
Standard Names

Throughout the Command Processor Complex a standard nameing cortvention
. 'I!

is used to specify data, objects, and the location of data . and objects~

The Syntax and semantics of the standard naming conventions provide a uniform

naming mechanism which can be used to form parameters for commands. Standard

names can be used to define a datum, an object, the location of a datum or

an object, or an identifier (string). ~ o. J.J~'~ '
Standard manes are always evaluated within the context of • environ­

Th'is ntA.M
0

•l"I~
ment which controls the set of accessable objects and data. ~ environment

determines the "meaning"
I

of the standard name. consists of a0~1t) Mo.'${e,r

scan list and a set of "variables" maintained by the CPC. · The scan list

n&\.1'111\,
The /\environment

specifies a sequence of directories which can be interrogated, in order, to

"look up" an object name (identifier). A directory "look up" returns a

capability for the object corresponding to the proffered name. The access

control features of the directory system provide control on the type of

access permitted to the objects . in the directories. "Variables" are named C..'L\\ s (~

0 •,efu~ within the CPC, each of which contain a single datum or a single

capability. For example, a variable named HOWARD may_ contain a weak capability

for a friend's directory, and may be used in a standard name (e.g. to access

a file or subsystem in that directory).

In the debugger the environment of evaluation is expanded to include

the 1) memory, 2) working C-list, and 3) central registers of the subsystem ·

which was running just before the debugger was entered.

Standard names are written as a sequence of identifiers, integers, and/or

.
punctuation mards. A standard name be either an "atomic" (simple) name or.

a compound name. The evaluation of a standard name, "~tomic" or compound,

J

returns a value of some value-type. There are 9 value-types which can be

produced by the evaluation of a standard name or element of a compound standard

name. They are: l)identifier, 2) datum, 3) object, 4) variable,

5) indexed object (index.obj), 6) scan list reference (scan.ref), 7) directory

location (directory.loc), 8) subprocess location (subp.loc), 9) register

location (reg.loc).

I •

VALUE-TYPES:

i dentifier

datum

object

variable

index.obj

scan.ref

directory.lac

subp.loc

reg.lac

a string of characters

a 60-bit word

a capability f or some object

one of the set of "variables" maintained by the CPC

an object and a datum: the objec t is either a file
or a C-list; the datum is an index to s e l ect a word
from the file or a capability from the C-list

a scan list (object) (i.e. a C- l ist of directory
and access key pairs) and a name(i dentifier) to
"look up" in the scan list

a directory,(object) name, (identifier), and access
key (object) specifying an entry in the directory

an index (datum) specifying either a location in the
memory (core) or the working C-list of the subprocess
calling the debugger .•• (available only in debugger)

an index (datum) selecting a word of the exchange
package (registers) of the subprocess calling the
debugger ••• (available only in debugger)

When evaluating a standard name, or an element of a compound standard

name, it must be specified what "kind" of (value-typ~ is desired. This is
·Y'C

called the "mode" of evaluation. I f a result is obtained which is not o't a

correct value-type, the evaluation procedure has at its disposal a number of

C typ; co~ver;f,~ functions which can be used to transform the value to a type

matching the current "mode".

There are five modes of evaluation: 1) identifier, 2) datum,

. 3) object, 4) datum location (datum.lac), or 5) object location (object.lac).

The "mode" of evaluation for a standard name may be any of five modes. For .··

parts of a compound name, the "mode" is· restricted to identifier, datum and

object.

3

,, f

MODE VALUE-TYPES(S)

identifier identifier: a ~string of characters

;:_r/ datum datum: a 60-bit word ,~
(

object obje~t: a capability for some object t. .
. ;> /ii'''

, lt J

the location of a datum .,u J '

) d dd I-JI' ~ a in ex .obj: a file and fiJ e a ress
b) variable: t-h~~BITttontento o-f- a variable ~

datum. loc

c) subp.loc: a memory (core) location (in debugger only)
d) reg.lac: a register location (in debugger only)

~ object.lac the location of/for an object
a) directory.loc: a directory, name, and access key d rt' . ,/l ~L:t· b) index. obj: a C-list and C-list index
c) scan.ref: a scan list and nam~
d) . T:/.,,- ...,-, '• -~~ r,~,..--van.ab le: t-he ca~OJ JJ ty eontents

) 1/)!' '
rr. '" til of a variable v <

e) subp.loc: working C-list location (in debugger only)

If the type-value resulting from the evaluation of a standard name or ··

component of a compound standard name is not compatable with the prevailing

t- ~
mode of evaluation, the type conversion function corres9~nding to the value-

type of the result and the current mode of evaluation is performed. If no

such function exists, the standard name evaluation fails. The type conversion .

function may also fail in attempting to perform the transformation. The

current symptoms of such failures are messages from the CPC of various

degrees of obscurity (i.e. F-retrum and error indications).

,, ...
Type conve rsion funct i ons

,. , '
type= identifier{ mode c datum

An identifier may be converted• to a datum to satisfy the mode of

evaluation if the character string of _the identif ier matches a

variable which contains a datum. In this case the new value is the

value of the variable and the new value-type is datum.

Failure conditions: 1) no such active variable
2) variable is un-initialized

i--J
3) variable contains an object

✓
type identifier: mode= obiect

An• identifier may be converted to an object by "looking up" the name

which is the identifier, in the '.'default" scan list. If the look up

succe'ddes, the new value is the capability returned by the look up and .

the new value-type is object. f

Failure conditions: 1) indicated name not available i@ "default" scan list •
..._J

type = ' identifer~ mode= datum.lac

If the identifier corresponds to the name of an active variable, that · ,

variable can become the new value and is of type variable. This conversion

function is available only for connnands to the GPC (i.e. services and

debugger commands).

Failure conditions: 1) no such active variable
i.J

type= variable(mode= datum

type

If the variable contains a datum, that value can be returned to match

a datum mode of evaluation.

Failure conditions: 1) no such ac,tive variable
2) variable is un-initialized
3) variable contains an object

/ \)
= variable~- mode = object

If the variable contains a capability, the capability can ·be returned

to match an object mode of evaluation.

Failure conditions:

.,,,
I

1) no such active variable
2) variable is un- initialized
3) variable contains a datum

r· type= index.obj: mode= datum

type

An index.obj is J ~bject and a datum. If the object is a file (disk

file or ECS file) [or a name tag for a file] then an '. index. obj can · be .

converted to a datum. The contents of the word at the file address
,. f I •

Nu!,,//(c'r . •,:., · ,
corresponding to th1 datum of the index.obj is returned as the valueJ

and the new value-type is datum.

Failure conditions: · 1) object part is not a file [or name-tag for file .
capabili t iJ

/✓
I

= index.obj ~ mode=

2) file does not exist
3) block of file at indicated address does not exist
4) datum 1is not legal file address for_ the file

UfNIJM

object

If the object of an index.obj .is a C-list [or a name tag for a C-ltstl~ t

then the index.obj can be converted to an object. The capability ~the
llQp-t tll (J.lal o{ >tk ·

C..,;lis51selected by thy.datum part of the index. obj is returned as the

- ~ew_value· and . t_lle ew_ yalue-tvoe is obiect·----------~-

type

Failure conditions: 1) object is not a C-list [or dynamic name tag
for a C-list capability]

2) the C-list is not a proper scan list
3) indicated name (identifier) not available in the

scan list.
t v1

= directory.loc: mode= object

~directory. loc is a directory (object!) , ·name (identifier), and access key

r

type

(ob j ec t 2) . To convert a direc t ory ioc. to an obj ect, the e_valuation

procedure simpiy looks up the name i n the specified directory using the

access key to authorize access to the directory entry. The capability

returned by the directory system is the new value of type object.

Failure conditions: 1)
2)
3)
4)
5)

i,J

objectl is not a directory capabilit~ ..
object2 is not an access key <C/" C~l<o/
directory does not exist
indicated name (identifier) not in directory
name is in directory but access key does not
authorize access

= subp. lo!{ mode = datum

a. subp.loc to a datum, the contents of the memory word selected by the index ·
I • , .• / / ,

"}j),-,·a.·u-vJ • .r. , <'(;)•h' a}..c / J,._."·v11t-d -• ·n- •
of the subp. loc is returned as the v~lue 1 This conversion function is.
(). UO.;J<t.,(}(C
.al.vilabk only when operating in the debugger section of the CPC.

Failure conditions: 1) index (datum) is not wiFhin field length of
subprocess calling debugger (positive index)

2) index would be in debugger core or below (negative
index)

\
\

. \\
type = subp. loc: mode= object , ~

.\
When operating in the debugger, a supb.loc can be converted to an object. -~

The object (capability) returned is thE;, one . found a~.- the ~ specified index J ~
/f . .<.fJ!C /l·.drf 't.1~7ct Cl/ -~ :: t . ~- •u.-,y_ ,·e;:, vr 1 __ '11 ,,_ ~ {1.:~ccv!-¥'. c;-~ t f..,

in the WG;:king C-list of/ sub-p-FOee-as wb'icb called the-debttgge-r. ,, or..,\JJ f \,f'1\I
c,il~ru---- (/ ..A(({ cu ,,6 ;d(__ -/ -$. t' (IC,',/l CL c.,_/'Lw ~ x/c./ ./4(.,,'-CJ--q_f:0:,,(C ~(/ . I c;.f ;t !u ffe j)'J ~
Failure conditions: 1) index (datum) is not within 'the C-l'.ist of ·.

subprocess calling the debugg~r positive in ex
2) index would be in debugger C-list or below

index)

type= reg.lac: mode= datum

A reg.lac refers to the 208 word exchange package (registers) of the

subprocess which has called the debugger. If the index of a ·reg.lac is

within range (0 _;t;: 20B) the contents of the word of the exchange package

correspond~ng to the index is the datum value returned.

Failure conditions: 1) index is negative
2) index is greater than 1_5(178)

"Atomic" (simple) s t andard names cons ist of either an identifier

or a content.

(ident> : := <letter 7 j1..char;,- /.(ident7 ..::letter.,.. j.(ident;;,- .(d igit;, /

(< ident) • / d dent 7 ' < char '7) -

Identifiers are composed of letters, digits, periods and

quoted characters. An identifier starts with either a letter or
£)/11'7,..£ t,/ . .('_,,.,

a quoted character. A-S-impJ:e-quote mark/ the following single
, / //

character. It makes that character part of the identifier~{ny
I ,

character except carriage return can be quot~d. ~

~icuJar, a~ ;;-mark can be quoted. The value-type

of an identifier is identifier.

Example(/4--

NAME

NAME15

NAME15.A

DOLLAR'$

'$.MONEYlO

How simple can you get.

· Digits are ok except at the

beginning.

Periods are also,- cR .,.,,,
'' -:;

/

The identifier is DOLLAR$

Quoted characters can come at
the beginning.

The string is $MONEY'#.479
(Note: the ·quoted quotes).

I

I

Constants are composed· digits , with possibly a trailing ' B'

or 'D: •with a trailing 'B' it is read in octal, with a trailing

' D' it is in decimal. Otherwise, it is read in the current input·

mode (default input mode is octal)~ A constant is an integer

with a maximum value . of 6O-bits. ~ . --------- -
~ ~e-type of a constant is Jl~tUI!!•

Example: .
55

59

59D

5912347n
I ~',/ / . . ' . r -

55g in default input mode.

Illegal in octal mode.

Ok anytime.

A bigger _octa1. number.

L..i'nteger.prim'7 : := Lident '7

mode: .(ident>- identifier

result value type: identifier

<integer.prim 7 i.. const 7'

mode: ,lconst':;,- datum

result value-type: datum

/2 --@emanties: value is value of the < const)

.£.integer.prim)' : := 1' iident;;,

mode: ~iq%'t~ identifier

result value-type: _same A/wl.(cd i{c

semantics: identity

(integer.prim> : := (.~std.name '7)

L integer. term'>

<integer. term>

{integer.term>

<:"integer.exp>

t integer. exp7

mode : ~std . name > any · r esult value type : same ..._._.. - .

<
semant i c s : identity

.. - <'.integer.prim>

mode : d.nteger. pri.m,;, :!!ny r esult value-type': - sain~

semantics: identity

: := -< i nteger. term~ * / i nteger. pr:im >
mode: <,integer. term> 9-at~.

< integer.prim) datum

result value-type: datum

semantics: not get :implemented. Probably

48 multiplication

: := <lnteger. term)' / _,,.., integer.prim '>

mode : · <(integer. term'> datum

< integer.prim) datum

result value-type: datum

semantics: not yet :implemented. · Probably

48 bit divis ion

: := ,<integer. term 7

. ·­.. -

mode: ,linteger,term)' any

result value-type: same

semantics: identity

,integer. exp;, .· + · ·..(integer. term>

mode: · ~integer. exp) datum

(int eger.term) datum

result val ue-type: datum

semantics: ·. 60-bits addition

<integer . exp) · ·= O.nte e;er. exp,> - t intee;er . term >

mode : .t. integer . exp '7 datum

) '
"

'

I ••

' ' .
l ,·
>

<integer . term> datum

result value-type: datum '• f
t:
·,

I

~integer.exp>

semantics: 60-bit subtraction

: := Q (integer.term> '- /

mode: (integer.term> datum

result value-type: datum

semantics: 60-bit l's complement (except

for zero ••• -0 produces all bits

on)

Integer expressions (~integer.exp~) are expressions built

from <integer.prim~ using binary and u.nary +and~(*&/ someday)~

f'-IBarentheses around any standard name makes it an <integer.prim).

However, unless the <std.name) is of value-type datum (or can be

converted to datum) it cannot be used with the arithmatic operators • .
1,(5

Example:

5+10-15D

5+7-(10-3)

·5+(:FJ,El#lOD)
. . "-1 .

275B+(/f52B+7) .

value is -2 if input mode is octal.
fa

=5 if input mode @ octal

· value = 5+ contents of the 10th
F/Jt[:;

:_,ord of ~ in °default" scan .

list. &i'tJ

·. 275B+ contents of cell {i}f of

memory of subprogram calling the

c&,bugger

/ 'T.A,13 L'RA~(A'pru'r- · if TABLBASE is a variable containing
I n.r;rih1)?/ ~ _ .
(; , . \ ----
-(l-!!3U?I/S!.-/- f t0/1;1r,'J c. i/s/)

'

\ L
I,

\
\.

a datum and COREFILE is a variable

containing a file capability, we

have contents of TABLBASE plus t he

contents of word 51 i n COREFILE.

: : = <integer. exp) '-._ dnte ger. exp>

mode: <integer.exp) 1 datum

Linteger.exp> 2 datum

result value type: datum pai r

semantics: The datum pai r val ue
-· -,,. ,.. ,,.., ... ,,

is interpreted as a sheft -event __, .

Kinteger.exp> l) and 60-bit datum

value. This pseudo value type is

only used in a (word.exp)-and is to ~

simulate a crude sort of COMPASS'

type VFD facil:i,ty. ('l'his construct .

. is of doubtful utility).

_,(word.exp') : :=<word.part)

(word.exp)

mode: ~wordpart> datum pair

result value-type: datum

semantics: the result value is simp4i~ ..

the. second datum of that datum pair.

The shift count part is ignored.

• •= <word.e:xp;7, < word.part) •
. . . ·. . · '

· . mode: . <,.word. exp) · datum -
word.part>datum pair

result value type: datum

' '_.,,,.
{ " •

,<word.exp'>

<name.prim)

(name.term)

sematics : t he datum value of t he

/ word . exp / is left shifted (end off)

/.,; - ~ "t- t he shift count of the datum
'-

: := <_integer. exp).

: := <WOrd. exp)

. pair . The shif ted value j_s t hen OR ' d_
· (wit h t he datum value of the datum .,

pair .ana• f orm t he r e sult value. No
r., ,,·~J. -

~v / I \ J ~ ~

check ing i s done to pr§ scribe ~ntere-st-

ing fields i n t h is p seudo VFD (al so

bui lt :f8rm right instead of l eft

as in COMPASS).

semant i cs: identity (thi s is t h e
(I_,, .

common I@rse route for names not

using the pseudo VFD datum

definition.) .

mode : <_word. exp'>

·"value-type: same.

semantics: identity (this is an ·

extra production; adds nothing to

the language) •.

: :=<name.term) : < ident) ; .(name.prim)­

mode: ~name.term> ob ject

L_ i dent'> identifier

((name.prim'> object

result value-type: directory. l ee

,(name. term)

<.name. term')

(name.term'>

. ·­.. -

··­.. -

<.name. term'>

semantics : the directory. l oc

consists of the , name . term as

the directory, the <i dent ·"? as

the entry name, and (name . prim>

as the access key.

<i dent;

mode: · <name.term> object

<ident> identifier

result value-type: directory.lee

7
DRAFT

semantics: the directory.lee value

consists of the < name .term> as

the directory, the <_ident> as the

entry name~ and the "null" access

key as the access key.

<.name. prim>)' <ident >
mode: <name.prim> ob j ect

<ident> identifier

result value-type: scan.ref

semantics: the <name. prim)

is taken as the scan list (should

be a proper a-bit for scan list)

while the <.ident> is the name

to access the scan list.

mode: .(_name.prim') any

resu],.t value-type: name

semantics: identity

<std.name>

(Std.name>

<std.name>

:

(std.name)

• •= <'std.name > If ('integer . exp >

: :=# <integer.exp>

~integer . exp) datum

result value type: index.ob j

semantics: the indexed.object
,e,

may be either a (e-list or a
'-

file. The i ndex (< integer . exp >)

along with the ob ject (~std.

name7) form the index.ob j value

result.

mode: < integer.exp) datum

result value-type: subp.loc

' semantics: the (integer. exp)' .,0 ,t' {,; uZ,!,

,-<'-~ ,
either the c-list ~f memory of

a subprocess. This index is

the value of tre resulting

subp.loc

: := $REG# <integer. exp)

mode: (integer.exp~ datum

result value-type : r eg. lac

semantics: The index {<integer.exp>)

specifies a word in th;: exchange

jump package of the subprocess which

called the debugger. This index

is the value of the reg. lee result

mode : ~name .term) any result value-

Examples:

NAMEl

TEMPDJR:NEWFILE

1' FRIEND:SlIARFILE;OWN.KEY

SCANL) DJRECTl: FILE73; 1 SPECKEY

semantics: i dentity

if mode of evaluation is

· 1)' datum: val ue is datum

contents of variable 'NAMEl'

2) object: value is capability

obtained from 'default' scan

list under 'NAME'.

refers to entry 'NEWFILE' in

directory 'TEMPDJR'. 'TEMPDJR'

is "looked up" in the default

scan list. The "null" access key

completes th: directory. lac

'FRIEND' should be a variable

containing a directory capability.

The entry named 'SHARFILE' is

referended with 'OWN.KEY' provid~

ing access authorization. 'OWN.

KEY' is l ooked up in the 'default'_

scan list and should be an access

key entry.

'DJRECTl '· in 'SCANI,' should be

a directory. ' SCANI,' is looked

up in t he "default" _scan list'

and then ' DlRECTl' i s looked up

in the ' SCAM, ' scan list.

' SPECKEY~ should be an active

ti
l.0

DRAFT

variable conating an access key.

PERDIR:DIRl:FILEl;MYKEY#TABASE+72D

#BASEADR+lOB

..

'PEIDliOIR:DIRl ' should be a directory

gained using the "null" access key '

in I PERMDIR', PERMDIR I is located

in the "default" scan list . 'FILEl'

should be a file in 'DIRl ' available

under 'MYKEY' (MYKEY' from ' default '

scan list). The word at 'TABASE'

('TABASE' is a variable) plus 72 M ~

location referenced by this standard

name (index.obj)

in the debugger this name references
' '

the .;ord (or capability) at 'BA.SEADR'

CT3ASEADDR' · is a variable . whose

contents are taken to get a datum
,, ;

' ... i:"

because of the 1+!) plus 10 octal •

