offered as

a very brief introduction to system configuration. Comments about the

status of the varioas parts of the system are purely personal opinion.

..

The description of the interrupt system will pe presented as successive

iterations ln a discussion of designed structures and algorithms. Each

iteration shuld include greater detail.

The basic interruot system is run by a 0 PU which uses EXNs to foce

interrupts upon the system. The EXN doesn't affect the monitor flag; it is

unconrlitional. Other PPUs "hang" on a channel, waiting for the MPPU to

take their interrupt requests. The MPPU checks the interrupt channel (INI'CHAN)

and a CM cell (I.Wake) for interrupt requests. Interrupts are locked out ____ .. _
-:/' f' # ,·

by CPU routines which set a cell (I.lock,
CL ...i, {' t'l'J67

accessible only when the t.tsystem"· · · ~· · - · --

is running). Interrupts automatically set another cell, I.Wait to the value

of I.lock, so that if interrupts are locked out, routines which tend to

keep I.LOCK set for a long time will pause with interrupts enabled.

User code and much system code executes on the CAL TSS system in the

context of what are known as processes. Each process has several subprocess.

All code actually executes as part of a subproces~ (other than ECS system

code or interrupt code). Among other things, subprocesses implement base

protection mechanisms in TSS. We shall now leave the theological discussion

of processes and delve into the question of interrupts and their place in

the system: Clearly for I/0 and certain control functions. I/0 implies

perfoning tasks for user processes and this introduces the question of

interprocess communication.

At the level of the ECS system and above there are two basic mechanisms

for interprocess communication; so~ware interrupts ad event channels.

So~ware interrupts force the calling of a specific subprocess in an interrupted

4

process. T•1is is continp:ent upon an inherent priority of the "interrupt
supprocess". This is in turn determined by the st11tic subpocess tree

and currently executing subprocess. In any event, when such an

interrupt strikes, the interrupt subprocess is entered at location equal

to the normal entry point minus two (wrls of CM) and an 18 bit datum is

mdde available to the interruptsubprocess. Event channels serve to

synchroni7,e processGs. They act as a test and set mchanism: a process

can p;et an event (from one or more event channels) or "hang or F-return"

depending upon how he called the system. ·rheE;e :c1re atorr.ic, r,oriir.terru1·~abla--

actions. J.. f,O bit datum and t;,e sender• s MOT (Master Object Table, discussed /i:':~I
shottly) ar~ provided to the receiver of the event. If a process hangs on ·

An event channel, a doubly linked list connects the process to the event

channel and/or other processes which are hanging upon the event chlnnel.

The ¥.OT is a t8ble in lo~, ECS which provides the unique name and abs.

ECS address of every object which is current in the ECS system. (See disgrrun 1).

As could be easily surmised, the interrupt systern-ECS s~tem cmrr.munication

occt:.rs primarily throuh the use of event channels and specially created

interrupt objects. The interrupt logic uses these special objects called

pseudo-processes (henceforth, pprocs) to perform three functions:

1) Syr..chonize i/o et,
2) Corr.r,ur.icate withU:J_ 1,1·ocessas
J) Systematize and simplify cooperation between cpu interrupt code and

ppu interrupt code.

There is a point during system initialization when ECS is compacted

and interrupt objects (or devices) are then created. This is done so that

absolute ECS addresses may be used without fear of invalaation after future

Ecs garbage collections-compactions. Theee are three kinds of object~

1

5

created in .;roup.3 c:;.lled clssEis, during system initialization. These a.asses

represent the objects manufactured fDr each of the different interrupts

that a PPU may want to send to tee CPU. Within each class there may

be many "devices" as is the case with the objects created for the multiplexor

(
11rrov.~re,ti

interrupts t.< ·1 by MOX ppu). The three objects are tiles, event channels

and pseudoprocesses (pprocs).

Files are used for two main purposes: buffers or pointers. iiles as

buffers contain I/0 data going to and from the CPU. Files as pointers

tend to contain pointers to objects or pointer.JI to qaeues of objects. For

examole, there is a cell in CM called DVCFILE. DVCFILE contains the abs.

ECS addr of a file which contains vne entry per interrupt type (=interrupt

index). That entry is a pointer into the ~ster clist of the first

pproc for that class. (Presumably that entry in the master clist is followed

by more pprocs of the same clBss or by other objects, creaed in aknown

order by ta system initialization code. Another CM cell, INTQS contains .../_
Pomr~ r6-/.7K(l_,,

the abs ECS address of a file which contains a "first" and "lastA interrups

pproc list for each type of interrupt. At this point honesty foces the admission

that not all interrupt routines make use of all the facilities about to be

described. Some interrupts (like those from the MUX) make use of all

data structures described here. Others like DSKINT only make use of

the pprocs, file buffers and event channels creaed. at initialization.
(U..~

Event channels are created for data storage and~ mechamsm for
~ 1 &'t.A-Vj(t... .

hanging user processes while they are waiting for I/0 (data~in the sense that

they are able to communicate requests foraction to the interrupt system).

These requests foraction go to pprocs which are hung on the event channels.

(_ VJ1

(,(5

:Z,f/ 0 .(..1 - ; - -----~.-............... _ II"

LY LJ.1 ... ___ ,__..,_._..,.~.....,....""'~~--.. ? J

.,,......,.,. ... ,._"I~~'""""'

I i
I

I

~-

.IA/ PX /11
' . I

f , . I.

J.Yic1 K ,<., ::: //J!tl(L/j. 1rl 1-r)lf jrf:J

Ci- 1,::;r-- FO/f rl/lS I

~, I Nr<-t"<l?Ut7!r , .. t '
Preoc

" A.,;

/ltJ?,(U-: 8f~ ~7'::~, /('Jlj{ I/)~ .

7J)li;. ;(· ~ (' -·-
.... ~ ~

.--1 /.J X ItilOt K vii

'":, f.,"°ll'"'.,...~ ,. ... ·~.,·--···--.~~..,--- """' _,

[;CS~P:J... Q'F/1?5T
3

I

Q J:Xi s r.1. I
, Q Fllf Si ::l.. f
J .. _ . QL./,1_1~-,
J f

1 '
I

I
0FiRS7,l

QLASI .,_ [= - .. :: : .. •:})
P P~O <.J TY t>(' <-" __-......._ __ ,

:--=--... ,;~)i:..,c .r "; r Ori lh)J .

Tt?dle.... (GUtlt)f.H!L'(..t~)

6

The event channel code recog~izes when a pproc has received an event and

transfers control (temporarily) to appropriate interrupt subroutines

" lin G ENLINI', discussed later). The result is that the pproc is
""

unchained from the event channel process queue and the MPPU is notified

that the CPU wants an interrupt. Then control is relinquisedto the

"normal" event channel code.

Pseudo-processes are~ pseudo. In fact they aren't processes at

all. I pproc is a collection of contiguous words in ECS which contains
J l)\.t t,,,

sundry interrupt system data and 1' · words which are a concession to the

interrupt system code. The first word is a header word which looks like the

first word of a normal process, except the flag bits indicate that it is a

pseudo process. The second word is a queue word which the event cannel

code uses to chainrhe pproc to the event channel (the event channel code
1k;r&. t.(lt)(,t ,s c.VltJ.

is passed the appropriate queue word offset (index)=l). Thereis also

a great deal of built in tnformation in the pprocs for each interrupt index.

Typically a single pproc will"belong"to to a single teletype or to an

external device like the printer or a tape driver. During initialization

the file location and size for the particular device, ring buffer pointers,

interrupt index and room fortwo event words are built into the pproc. MUX

pprocs, for example are full ofpointers used by the MUXINT routine--in part

as a check against pointers maintained by the user,

There are, of eourse, "non-object" data structures which are fairly

common across interrupt code: CM buffers for immediate PPU use, CM buffers

and words which recofd current action requests and responses on the part ot

(Ir}.· t~i l/c· ? _)

' ------

~:~ l~~, :~.;, ~:~?J;;cHA;;;} -
I. ~ I i' • .I.NT(~~ / . .'(.s . -~
2U>,:.. ; t.'~ I? f'

__ ,,,,__ -.
)

- , (, \, i..J ;> 2 IJ,' .. l 7-.-,.,roo.........--"

l. l-5 INT l\.3 INTt..l·~u/fl
A0&7K 1- P-/111:l(X. ~f\{ J}('~ -·h

[CS A Ci D P. : 0((1/:1 l. f T ;,.. !/N le:/!!!/ Ji
~,. _..,.....,.,.,._ T .,....._..,.,............,..•.aui,,,1~ ,.111,!.•

£. cs 4 D D>'l f, IN j; l Ir· ~ V1?t loy11,r\1
~i,,,...,._.,..uw,..._, .• ~~.,_:,.,,,~•~*'"""~,:1,~M""ll-,""''~''•1•""-~.,..,..,., ,-.,..,_..,.....,,.,• ,,,.,,,":..,,.,, ';4•,·1,.·,,,,.,,}\,if

(""c.£ n 1 1 • ,r11S .

~

'

;,:, . 4...,.ll,; ~ ,0(1/,-:'{)~ l
....... _..~.--...... ,,,. ... , .. ~·-~"'~,· · "•" .,•. ,.~·· ~·-·'"'''}

t

I

f/1) 51 Mf'?i) / l,O(jl(J

ll ;4(fl //,#()/7 [/J /) ;--:d,:/

£.uc YlT Cll44;1{&·

cc oc Ft:.1-7 6 5
'11--t'l' Ser TO

If_ ti 41,4/ l-'/J C, Ii
i' a,,,,

[-

7

the relevant PPU, t'ne interrupt code or both. (Ring buffers are used in MUXINr

in such a way that while an interrupt is running, a ''dialogue'' between the

CPU and the PPU may take place, and several actions may be serviced (this

may occur inthe TOCMQ and FRMCMQ ring buffers. MUXINT reqmres that the

afo paid ring buffers be located in the bottom 4K (dee) ofCM--due to

the addressing used b.v the PPU code.)

INTLHT is the routine which is responsible for initializing interrupt

objects. There are thPee_entry points, INTIDC, INTINIA,.INTINIB, which

are called in that order.

INTINIC, called from INITL before the master clist for the system

is created, computes the master clist needs for the interrupt objects

and places that sum in the cell, MC.IN?. It also initializes a pointer word,

M.ADDR which is used later in initialization to decrease option bits on

the capabilities for interrupt objects.

INTINIA, called from INITL after the masterclist and~ecs system

operations have been created, creates the file to hold device C list in:ieces

and puts the beginning address (in EX::S) of that file in DVCFIIE.

INTINIB, created after the ecs system operations have been created and

immediately following a call to the compactor (to guarantee the ECS addresses

will always be good), creates the interrupt objects for the different

classes of interrupts. First the interrupt queue file is created and its
'·

ecs address is placed in INTQS. Then the MUX, S-device,Disk, Displar1

Driver, and clocked event channel interrupt objects are created. Each

of the peceding represents an interrupt class and a single, valid interrupt

index to the MPPU.

'

..

.,
1. i'\ !,.t~ 1 \ \\J ... \ 8

Each such subroutineA(MMUX, MSDVC, etc) makes an single clll on

the subroutine, NF.WCLASS, add then creates the objects necessary

forits internal design. This occurs in roughly the following way&

For each class of interrupts, a prototype, or template, pproo has been

assembled into the INTINIT c0de. NENCLASS initializes some values

into those templates each time it is called. The subroutines actv.ally

making the "real'' interrupt objects then add whatever inform---ition NEWCLASS

didn't know. After the pproc has been created, the template is written into

ECS ontop of the pproc. In that way the pproc is "wired" with information

peculiar to the t~~f interrupt it represents. MMUX initialization shall

now be followed in somewhat greater detail.

MMUX passes five parameters to NaiCLASSz 1) the cm address of the pproc
'1'11J ! ••

template queue word (see diag J), the location of two cells to contain

pointer information (MUXPNTS and MUXQADD in l'HJXI'lff)7\he interrupt 1.mex

(=MUXINTX=l), and~the number of devices in the class (MUXWRBIT+1=2S7).

NE.WCLASS saves its parameters and then begins its task at initialization.

First it checks if' if the interrupt index is valid (error if not).
:J= N r('J,t,,.fJ 01" Cl. 4 ~ 5'

Then it creates a file of size=number of devices in the.\ The ECS address
A

of this file is then placed in the first pointer (MUXPNI'S) ..t..h:iJil .fiJ.t1t

is used to contain the ECS addresses of each of thepProcs •. TD.en the

current position in INl'QS is cmmputed and that numbrT is placed in the

second pointi~ word (MUXQADD); it is also placed in the queue word.

of the current pproc. Then the fi.rst clist index for objects of this

class is placed in the current index in DVCFILE. NE.WCLASS RETURNs to

MMUX.

9

MMUX now stores the current clist index in a cell in IPROC (JPROC).

This is the special tty. A file of size ttyfsize is created by calling

the subroutine MFILE.~The abs ECS address of the file data block (returned

in xO by MFILE) is merged with the contents of the current filewd (see fig.J)

for the pproc template. A standard tty template file block is written into

ECS where the current file data block is located. An output event channel

of appropriate size (ECOUTCNT) is created, all but some option bits are

turned off (OB.SENDEV~B.CHNAM) and the ECS address of the event channel
outchn

is writen into the · word of the pproc template. The same thing is done

for t:1e t~letype i:nput event chal1nel (XINCNT,INCHN, a~ OB.GETEV~B.CHNAM).

A pproc of size PPROCSZ is created, the MOT unique name and MOT index

are written into the template and then the entire template is written into

ECS at the beginning of the pproc. Then the ECS address of the ppcoc is

writ ten into the current irxiex in the file pointed to by MUXPN'l'S. This procea•·

is repeated for as many times as there are teletypes "turned on" currently

equal 24 (S.NUMI'T in SYSPAR).

The S (simple) Device interrupt objects are basically creaad in the

same way, but with different parameters. The Disk interrupt objectsdiffer

considerably in their use: the pproc pointer file (corresponding to the

file pointed to by MUXPNTS) is not used and a considerable amount of buffer

space is created. Display interrupt objects are likewise pretty similar except

there is also a file created for event channel pointers (DSPKPN'l') as well as

pproo MOT entries (DSPPPNP). The Event channel clocks are a red herring in

this respect: no pprocs are created for them.

F/Le_ ,~o

.r.;,.1 ,,;;; .:.: ·rr, 1 e, J.. 1 <; T. 6 • n l.. e.,;

tit~ y,..ec·(f he lt'J e,qftc1
4 BU&, C.4A/ C!itC e rt.z

Ir. 11 (.) uJ P';

ND .,cU4y

f: 17ur.e '1
Pi!.SC..fUP1I011J f;f (/Af<IOIJl ~ speq-5

tJ(PrtJt.oc.s FO~ ,-

------r--t4~· ...;;;..,c. .. ~IJR/J;l(JjlL lll?_L_. __
~\tA\ S-cle"''<- OtsK. 1>,s~4-y 1~~~..s

QU(U.l WD
%1.J P At O C-,

rtMt'LA-Tt

PPLtJ <. PTft
Fl L. < <.t. LL

XNrwu.PT
~U.tw\.. C-f If

.... " rV> t.(UIT
3:NDt."

#. 1Jev1C.<J
IN. Cl.A.S 5

PPlD'- SQ-(_

IN-E..VC.H
Sic(..

c;ur e11c1-1
S 11;-(i_

F' •.e s 1tt;_

.. '· .. . ·~

~
I ?tut\4... .s p ~ UE.<1£. DPG..\O OJP(UtUt f)SP6'«tt<t

! ' i _...., __ _
. . ----· ~~-4-_.::::J . . 1 . ..

1~~MOOi[SDVt&~!;1>s~.r ;osP~PNT I ~NrJU) d
j (M"\lllf} !: (~(~II!) /oSl<,:~@~I 117) i (¢,ftllll/'f)
f r· i' 1, ·

(M."XINTX jfSDUC/117(liD.U1'Ji..JDSPIN~ 'j r»PINTX-tl.

l (.: i) !! C = a.) i; (= a).!.(="' l ~..::- 6,
,

11
II .f 'J l ':.,/

: ~·_,._...,,.,..,_·~~,-.. --.....,···-~.......,~-~!~"!'°ff'!.~"-.~ ~~'."",!,;~ .,_ • · _ ---.~,.-· .. ro.'1oil,~,11¥,...- ·:.,,._,...._....,._ktffl--

'. J\1ttlWt8•T: ~~ :: Q lfAJPtR.A/ jl D~,tCN
f . .,. ('._SDVC.tNT '.! -, 1(DSPINT). ·1 (~
'(. ~S'>) C: .. i) ; I (! DJPI~ .. , I
i = . _. ~-=-,.----.-~l. .,,. .. ,,w-,~~~~ L ~--~2==~(:~)_:_
J)f'l(O<.S 't';SH,tcc.~ jOpA l r>~ttof.. l i DSPJ,f/1"

i '2 L~!! . !L~~~,!=~~~~--
'. • f l i
. ?/ il c-,ttJ&\ 1 1.. 1 n J ~·-L l

...:>f f~",,J, 1 ~ , , rn,.,,; l

j ,o ;~ r~~~~~-L\~~~ h;:1~~1 ·
1 p~-r .·,! \ I ,.ii
~ ~ ' ,\ ' f _...

(! j
• - ... ·-·"• ... ,,,...,..~ ····~· : •:rrn,;;r . ..JW_:.:.:· -...; .. :-:.~.;;.,·4----

_: 1 i P'1 ii..tcs ft) : 1lt ! ICr-1 iofi 1· K
PPVX- ~ ,~.., 5t2. f ~ 1 •

11---_ __._ ___ J ,• j ... -·-OR , -•••u_..., .. ,......,.••=--

,l %.NTUV1~f)T 7!P£~..&JVPex.,

+# fJUM4'tY

10

Now its time for the . MPPU (or MPP, a.s the source is titled).

MPP stays in a tight loop, worrying about user errors, cm interrupt
&n C. ,>:.<...

requests, clock updating, and sending PPU~originated interrupts.

The USERRA routine checks if the current value of the p-counter is zero.

if this is the case, S.USERRA is checked, if it is zero, the subroutine .
does a return. Otherwise appropriate action is taken, whether the

problem is user arith. error or a scoue call. GETCM reads I.Wake to

obtain an interrupt index. If the value is bi~ger than the table,

the subrontine merely returns (note that this hangs up Central as soon

as a CM request for another interrupt strikes-- code will wait forever

for MPP to clear I.Wake.) If the index value is ok, the 11ndex•th

entry in the interrupt table in the MPPU mem or:, is set to one.

GETINT examines the interrupt channel (INrCHAN) if it is empty,

GETINT returns, otherwise, GE'l'Int sets the 'index'th entry in the

interrupt table to one and returnS (if' index is greater than table

size, index is ignored). The code then updates the master clock in the

following fashion:

1) read the hardware clock
2) save the new value

J)

~~
6)

compute the elapsed time from the oldvalue stored inPPU memory.
read the CM master clock
updaa the master clock
return

The Q Clock is examined. If it is positive, the ueer has exceeded his

quantum, and the system tries an MXN to swapout the user. Otherwise,

it computes a new value for the q-clock and writes it into CM. It Q-clock

goes greater than zero, code tries to do an fdXB and then returns.

.. .)

11

The value of the charge clock is read tom CM, its ¥alue is updated and than

rewritten. The Nitty Grity cnde now executes.

If INTFLAG (set each timean interrupt was found) is zero,

return to them ain loop. Otherwise the codeloops, looking through the

INttable for an interrupt (~e., cell not equal O). When an interrupt is
•\ ·A.1 ",",-[J~ (.'',; .-; ;'''/' !'·,

II f" •· ' ., • I..J

found, CM is rea~ 'index• words more than I.points in LOW~M. I.Points
I\

is a table of P-counters in CM for use in the interrupt X pack--for the

new P-Counter. Now the MPPU reads the user P-counter. If an ECS transfer is

occuring the P-counter will be negative, and the MPPU will loop, waiting tor

it to finish. The PCTR is written into I.Box (the interrupt XPACK).

and the .Mrl°' performsan EXN. The currentclock value is read ad abs cm 2

is read and stored (all this to allow the interrupt tode to have time to
'

find out that it can't (or can) strike at this time.

If the f-counter=O then the interrupt failed, and MPP does an IXU

to restore the CPU and then returns to the master loop. If the P-counter

is not equal to zero, the interrupt held. The interrupt table entry (at 1n.:,dex)

is zeroed and the old clock value is incremented. We now enter a loop inwh 1ch
f .-.Y

1) Getint is called if (INTCHAN) i~ ~mpty,otherwise we loop by looking

at the master clockand updating it, then beginning loop again (check for

PPU interrupts, CPU interrupts, and updating the master clock.

If the interrupt has finished, we

1) iXN to restore the state of the cpu

i!> aestore the system state word <=abs cm 2> [useJ ~':t J1~p Lt+ lj e/ r1i1":i)
J) Return to master loop.

12

One can envisign the CPU interrupt logic as performing in one of four

modes: It is acting upon a PPU request of some sort; it is acting upon

a user initiated request of some sort; acting upon a backlog of both; or

"conversing" with the P.PUs against a background oi! one of theaformentioned

three. The last possibility was singl• out because, 1) it is possible with

the interrupt system as it now stands, and 2) it could result in one type

of interrupt running for a disastrously longtime (thereby preventing a

speed daemon--hypothetical, ~:c.916:l..t\·',:-: .. ,r:C~ construct of the TSS system-

or disk interrupt from running). That seems rather remote, and the idea of

letting interrupts which have bunched together run at one time seems attracive

if it doesn't get too extravagant. The drift of the design "worry" has b$en

to the opposite direction: the CPU looking out the PPU interrupts for to

long. Nothing now, and not too much in thenear future is planned which

will want to change this. The description of the I.LOCK, I.WAIT, and

I.WAKE flags has been presented, but no clear motivation for I.LOCK has

been offered, tho I suppose that must be fairly evident. The interrupt

system sends and gets events. The event mechanism is used by the system to

block and unblock processes. Portions of that system are bending pointers

which would result in a complete disastr if an interrupt could suddenly

strike and cause a process to get scheduled, or to have its queuing word

pointers manipulated. Hence, I.Lock.

It is fairly clear that not all interrupts may have the potential

to cause this damage. In particular, there is a class of display driver

interrupts which are allowed to strike without checking the value of

I.lock. 'l.'h.is is done in the firm belie:f that the only thing such interrupts

will do is read (not even write) .ECS and set operator time and date for

the screen. The particular algorithm foil.owed by the display driver to

1;
insure that this is the case is described later. A description of the

three general interrupt routines now follows.

GENLINT acts as the interrupt system's interface with the rest of the

world. It consists ofthree subroutines: Hang!, which hangs a pproc on

an event channel; Unhungl, which adds a pproc to appropriate interrupt

queue and notifies the MPPU that CENTRAL needs an interrupt; and

Dintq, which removes a pproc from an interrupt queue,doing all the right

pointer berxiing in the process.

HANGls; first action is to serve as a sort of register interfacj

with the event channel cod. It is entered almost ready to call the event

channel code. It, return link is saved (b7 is set to a new value

'inside' J-lt\N C,i':J.), the ECS address of the pproc is saved at HANG1. B,

bl is set to INTSCR (GENLINT) aoi transfers control to HANG in the event

channel code. If an event was already waiting for the pproc when the

event code tried to hang it on the event channel, the pproc was 'unhung'

again, x6 alXl x7 were set to the event and x2 was set greater or equal to

zero (otherwise there was no event and • HANGl can return normally

to the location it stored at HAKll.A). In the event of an event, the ECS

address of the pproc is refetched from HAN'.il.B and control passes to UNHUNll.

UiiHUNGl is enter~d after a pproc has received an event. The pproc has

been unchained tom the event channel process queue; x6 and x7 contain the event

sent to the pproo. xl contains the ECS addr of the pproc ad bl is the

pointer to a suitable scratch area for the int6rrupt system. First the pproc

read into CM from ECS, then the event is stored into the CM version of the

pproc. I.WAKE is examined. If nonzero, ONHUNG1 loops until the MMPU

clears the cell; when I.WAKE is zero, the interrupt index for this pproo

is stored into I. WAKE. This signals the MPPU THAT AN INTERRUPT of the SA Vll e,_,
Q(;) r ~-•A'r

index type~of the pproc is being requested by the CPU interrupt code.

Now the appropriate INTQS entry must be updated (see figure 2). The two words

14

of the INTQS entry must be read from ECS. the current value for QLAST is

saved, and QLAST is reset to the KCS address of the pproc. If tae old

value of QLAST was zero, then the queue was emoty and control passes

directly to UNHUNGJ. otherwise the foreward pointer of the pproc named

bp the o::µi value of QLAST must be reset to point to the new pproc. Control then

passes to UNHUN:72.

UNGUNGJ was entered because the interrupt queue had been emptry~

QFIRST is now set to the ecs address of the pproc (QLAST H.As already been

set) and control passev to UNHUN:r2. UMHUNG2 zeroes the cainwd of the

pproo (it is t~e end of the pproc queue) and the pproc is then written

into ECS. QFIBT andQLAST are written into ECS and UNHUN:r now returns.

DINTQ is the interrupt subroutine which removes a pseudoprocess

from an interrupt queue. DINTQ is entered with x1=ECS address of the

interrupt queue and it exits with x2=the ECS address of the pproc or zero

(if the interrupt queue was empty). The two interrupt queue entries are

read into CM at locations QFIRSTX and QLASTX. Fetch the current value of

QFIRSTX into x2. Return to user if QFIRSTX=O (queue is empty).

otherwise,read the pproc named by QFIRSTX from ECS. Set QFIRSTX to

the chainwd in the pproc. If the chainwd=O, reset QLASTX to Oas well

(queue is noir empty). Write the CM versions of QFIRSTX And QLASTX into

the interrupt queue in ECS. Set the chainwd in the pproo to O arxi procede

to write the pproc back into ECS. · Return to the user (X2 is set to

value of ECS address of pproc.

As a matter of course, the event channel code in the ECS system

recognizes the difference between a orocess and a pproc. When an event

arrivev at an empty channel, th~ event channel process queue is checked

to see if anyone is hung on the event channel. If so, the process (pproc)

is unhung from the event channel. At this point the code notices the

. i

1l .d
15 f)i 7

, ~11). \~f <5.tC._,
"eN flag is se~ o~ its process--which means that the''process" is really.• },-,J(\.;/y. ,.1,\\'J A \.

M~ CJ\:-i~iv, 1tfl ./\t.k'. .,p ~v \
a pproc. b7" set 'to the aporopriate point in the event channel code\. ~7 \ .• ",<.::::, tY.. ~\~\1<.,

(LL1.- (,~, . (}
'l¥',~ ',\','•

(return link) and control passes directly to UNHUNG1 which places the pproc c\J .' fl,\).)
\\tJ\. . ~"""

PU 1 ,. ~u!~t.0-'. ,r1 '} ~..k.\.J! on the proper interrupt queue, notifies the MP that Centra wants an pv--' ~ ~ ~u
'I \J.r.. v c.} \

interrupt, places the two event words directly in the pproc and then ·~v,)~\ Q.,L-\-~v'\l\U..~~
(.,-\ l {\ \'I '\.

returns to the event channel code. The event channel code clears I.LOCK v:,~t 'f,dJ.-,1
-····--·---·~

(which is always set *hen the event channel routines are rumu:ng'/,7.•!c/J UN.JJ'f.S ,,,N
'T].~,..

returns to the sender of the event (an interrupt routine could have sent er'<1lu>1r 15
1

•

(<l((//11/ I C
the event--entry point is EVE11T1, several registers must be set, including !t I rf H.fs

C,'-1(l-'< ,; TC
b?=return), and the MPPlT will attempt to interrupt the CPU. fairly soon 'tl./r4vT CH Lt:.

NL
ther• - ,..er. C ,,, -"' n

v iu.~ It an interrupt routine wants to hang a pproc on an event ._..,vi:._

channel, it enters the event channel routine HA.NJ (with appropriate

registers set) which is happy to hang process or pproc on a specified .,

event .~~: ~~\'c..i:t/i;:. "l~.~r1;.ir:i :;~~:\~;: ,.:.t;:U'pt~:£,.:;:;::-c r;:;;_)
This mechanism allows the individual interrupt !:ales to be completed

with a reasonably clean interface with the ECS system and to take advantage

ot parts of the ECS system's services--interprocess colllllunication and

syschronization through event channels.

Two brief interrupt scenarios would be as followsz 1)

'.l:he user sends an event to an event channel on which a pproc is hung.

ihe event channel routines recognize the pproo and pass control to UNHURll

UHNUNG1 queues the pproc with its new event and notifies the MPPU tat

an interrupt is desired. It ~hen returns to the event channel code

which will begin to return to the user. At the same time, the MPPU

eventually notices that I.WAKE is set and notes the index of the interrup

being requested. After all other parts ot the MPPU loop have been completed,

the MPPU tries servicing interrupt requests, beginning with the smallest
I

interrupt irnex. :&:ventually an interrupt from the MPPU strikes the

CPU. 2) (the P-counter tor the interrupt from theMPPO was set by the MPPU)

16

The interrupt is running. It has a choice of checking its local storage

to see if there are additional "instructions" in the form of prearranged

commands which where put there by the PPU "overseeing" the real device that

this interrupt services, or it can call DINl'Q to remove a pproc from

its interrupt (irrlex) queue. At this point the interrupt routine has

in its hands the pproc which received an event (or which was, perhaps,

just hung on the interrupt queue for some other reason,by a different

piece of interrupt code for that level of interrupt) and whatever information
~

there may be in its CM butters, a.e .lt can presumably begin to do whatever

it was supposed to Ao. When the interrupt routine is finished it jumps

to cell O (absolute) and the MPPU eventually returns the CPU to tie

former state.

As a whole the interrupt system seems to be a reasonably clean am

very general interface with the ECS system. It allows for multi-level

interrupts (but interrupts may not be interrupted), and has the virtue

of "cheating" very few of the rules made by the ECS syst~m--tor example,

the ECS system tends to abhor absolute ECS addresses unless they have

just come from the MOT. The interrupt routine use the abso.lute addresses

or the file data blocks (and of the pprocs and event channels),but

ECS was compacted before those objects were created,so 1;.hey should never,

ever move.

Addi.Di another device to the system would be trivial from the point

of view of the interrupt system interface. Another subroutine would have

to be added to INTINIT. This subroutine would make a call on the subroutine

NEWCLASS to initialize some of its pproc -...nplate values and to initialize

pointers relevant to the interrupt type that it represents., Then the

17

new subroutine would procede to make the pprocs, buffers, and event channels

requisite to its needs. Presumably another PPU could be fired up with the

appropriate code to interface with the new device.

to know anything at all about the new interrupt.

The MPPU doesn't need

The interrupt index

represents a cell in the interrupt table and an offset from a point in

CM where the P-counter value can be foun:i.

18

Anyone wishing to pursue this issue any further may check the following
(veyy often undocumented, I'm afraid) computer programs.

DSPINT,SOURCE
EVENT,SOURCE
GENLINT,~OURCE
INI,SOURCE
INITL, so· iRCE
INTINIT,SOURCE
LOWCM,SOURCE
MSM,SOURCE
MPP,SOURCE
MUX,SOURCE
XUXINT,SOURCE
SDVCINT,SOURCE
SYSPAR
SYSYMB, SCY.JRCE

I didn't attempt to unravel the disk system interrupts, to be found under
DSKINT,SOURCE. These two part names are representative of the way the
code files are stored on t~e disk when the .ECS system, or perhaps better
described as the BEAD system is running on the B machine at the Cal Computer
Center.

, .. . , c·· r ,
' I : '! I r .. \.' l·• -

r . ..- /. .- • • - ,. ,.·
/)./ / f. \.)I.',,>_; \ ·· t,._(,.UJr_.-J

iz
I,t(CK, -

~~ /
c /

/

ft/c)

~£, t(S ~ . DJ J1/l4Y r)!jJe . fl--Ct))()(~cV fRDvVi

,..__..-r------ ! !"Pl res e-lhor Wt tfuJ<1f-:

K hex o/~1J' 4LY)u·t /~--,

< '\
I ' . , r
1
· I ':

I I ; I

\

'" ------ -----.. i

_.,. _,,, __ - -·--·.

1 cfCGi :PPU.
,I c:o J !IT E'

r'
('-.{_. ' l .. 'L' ,-. 1-1· \
\..___ ,-,~IT' y)

i-
d,,

' ' -- ,,._

l) (f C'TIDU

2) Lf..'>c) r cO c c1J 1-r/--
J) Pcs ,:f ,,f·t

1
//' c-(/.,,;l,£!{111)"c/ffc~;

/i) ,!)~-'//((r: //t(I, ;·/J{/1

) /
~/

5e1 pftcDC IllrD Ci!--1

[hoHLJvvt pfll't t2f pp/c7c ,,,.
C Ott T r11 t1$ f'e /..,t' ilf.ft·tf J41,J

_......-/--' ---.:t::...--------'~
C -A)-.L.. :'><? 7 (V1 i)rj .e

/)/ ,· '· ,-· ----- .. ·-._."""
. ~ \ ';\ I. /(j '-·

·"" 1i. ·1)< ;·'c,<_ - .. ___ .-:.:9
(

·,11)/ (J) l
J-i. ,/ ·~

~-~~·
~ L•.'~l ,I

l r -~ 1: i
r - -~ - . - iJ, - - -

I ru, ,ik.: _ c.·,,l l,,.·.,,_;,c- 1
•.. ' .·.··.r.· rfiJ' ?/PL'(: ..r)

\
I l I . , \ ; • • , •
"· - l . (' ,- I', c· } t 'r I ' l

1
. ; . ' ('< - \ I:' \- / f. Iv, (__' - 'l

, j. /- I , {' , .. - , , - J
) '·• '\/, I I ~ --- ;_'('[..,t __ '(FT ~J_ .

- 1 --·-- ·- - --- ·-·--·----- ·--··-·· -------

tY - - .. ·--· ·•· .

1

1· Fc:.-cF ii' 1iAXs,D/15< fe0J 7/~,_ I
i d t Lil(·(J
! . - .-- --- - - --- --·--···---·

'(":~ Y.Cikfl~
~ (' /

' '• '

d; ----------·----- -··---------~
. \ Fcfd1 +/{_() en P..~t.+ p..c-/1t>I./

! ti' {)ql)tff rl!l'lfl/ 7 /11"' ff "<?C ,f n/J .
I fY{ 1 IN Tl') 7/.e_ ffi,tl.('W£ST

l c•j .!- 0 (. ----------· -- ···---' ---------___ J ________ --

(s c ~-,~1·p{JS-y\
'--------~

/({? Q_(j ES I
7e t1; 1.11 n f/7-f II&~,)

Ft 1P CZ:-i·k9--1 ,J.1; I

I :- . I 1 ' 1, I '. .)

"- ~ --1 i; J · J j ,
·----·-···1----·--··-·

i1
, () . /. ~

"'..J. T ·~ t ... ,', \

~,
1 t;;,,_1:'.>) ,<<) '5c ,711,;J;J.5 f1

r j (i._ l -

··-- ·- -----.-- .. \'J./ ·--. -. ·-· ..
(Th-~ l- ('P~ I l...,,-1.;~Nti <;. {)('l (_ -e)
.]'NIT) t-?LI ~ c /,t!{)(Src~s

) __ P('• ti l 1LL {' ~. // !/ i,'(,ij

(_ ()J,1 h T f-!._U CT t? ;:,·es;hYS e
j') v ')
,_ t.11f f-(!.()v>t

D C V<r~v2ii 1 L/,it-llf cf ~_,(:)Q X UrF! /3
{;/:II , r'>,Pt! OC)

< -lt!t(/lr::;v, Ppa !leSr:/Ol./5<.:' (Pevrce 1F J
c u1:1:!er,1T 1<-e Q UJI[-{> (P/>1<.oc.)

/.Sp;l/S (

/ --.. -\

I \ ' . I ., I :) .' t. '/ \
\: >_ l ,-!(I f j .J '

..... -[.. ~--·---------

)

. ----- ~

/1 i /) /C-') ~;- \
.... (·· l,.) v j
.•. ------

'·

--------- -~ F'C' tC.iL ,1cldf~J~> C7j
e'

!/)€:-.' xr rJ3C! FfeJJ .,

lt (11f1T(~ C lfJ!.l!..E:?VI T J3tt r'fe-1
. ?'cJ I 11 ·(-,;? -1

ii/ L/,1

(-l.f.6?.J ·?e 11.f--. '-..,,._ --
;~ a F Fc,,1 ;-7 !'1

rt/()
.,,...,.-·

,/ SC fl!// {J/S /}

/

I .

(• ·., I ((i. I
'-, I '

i
d' ---·----------------

•' 1 r, l j .. ,\.' ' J. (,.·· :, ·,~j/117 {j ilc. {e,(!
, ~ 11 l) , ,.... L.. - - '-- .- {

1
l . ., . '

l 11._{ c (/ -...1

- - -- -- - --~- .. -- ------

... , __

_ ..

I

)
'sJ) UC 4,1)<' ~. {(S 01.t~ lt~

(l/ 1,u ..
1
(' t? T (/l~c___, j

'--· - ~ .-• - ----- ----·-
cl

-·- --~--;-;----- 1

J f~~-1(L . J hlJ cl{! J// U)J.) ti.Arp} ,EF?ll(!>
L r- 12Drvt PPt2{)c__
---·----- ------· '/.--·· ·- .•. --.. --- .

~'-.. .

(_ ('.) J,)I (11tf~
4· u 1fnuD 2 > ~

CH11C1 ; fJr·?-!) ~
(\~/)c9,; /.1 r-<.. Ocf.)? 'f .· . ,.....,..---/-) / T /_.,-

_ _,,,--

.. ._ _.

\ :-;1'~· U -- "{<_,~--- '<: lu,7((1 1• 1 /1.'lr .· 1 iJLY f

I 1\.(j/._,1> I
/ A 1 . 1 1 i , 1. p, c 1 n11;. /1) t c . !

~~l~,,j }

1/
,.-- , -· -· .. -- - -~·- '."'\

~/)

----~ ~ ---------..;,.-~----- -

/, f-<:i:T<..I(!/(('!();(/ cf .J.'):..<..//thl'!.1
5 Nut n J't")t(()C.

/'L:T
// C r1c)rV I n.rD 7~

f}~C NLOVi 8 UL ;!7C:S (f-.1tJ,1 / J/J

St,) U('_)< (! (.,,.\ T Ii t:')l <!_
r -

~i. ,>

/l:: /tc .U_.

./Wt t(_c_.:/

f.:('TU ,/ ... J./ ../ (\1)() #4~;: ~/
/; }l!cc Jc) f < .5 '?

. r,

,', l 1... (, ,\.- l

I
I_~

•.
/ ! {

I .
' r ;'

' .
.,_ . '"') l. , IC

--- --~

~- C · }_; L)
I(. I I I \..) {,, '..Jc

. --,
Ii,;

c ~c, ')!, 7 ---,- . - _,_ ·\. (L cf> rJ \
"-- .. (:' l '/l r · -) · ,,)

. I
• ' - -~--- '. I' • ~ - ,

, ·,. /', , ' ,' L ',L
-- ~ Li_ .• - I ,

,..---------·· ------ ----- ------------ ---------

}
1 ,/. l . '"I r ·C i 1 0 pf) tD{'-..,e>c /(t~.:1/) "'\ J./., 'f (;t '/ <> V ,,_ --

(co~ n (1,';J s bu!:, ~.e- ·) pt-r~
I r1 ~-i) ,> f'.- f-c) .. .

{ J l,l to C r1/)

(.,,. /h,

pt'I ,n tiS

.... - ,
"'-----

f lL-C r'!N ..
+

CCi,lY'{
';)

/

_.,,

