Standard Names

Throughout the Command Processor Complex a standard nameing comnvention
is used to specify data, objects, and the location of data: and objects.
The Syntax and semantics of the standard naming conventions provide a uniform
naming mechanism which can be used to form parameters for commands. Standard

names can be used to define a datum, an object, the location of a datum or

Ma

an objects Or an jidentifier (string). rﬂ‘u Nopu&

c\ww). o)

Standard manes are always evaluated within the context of am environ-

This namis ng

ment which controls the set of accessable objects and data. <“Bie- environment

W determines the "meaning"

V\ka ne

of the standard name. TheAenv1ronmentﬁlil..li..l.ln-con31sts of a(§e§§ulf\lwasier
scan list and a set of '"variables" maintained by the CPC. The scan list
specifies a sequence of directories which can be interrogated,'in order, to
"look up" an object name (identifier). A directory '"look up" returns a
capability for the object corresponding to the proffered name. The access
control features of the directory system provide control on the type of
access permitted to the objects in the directories. "Variables" are named ceJ\s ?
.obggﬁ?g‘)withln the CPC, each of which contain a single datum or a single
capability. For example, a var1ab1e named HOWARD may contain a weak capabillty
for a friend's directory, and may be used in a standard name (e.g. to access
a file or subsystem in that.directory).

In the debugger the environment of evaluation is expanded to include
the 1) memory, 2) working C-list, and 3) central registers of the subsystem
which was running just before the debugger was entered.

Standard names are written as a sequence of identifiers, integers, and/qr
punctuation mards. A standard name be either an "atomic" (simple) name or

a compound name. The evaluation of a standard name, "atomic" or compound,

s
- -

returns a value of some value-type. There are 9 value-types which can be
produced by the evaluation of a standard name or element of a compound standard

name. They are: 1)identifier, 2) datum, 3) object, 4) variable,

5) indexed object (index.obj), 6) scan list reference (scan.ref), 7) directory

location (directory.loc), 8) subprocess location (subp.loc), 9) register

location (reg.loc).

VALUE-TYPES:

identifier

datum

object

variable

index.obj

scan.ref

directory.loc

subp.loc

reg.loc

a string of characters

a 60-bit word

a capability for some object

one of the set of '"variables'" maintained by the CPC

an object and a datum: the object is either a file
or a C-list; the datum is an index to select a word
from the file or a capability from the C-list

a scan list (object) (i.e. a C-list of directory
and access key pairs) and a name(identifier) to
"look up" in the scan list

a directory, (object) name, (identifier), and access
key (object) specifying an entry in the directory

an index (datum) specifying either a location in the
memory (core) or the working C-list of the subprocess
calling the debugger...(available only in debugger)

an index (datum) selecting a word of the exchange
package (registers) of the subprocess calling the
debugger...(available only in debugger)

When evaluating a standard name, or an element of a compound standard

name, it must be specified what "kind" of wvalue-type)is desired. This is

called the "mode" of evaluation. If a result is obtained which is not of a

correct value-type, the evaluation procedure has at its disposal a number of

type conversion functions which can be used to transform the value to a type

matching the current ''mode".

There are five modes of evaluation: 1) identifier, 2) datum,

3) object, 4) datum location (datum.loc), or 5) object location (object.loc).‘

The "mode'" of evaluation for a standard name may be any of five modes. For

parts of a compound name, the "mode'" is restricted to identifier, datum and

object.

MODE VALUE-TYPES(S)

identifier identifier: a.string of characters

datum gaggﬁz a 60-bit word g
object object: a capability for some object ; ?;ﬁ,
datum.loc the location of a datum

a) index.obj: a file and flle address

b) variable: the ‘datum-contents—of a variable ’
c) subp.loc: a memory (core) location (in debugger only)
d) reg.loc: a register location (in debugger only)

object.loc the location of/for an object ,ko
a) directorv.loc: a directory, name, and access key ‘¢v
b) index. obj: a C-list and C-list index . H’é o Q
c) scan.ref: a scan list and name- ;y
d) variable: thedapabifity eonténts—of a variable? U’ ol

e) subp.loc: working C-list location (in debugger only)

If the type-value resulting from the evaluation of a standard name or
component of a compound standérd name is not compatable with the prevailing
"mode' of evaluation, the type conversion function corresponding to the value-
type of the result and the current mode of evaluation is performed. If no
such function exists, the standard name evaluation fails. The type conversion
function may also fail in attempting to perform the transformation. The
current symptoms of such failures are messages from the CPC of various

degrees of obscurity (i.e. F-retrum and error indications).

-
\

Type

conversion functions

type

type

type

type

type

= identifier? mode = datum

An identifier may be converted to a datum to satisfy the mode of

evaluation if the character string of the identifier matches a

variable which contains a datum. In this case the new value is the

value of the variable and the new value-type is datum.
Failure conditions: 1) no such active variable

2) variable is un-initialized
3) variable contains an object

identifier: mode = obiect
An. identifier may be converted to an object by "looking up'" the name

which is the identifier, in the "default" scan list. If the look up

succeedes, the new value is the capability returned by the look up and

the new value-type is object. ‘ ; A

Failure conditions: 1) indicated name not available ié)"défault" scan list.
b

='identifer® mode = datum.loc

If the identifier corresponds to the name of an active variable, that
variable can become the new value and is of type variable. This conversion
function is available only for commands to the GPC (i.e. services and
debugger commands).
Failure conditions: 1) no such active variable
]
= variable(r mode = datum
If the variable contains a‘datum, that value can be returned to match
a datum mode of evaluation.
Failure conditions: 1) no such active variable
; 2) variable is un-initialized
3) variable contains an object

A

= variable®¥ mode = object

If the variable contains a capability, the capability can be returned

to @atch an object mode of evaluation.

Failure conditions: 1) no such active variable
2) variable is un-initialized
3) variable contains a datum

type = index.obj" mode = datum

)
An index.obj is aﬁ'object and a datum. If the object is a file (disk
file or ECS file) [or a name tag for a file| then an'index.obj can be

converted to a datum. The contents of the word at the file address

.
with |

i corresponding to th?ﬂdafum of the index.obj is returned as the value,'

and the new value-type is datum.

Failure conditions: 1) object part is not a file [or name-tag for file
capabilit}ﬂ
2) file does not exist
3) block of file at indicated address does not exist

4) datumZ}s not legal file address for the file
nrafut

v
type = index. obj“ mode = ob]ect

If the object of an index.obj is a C-list [or a name tag for a C—llsé] f

then the index.obj can ‘be convcj.(rted to an ob]ect. The capability @ the
£ [he
(LLU.L (1(

C-liss4selected by tﬁiﬂdatum part of the index.obj is returned as the

va

new valuer and the _new value-type is obiecte i

s s i) myw//(’ Lok i O et -
Lot cap /y fn Cc-C -'/_?o/oa /Lc(.‘/ﬁ"’]

) e s oA Bl et SRy

e PO YD JEC L T

Failure conditions: 1) object is not a c-1ist/ or dynamic name tag
for a C-list capability]
2) the C-list is not a proper scan list
3) indicated name (identifier) not available in the
v scan list.

y

type = directory.loc: mode = object

é?directory. loc is a directory (objecti), name (identifier), and access key

o
L A4

-

type

type

type

(object?). To convert a directory loc. to an gbject, the evaluation

procedure simply looks up the name in the specified directory using the
access key to authorize access to the directory entry. The capability }

returned by the directory system is the new value of type object.

Failure conditions: 1) objectl is not a directory capability , 3
2) object2 is not an access key f%/,”f% ’{/ A1) %

3) directory does not exist \,

i 4) indicated name (identifier) not in directory X
5) name is in directory but access key does not \"
authorize access \&
P‘I y "\\:,j

/ S\

= subg.locé/ mode = datum {\ oy
A subg loc is an index (datum) which ‘can specify a memory word or workin ;?,U¢Ca
he Kol o Lol ﬁ e ("'I e ' ./ il & tao L call A g \C\'

C-list entry 13}a—eubpxocese—wh&ch_has—ealled_the_debugger To convert pﬂ”¥

a. subp.loc to a datum, the contents of the memory word selected by the index
valettt caelored ab Le /o el el

of the subp.loc is returned as the value/¢ This conversion function is

a(_)OIf((OkC

alwiltable only when operating in the debugger section of the CPC.

Failure conditions: 1) index (datum) is not within field length of
subprocess calling debugger (positive index)
2) index would be in debugger core or below (negative .

index) : \d

\

= subp.loc: mode = object 3
When operatlng in the debugger, a supb loc can be converted to an object. \§
The objec (capabllity) returned is the one found at the specifled index o
/d C /,, o ('[4 "N\ CCA [ol /’ Co ! ”/(\ 28 % tecc _ﬁ{ v \k:’J (i

in the we;k&ﬁg C-list of: gubproeess“uhich_calléd—the—debugger M ‘vﬁ}

Fmele C//“u’/ CMA// Vid CO 2L z(:(!é/,z.‘ ////c,ca‘n/z;w C-Cr-7 &7, fr/ /}L“f
Failure conditions: 1) index (datum) is not within the(Tvdl C-list of
‘ subprocess calling the debugger (positive index unﬂﬁun
_ 2) index would be in debugger C-list or below (negatlve
index)
= reg.loc: mode = datum
A reg.loc refers to the 20g word exchange package (registers) of the
subprocess which has called the debugger. If the index of a reg.loc is
within range (O J(Z3 20B) the contents of the wcrd of the exchange package
corresponding to the index is the datum value returned.

Failure conditions: 1) index is negative
2) index is greater than 15(17g)

"Atomic" (simple) standard names consist of either an identifier

or a content.

¢ident> ::= <letter » |chary|(identy <lettery |identr <digity [

(¢identy . | «ident7z

' £ char » /

S

Identifiers are composed of letters, digits, periods and

’quoted characters. An identifier starts with either a letter or

a duoted character.

20N 7 A

A simple quote markthe followihg single

7

character. It makes that character part of the identifierfzéﬁy

4

character except carriage return can be quoted.<iv

-

4

In particular, a quote ma

rk canlbe quoted. The value-type

of an identifier is identifier.

I o
Exampleﬁ

NAME

NAMELS

NAME15. A
DOLLAR' $

*$. MONEY10

'-‘H’IONEY' U l#.)_l,'rlg

How simple can you get.

" Digits are ok except at the
beginning.

Periods are also,- « /
The identifier is DOLLAR$

Quoted characters can come at
the beginning.

The string is $MONEY'#. 479
(Note: the quoted quotes).

Zeonsty = Ldigit> |iconst y- digi{i" | 2 consty B ' (const> D

Constants are composed‘ digilts, with possibly a trailing 'B'
or 'D! with a trailing 'B' it is read in octal, with a trailing
'D' it is in decimal. Otherwise, it is read in the current input’
mode (default input modé is octal). A constant is an integer

with a maximum value of 60-bits. <

e

C The value-type of a constant is datum.
Example:
55 : 558 in default input mode.
59 Tllegal in octal mode.
59D | Ok anytime.

591234TD | A bigger octal number.
Zinteger.primy ::= «zident y
mode: yidenty identifier
result value type: identifier
} ~(remantics: -identify ,4(';(;2,”;:1'/;':.
<integer.primy> ::= <Lconst? :
mode: (consty> datum
result value=type: datum
A (cemanties: value is value of the <{const>
Linteger.prim> ::= <sidenty
mode: ¢idfigh> idenmtifier

\ i
result value-type: _same . '@icalilc

semantics: identity

(integer.prim> ::= (¢std.namey)

Zinteger,term’

Zinteger.termy

¢integer.termy

¢integer.exp>

Zinteger.expy

mode: «std.namey any-result value type: same

semantics: ident ity

<integer.prim?>
mode: <«integer.primy any result value-type: same 3

semantics: identity

Jinteger.termy * < integer.prim >~
mode: ¢integer.termy datum
< integer.prim™> datum
result value-type: datum
semantics: not get implemented. Probably

48 multiplication
y "
integer.termy / < integer.prim >
mode: Jinteger.term> datum

L integer.prim > datum

result value-type: datum
semantics: not yet implemented. Probably
48 bit division
Zinteger.term >
mode': Zinteger.termy» any
result value-type: same
semantics: didentity
integer.exp> + < integér. term »
mode: (integer.expy datum
{integer.termy Mm_
result value-typeﬁ m

semantics: 60-bits addition

< integer.exp> = (integer.expy - csinteger.term> .
mode: «integer.exp> nggé ’ s
<integer.term> datum
result value-type: datum
semantics: 60-Bit subtraction
<integer.exp> ::='¢’<integer.term>'<
i mode: <(integer.term) @_ux_n \ /
result value;;ype: datum
semantics: 60-bit 1's complement (except

for zero ...-0 produces all bits

on)

Integer expressions (<integer.exp7) are expressions built
from (integer.prim> using binary and unary + and - (*&/ someday) _
‘ (Flfgarentheses around any standard name makes it an (integer.prim).
However, unless the <§td.namef7is of value-type datum (or can be

converted to datum) it cannot be used with the arithmatic operators.

5
M'{
5+10-15D ‘ value is =2 if input mode is octal.
it 7
5+7-(10-3) =5 if input mode@'octal
5+(I;(LE1#10D) value = 5+ contents of the 10th
C s it
: word of @ile ¥ in "default" scan
listo &i"a
275B+(#52B+T) 275B+ contents of cell @ of

memory of subprogram calling the -
(2 bugger

'IABuBA.SEI/-lJ((ORE- if TABLBASE is a variable containing
FILEASLY

- 1A 249 5 1) e v ke 2 Pl
T ,‘7/:)1/},,& + fﬁ!_:/;;: LEH-5

a datum and COREFILE is a variable

containing a file capability, we

have contents of TABLBASE plus the

contents of word 51 in COREFILE.
<word.paét5 ::= dinteger.exp>\ <«integer.exp)

mode: <{integer.exp> 1 datum

Zinteger.exp> 2 datum

result valﬁe type: datum pair
semantics: The datum pa;r value
is interpreted as a shéft-é%éﬁt"..
(dnteger.exp>1) and 60-bit datum
value., This pseudo value type is
only used in a<:word.expj>and is to
simulate a crude sort of COMPASS
type VFD facility. (This construct
is of doubtful utility).
gwordeexp y ::=< ﬁord.part)
mode; 4wordpart>>datum pair

result value=type: datum

semantics: the result value is simple:/

v

the second datum of that datum pair.
The shift count part is ignored.
{word.expy ::= (word.expy, «<word.par€>.
‘mode: {word.expy EEEEE
<\"izord.part>datum pair

result value type: datum

sematics: the datum value of the
/word.exp’, is left shifted (end off)
\but the shift count of the datum
pair. The shifted value is then OR'o/,,
‘(with the datum value of the datum
pair,ahﬁ-form the result value. No
checking is done to préééribe iﬁ%eréﬁf;;y—
ing fields in this pseudo VFD (also
built f@fm right instead of left
as in COMPASS).
{word.exp> ::= {integer.exp)
mode: <{integer.expy any(éééﬁii)

%

value~-type: same

semantics: identity (this is the
common pé?éé route for names not
uéing the pseudo VFD datum
definition,)
{name.prim) ::= {word.exp)

mode: <{word.exp> any(rééﬁi%)

“?alue-type: same e

semantics: identity (this is an

extra production’adds nothing to

the language).
(name.termy ::= name.termy ‘: {ident); (name.primy

mode: (/name.term> object

Zident) identifier
s % . ¢name,prim object

result value-type: directory.loc

DRAFT

semantics: +the directory.loc

consists of the name.term as
the directory, the ¢ident> as
the entry name, and \'name.prim>
as the access key.
{name.term> ::= (name.term) : < ident”
mode: <name.term > object
{ident> identifier

result value-type: directory.loc

semantics: +the directory.loc value
consists of the (name.term>» as
the directory, the «ident> as the
entry name, and the. "null" access
key as the access key.
- <pame.term) ::= (name,prim>) {ident

mode: ¢(name.prim) object

{ident)» identifier
result value-type: scan.ref
semantics: the «name.prim)
is taken as the scan list (should
‘be a proper a-bit for scan list)
while the (ident> is the name
to access the scan list.

{name.term)» ::= gname.prim}

mode: (name.prim) any
result value-type: name

semantics: didentity

¢std.name)> ::= ¢std.name> #

¢std.name> ::=# ¢(integer.exp)

{integer.exp>

mode: (¢std.name) object
{integer.expd> QEEEE

result value type: index.obj

semantics: the indexed.object

2
-~
may be either a/e-list or a

file. The index (<integer.exp>)
along with the object (<std.
namey) form the index.obj value

resulte.

mo&e: {integer.expy QEEEE

result value-type: subp.loc

semantics: the (integer.exp)x',,,f, 25
either the c-list bf;hemory of

a subprocess. This index is

the value of the resulting

subp. loc

<std.name) ::= $REG# (integer.exp)

{std.name> ::= (name.term)

mode: gﬁame.term) any (result value-) ,

mode: (integer.expy datum

result value-type: reg.lop
semantics: The index (¢integer.expy)
specifies a word in th-exchange

Jump package of the subprocess which
called the debugger.v This index

is the value of the reg.loc result

el

Vo

AR PN

semantics: identity

Examples:
NAMEL if mode of evaluation is
l) datum: value is datum
contents of variaﬁle 'NAMEL'

2) object: value is capability
obtained from 'default' scan
list under 'NAME'.

TEMPDIR :NEWFILE refers to entry ’NEWFILE' in
directory ‘TEMPDIR'. 'TEMPDIR'
is "looked up" in the default
scan list. The "nul;" access key

completes tle directory.loc

4 FRIEND:SHARFILE;OWN, KEY 'FRIEND' should be a variable
containing a directory capability.
The entry named 'SHARFILE' is
referended with 'OWN.KEY' provid-
ing access authorization. 'OWN,
KEY' is looked up in the 'default'
scan list and should be an access
key entry.

SCANL» DIRECTL :FILET3; 1 SPECKEY

| 'DIRECT1! in 'SCANL' should be

a difectory. YSCANL' is looked

up in the Ydefault" scan list

and then 'DIRECT1' is looked up

~in the 'SCANL' scan list.

'SPECKEY! should be an active

10
DRAFT

variable conating an access key.
PERDIR :DIR1 : FILE] ;MYKEY#/TABASE+T2D
'"PERMOIR :DIR1' should be a directory
gained using the "null" access key
in 'PERMDIR', PERMDIR' is located
in the "default" scan list. 'FILEL'
should be a file in 'DIR1l' availeble
under 'MYKEY' (MYKEY' from ‘default'
scan list). The word at 'TABASE®
('"TABASE' is a variable) plus 72_42—’7£°
location referenéed by this standard
name (index.obj)
#BASEADR+10B in the debugger this name references
thé word (or capability) at 'BASEADR!
(BASEADDR' is a variable whose
contents are taken to get a datum

because of the '+!) plus 10 octal.

