

r

r

r-,

\
\

PAnT TTTR~F - CAL TSS, •~e CAL TimP-sharing System

ChantPr 1 - What C~L mss is ~na ~0? it ~~ns
1.1 l:ntro1~1r;tion +:0 Ci\T, 'T'qs

1. 2 Sampl 0 s0ssi..0~1 at +h"' r,r:PlS(>l_~~ T.09 on, Cr<=''ltin1 a t.,.x.,,.. filP
with t~e ~iitor, p~in~inq it 0n th~ line printer, lon off

:hapter 2 - User S~½svst~~

2.1 Command processor
2. 2 Pi l~ "2'1 i tor-
2. 3 Line ?.'3itor
2.4 SCDPE simul~tor
2.5 D8bugqer
2.6 B.l\SIC
2.7 RCPL
etc. pr-intor, r8ai2r, q?ttapE', 0nmptap2, 0+:c.

Chapter ~ - system architecture

3. 1 Fi 10s
3. 2 l)irector ies
3. ~ ProcessAs; sutprocesses (F-return)
3.4 capabilities anl C-lists
].5 Op0ration/calling the system
1.~ Event channels
3.7 system resources: control an~ accounting
3.8 Disk processes

Chapter 4 - System Actions

Cha~ter 5 - I/0 Inter-fa~es

1

t

'
~·

.

r_·_:f_.·._.•,
""'\. ,

-.·. ;._

l;r,_ .

~- :
· .. · ...
,··:

~-;.: ..
-

. I

Pref.ace

~se o~ this manual

CAL -rss is a time-sharing operating syste11 available] to &Set's of tli.e ·
Coaputer center. Chapter 1 contains folksy bits of inforaation to lte:l:P! ·
the novice get acquainteo with CAL TSS and get a reeling for its'
capabilities and usefulness. Chapter 2 tel.ls how to t.a.J_k. to· the srst.em
via the co11mand processor and various subsystems ~rrent.ly av-ailaftle; ·
parts of it will be essential to every usec.. Ch.apter 3 contai.J•s
s11ff icien~ly detailed information about systea _rotce.pts atii s. _tN .. ~.• 'J,t:'8
to. be of interest to a system prograamer and can fE'Obably be sk.ipptul bf
the casual user without dire consequences. :::tiapt r ft. q~v-es tb.e clet::eits
of syste11-i11ple11ented actions which a user • ay int'oke in eol'e: . .­
writes. These actions · may be considered as :gteasions t.o t'h ••ttO
hardware and are of interest mainly to subsf tem""i,apleaj!ntor$ ••d
maehine•language programmers.. Ch.apter 5 give details on tile X:-/0
interfaces which would r allow a user to establ sh llis ow:m pri-uter
driver, for example.

·, '-L

:,~ i

,'ii
·,

·l

I

... t

I

.,
.- -~

___ L ...

I

· ! ,;.; ~i.;..,J ... ;~~rt•;I

C TT !\ "? 'T' E ~ _ 1 _ - _ P H 71.1' _ C1 L _,,, c; S _JS _ J\ ~JD_ q Or.: _ I 1' _ R :J NS

CAL rs3 is a larqe-scalP., 1en°ral-nDrposP. time-sharing system written
by the Computer Center staff to run on a CDC 6~on s~ries machine with
1;:cs. The br.oa(1 -'lesign aoals 0f thP. syst:P.m are::

1. to s 11pport 'lP to ?Sfi si111 11latanc>'.)US i:1t"'!rac+-ive us9rs at.
teletypP.-cornpatiblP. terminals with fast response times for
simple intorActinns, lo~ syst~m '.)V~rhca1, an~ qo'.)i ~ccess t~
various har.d~are faciliti~s;

2. to provide a filB system allowing many files to resiie
permanently in the machine and to provide a very qen~ral,
00werful framework wtthin which such files can be accessea,
share~, an~ ~rotectei;

1. to nroviie a system P.nvironment in which~ large number oF
user-oriented subsystems can be dev~].opei and run;

4. to make possible a guar.antee'l. response time for somP suhsRt of
the nsers 0f th? systnm:

5. +o utilizP efficiently the har1w~re r8presented hy the
Computer Center's 6U00l sy~+0m.

Cl\L TSS is caller1 11 13.rqe-scale" beca.usl? it is in primary control (i. '='•,
iJPS not run 11n1J.er anothr~r syst~m) of the computer, which is a
large-scale mRchine. Tt is a 11 tim 0 -sharinq" system because a large
nurrher- of ns0rs at +a.rmirals may have pro'.!r'lms act.iv"" si'll 11lran,::,011sly
anf may each commani r~sponses from their prnqrams on a time-scale 0£ a
few secon,is. ?inally, it is callo,d 11 gener::i.l-purpos,:, 11 b".?G"l.use t:hc
terminal user is not restricte~ to some particular nrogrammi~g language
or set of proqram~ing l~nguages: he may, in f~ct, progr~m in ma~~ine
lanquage if h~ so ~Psir 0 s. In qen~ral terms, th8 syst?m ,roviies
~acilities for the int0ractive us 0 r to

1. create -1:ilP.s,
destroy them;

nr~s8rVA +hGm in the system, r~tri?V? and

2. manipulate t~xt files with a text e1itor;

3. process fil~s witl-i a number of suhsyst 0 ms pro 1ridecl, incln:'linq

--~-------

0.
\.

a. a SCOPE simulator, giving access to all the facll1tles of
the SCOPE system, including RUN Fortran, CD~PISS, SID­
BOL,. etc .. ;

b. a BASIC µrocessor;
c. BCPL (a low level systems programming language! ;

4.. prepare and run his own subsystems which may interact witlt. his
teletype and other subsystems;

5.. access the card reader, line printer, tape drives, and cU:sp,lay
console;

6. give access priveleges for his objects selective-ly to otke-r
users if he so desires and obtain priweleges of access to
objects of other users who wish to gr~nt it$

When the termina 1 load on CAL TSS is low, another system facility will
process a subset of the batch jobs normally processed. by the S'.:OP-W·
system. Other facilities can be i11pleme nted :1. s d.etermiaea bf the tt~ds
of the computing community, the programmec time a~ailable, and th~
capacity of the hardware.

The structure of CAL TSS and the methods of using it are extenalwelr
described in the subsequent pages of this document. Rere are briQflr
described concepts which all users of the system will haf'e te d&al
with,. whether his aim is t? r-~in Fortran or to implemen~. a lanittage
processing syi th,. whether his aim 1.s to run FORTRAN o,r to lmpleunt. a
language processinq system of his own. !

-.

I

'

V,

)
Extended
Core
St

300,000
-words

:

' •

'

.

-

-
'

·-

.. ,

·te-ntri31
Processor

-

"Flg:ur.e]-L LAL () Hardware Configuration

'Central
Memory

32.,7£.8
wor..ds

LJ
..

-

.

'

..

1'er i pl.era l
Processors

Peripheral
Eauioment -o--- Multi·
plplexor

~Ct'.t~
.- ~a.c)/-%7-hw.

r----...._ _/ DISK;
~ _ ..._______,,,- 8,000,000
- 1-........ _/ words

,.___ ~Jwl/~

- Line
. 1' r inter - v--

-/ Card
. Reader

..; ~

- Tape

•
Drive

'

-

0 0 Console

--
. < Clock

i.-

-
-

- 7
L_ -

~

,)

~

-

256
Teletypes

I

Figure 1-2. Storage Pyramid

Central
~emory

Extended
Core
.§_torage

DISK

Access Time
For 1 word

Words Cost per
Available word

·1 µs 32,768

4 µs 300,000

depends on 8,000,000
system load;
many ms.

$1

$1

5¢

6

,,-,

Fiaure 1.1 indicates the hardwar2 configur1tion of the current 64OOB
svstem, on which CAL ~ss is run. \n exact unierstanding of all the
hexes ana their interconnections is, fortunately, unnecessary, but a
brief iescription of the memory hi9rarchy will make dealinJ with th0
system more un1erstan1ahle. ~ote first that a fi!g is the basi~ entity
for storing information in the system; code rea~y for execution on the
central processor an~ text ready to be feJ to~ language translator are
both maintained in files.

P'ianre 1.2 i:-0presents as a oyramid thP i'liffer-ent storaqes present in
the hardware. As the figure iPiicates, storage at the hottom is slow
~n0 cheap and biq, while storage at ~he top is fast an~ exoensive ana,
at present, small.

The disk, at the bottom of the pyramid, contains all the files which
are accessible to thn svstem ~ithout outside interv~ntion such as
mounting a tape or rea~inq a card ~ec~.

l',t tho top, central memory contains thP actively 0xec11ting coie of on-:~
process.1 As the central processor is switchei from one process to
3.noth0r, t.he coae is swapped b~twPen c~ :,_nd ECS. Thus, .ECS Jt11st
contain the code fil~s for all processes currently active on th~
systPm.

Part of any file which is hqinq manioulate~ by one of the activ2
processes (an QE~n fi1f) may he in ~cs or on the disk at the discretion
of the process concernea. It m~y explicitly ask the system to maintain
parts (l2.l2g_t_§) of the file in ECS by ~:t_,tachi!l:I them ;ind m;iy rl.isrniss
blor.ks hy 1fi££~ing them. ~hen a process acc~sses n~rt of~ file which
is currently in Bes. the information is delivered immediately. ~ccess
to part of a. fi]e not in "ECS causes the process to be blocker! (stop
running) untjl the systom is able to hring the reguired information in
from the disk. A process may, by attaching a hlock of ~ fil2 in
a~vance of its nee1 to use it, improve its real-time processing speed
at. a c0st of nsina ITiore F.CS~

Within this context, some of the
event11ally becorie acgnainted are

terms with
now il<=>finerl.

which every user will

User __ rrofile: ?hen someone ma~es arr~ngements to utilize ClL TSS, a
body of information is recor~ea with the Computer C0nter business
~ffice which identifies him ani oescribes his funding and ~ccess to

1 The normal user at a terminal may consider all his intPractions with
the system to h0 car-rierl 011+. under the 1usnices of his own private
p ror:e ss *

7

various system facilities.
prof'ile.

-~'1 is information is called the user

Loq __ onLtoq __ off: ~h0n a user attracts the attention of CAL TSS from~
terminal, if his user profile ani funain0 ar~ in qooi shipe, he is
loqaed on. ~his is a proceiure which gives him access to his own
objects and suGh syst8m objects and resources as his us?r profilP
allows. System resources, such as memory space, are reserve3 for his
use at this point an~ may b0 charged aoainst his account. When the
nser logs off, thP reonsrces ar,,:, relP.;:ised and charginq ceases.

File: As alrea~y noted, filos ~re the basic entity for storinq
information in thP syst?m. Proqra~ co~e ready for execution as well as
innut to and output from language proc0ssors r~siie in files.

rri~~~i2~Y= Directories arP special objects which control access to
oth~r filPs, dir~ctories, and 0ther svste~ objects. Directories ~lso
provide the m8cbanism for ~ssociating symbolic names ("print names")
with the objects controllei by the aire~tory.

Permanent __ 1isk __ saace: An amount of space determined by the user
profile is permanently reserved for a user's files. It is the ~nly
system r~.s01n:·cP. tieri up by a ns•~r who is not. c11r-rently loqgen on ana is
charge~ for continuously. It is ~ontrollea by the user's eerrn~nent
ii£gf.i.Q.£1 •

TemQorarv_disk_sEace: Phen a user loqs on, space on the ~isk, as
determinea by his us~r profile, is resRrve~ t3 hold the temporiry fil~s
he may negi while runnino, such as output files and compiler scrltch
files. This space is controll0d by his temQorarv ~irPctory.

~£Q£~§§! ~ process may he thought of as an orqanizational entity
within the system which ties together certain coie from files ~nd other
resour:ces necessary to "carry 0ut a task" or 11 r 11n a program". CJ\L rss
creates a process for each user as he loqs on the system. His process
looks like a 6400 central processor with somPwhat less than 32K of
memory; the full range of 6400 rp instructions is available to it. In
addition, the user's process is able to manipulate files ani certain
~ther system-defined objects in a general way. It is 1elivere1 alr~ady
~quipped with some code ~hich can, for e~ample, communicatP with the
user at his teletyp~. 7he private process created for t~e usar is
qiven access to his oerrnanent 1irectory (among • thers), thus giving him
acc?ss to his files without givinq access to • ther usGrs.

Fixed_ECS_soace: Various data relevant to the state of a process are
kept in ~CS by the system, as are certain oth~r ohj 0 cts germain to its
functioning. Also, the control information for open files is kept in
ECS. Recause the system has no facility for keeping such infor~3tion
on the iisk, it is kept in what is called fixe1 ECS space. The amount

8

(\
/

~ t·
.

.

. ··• . .,. ~

of fixed ECS which is set aside for a given user's pcoc s is
determined by his profile when he logs on.

SwapD!d ECS seace: Files and directories_whick a~e curremtlf in ES at
the request of a user 1 s pi:-ocess are ke~t ~n what rs called swappei:ECS:r
so that the system can free ECS space if 1.t needs to bf swappiwg the
files out to the disk,. The amount of swapped ECS a'failable to, ea.c{ll.
nser is also determined by his profile at log in time.

I

::CJ
- ~-,
· .. ·.~

.. ,
·r

j
!
i
1

.,
I

i
:'I

.,:1

. t

·.'.~¼;

CAL Time-Sharing System

Status and Information, 13 August 1971

Availability

CAL TSS is currently available weekdays from 2-6 PM. There are 8 teletypes avail­

able for general use during these hours in Rooms 225 and 227 Campbell Hall. For infor­

mation about connection of additional teletypes, contact Vance Vaughan (see below).

Documentation

The fundamental document for users is the Introduction to CAL TSS, available from

the Computer Center librarian. Other documentation is also available at the library,

but it is spotty and users should consult with someone on the TSS staff before acquiring

any.

TSS Consultant

A member of the TSS staff is available in Room 225 Campbell Hall, ext. 2-5008,

from 2-3 PM every weekday except Wednesday. He will answer questions, demonstrate the

system, help new users through initial sessions, etc. Users unable to reach the con­

sultant should contact Vance Vaughan, 207 Evans Hall, ext. 2-5823. He is there Thurs­

days from 1-2 PM, or by accident, or by appointment. Leave a message in the main Com­

puter Center office,. 239 Evans Hall, ext. 2-0851 to arrange an appointment.

Getting help, reporting problems, etc.

Sections 1.7 and 1.9 of the Introduction to CAL TSS give procedures and information

for diagnosing and understanding problems encountered when using the system. If the

user's teletype is dead, or has gone crazy, he should first consult those sections. They

may solve the problem, or be irrelevant, or give some such helpful advice as 'call a

system programmer' or 'the teletype is down or the system is down'. If they are irrele­

vant, or say to contact a system programmer, or something like that, contact the TSS

consultant (not the regular programming consultant). When the diagnosis is that the tele­

type is down or the system is down, the user should call the shift supervisor, (64)2-3043,

and explain the problem. If the system is down, he will give information-about when it

will be up. If the system is up, there is some problem with the teletype or the line.

The user should contact the person responsible for the maintainence of the teletype

(ComputerCenter teletypes are maintained by Charles Cuffel, ext. 2-4403).

Complaints and suggestions:

These should be made to the TSS consultant. The TSS staff is especially anxious to

get feedback on the documentation. Corrections to content and suggested style modifica-

tions are both welcome. f

CAL TSS Manual

,,----.._. July 1971

INTRODUCTION TC CAI TSS

Preface

1~ General concepts

1,.1 Access to CAL TSS
Files, directories
Login, logout
Command Processor, subsystems

1 .. 2
1. 3
1. 4
1 .. 5
1 .. 6

Names, objects,, name Sfaces, access locks, access keys
Command processor name space, BEAD name space, SCANL,,
PERMDIB, TEMPDili, OliN,. "KEY, null key, PUB .. KEY
SERVICES, BEAD GHOST, errors
Space control t~hat to do about 6,?,? errors)

1. 7
1. 8
1 .. 9 1 WH0 1 and PANICs., or how to untangle a console and how the

user stops something he wishes he hadn't started
1. lO A note on the Line Collector (hov to erase mistakes)

2.. Examples
2.1 Use of BASIC, net keeping permanent files
2.2 Creation of a permanent disk file to be kept for future

sessions:
2.2.1 future access 1 automatic 1

2.2.2 future access 1 manual 1

2. 3 Access to permanent disk files
2.3.1 Using EASIC on the file from example 2.2.1
2.3.2.1 Selective access tc permanent files
2.3.2.2 Making all the user's permanent files available to

all subsystems
2.4 SCOPE Simulator: a simple interactive FORTRAN program
2.5 SCOPE Simulator: an interactive SNOBOL program using a file

from a friena•s directory
2.6 Login problems illustrated

3. Subsystem summaries
3,. 1 EDITOR
3.2 BASIC
3.3 SCOPE
3.4 SERVICES and the BEAD GBOST

1

CAL TSS Manual

July 1971

PREFACE

This document is intended to provide inexperienced users with quick and
easy access to many CAL TSS facilities. It is not intended to be
logically complete or fastidiously accurate.

The first part gives a brie£ tlescription of the logical structure of
the system as seen by the user. The second part is a collection of
examples of some useful interactions .. The examples provide a cookbook
approach which may be adequate for some users~ and it is hoped that the

section on general concepts will be helpful in easing the user into
productive and flexible use of the system.. However it is doubtful that
these pages will answer all guestions or transform someone with no
previous experience into a profici~nt user without some work.

Fortunatelyr one need not be an expert to use the system. one of the
advantages of interactive systems is that the user can "try it and see
if it worksfl without incurring a prohibitive cost in money or time.
Thus, a light reading of this document shoul.d be more than enough to
prepare the user to start experimenting on the system itself. Of
course, having assistance from someone who knows CAL TSS is very
helpful. But in the absence of expert advice, going back and forth
betveen the examples, the console, and the description of general
concepts is hopefully a reasonable route to expertise.

The third section gives brief summaries cf the subsystems available on
CAL ISS. These summaries are not intended to teach people how to use
the subsystems. Bather, they are intended as convenient ~crib sheetsn
for people who already know how to use them.

2

CAL TSS Manual

----.., July 1971

1 .. 1 Access to CAL TSS

To use CAL 'ISS, one must satisfy two requirelllents. The first is to
make arrangements :with the Computer Center accounting office, or a TA.,
or scme such authority who has time to dispense. He will provide the
name of a permanent directory which will pay for use of the system, and
a password, which will verify the right to use that directory,. The
second is to have access to a teletype (or other teletype compatible
terminal), connected to the 6400 B system. It is assumed that the
reader has access to such ~quipment and knows how to operate the
equipment itself~ Belo'W are noted a few useful features of keyboard
input to CAL TSS:

a) input lines are terminated by the RETURN key (no line feed)
b) typing CTRL-Q erases the previous character entered
c) typing CTRL-Y erases all characters in the current line
d) typing CTRL-I skips to the next tab boundary (cols 11,21,.,.,.)

1.. 2 Files and Directories

Files are system-maintained objects in which a user can keep informa­
tion (source code. programs. data, etc.). In particular, when a user
is not active on the system, virtually all the information he wants to
keep is stored on the disk in files. Directories keep track of the
names and locations 0£ all the files in the system, plus various other
information. Each user has his own directory which keeps track of his
own personal files and contains information pertaining to him. This
directory stays on the dis'k when the user is not active and is called
the user's permanent directory to distinguish it from other directories
which are described later.

1. 3 Login, logsrn..t

The process of making contact with CAL TSS is called LOGIN.
tells the system he is present by typing CTRL-SHIFT-P on the

The user
console.

The system
access to
manipulate
him. This
to use the
asking the
authorized

then starts to construct the machinery necessary to give him
his files and to the various subsystems available to

files. Nominal amounts of system resources are reserved for
nominal amount is sufficient to run a small BASIC program or
EDITOR to modify a text file. The console responds by
user to name his permanent directory and to prove that he is
to use it by giving the password.

A temporary directory is then created to hold the files that come and
go as he uses the system. The console asks him to name his temporary
directory. Since this name will be used globally across the system, it
must not be the same as someone else 1 s temporary directory (if it is

3

CAL TSS Manual

July 1971

the same name as another•s, the user is
different nam~. The appearance of the
successful completion of the LOGIN procedure.

then asked to choose a
Command Processor signals

The temporary directory and any files which it owns will
when the user finishes using the system and logs out.
logout: simply get into the Command Processor and type
examples) ..

be destroyed
It is easy to

1 LOGOUT 1 (see

Note that once the user has successfully logged in, he starts being
charged for the resonrces necessary to be active on the system. This
charging will stop only after LOGOUT {not when the console is turned
off).

1. 4 Command Processor, subsystems

When the LOGIN procedure is completed, the user will be talking to the
Command Processor. The Command Processor does not do many things for
the user itself, rather, it accepts commands to set up various
subsystems to work for him~ Some standard subsystems which are always
available on the system are introduced in Table 1. A user may also
code and call (through the Command Processor) his own subsystems. The
exact method of doing this is not described here.

)SUBSYSTEM NAME

IEDITCR
I BASIC
a
jSCDPE
D
I
j

t
JBCPL
J
l PRIN"'IER
]SERVICES
i

WHAT IT DOES

prepares and modifies text files. i
Prepares and runs programs in the BASICI
language. l
simulates most of the functions provided by the!
operating system which runs batch jobs on the Al
machine; gives access to the FORTRAN, SNOBOL., I
and COMPASS languages, and executes progcamsl
compiled with them. I
a programming language aimed at nou-numericl
applications. J
prints files on the line printer. i
manually manipulates user's files and)
directories. I

The Command Processor and all the subsystems print some character at
the beginning of the line when they are ready to accept a command.
This is called a Erompt character. A table in section 1.9 shows the
different prompt characters for all the system-provided subsystems.
After the Command Processor prompts, the user might tell it

4

CAL TSS Manual

July 1971

!EDITOR INPUT
intending to edit a file called 1 input 1 {the! at the beginning of the
line was typed by the Command Processor, not the user). A general
example of the form of commands accepted by the Command Processor is

!command .E,g_ram _Earam •• ~ £ara111
where £2mmand and earam are strings of characters separated by spaces.
How the Command Processor turns the characters at the console into
internally meaningful information is a long story, which is introduced
next.

1. 5 Names, objects, name spaces, access locksL access keys

When the user types
!EDITOR INPUT

to the Command Processor, 'EDITOR' and 'INPUT' are examples of what are
called names in this document. The handling of both these names makes
use of the concept of .!ELl!!L.§.E:g&g.. The trick is to turn a string of
characters into scme internal form which vill give access to a file or
a subsystem. A name space can be thought of as a dictionary which
translates a string of characters (name) into the required internal
form. There are several different types of internal forms all of which
are referred to as objects. Files and directories are examples of
objects.. A directory contains the names of objects and also informa­
tion about those objects. Thus, one form of name space is a sequence
of directories to be searched in turn for the given names.

Another important concept in changing names into objects is that of an
access key. A given name in a direct cry may be shared by having an
access lock attached to it. In order to get access to the named
object, an access k.§.Y must be presented along with the name. Access
locks not only control whether or not access is permitted, but also
what kind of access is permitted. Thus, a given file name in some
directory may be protected with two different access locks such that
when it is looked up with one key, the file may only be read from,
while it may be read, written, or destroyed if it is looked up with the
other key,.

The most common £orm of name space is a sequence of pairs (directory,
access key). The scope and power of a given name space are determined
by what directories are searched and what access keys are used.

There are several different name spaces attached to each user, and
different ones are used in different circumstances.

5

CAL TSS Manual

July 1971

1.6 Command Processor name space, BEAD name space, SCANL name spaceL
PE~MDIR,_TEMPDIR, PUBLIC, C!N.KEY 6 null keyL PUB.KEY

The first parameter typed to the Command Processor is looked up in the
command processor name space (see Table 2).. PERMDIR is a name used to
refer to the user's permanent directoxy. TEMPDIR is a named used to
refer to his temporary directory. 1:QlH,If is the name of a directory
which contains the names of all system-provided subsystems. For
example, it contains the name 1 EDITOR 1 • If the user has just typed:

!EDITOR .INPUT
the Command Processor is guaranteed to find the name 'EDITOR'. Having
found the object named EDITOR, the Command Processor assumes that the
object is a file -which it can use to construct the EDITOR subsystem.
It procedes to do this. Note that if a file named EDITOR were in the
user's temporary directory, the command Processor would find that file
because it searches ~EMPDIR first. It would then try to start up a
subsystem constructed from the user•s file, which is fine if the file
contains the user 1 s own private version of the EDITOR. Otherwise, an
error results. It is always best for the user to know what he is doing
before he tries it.

The interpretation of the i;arameters after the first one is dependent
on the subsystem being called; each subsystem specifies the name space
it uses to evaluate parameters. The three possible names spaces are
shown in Table 2. The BEAD name S£ace is an old form left over from
previous incarnations of the system. It is being phased out. The
SCA NL na.!!!§. spac.'§ is initially as shown in Table 2, but the user may
modify it to suit himself.

Much of the complexity of the name space situation stems from
considerations about the sanctity of permanent files {ovned by the
permanent directory) and the reliability of subsystems. Consider the
nature of the files in the user's permanent directory as opposed to the
nature of the files in his temporary directory. Many subsystems use
temporary or scratch files which are not of interest to the user.
These files come and go in lEMPDIR without troubling the user. They
automatically disappear when he leg outs. Free access to these files
is essential to the operation of the various subsystems. Presumably it
is no great loss if a subsystem runs 'Wild and a temporary file gets
clobbered~ PERMDIR, on the other hand, gives access to the user's
permanent disk files. The user would be justifiably annoyed to
discover that one of his files had been used as a scratch file by some
subsystem. There is no automatic backup of these files. If some
subsystem has access to a user 1 s files and uses one for scratch or goes
wild and destroys files, he is in trouble. His files are gone, and it
will be monstrously inconvenient and expensive to recover them.
Therefore the system does not automatically allow access by subsystems
to the files in the permanent directory. If the user trusts all the
subsystems he is going to call, there are ways he can grant those
subsystems access to files in PEBMDIR (see 2. 2-2. 3}, but great caution

6

CAL TSS Manual

July 1971

is advised. It is as though those files were the only copy of the
information.

One dif.f-erence between the various name spaces is indicated by the
access key used when looking in the permanent directory. The null kfil
can only be used on one's own directories (PERMDIR, and TEMPDIR in most
cases of interest). It gives unrestricted access to any file in those
directories. OWN.KEY is the user 1 s personal key which was created
along with his permanent directory. It is unique to him, unless he
gives it away. The user may grant access to a given file in his
permanent directory from name spaces less powerful than the command
processor name space by attaching an access lock matching OWN.KEY to
the file. The access may be restricted {to read only access~ for
example) by turning off suitable 1 option bits• in the lock one puts on
the file (see examples). PUB.KE.X gives read only access to the files
in the PUBLIC directory.

Now it may be clear that there must be at least two name spaces. On
the one hand, unrestricted access tc the files must be possible,
otherwise the user might not be able to do something with his file that
he wants to do. Dn the other hand, there must be name spaces which
keep unreliable subsystems from .wreaking havoc,. The existence of more

__.._ than twc name spaces is a.n unfortunate historical accident.

The existence and u.se of the name spaces is complicated
ty features for subsystems following the conventions
early version of the system. For both 1 old 1 and •new•
command name is looked up in the command processor name
processing of tke subsequent parameters varies~

by com.patibili­
of an extinct
subsystems, the
space, but the

Old subsystems have
During execution, they
Processor, which are
existing subsystems are
quickly as possible.

all parameters looked up in the BEAD name space.
may request further objects from the Command
also looked up in the BEAD name space. All
being converted to the new conventions as

New subsystems have their parameters looked up in the command processor
name space.. During execution, they :may re guest further objects in two
ways. If the subsystem makes up the name of the object, it is looked
up in the SCANL name space. Objects may be obtained from the command
processor name space only if the user types in the name from the TTY.
Thus, in either case, permanent files are protected from unruly
subsystems and from accidental use as scratch files.

7

CAL TSS Manual

-------- July 19 71

I CCMMAND PROCESSOR
1 NAME SPACE

Table 2 - Name Sfaces

SCANL 1

NAME SPACE
BEAD
NAME SPACE 2

,
I
l

i-------r---------Ji--------,-------1------........... -----1
)DIRECTORY)ACCESS KEYJDIRECTOBY !ACCESS KEYJDIRECTORY jACCESS

)SOBE SPE- INOT !
jCIAL NAMESJAPPLICABLEJ
JE.G., j I
J 11 LOGOUT 1 Q
Jand J
l' SERVICES 1 t

UTE1'1PDIR I NULL JTEMPDIR 1NULL

i
j

1
I
l
I

TEMPDIR NULL

KEY!

I
t-------+-------+-------+-------+-------+------1
IPERMDIR]NULL JPERMDIR l OWN. KEY PERNDIR OWNKEY l

]PUBLIC l PUB.KEY jPUBLIC l FUB.KEY

1.7 SERVICES, BEAD GHOST, errors

For use of CAL TSS beyond the trivial, a knowledge of these two special
subsystems is required. SERVICES and the BEAD GHOST are similar to
normal subsystems, but are actually just new 'hats• donned by the
Command Processor appropriate to the occasion.

SERVICES is a general utility subsystem allowing manual manipulation of
files, directories, etc. The main reason for removing this function
from the Co:mmand Processor proper is to minimize the number of reserved
words which may net be used as names cf user subsystem ('SERVICES',
'LOGOUT 1 , etc.).

Unlike SERVICES~ which is troublescme because it must be called, the
BEAD GHOST .is annoying because it appears without being called. The
BEAD GHOST is the system debugger and its appearance is prompted by
some ~,r .. Whenever a subsystem makes a mistake in dealing with some
object or some part of the system, errcr processing is initiated. Some
errors are handled automatically by various subsystems along the way,

1 methods for altering SCANL from the console are available.
2 The BEAD NAME SPACE really occurs in several forms. This is the most
common form. Other forms are not of crucial interest and are not
described here.

8

..-.

CAL TSS Manual

July 1971

t
and the user usn't even aware of them. Many are reported to the
console by a give.n subsystem to indicate that they were asked to do
something illegal or impossible (the Command Processor is an outstand­
ing example of this). some represent unforeseen circumstances for
which no remedial procedures have been provided {called I bugs' for
short)~ They are reported to the ccnsole by the BEAD GHOST in hopes
that the user will know what to do Uike complain to a system
programmer). Currently, only class 6 ecrors ("6,n,m ERRoRn} should be
reported to the console by the BEAD GHOST under normal circumstances.
Other aprearances of the BEAD GHOST should be reported, along with all
the relevant console printout, to the system staff.

Class 6 errors mean that the resources reserved
become inadequate for the task being performed.
user must either obtain additional resources or
doing,. which introduces the next topic.

for the user have
When they occur, the
abort what he was

1. 8 Space Control

CAL 'ISS has several types of storage for which there is currently no
automatic algorithm for sharing the available space among the users ..
The only positive thing to be said £or the scheme described below is
that it is better than simply handing out space until it is all gone
and then letting the system grind to a halt (or crash}.

~------------------....-----...---------.....-----'1
TYPE)NOMINAL !MODERATE LIMIT JMAXIMDMJ

J1) swapped ECS space l 7000 l 100000 J 1000001
f (highest type) l i l I
j2) fixed ECS space l 2000 1 ? l ? I

-j
t3) i10T slots J not concurrently controlled l
14) temporary disk space l not concurrently controlled 1
j {lowest type) l l

When a user logs on, he is allocated the nominal amount of space of
each type. A comm.and is available to obtain space in excess of this
amount. If a user requests, an amount of space larger than what is
currently available he is put into a queue waiting for someone to
release space. If the request is fer :more space than the moderate
limit, he is put in a special gueue which prevents more than one user
at a time from being nvery large" in any particular type of space.

There is
he has it.
-whenever a

currently no mechanism to force a user to release space once
Several mechanisms !.§l!Q tc prevent space hogging. First,

user returns to the command Processor, he is automatically

9

CAL TSS Manual

July 1971

reduced to nominal. Last, a user who has space over the nominal in
some category is not allowed to get mere space in that or any higher
category without first releasing his space and going to the back of the
queue ..

The space command works as follows and may be typed to the BEAD GHOST
or to SERVICES:

SPACE £..1 J?.1 £1 J2!l

El through J!~ are the amounts of s11apped ECS space through temporary
disk space, respectively, th.at are desired.. The following algorithm is
executed for each parameter starting l>lith £!±:

if = -1 : space of this type is released to get do-wn to nominal
if possible

if = 0 or not typed (trailing parameters}: ignored

if) 0 :

2)

3)

4)
5)

1) If space above the nominal for that type or higher
type has been obtained, error.

If parameter is higher than maximum permitted for
this type, error.

If parameter greater than moderate limit, enter very
large queue4 3

If parameter less or= nominal, no further action.
otherwise, accumulate this type of space until the

amount this user bas is up to the size of the
parameter, waiting in queue if necessary. 3

There are two different starting points from which the user may find
himself reguesting space:

1) He is about to call a subsystem and knows in advance how much
space it will requice: enter SERVICES and request the
required amount of space and then go back to the Command
Processor and call the subsystem. The request has to be big
enough - see below!

2) A subsystem he has called runs out of space and makes a class
6 error which invokes the BEAD GHOST: if he has not already
requested space, the user may do so now with the space
command. After he has gottEn the space, he types RETRY (not
RETURN) and the subsystem will resume. If he already has
space, there is no way for him to save himself - he must type

3 A message will print if the space is net immediately available a
panic (see 1.9) will remove the user frcm the queue if he would rather
not wait ..

10

..---.... July 1971

CAL TSS Manual

PCTRGE, ½lhich. aborts whatever wcrk the subsystem. may have done
for him, and start over in the command Processor.

1. 9 1 1'HO' and PANICs (how to untangle a console and how the user
stops scmethinq he wishes he hadn't star,:!:edL

WHO is a
subsystem
going on
flavors:

request that may be typed at the console to determine which
is in ccntrol .. PANICs are a way of interrupting whatever is
if the user bas somehow lost control. PANICs come in two

MINCE PANIC (or PANIC for short) - bold down the CTRL and SHIFT
keys and simultaneously type P to send a minor PANIC;

MAJOE PANIC - hold down the.BR]]! key for at least three seconds
to send a MAJOR PANIC

The difference between a PANIC and a MAJOR PANIC is that subsystems may
handle PANICs on their own if they wish to, but a MAJOR PANIC always
invokes some arm of the Command Processor •

.,-°" The remainder of th.is section gives three procedures covering different
cases of console problems, plus a table telling how to recognize and/or
dismiss subsystems.

PROCEDURE I covers how to approach a console initially.

PROCEDURE II tells what the user dces if he is already logged in and
using the console but has either forgotten what he was doing or the
console stopped responding the way he expects it to.

PROCEDURE III is for those times when the user has started something
that he wants to stop (e .. g., the EDITOR is printing 2000 lines because
he mistyped something or his BASIC program has been computing silently
for an cminous length 0£ time, etc.).

Sometimes the relevant procedure has a happy ending and the user can
continue. Bnt, alas, the procedure may suggest that the console is
down, or the system is down, or there is a bug in the system. The user
can frequently distinguish between a sick console and a sick system by
seeing if. other consoles in the area are operating. If they are, it
looks like the console is sick. If they aren•t, it looks like the
system is. The current procedures fer reporting troubles of this
nature should be available from some other sources. They are not
included here because they are in a state of flux.

11

~-,

/-

CAL TSS Manual

July 1971

PROCEDURE I - a user is just approaching a console to try to establish
contact vith CAL ~ss

,.--->
I

}Make
fMake
a
tMake

sure the console is on and is connected to CAL TSS.
sure CAL TSS is supposed to be available at this
hour of the day.

I

I

i

I
I

i
l

no

sure somebody else isn•t using this console.

i Send a .PANIC.

1 no response
J response

------------,
jSend a MAJOR PANIC 1 Jresponse approximately=
------------~ ICAL TSS VERSION something

l no
I
I response

response)PERMANENT DIRECTORY?

no J yes

I
I
a

fAre you really sure J
3

jCongratulations. You are in I
Jthe console is OK?]the LOGIN procedure. !

l See the examples. I
I 1

l
l
i

,.__ ________________ .J

I yes
,

IIt looks like your l f !Response say something
!about no Sface? aconsole is down or i i

tthe system is J
I down. l I

i

i
l
l

!

a
l
l

1
no J yes

JCondolances. The system is
ialready loaded to capacity.
}Try again in a Yhile.

lThis means that the console was already logged in I
l(perhaps that man hurrying across the room with his cup t
go£ coffee will shed some light on the situation). This I
Jis your problem. You can PURGE the guy and log him out I
jif that is your style o~ try to find him if you are J
)more solicitous. i

12

CAL TSS Manual

July 1971

PROCEDURE II - the user is logged in and using the console and has
either forgotten what he was doing or gotten into some mysterious state
where the console doesn't respond the way he expects it to:

IREMEMBBB THAT ALL INPUT LINES END ¥ITH A CARRIAGE RETURN
l (THE KEY MARKED RETURN ON TELETYPES)!!!

i Jif you haven't already done so, look up the prompt
Jcharacter in the table. {Su.bsystellls signal that they
1ready to process a request by printing a character
Jat the beginning of the line. The table will help you
fidentify the subsystem if there is a prompt character
I visible ..)

are I
l
j

I
l

no fif you have just typed something, did the characters echot
r--< l (print) 1 l

yes J I

a
~
l
J
I
]

1

Jif the lines are being happily swallowed by the console
fno prompt characters are appearing, some subsystem is
tgobbling them up. Are you perhaps in insert mode in the
iEDITOR or BASIC? You get ont of that mode by entering an
fempty line (no characters, just the RETURN key.} If you
J were in insert mode and you enter an empty line, a prompt
]character should appear and you can go from there.

and
I
i
l
l
l
l

I jType WHO (followed by BETDRN, cf course).

J no 1
4 J response

J response
l

~ i
1 J
f I
i a
I l
1 l

j Send a PANIC

no

jCivilized subsystems respond to this query by I
1announcing their name. Barbaric subsystems are J
)likely to treat it as a nonsense command and l
lprint some irrelevant diagnostic. In either I
acase, the table should tell you what's going l
ton. I

1 response

13

,,
I J::ialy 1971

response
r
(Some sabsystems field (miJ!l,rGrJ PAltiTJCC.~ an~ allo'Wii I·
fyon. to resume contr(;ll. Others dlilick t.b.g t·Amle i
I an.ii the BEAD ~Jms-r ap~€trs .. t'o!Jll: Cali!: i:.$ll t.ille I
iBEAD :GOOS"!' to abort the t.1l11:bSf@t.em .bf safill!g l
l PURGE amd you will g'9t hack to t.ke Cm.«lllUltllu1 I
3 Processor,. (Yoa can alSIQ) p-0,k~ aro.gu in: t.ke J
I Slla.hsys'betm with. the BEAD GlltflS'f if f01ll: ar~ [
ide.bugghg it(, bm:t t.hi.at ill> fiq.irly SQp~istie.&tt.•,.,}
1 -- ~ --- . , .L ·-'-·"'"" ~ ..___,_...__......__ ~, - ~l~-'-~·-·· _ -......_.;il;,.,~--JIJ

I' Seillld a :MAaOB. PANIC

a no
I respoE.s<e

llt lo~ks like yo~r J I
J yo\\li:r: ~onsole or the 1 ff
i .system is d .evn.,. J I
« -- . - ~, i

a a
! l
i

i r:espunse
a

A ;smi.hsystem wihich: swall.Gw;&d. PAllcm f
w.as in exe-clil:ti @-l!il.. Jllo Sf :Si\;M p:t~-viiiied I
.ffi'lhsystem sh@~l.d h~Ja.av~ tJd~ 'i'.af .. , Ei:t:tia:t: i

it was a :noE.-s~dara £tta:b.sfstem#
QC CAL TSS h.as a jp}j)l~ ..

I
1
a

~~·
1t
:-::·.

,·"'-' -·

Jli1f 1971

PROCEIHTRE III - the nser has -j111st star:ted some.tJd .. ag he wislbl:e$ ke a. a.d10.11;t
a

f' . 3 . !

I Send a PANIC t i
4, .. ,,, ., '

I no
I response
ft
g
d
I
a
a
l
I
1
l
I

11 response
n

if · 1· >. •• • · • - .• · · .,,, ,., · f ,,

U Nice subsystems will stop. Wl\Mitt theJ1 ice &Gilli~ il..Aiif
I wait for tla:e us-er to tall t.k;em ti;'.! do S<®1m~t:.:aiaag f
U else .. Nnt-so,-aice sl!lhSJ;!!if:.em$ tdill itm©k ·~ J¥Allfl:Cil:
g and tke l:lBA_D G:E!OS'!f will ap:J?~r Tke ~er can I
g abort the ·subs}'stam a:Eto. gei: b~ek b:, tke l
t Command Pro.cess:-0r bJ typ:ing Pfif~GtE~ Or I
:I if]he decides t1ilat wlh&t.ever was goililg !:!)3ll was I
I OKtafter all" he ea1il tel.l th,.e :B~AD GJ!-OS:'2 to I
8 make the subsystem cmi!atiilUl'e ex.actly what it. Wial~[
8 doing witie.10 iliterrllli}teili by typilil!g Rftfli:Y. (
(. !I- ·~ ~ = - - ------fl'

~ Se.Ra a J!A.JOR flANIC I
~ l . . · - .. . --'ft-

J no a
8 response I

t f
Q :rt 1.ooks 1i.ke yo11r 3
I' your console or th,e a
I system is aow.n. . i
I ! --=----=--------~~----.!I

I resp-0nse
l

f A sus_ysft.em wkieilil swallosweiii l?AlDtC.s a
I was iE. execUltti©ltt,. f.~ s.y~t.em- pl:'@-Vii~sil. (,
1 SWihs:yst.em sih:o:m:1i Ji!,alla.aV$ tiaat RJ-.. Eit:.~JC]
a it wms a lilOllll----stal!ildal:tl s;ra;hsrst.em, I
8 or CAL TSS has a ll:Ja9:... fl

·- ~··•••~::fu---~:f"-':it:: ·- ~ ·" _....._ ___ _~•---- - - .-.;__ -fl,'.

CAL TSS ~anual

.~ July 1971

TABLE 3 - HOW TO RECOGNIZE AND/OR DISMISS STANDARD SUBSYSTEMS

SUBSYS'.IEM PROMPTJRESPONSES TO INCOMEBEHENSIBLEj HOW TO DISMISS IT
)OR ERRONEOUS INPUl j

COM.HAND i !
PROCESSOR ~

J
.1

l
4
l
j

I
j

LOGIN 1
PROCESSOR l

J

SERVICES *

BEAD GHOST l m
(debugger) l

EDITOR

BASIC

i
1
I
J

I
J

-,.

or
?

J BAD SYNTAX
Jor
J SAY AGAIN
tor
j UNEXPECTED F-RETUBN
Jor
I UNEXPECTED EBR0R
~or
l ERROR OCCURRED ON CAIL TO
I CIHlDS

]same as C0M~AND PROCESSOR
J
I

same as CCfiMAND PROCESSOR

i same as COMMAND PROCESSOR
l
f
)

I
I

a??.??
i

! ??1?
aor
l miscellaneous diagnostics
I relevant tc erroneous
j BASIC statements

SCOPE l {see J ??NO??
i SCOPE) i

!This is the ground l
jstate of a console. I
)From here, the user l
jmay call subsystems I
jor 'LOGOUT 1 when he I
)is finished. j

1 I
l t
i i
J I

)The user has to sue-)
tcessfully finish the!
]login {see examples) J

] I FIN'

l'PURGE 1 will return I
)to the COMMAND PRO- 1
JCESS0B; •RETRY' or t
] 1 RETURNJ will returnl
Jto the currently I
1 active subsystem. I

I 'F' or •Q1 (see
l EDITOR document)

1 same as EDITOR

I
J
J
1

I 'FIN•
l

J
1
1
I
I

16

CAL TSS Manual

~ July 1971

1. 10 The Line Collector

Unless tl:Je user does something extraordina1ry, all console input goes
through a piece of software called the Line Collector, which provides a
large number of ways to correct/change the line being entered. The
chart below indicates the various manipulations that can be performed;
to invoke a given function, hold down the CTRL key and type the
relevant key. A detailed explanation is available in the nusers
Guiden, sec. III.2.3~ Here we give two examples and encourage the
user to experiment. Underlinea characters represent one key or a
combination of keys, not the seguence of keys given by the individual
underlined characters; blanks that might otherwise be ninvisible" are
also underliked.

First note that the Line Ccllector main·tains the previously typed line
as the old line and uses it, in conjunction with typed characters, to
construct a new line,. Whenever the D€W .line is accepted (by typing
RETURN, for example), it becomes the old line ..

Suppose the user is talking to BASIC and has just entered the line
(considered as the old line) belo~ (~hich will have provoked a message
from EASIC objecting to the line).

old line:

CTRL-.L

10
CTRL-0

PBNI'I X

.!!!eaning

make an insert at the
beginning cf the old line
this is what is to be inserted
copy the rest of the old line
(all of it) into the ne~
line and accept the new line.

and the teletype respond§

<

10
PRNTT I

and the carriage
will return.

BASIC will issue another diagnostic as it still will not recognize the
line as a valid statement.

old line::
.l.Y.Qg
CTRL-D

N
IM
CTRL-Q
N
CTRL-H

10 PBNTT X
meaning
copy the old line into the
new line up to the first occur­
rence of the next character typed

you wanted IN and made a mistake
erase the M

copy the rest of the old line
into the new line

and the telety~e responds
no response

10 PR
IM

<­
N

T_X

17

-n
,/

, Y.
lllil ~[!LB. I

you remembered ta }?rint: Y
you are satisfi:ed with your
:new 1.i.ne

BA$JCC sh:oul.d accept this lilile., wmi.ich is

,Y
a 1a d th~ (:@!: r­
r :ia J ~ 'W'ill
retm:aJO.

.1
·1

. _·.i"""\.t: -
f ,-• ..

?)~---

' I
; . \'

. ~-· -.. ' i..' .
. ,l

••.
_: ~.

' . .
I

. ..
. . . . ,

: ...
. . .
~"~ . ' _if; .· .. '

·•. ,. .·

. · . .,. ..

•I••

.. -; ·· ...
·t. ·.

July 1971

Figure 1.
.u
0.
Q)

0
0
~

.u
0.
Q)

0
0
~

(33/35) Teletype Keyboard and Control

..
>-,
p,, .
0

p.
. ·rl

. ...'4.

H
p:.j
H
p::l
·.cr.i

'

· 1.

--~
H
0
-le

·...:.

..·.·

I.
/."

··., ·//··

,_

2. Examples.

These e1iu1:m:ples ara not all--i1aclusive.. TllHi!,.f are prcrvi&ed t© give a
feeling of hoiw CAL !l:SS works, plus a feil p'l:limt~s GD ia:ow, to do S:@ilili&

c04lt,monl f useful th.ings.. The first. axaa.nfle is keia vily cotmm1.11Hiti:~i~
S1!1:bSeglSie:nt o;aes are connu:ented only where t:.kiey coJ!ttain p©i&t.$ @;f ~,~td
iitilterest. Characters typed. by tb.e system hi;.ave haeu 11uira:a.e1.iJ1.1iH1 i3ll. tke
:first example to d.isting:a.ish tke m f:ciom. tke tlfu.i:m.~s t!fu.at th.a 'llll~erc tJJeiiL.
S«!ise~e:at examples are not 1llnderliaea ..

·,

r

•··

0

October 1971

Ex amp l_e 2 . 1

CAL TS S VER S I ON 2 • 0
20:35:14 10/21/71
PERMANENT DIRECTORY?
.GUF.S T
GI VE PASSWORD
.GUF.S T
'TEMPORARY DIRECTORY?
.JOHN

(C0~1MAND PROCESSOR HERE
\mAs IC

BASIC VERSIOM 2.0
-PRINT PI
3.141593

-10 LF.T X = 13
-2 0 LET Y = l 9 t-S
-30 PRINT X, YX*Y
ERROR OPERATOR MISSING

-30 PRINT X,Y ,X*Y
-40 END
-RUN

13 13
EXECUTION COMPLETE

..SLIST 30
30 PRINT X, Y, X*Y
-EDIT 30
30 PRINT X,Y,X*Y,X/Y
-!{UN

13 18
EXECUTION COMPLETE

-FIN
CHANGES NOT SAVED
-FIN
COMMAND PROCESSOR HERE
!LOGOUT
20:37:10 10/21/71
CONNECT TIME= 97782.
CPU TIME= 6311602.
FIXED ECS = 344681550.
fYDT SLOTS = 0.
SWAPPED ECS = 407565312.
1EMP DISK = 0.
MJNEY :$.297
moo DAY

CAL TSS Manual

234 0

CD>
0 0
@

234 .7222222

@

0

21
,,

,---,

July 1971

EXAMPIE

1. 0

1 • 1
1. 2

1.3

2.0

2. 1

3.0
3. 1

3.2

3.3

3.4

3.5

3.6

3.7

3 .. 8

3.9

3. 10

3.11

4,. 0
4.1

2 .. 1

CAL TSS Manual

SI~PLE USE CF BASIC, NC FILES KEPT

These lines ccnstitute the login procedure. Prior to the
first line, the user has attracted the attention of CAL TSS
by typing P while holding down the CTRL and SHIFT keys.
'GUEST' is the name given for the permanent directory.
The password to use the GUEST directory is also 1 GUEST 1 , but
the password is not usually the same as the directory name.
'JOHN' is the name the user chose to give to the temporary
directory.
The appearance of the Command Processor signals the success­
ful completion of the login fICcedure.
The user tells the Command Processor that he wants to use
the BASIC subsystem.
All these lines are a conversation with the BASIC subsystem.
BASIC announces its presence.and signals that it is ready to
process commands by printing 1 - 1 •

The user gives it an immediate command to print the value of
pi and it responds with the value.
Now the user decides ta construct a simple BASIC program, so
he begins entering indirect statements. These lines consti­
tute the text of the EASIC prcgram being constructed.
This is an example of erasing a mistake. The arrow printed
because the user typed CTBI-Q to erase the 9. The actual
line entered was 1 20 LET Y = 18 1 •

The user forgot a comma in this line 1 so BASIC does not
recognize it as a valid statement and complains. The
correct line is entered.
The user tells BASIC to run the program he just constructed
and it runs the program and prints the results.
Be decides to change the program and types the request 1 LIST
30' 1 which types line 30 for inspection.
The user tells BASIC that he is going to g_dit that line, so
it is made the old line in the Line Collector.
This line was ccnstructed by typing CTRL-H, which copied all
of the old line, and then tyi;ing 1 1 X/Y 1 followed by B,ETJ!B.l!•
The user now runs his program again and the new results
appear.
The FIN command tells EASIC that the user is finished.
BASIC warns the user that changes have been made in the
program which will be lost if the user does not use the SAVE
command to save the new program. The user repeats FIN to
inform BASIC that he dces not wish to save the program he
has constructed.
The Command Processor resumes control of the console.
The user signals that he is finished using the system by
typing 'LOGOUT'. The system prints the accounting data for
the run and after it wishes him a good day 1 the console goes
dead.

22

July 1971

This page no longer contain~ informatio:m.,.

r ----. .
'

. .

I
I

-------·-----------------------------•-,--wr-•lii.,...,_,..,... _________ ll!!l!t•. ~-""'.11!11111!!!.!1!1!!!!!!11_~ .. ••½"-'~¥11!1!_ :~._-SS!!!!!!!!ll!l!!!,W!l!!l,~.~2411!!1;;p!!!J'lll,1 ... '. , . : .. ~. ,

. ·\ ·, '-.~ ~ ' : ' . .. ' ' ~ .

car.. ~s~ --~l~n~-~1
. .. I

0
,:._,,,;. -'.-.· '• • -. •• : ·(,; .,, .. Jc • -~ >• '.,

··"· .·•,.
/'

. l

·_·() ·, ..__.

July 1971

Example 2~2

C /\L TSS VERS I !)\J 1 .2
PF:P.M AN ENT DIRECT ')l Y?
• us ER: IJV
GIVE PASS \1/0RD
• r.,RBL
TF.:MPORARY DIRSCTORY?
• V

{ C0!'·1 MAN'.J PROCESS QR HERE
!SERVICES .
SER\JICES HERE
*NF:~DF PERMJIR:AUTO
*PCAP 0~N.KEY }
77777777777777'1·:0t?.73 7
~0~0~0000~~00~053702
*ADDKEY 53002 77777777777777 PERMDIR:AUTO
*NElr/Dif---F PERMDIR:MANUAL . (f3, ..
*MC A_ P P E:RMD IR: MANUAL TEMP JI R: M ~- · U
*fPl ~
COMMA ND PROCESS Qf{ HF.~E
! J:..:) IT 0R A lJ T ()
: I
l 0 PRINT l 0*P I
211l PRINT 20PI
30 END

: F
C: 0 MM AN'.) PR OC ES S OR HE R li.:
! l:D IT OR M
: I
10 LET X - 10
20 LET Y - 20
30 PRINT X*PI, Y*Pl
L10 END

: F
COMMAND PROCESS-OR HERE
! LOGOUT
GO OD DAY

r .. ·

,· .·
'

./ _

... .'~ : . ·;

. ,;

' -~ ·: •'

--~ ~:,,-_, '. --· -- -· ~- __ ...;._~---

.,,
··''

·. _/(.

-.t.i;~~t+

July 1971

1 .. 0

2.0

3.0
3.1

3 .. 2

3.4

3,.5

3,.6
4. 0

CAL TSS Manual

EXAMPLE 2.2 - CREATION OF PERMANENT DISK FILES TO BE KEPT
FOB FUTURE SESSIONS
This is the login procedure again# except that the permanent
directory name is 1 USER:VV 1 and the password is 'QRBL'. 'V'
has been chosen as the name £or the temporary directory.
The user tells the Command Processor to call the subsystem
SERVICES.
These lines are a conversation with SERVICES ..
The user reques·ts SERV.ICES to make a new disk file by saying
NEVDF. He has asked that it be created in his permanent
directory and named AUTO ..
The command 1 PCAP OiN.KEY 1 causes the user's private access
key to be displayed. This is done so that he can see the
number of the access key, which is required by the command
which adds locks to names. The number is the 53002 which
occurs in the second line ...
This command adds lock 53002 matching his OWN.KEY, to the
file AUTO in his PBRMDIR~ The string of 7 1 s are the kinds
of access ¥hich the user is allowing, namely all kinds of
access. The addition of this lock to the name 'AUTO' makes
the file AUTO available in the BEAD name space, and it will
automatically be availabl€ whenever he logs on in the
future ...
A mistake was made in entering
erased by typing ~TR,1::.Q. 'Ihe
1 NEWDF PERMDIR:MANUAL', which
the user 1 s PEBMDIR.

this line; the first 'I' was
line actually entered was
creates a new file MANUAL in

Because the user decided not to have automatic access to
MANUAL, he set up a name in TEMPDIR which can be used to
access MANUAL during this console session. The sense of
this command is to allow the file MANUAL in PERMDIR to be
referred to as Min ~EMPDIF.
This dismisses SERVICES and the Command Processor returns ..
The Editor is used to put som€ text in the files AUTO and
MANUAL 1 alias~, for future sessions.

25

.·f'.

October 1971

Example 2.3.1

CAL TSS VERSION 2.0
20: 4 0: 3 9 10 /21/71
2ERMANENT DIRECTORY?
.USER:VV
GIVE PASSWORD
.QRBL
TEMPORARY DIRECTORY?
.v

COMMAN-D PROCESSOR HERE
!BASIC
BASIC VERSION 2 .0

_JE~~gR AU6~ERAT;R ~ISS~N;}-· - - - -~. -o
20 PRINT 20PI . - - - 1 \!:..:.£,/

~I~JINT l0*PI \ - - - - - - - ._ U
30 END /+- - - -. - ij
-20 PRINT 20*PI - - - - - - ~ Ci])
-RUN .,._ -- - -. - - - --+ U .. 5
31.41593
62.83185
EXECUTION COMPLETE

-SAVE AUTO -. - -
-Fl N
COMMAND PROCESSOR HERE.
!LOGOUT
20:41:43 10/21/71
CONNECT TIME= 47156.
CPU TIME= 7245765.
F1XED ECS = l 66224900.
(YDT SLOTS = 0.
SWAPP ED ECS = 22 4351232.
TEMP DISK = 0.
r'DNEY =$.296
GJOD DAY

..
r

··.,,r.

l
·I'

I
!

i
i

I
'I

1.

!

t

.
, I

I

·•

,:..· ···,

; ,.
•I''·

: j

July 1911

1 .. 1
1.2

1 ~ 3

1. 14

1» 5
1 .. 6

1 • 7

EXAMPLE 2,. 3. 1 - OSE GF A PREVIOUSLY CtH!l'STll]1TC12ED FILE II
BASIC
only the interactiom with BASIC is deeera~,, ali::\fu:Q'l!l<th t~
reader should note that no special m1mnip(!l]llaticn~ w~iee d~lil.e .
after login to get access to A~n ..
The command l LOAD AIPfO 1 tells BASI:C to l.oaii th.a file iUl''f{),.
Tk,e user may not hav,e noticed the mistak~ nmi~ ~k<Wlt
constriacting AUTO, ll'nat BA5IC does n0tiea,.. , It p:rsilil:ts a
diagnostic message followed hy the off{@lldi.ililg at.ate~Bt.~
After BA.SIC has read tke :whole fil.a,, it prompts aga_i]lt,., 'fhe
user tells it to list the program"
The program is print.ell alild he sees th.at the stat.eliiel!lt iHn
error has been left out.
Th.is is the correct f: orm of the sta teim>e-at,..
He asks that the pnlgram he rnn. and tke res111lts are priDrt~d
ant.
Because the user .made a co;r;rrection t.o his picogr@.m,1 liu1> W-iiua.ts
to save the new V\er-~do:n, oo Jae does a 'SAVE 1 .. 'f~ FIi
leaves BA.SIC destroying the pr@gra.m ia it.

_1 -,.

' i

i

1
1
-~

1
i
1

' j
-i
I

-~

1
1

l
i
I
I
1

'
''

.. ,·1·
..
'' . .(."

.· <i .
. ' . · 1

: ... ·,-.; t,.~, . . .
...... ,.)

Oc.tobe.r 1971

Example. 2.~.2.1

CAL TSS V°E:RSION 2.0
20:42:27 10/21/71
PERM.ANENT DI REC TORY?
.US ER: VV
GIVE PASSWORD
.• QRBL
1EMPORARY DIRECTORY?
.v lC.OMMAND PROCESSOR HERE
!.EDITOR MANUAL .
:T; p $.

·:Q

{

COMMAND PROCESSOR HERE
rSERVI CES
SERVICES HERE
:¾'ilCAP PERMDIR: MANUAL TEMP DIR :M
:WIN
COMMAND PROCESSOR HERE
!BP.SIC

'BASIC VERSION 2.0
-LOAD M
-RUN
31.41593 62.83135
EXECUTION COMPLETE

-F'I N
COMMAND PROCESSOR HERE
!LOGOUT
20 : 4 3 : 5 8 1 0 / 2 l / 7 l
CONNECT TIME= 71783.
CPU TIME= 10849976.
TTXED ECS = 253038600.
fY'.OT SLOTS = 0.
SWAPPED ECS = 31967 488~.
TEMP DISK = 0.
MJNEY =$.443
ffiO-D DAY

i

n
/

-·' ,·,---

J'aly 1971

EXAMPLE 2,. 3«2 .. 1 - SELECTIVE MAJHUI. ACCltsS ~O PERfUJlEl'f FLtE
1..0 Tb.is shows that the Editor waan 1 t giv~:E. a e@py of tifu.~ \lJl~r•St

file MANUAL, because he printed t.ke fi.le a.B.i it if:'! ~mft.y .•
2. O The user talks to SERVICES to set 1llJ? aeC"$&S to m.t:rnuJ:.,..
2. 1 'fh.is command sets up access to l!.lll.U.:r. i:fil. k.is ~Dli'JU:Ji an.tier

the name 'M' in TEHPDIB.
3 .. 0 He calls BASIC, reads in his fil.e EU.lilWl:LT alia:;s §., a.mill

execntes the program,. ·

"A

I ·,
I

!

' ·'

' '
~ .

i' '

. , .
,1·:­

:'-·,,'

-:<-·

~.

October 1971

Example 2.3.2.2

CAL TSS VERSION 2.0
20:46:04 10/21/71
PERMANENT DIRECTORY?
.USER: VV
GI VE PASSWORD
.QRBL
TEMPORARY DIRECTORY?
.v
COMMAND PROCESSOR HERE
!SERVICES

, SERVICES HERE
:+CHA.IN PERMDIR TEMPDIR.
#JNGHAIN PERMDIR
>!C_HAI N TEMP DIR PERMDIR
#'IN

f COMMAND PROCESSOR HER~
!BAS IC

BASIC VERSION 2.0
-LOAD MANUAL
-RUN 131.41593 62.8318,5
EXECU7ION COMPLETE

-FIN
COMMAND PROCESSOR HERE

-· !LOGOUT
20:47: 14 10/21/71
CONNECT TIME= 52511.
CPU TIME= 7699295.
F1XED ECS = 185104800e
trDT SLOTS = 0.
S\!J A P,P ED EC S = 2 4 7 3 5 3 3 4 4 •
TEMP DISK = 0.
t't'D NEY = $ • 3 1 7 .
moo DAY

' .. '.
,·.·. ·.:
.,,_/'(,,.,, ..

-: : :

·.,0

•(\

1 .o

1 .. .2
1 .. 3

w .i th SER ll:C ES m.ak r1.ts t ke t.ke ~i: IJ s PE1tl~Jf;i!Jt;
his . 'fEIPDl'.~ and :hi..a,m.~e <;;i.~-s a~~;$ t~ ki.$

•
'llhtis co.rnrersati.aE.
look 1.ik:e part of
permanent :fil.es
tem p-0rar1 files.
C:Ef AIN caillSes tke

to all. s'Ulhsystems iiaich ka~'l!1 ,ir.«iie•~ t~ 't·~ , ,

first di.:ceet:o.:cy # PEiil!JDI:ttt t:.@ ka~ t~
second di.rect1llrj,r TEID!RID.Ill., ap,peiali~d t.<© it:.. t>;o~s,. thl@,f;'tJ.
hact~ards ..
S-0 UNCHAIN takes «ilJilf a19,Pem11,en di.rect:.0r1 niiat:. of .P·Ei:MDIR.,
Now CH.AJJi appends PEBMDIR 'to TUFllllJ:l!t" wk.ick ii:,$ w:h;at. tlni~ 1l!;ffl~

was trying to a.o.. If lite hafi •t mililch:ai.•d lil:RiUiII. f:tQiO.l -,
T1ELflll1DI:R b<~u11k at £trep t. 2 7 t.he t.'i\@ llireetom:ie:; w~d ~ti+ ·~
t\lte a 1noF a:nd t:ke cod~ •hits;k l0•s llt}? um~ w,<~Htl.d g~ !
an:aoyed if it ever used tkem. 1

>tfhe same use of BASIC as in th'8 previous exampl~ ..

· .. o

. ,.,,h ..

':.. j .
•· --

July 1971

Example 2.4

.r. AL TSS \JF.:RS I 0N
I\)() P 00M, S II/PEGS
G01Y) .DAY
CAL. TSS V~RSIQN
I\J () R 00M, S \JP ECS
GOOD DAY
CAL TSS VERS I CJN
N0 R OOf'tl' S 1vP ECC:
GOOD 'JAY
CAL TSS VERS I OM
N0 R00M, S '~P ECS
G CJO!) DAY
CAL TSS VE~S I 0N
no ROOM, s hJP ECS
G 00D DAY
CAL TSS VERS I ')i\J

I\)() RDOM, S 11JPECS
G 00!) DPiY
CAL TSS VERS I 0N
NO R ()OM, S hJP ECS
Gnon Dl'I Y
C i\L TSS V F.:RS I J~l

. NO R 00M, S 11JP ECS
GOOfJ DAY
CAL TSS VERSION
NO R onM, S '•JP E:CS
GOl)fJ DAY

l • 2

1 • 2

1 • 2

1 • 2

1.2

l • 2

1 • 2

1 • 2

1 • 2

CAL TSS VERS I 0N l .2
NO R 00M, S 1</PECS
300:) D.f.\Y

·CAL TSS \JERS ION 1 .2
NO R 00M, S ',JP ECS
G()()l) DAY
CAL TSS VERS I :lN l .2
,PERMANE~H DIRECTORY?
.1JSERtVV
GI VE p AS s ll[C)RD

.0RBL
T E i"1 P 0 RARY D IR SC I ORY ?
• V
COMMAND pqocF.SSOR HF.RE
!S ERV IC ES
S F.:RV IC ES HERE
*rvr.AP PERMDIR:TRIVIA TEMPDIR:INPUT
* Fl N

. ··.·· ·:-•:·•.··.·.:.,: .. ::;.

::.~/":: \/;~.(--·i._:~ ~·.-...
. cAi···is!t:ttanti.\i'i .. ·.

I.

. . ,··
--"""-• ... -- ·-~ __ . ., ..

'.· '
' .. t"

.· . ' . . -~. . .: -~ . '

-·· :· ':-

-··¾'t-
·~~<-.··~

-, ,._:

CAL ~-~i(~·~nuai · ·

July 1971
.·.-·· .\.· .. :'

C0MMAI\JD P1'.?')CF.:SS';"? H:'1E
! ~n IT l)R INPUT
: T;P$ <[j)

P~'ISRAM TRI VCTTYI N, TTYOIJT, TAPE2=TTYIN, TAPE121iryciU,T)

.. n.·

.... _ --~- ------ -- .

'•JR IT~ C l , 1 (71 ~)

FORMAT C*T?IVIA SPEAKING, WHO'S THERE?*)
READ (2,203) NAME

21/10 F0RMAT C Al~)
1vRIT~ C 1,300) NAME
FORMAT C*GOO~SYE,*Al0)
ENJ

C OM{YlA l\]f) PR 1C F.SS 1R H !-i.:R i;:
! SC GP 1-~ 110. t7i 010
15: 112:35 0.8/06/71 SC0P32G OF 0?,/01/71
>Rll"l Q])

1•JAITING AT T0P OF '1UF:l!E FOR S1t/APPED EGS SPACE ·.
COMPILING r:-nv

> L0i0
t,JAITHJS i\T TOP OF nur;:•rE FOR S 1•JAPPED ECS
1,JAITI~JS FOR ACCESS TG f:'.,JAPPED EGS SPACE

3 /\HEAJ IN 0UEUE
1•JA IT P,l '3 AT T DP 0F ()!J E'J E FOR ' SWAPP ED ECS

BEGIN. i:..:xECUTI')N T~nv
TRIVIA SPEAKIN'.3, ·1•/HQ'S THERE?
tGEOR:';E
GO0DAYE,3EORGE .
E~D . TRIV
> FI ~l
COMMA NJ PROCESS OR HF.RE
!LOGOUT
GOOD DAY

. ~------ ~ ;-. :

·. 0 .·
SPACE . ·

SPACE

'·

~ .. : . -,- ·.,

CAL TSS Manual

July 1911

EXABPLE 2.4 - SCOPE SIMULATOR: A SIMELE INTERACTIVE FORTRAN PROGRAM

This example was generated when the system was fairly busy. When the
user ·tried ·to log on,. .he was refused access because there was no space
to accomodate him. The space fluctuates on a short time scale,. so the
user just kept trying until be got en. subseguently¥ the SCOPE
subsystem requested additional space which was n.ot immediately avail­
able and CAL 'fSS printed the messages saying •waiting at top of
queue , and ~waiting £or access to ••• 1 so that the user would be
forewarned that processing his request might take longer than usual.

1 .. 1

2.0
2.1
3.0

3.1

3.2

3.3

3 .. 4

3.5

The reader has seen this before. The file TRIVIA in PERMDIR
is made available in TEMPDIR as INPUT.
The file is printed with the Edi tor ..
Notice the special file names used to talk to the console.
The user asks for the SCOPE Simulator. Characters typed by
the user are underlined in this section.
SCOPE requests the SCOPE Simulator and the 40000 is an
optional parameter which determines the initial FL in the
Simulator. If it is omitted,. a default value of 14000 is
used. 40000 is required to use the RUN complier so that is
why this value was chosen, SCOPE prints the time and date.
> is SCOPE's frompt character, signalling that it is ready
to process a request.. The user may type the same ccmmands
that he would have put on his control cards when using the
batch system.. In particular., RUN causes the FORTRAN compil­
er to compile statements £rom the file INPUT.,
Another command causes the compiled program to be loaded and
executed.
The previous line lfas printed by the user's progr-am. The
is the prompt character which signals that a program running
on the simulator is waiting for input, as opposed to the
simulator i tsel£.. A:fhir the user responds I GEORGE 1 ,. {fol­
lowed by RETUBN,. a£ course),. the progcam grinds to its
rather uninspiring conclusion and SCOPE starts watching the
console again.
SCOPE prompts for another command and the user dismisses it.
The command Processor reapfear&

34

~--~--------~-------------~-------------------------.-----.•---------------.-~---------- ~---

- ·----~---·-------------~--"""-
c .- Cc YSS;j?7-~r,

July 1971

Exa.mple 2.5

CAL TSS \/F.:RS I 0N 1. 2
PERMANENT DIRECTnRY?
.GIJEST
G I \J E P AS S ',J ORD
• 131JSS T
TEMPJRARY DIRECTG~Y?
• \/ A ~-l CF::
COMMf\hl) PRr:c~SSJR i.[E~!::
!SF.~\/ICES

sF.::q\JICES 4ERE
*PCI\P ()1•JI\J.1(~Y }
7777777777777700273 7
000~00000000~0123~01 ·.
*FI',J
COMMA ~m PR ()GESS IJR HERE
! LOSOLJT
GOIJf) DAY

CAL TSS VERS 11N ! . 2
PERMANENT DIRECT!)qy7
• US ER: VV
GIV~ PASS liJ ORD
.(.)P.BL
TEMP0RARY DIRECTORY?
• VMICE
C OMMA.W) PR QC ESS OR HE~E
!SERVICES

SF.Jl\JICES HERE

0

* f\ D !) KE Y 12 3 .!, 0 l 7 1/! ?, 0 P ER MD I R : ~ EA C I'
*ADf)KEY l23J01 71420 PERMDIR:DA!A
* FI ~l
COMMAND PROCESSOR HERE
!LOGOUT
GOOD DAY

CAl ~~;?:~:-n·~~J.· '- · 1
1

•, , • I

< I

·•,.• .

l ,

·• ~·.' ·~· ·:.

~
.:,_ V

::_c··· ..
.

July 1971

·CAL TSS VERSION 1.2
P~R~ANENT DIRECTDRY7
.GUEST
G I \J F.: P AS S !,JO RD
• GlJF.:ST
TEMP r:JR ARY DIRECT ORY?
.VANCE
C OM M AND PR OC CS S OR HERE
! SJa:P.\JICES
SER \JI CES HERF.
*MC/\P IJV:PEACT;0'•l'.'1.Y.F:Y PJ:.!:RMDIR;REAGT
IJ:-.JEXPF.CTED FRETUfHl
*MCAP IJS ER: VV: RF.ACT; 01•JN. KEY PERMDlR: REAG T
UI\JEXPECTF.D FRFiT!lRN
* FR IEl\lTP US F:R: VV
BAD SY~ITAX
*FRIE.NIP USER: VV TE~P;)I?: VV
BAD SY NT AX
*FRIENDP USER:1/V TEMPDIR:VV

· *MCAP VV;REACT;qWN.KEY PERMDIR:REACT
*MCAP VV:JATA;OWN.KEY PERM~IRtDATA
*ADi:-J!(EY 123401 77777777777777 PERMDIR;REACT
*ADDKEY 123~01 17777777777777 PERMDIR:DATA
*FIN
COMMAND PROCESSOR HERE
!LOGOUT
GOOD Dl\Y

.•.

· cA1 ifss 1·1rqi~J~t······

.. n·

July,1971.

Cf\L TSS VF.~SI 1N 1 .2
PERMANE~T DIRECT1RY?
.GUF.ST
GI VS PASS WGRD
.GUEST
TEMPORARY DIRECTORY?.
• VMlCE
C OMMMlD PR 1C :.'.SS OR 4Z :~E
!SCOPE
16:1:l:54 iil>3/ 1il6/71 SC'JP32C IJF 08/01/7l
>St-1()80L, !=~EACT

S ll CC ES S FU L C Oft P I L /\ T I 0 N

I

WOULD ANYONE OUT THERF. LIJO.: TO HEAR S0f1E POEMS?

tSURE

HELLO. t;IHAT IS YOUR NAME?

tVA NC E

I \i/RITE POETi1Y. 1•JOULD YOU CARE F'OR A POEM, VA.NCE?

tYES

GOOD. I SPECIALIZE IN 1mITING HAIKU. SHALL T
AB nu T THE FORM IN 1.JJ-! IC H. HAIK u ARE h/R IT TEN?

tt-J() Tl-!f\NX

VANCE, I AL'.i/AYS FIND ONE'S PHONE NUMBER A KEY TO
PERSO~rnLITY. \iJHAI IS YOIJR PHONE. NUMBER?

t64 25 823

NAME A SEASON--OR TF YOU PREFER I'LL CHOOSE ONE

tS llMMER

,• ' ' ._•I ' .. "/ ''.:'.·:, . ·•·.':"·1

. CA~• T~/~anuai~
. . I

. .. ,'7>J.,_--·- ~:.: ,' •. ,, --~· ~---.. : ··~--~····

, :. _ _...•.·',.·I_· .

.. ,• _.:_.•.

I

TH1HJK YOII. SUCH A L0VF.LY SEASON. IT INSPlRES {'l'E. _ · I ',. . . ---- . -.. L:~lt~r.~~F'-

.. ··~

. · . .._

July 1971

'O

FISHER~1AN'S BOAT '.)RIFTS
GLIMPSE OF YELL0 1•J PHJF. POLLEN
FIRF.FLIES i,JANDERIN3.

l,JOllLD YOll CARE F'OR ANOTHErt POEM?

tNO

I lJ 11l!:JERSTMD, V/\NCF:. THS SOUL CAN TAKE ·oNLY
SO MUCH POETRY AT ON~ TIMK.

':J()IILD ANY0~lE OUT; THERE LIKE TO HEAR SOME -POEMS?

tllJO

THAT'S ALL :1IGHT.. ;I'M l•JRITLN'i3 .A SONNET CYCLE

{
.>FI~l
C OM M- A ND PR OC ES S O '.1 HE RE
! L 0GOUT
GOOD DAY

{

I
·-.::

-..... ;.·; :· ;·,,.:
_

, . ·,.: f"

I
·.·_/·I . -. -· l ' . '' :,~ .

. -: ·- ... - ·- ~~.f I~

· ... · '.:~Jj~~:~3 8
, .1

CAL TSS Manual

July 1971

EXAMPLE 2.5 - SCOPE SIMULATOR: AN INTERACTIVE SNOBOL PROGRAM USING A
FILE FROM A FRIEND'S DIREC'IOBY directory

This rather complicated exaIDple involyes four
sessions.

separate console

1.0

1 .. 1

2.0

2.1

3 .. 0

3. 1

3.2

3.3

3,. 4

4 .. 0

4 .. 3

The whole purpcse of this session is to find out the number
of the user 1 s access key so that his friend can add it to
the files she wants to let the user use.
The user tells SERVICES to print OWN.KEY so that he can see
its number, ~hich is 123401.
This session is done by thE user's friend, in order to add
locks matching the user's key to her files.
These commands to SEBVICES add locks matching his key, which
is 123401, to his friend's files REACT and DATA in her
permanent directory. Only read access is allowed by the
option lists 71420.
Now the user is going to make links in his own permanent
directory to his friend 1 s files.
This is an example of typing first and thinking later. None
of these commands did anything except provoke nasty messages
from SERVICES ..
Finally¥ FRIENDP causes a search to be made for a permanent
directory named 1 DSER:VV 1 , and if one is found 7 a link to it
named 1 vv 1 will be placed in TEMPDIR. If a permanent
directory USER:VV isn 1 t found~ the user will get some
message like the ones frinted above.
These commands make links in PERMDIR named 1 REACT 1 and
'DATA' to files REACT and DATA in the directory VY. The
meaning of 1 VV:REAC1;0iN.KEY' scans roughly as: find
something named 1 vv 1 , (vhich will be the permanent directory
of the user 1 s friend TISER:VV) and look up file REACT in that
directory using the access key OWN.KEY.
These commands have been seen before. They give automatic
access in t.he future ·to the files named by I REACT' and
1 DATA 1 in the user 1 s permanent directory. Even though the
locks added here would allow all kinds of access, read only
access is all that is allo~ed because of the locks on REACT
and DATA in USER:VV.
This session uses the files to which the user has laborious­
ly gained access. It is fcogram vritten in SNOBOL which
interacts with the ccnsole and writes poetry.
The user calls SCOPE and invokes SNOBOL on his file REACT.
Most of tbe rest cf this example is a conversation with the
poet. Lines which start with the • indicate that the poet
is waiting for the user to say something and the characters
after the! are whatever the user chooses to respond.
When interest in poetry wanes, the poet goes away and SCOPE
resumes watching the console,. The user leaves much edif ied3

39

·(',.

.. \n
/·

In i •,

July 1971

Example 2.6

C' AL TS S VF: RS ION l • 2
•\) () RO GM, S hf PE.CS
(i()0D 8/\Y
CAL TSS VERSION 1.2
NO R00M, Sh/PEGS
GO/JD flAY
CAL TS S VE RS I() 1'J 1 • 2
NQ ROOM, S11/PECS
G00D DAY
CAL TSS VERS I1N 1.2
PERMA~ENT DIRECTORY?
• IJS F:R: VV
,3 IVE P ASS hf OR fl
.0R3L
TEMPORARY DIRECTORY?
.v
COMMAND PROCESSOR HERE
!LOGOUT

_GOOD DAY

C .!I L TS S VU· S I r Ji-) 1 . ~~
Pi: H MT::T flU'.LCT Of Y?
• V\1 .

u :-lEYP!- (' n. :: FrLTU:'. u
p E. E ;"i; ?\ ~: ~ n fl Ir. F. C T (j r i y ?
.USrT:;VV~

EA~) S':'tlJ[_)<
PEVi'. M,1?.f 1T DI Pr CT or.-y?
• U Sf F: \J\f
GI\/F P/iSS 1,J(lr_;:_:
.P/\SS
?,;;.;s \,i()f.r_l NOT C unFIH·iI:.U
PEHtl\t-.1U1T ·1Hf([C:TUbY?
.tiSE;~:V\/
GI \/F PAS~- 1,1(1r.f1

T;J f'c:-,;;·y DI"i•r.CT(;LY?

f1;,JPLIC.:iTE. TEhfJ~;{f-. c.
Ti:i· F'()f,Al•Y DH•fC:·1c1;:·y7
• 1,/A r:c E: .

CO1\f\t"1t,JD PhOCE.SSOf'.
l LOGOUT
GOCD DAY.

·•· -•••~"••••- ... ----•"'••-•••• ... ,,,,A -- ~~-.... -.. ---' -- ·-·-- 4--~--~ ... ,--··~~---· -•···--·-·

. <'.._;:_·_·._.· ,; ___ , .:• 'v)}.-<

cit· ~;~ 'i,;:ci11ti.a1

. ·r - .

t; •'

.. -~- , .. ·.•

·~ :· .
• <

.• -✓-

. /
/

- "''~i""•/"',. .. <':\,~

'

"'

Jttly ·1971

EXAMFLE 2., 6 - LOGIN PROBLE!S ILLtl'..;i~RA'TED

1.'!:~ When the 11ser sent his C'tlRL":"~,lll''f~~ to CAL TSS" t.ktttit>e w.a:&lil "-i:
enough space to accom.o.date him.. 'fh.e space ia t.ke fli:.1!$i
fl<1.1.etlll.ates on a fairly sillr0rt time ~cale, so t.J:yi:ag aJlll;,ltt
·every few seconds will generally get t.he lllse-r OJ!il. he.fore ks
can get annoyed,.

2. Q ".fkis interaetioa illmstra.. tes the coaze,:llH'li.Jllces :o-f mo.gt of ta~
mishaps that ca:m occni: ehl1.rimig loqirm: •.

2 .. 1 1 IDJNEX]?EC'TED l<'RETtJIUP JnfHHil.S that th.ere is :m.~t a peJZ.100,lEt~jt
di.r:ect@ry named 'lV- 11 ,.

2.2 'BAD SYN'fAix:" i.tl«icates that 1 ili5~1:VW;; 1 i.s mot: ev~a a
possi.hle na:m:e .fG•r a permaD.ent. direct~.rf ..

2., ~ Sel.f-ex,1ana tory.

2 .. 14 1 DU!ILI:CA 'fE TElIJ?D'IlP means tbt someone else J:a.,a~ alx~~-
namied his TE.Ml?DIR 1'?.AUJ;.'.. Th.~ l!lser mllt.st keep ClQ(l.O,$,ittag a ii:.
:name -antil he gets one th.at d@ses ln:@t. CQRflict..

__ ...---.

CAL TSS Manual

November 1971

3. 1 Summary of the Editor

The Editor subsystem enables the ~SS user to construct and edit files
of coded information. A filg_ consists of .lines, where a line is a
string of coded characters ending with a carriage return character
{generated by the RETURN key on the tEletype}.

The Editor is called by typing a command of the form:
EDIT fname1 fna_!!illl

where fname1 is the name of the file to be edited and fname2 is the
name of the file that the resul.ts are written on. fnam.e1 is the
default value of fname2. All file names are specified by standard
parameters. The Editor prompts by typing : and awaits a request. At
any given time the Editor is looking at a specific line called the
current line. When the Editor is first called, the current line is a
pseudo-line which is always the top line of every Editor file.

The following requests may be typea to move about the file for the
purpose of creating, deleting, or editing text lines. Each request is
terminated either by a carriage return or, if more than one reguest is
made en one line, by a semi-colon. some reg~ests contain a "stop
conditionu or line specifier, represented by sc below. such requests
affect all lines from the current line to the line specified by g,
inclusive. (If you•ve lost track of the current line, request 'P' and
the Editor will print it.) .§2 may be:

1) a decimal numbe:r:, specifying the line that Ill'lmber of lines from
the current line,

2} t .§tr' (where §tr is any string
colon}, specifying the next
characters,

of characters except semi­
line containing the string of

3) 1 /str 1 , specifying the next line starting with the given string
of characters, ignoring leading blanks,

4) 1 $', specifying the bottom, or end, of the file,
or 5) omitted, specifying the current line.

After the Editor bas processed the request, the line specified by the
request becomes the new current line.

Requests MeaninE

I

Dsc
T
Msc
B..§£

Insert, after the current line, the lines
which follow. Insertion is ended by entering
a null line (carriage return only).
Delete the specified lines.
Move to the top of the file (pseudo-line).
Move forward over the specified lines.
l'love backward the specified number of lines.
(NOTJl: §£ can only be a number.)
Print the specified lines.

42

' i
l
j
l
i
I

,.

\
I
i
)·
~·
f

t
!·

I"-,

hhrv-emher 1971

C/str '.l/Str2/§Q

CG/str1/str2/sc

E ,f Rame 5

Q

Re.F1aue the :fi'.I:st 006:lm!EreB.~ .©JE ~l li>y ~
in the speei.fie~ li:.!R:-oo. · · ~ · ·"'-·~·,
Re~l.ace every (;}~~:t'em.6e @f ~~Jl .l,;rJ ~·· ~
each @f t'h.e s1ec;i4ci:ei li.JileG,.. ,
Eia,it the s~cifi.~ :Lines llm~ · tlte Lit•~
C€tllect0r. +

I :nsert th.e conteni::s '®f fi1e .if'.·~
c ttrcen t li:ae •

'i:Ei te Hie s;rrecifiea, 1.i:R;es ,f' i1u;i:l,~i[iUI,~ ~· ~ I
relit Lina, into tiii,e fii:Jt;e ~,
FiFii.sket\l - create th.e. . flle ·- '. :fJE~)l!,l) ~
.latest Ve.JEsi'Olil; :si,ll,l)JJ.f e'mtt:e~iia:~- ~~~ t;~ :
VlF•iateca text t.e I:ef}?il.aee t'ke ID3i?i:p;~- £i.~
t:M~e2 SFSCifieia 'll~ tke Ea.ilf:i~lE' ,W~> ~~-- _.:

Fi,~i.s'h.etd b:at dQ D.:e)t ssa'i'e anJ file .. ;

'fk~ Editor prompts with : a:n:a reswenil:s '2:??1
llllil.i er:sta:liHa .•

---·---------------.
4 Each line beinig ~ra.ited is mafil.e tk:e oli l.i:m.e iliI the: -il.i.a-a ~at~~ -
ana. may then .be altered. using- the Lilile Cllrllect.@1!C,., (S"ee ,se~m,@n 1{J>J]lllc.
the Line Collect0r~ J
s If f,:,.aiu~ is ll1ll.l:l a CP na111;e is re~.aste:ld 0,a tke EJe-l['t'. 'li.mli-e~- _.--

CAL TSS Manual

July 1971

3 .. 1 ..§_Utt1ll@Il of the Editor

The Editor subsystem enables the 'ISS user to construct and edit files
of coded information~ A fiJ,g consists of lines, where a line is a
string of coded characters ending vith a carriage return character
(generated by the RETURN key on the teletype).

The Editor is called by typing a command of the form:
EDITOR fname

where £name is the name of the file to be created and/or edited. All
file names are looked up in the BEAD name space. The Editor prompts by
typing: and awaits a request. At any given time the Editor is
looking at a specific line calh,d the current line. When the Editor is
first called, the current line is a pseudo-line which is always the top
line of every Editor file.

The following requests may be typed to move about the file for the
purpose of creating, deleting,.. or editing text lines. Each request is
terminated either by a carriage return er, if more than one request is
made on one line, by a semi-colon. some requests contain a nstop
condition" or line specifier, represented by.§£ below. such requests
affect all lines from. the current line to the line specified by .§.£,
inclusive. (If you;ve lost track of the current line, request •p 1 and
the Editor will print it~) §£maybe:

1) a decimal number, specifying the line that number of lines from
the current line,

2} 1 .. str 1 {where §!:!: is any string
colon), specifying the next
characters,

of characters except semi­
line containing the string of

3) '/st_£"', speci£ying the next line starting with the given string
of characters, ignoring leading blanks,

4) •s•, specifying the bottom, or end, of the file,
or 5) omitted, Sfecifying the current line ..

After the Editor has processed the request, the line specified by the
request becomes the new current line.

Requests Meaning

I

D.§£
T
M..§£

B.§£

P.§£
C/.§trj/.§tr.Y2£

Insert, after the current line, the lines
which £cllow. Insertion is ended by entering
a null line (carriage return only).
Delete the specified lines.
Move to the top of the file (pseudo-line).
Move fcrward over the specified lines.
Move backward the specified number of lines.
{NO.I~~ §£ can cnly be a number ..)
Print the specified lines.
Replace the first occurrence of st£1 by .§tr2

42

.. ,.,

CG/· str1/st:c.2 /SC --- __ =:,..:!;::./_

i.:o: the specifia.ci lilil.es ...
Replace every oee~rr@ace of mt.rt hf s~~ •
each of tk-e specified liaes.. ··
Et\it th.~ speraifiet&i Ii.mes :as:img t.ke I.ilitlt®
Collector,.4

In.sari: tlae conte1at:s of the fi..l .. e g~" iaft.~jE:'
t.:he cru:re:11t lin:e ..
Write time specified lines:, iRClU!liti tJie Ct!ll~
re:mt: 1.i;iaei., into tke fi.l.e .f.u•sA,f'
Finished - crre:ata tke fi.11@ ~ from t.~
latest version; sim;wly e~f.ti!,Jellf 1'F" ca~mes: t:c­
n pd.a:te d t,e lXt. to r~1d.aee t:. h~ o~.i1i :ttal f:.i.~
specified when tl:le JUl.itor ~a~ eal.1~.
Finisilaea but do lilOt ,ga,ve aay file.

'fke Edi. tor prompts with z alild !CesporH3e ????
lllilde:r:stan.d.. ·

• Each line heing ~iited is ma.ie the old lime in the li:m.:e C(!)illeet.i~l!il
m1.& m.ay then be al:tered using tJae I.inve Collector.. . {S~ s~mi~Jlil. 1 .. 1~ fWit

~ tke :tine Collect@r ..)

. .,..,.,

,,, ----...

CAL TSS Manual

July 1971

3.2 .2.ill!!Jg~J;.Y of EASIC

BASIC is an easy-to-learn, general-purpose programming language similar
to FOR1BAN but created specifically for time-shared computing environ­
ments. For details see the description in the CAL Computer Center
Users Guide, available at the Computer Center Library.

BASIC accepts two types cf statements: 1) indirect, which are saved to
be executed sequentially as a ~r-0gram at some other time; 2) direct,
which are carried out (executed) as scon as they have been entered
using the carriage return key (direct statements, especially the PRINT
statement, allow the teletype to be used as a very powerful desk
calculator).

Although some statements may be used only directly (or indirectly},
most statements may be used either way. All indirect statements must
begin with a line number and are executed in order of ascending line
numbers. Those without line numbeis are assumed to be direct.
Statements which may be indirect ,2nl1 are those that woul.d only make
sense in a program. Statements which may only be direct are usually
for changing the p-rogram itself rather than the data it works on.

BASIC is called by typing a command of the form:
BASIC fn~Jg.§

where !1.!-21!.t§., if specified, is a file containing a BASIC pi:-ogram to be
loaded. EASIC -responds with BASIC VERSION ••• after which either
direct statements or a program of indirect state•ents may be entered.

BASIC prcropts with-.

There are three ways to enter a program cf indirect statements:

1. Pass BASIC a file fili!.ill§ as the firEt parameter when it is called;
the file is loaded in the same manner as when a 'LOAD' command is
given.

2. Use the 1 LCAD 1 command to read in a program from a file. Lines
containing errors will be typed out after an error message and are not
included in the program.

3. Create a new program by typing it into BASIC. Lines with errors
will not be saved.

~~]!filB EASIC program starting_t_;i;om_j;J1e Ccmmand Processor:

BASIC
100 FBTN'I RNUMBERn, ttSQUARFD", ttCUBEDTI
105 PEIN'I
110 FCR X=1 TO 10
120 LE'I S=X*X

44

.Ju:ly 1971

130 PRINT X,S,X*S
NEX'! I 140

150
RUN
NUMBER

END

SQUARED

1

crrnED

1 1
2 4 8
3 9 27
4 16
5 25
6 36
7 49
8 64
9 81
10
EJf.ECUTIOM

100
COMPLETE

64
125
216
343
512
729
1000

How
1,.
2,.
3,.

t.he.u.ser may:
Edit his program
Q.11it (and return
Save his program

using direct statements a:nd reru it.
t.o the Comma:ad Procassar} by typi:ag FIN.
b:y typing SAVE f;gaJJJ,~"

L,ist . of :r;nd.irect or Direct state.me:ats

LET var=[..... var=]expr
-Each variable 5 takes on the value of the exFression ..

Example: 10 LET A=E=li.35-F

a;sray {dim list} [.,.. ,array {.fli.1!1
Reserve space for arrays
aim€nsions > 1 o ..
20 DIM A (60} .,I. {5, N,3*N)

SIG .§~E:!.

list) J
with moce than two tlimen:sio,:1u;; attd/0,r

Number of sigIDlificant digits printed for 1u,1mfaers is cllt.al'Dig~d to tkie
value of .§lll; ..
Example: 3~ SIGN

DEF FN letter(param)=eXPI
Defi:nes a mie li'llte f\!nct.ioR whose name has tkc~•e lstte£s atartim~
with FN and whose single dummy parameter is R_a:ira\!ll.
Examfle: 35 DEF FNG(X3)=X3/10 - A0/13

READ var[.. ~ .• , Vsr]
Reads :from a DA'I'A defined list and assigns va11lles to tJae v:aiciahl.es

5 A variable may oaly he a letter optionally fol..l.mred by a dig.it:, or by
a list of expressions separated by commas and encl.osed iJil. par~lllii:~seSo.

n

Jttly 1971

in sequential order.
Example: 40 READ i,B,G2

INPU'T var[.. , •• ,.!fl£}
Bequests inpnt val-ues from the 'f~Y by typing ? and a~siglll.$ wa..11.:i.ites
to the variables in sequential order.
Examfle: 12 INPUT A,B,C

. !!?HINT (• .. • ITE!]
Prints and/o:r: moves the teletype head as i:adicated hy, the !,t~m {~)
:which may be num exg, st:ci:nq .!!!:.f, 1 characters 1 , TAB (~}!1r;J, ,,~; , ,
and : ~
Example:: 100 PRIN"f UVALUE + 1', TAN (B1*B1}

RES~ORE
Restores the pointer into th,e Dli1A bank to tke tap,.

IF log e:xpr GO'TO lnum
IF l<@g e~Jgr THEN llll;lUll

· 'fra1usfers control to the stateme1a.t with liae ilil.llltm:her l~!JJL if t.JlLe
logical expression is true~
ExamFle: 10 5 IF A>B/SIN (X} GO'fO 115

GOTO llllnm
'fransfers control to line namber ll\lJ!!i!!!"'
lxamfle: 20 GOTO 300

ON 6!'.Er GC':rO lnu.m[,. ,. ,. , lnum]
If .§~ has value=1, GOTO statement h.aviRg first lE,U .i.Jll: lurt; if
e.1::pr has value 2, GDTO statement having second h.o · iR li;st,, ~tc~
Bxam~le: 10 LET X=1

20 ON X GOTO 30#40,50
transfers to stat~-eftt 30,.

REM char :string
l comment statement.

GOSUE li!Hl.1!!
Go to the statement specified by the line n.Rmb<tar b1J1J.t. ret1a:r:m: to t:.he
line following the GOSUB when a RETURN statement is e:i;1t;K>illl:H t~~a, •.

MAT READ c - Reads values from DATA list into array c ...

HAT PlllN! c - Prints valnes from array c~

MAT C = TI!N (a) - Matrix C becomes transpose of a ..

mAT C = ZER - Zeros every element in matrix c,.

July 1971

!AT C

MAT C

MA'f C

!AT c

= IDN

= CCN

- a+b

= a-b

= a*b \

-

square matrix C is set to iden t.i tr matrix,.

Array C is set to all ones~

Array C is set to the S'lim -Of a pl til:S· .b'"

Array c is set to the diffeD'!ilD.ce hetweeJia a ana b'"

Array c is set to the prodl!ct of a a:ntd h,.

HIT C = (expE)* b
Array c is set to the scalar product of extir aad lh

ItAlf c = INV {a) - Matrix c becomes th.e inverse of a,.

DATA .!1!l[•~- 1 val]
Forms a list of data valaes to be used by READ statements~
Example: 12 DATA 5,7 .• 3,30+52

PAUSE[sti; J
Execution pau.ses and st1:;i if given, is prin.t.ed ..
direct statements or editing regm.est; execut.ima
TINUE is entered.

BASIC will accept
res~mes if com-

END
Ends execution; must have highest li.ne nlJlm:b,er,.

S'fOP
stops ex:,ecution (acts like a jg_mp be END :statement) .•

FOR .!~'='fl)X:Er TO eXI?tl STEP .§.!11£]
NBI'f li~

Def in.es the li:mi ts of a loop,. The th.re0 ex,r:-es~iOJa£¾ g;ive the
initial values of the control variable" tke termiru1:a.tµg v~l.~ and
the increments, if not egnal to 1 ..
Examfle: 40 FOR I=1 TD 10 STEP ... 5

:llETURM

50 LET S=S+I
60 NEX'f I

:Execn.tion goes to the line fallowing the 1ast G'GS1J,l3 for wJd,.ch ~@

BETUBI has been executed~

tist af Direct Statements

I.I MI'f in teqer
Specifies a maximum number of statements tkat can be eK:~'1:t~d
witlHHl.t control returning to the con.sole; preve;rn_t.:s i.i!llfiBite l.«,iQ))JB}S,.,

47

:•·~·

CAL TSS Manual

July 1971

RUN
CausEs execution of the prcgram beginning vith lowest line number.

CON'IINUE
Execution continues where it last stopped.

LIST [line number[-line_numberl]
Prints out the specified lines
numbErs are omitted er are replaced
frcgram is printed.

en
by

the teletype.
1 ALL 1 , then

If the line
the entire

DELETE line number[-line number]

EDI'I

Deletes the specified lines frcm the program. If 1 ALL 1 is typed
instead of the line numbers, then the whole program is deleted.
Note that this statement has no effect on the values that may have
been stored into any variables.

line number [-line_number]
The specified lines are passed one at a time to
for editing. Note that if the line number is
is larger than what it was before but is still
number of the last line in the rang€ specified,
be edited again when the new line number's turn

the line collector
altered so that it
smaller than the
then the line will
comes.

tj,91,J;I [line Will DE t!ditee agaip wbeu the .Y.ie.lLUne Ji:Ylll.l30ro tucn com,-.

LOAD [11!.2.!!§J
Loads a program from a text file of the given name. (No lines
-which may have been entered into EASIC are deleted.) The name, if
given, is a simple name which is looked up using the scan list
SCANI, created by the system in the user's temporary directory.
SCA NL looks for the file in the nEer• s temporary directory, his
permanent directory (~ith the user's own access key) and then in
the public directory. To type a more complicated name, fname is
cmi t te d and a prompt character q tote (n) will appear, after which
any Ccmmand Processor name can be s~ecified.

SA VE Lt!!§:]!.§]

WHO

QUIT
FIN

Writes all the text onto a file of the given name, which must be
in the same format as for load. However, if a name is given and
no file by that name exists, then a nev file is created in the
user's temporary directory with that name.

'IyFe::: out BASIC.

Both of these statements return to the Command Processor after
destroying any program that may have existed.

48

Jt1ly 1971

Operators

!,ri th me tic
I Exponentiation
* M~ltiplication
/ Division
4 Addition.
- , :s·mbtraction

Logical
! Logical OE

Relati~Ral
= Equal
< >, ><, t lot eqaal
< L'BSS than
<=, =< Less than or cegQa.l
> Gr,ea tar than
>=, => Greate:e th.an. or e~al

& Logical AND
NO'T Logical NO'f

Fancitions
ABS(X} f Xf
ACS {I) arcos (x)
!Si (Il arcsin (:x)
ATN (Xl arcta11 (x}
COS (X) cos (X)
EXP (X) e
IN'f(X) integer
LOG (I) log x:

LGT {X}
lUlD {X)
SGN fl)
SIN {I)
SQll {X}
TAN (X}
'TIM (X)

l@g X

ra.R do:m n am
sign (X)
sin {X)

:K

tan (x)
seconds 11sed

CAL TSS Manual

July 1971

3.3 Summary of the SCOPE Simulator

SCOPE provides an operating environment
CAL•s 6400 batch system (SCOPE 3.0
real-time control over the construction
by a user at a console.

fa many programs written for
or CALIDOSCOPE) , as well as

and execution of such programs

SCOPE is called with the following command:
SCOPE fl

where !! is an optiona.l parameter specifying the field length.. When
omitted, 14000 is the default value . ." SCOPE responds by typing the date
and time and then awaits requests after typing >, which is its prom pt
character. Programs executing under SCOPE prompt with 1 when they vant
input frcm the console.

SCOPE creates several standard
whenever it is called, notably
Whenever it needs a file to process
NAME SPACE. If there is no file by
is created in TEMPDIR.

£iles necessary for its operation
a SYSTEXT file called 'OUTPUT'.
a request, it gets it from the BEAD
the appropriate name available, one

SCOPE Simulator Requests

.Request 11eaning
TEXT,fname

FILE,fname

MSG.OFF or ON

GET., f nallle
POT,fname
STE.P

FIN

Loading requests:

L,fname
LGO,fname

Declare a new SYSTEXT -file fname {will not
change to SYSTEXT a f~le which already exists
in another mode).
Use the file fname as the source of SCOPE
Simulator reguests.
Suppresses program messages to the con sole or
restarts them ..
Get the file fname from the BEAD NAME SPACE.
Return fnamg tc its directory.
Trace calls made on the Simulator by code
setting cell 1 ..
SCOPE will print each cell 1 call in octal and
then await a response:
B call the debugger
S perform the request
E ignoce the request and perform END

instead
G leave step mode and then perform the

r:equest
Exit from SCCPE Simulator.

Meaning
Load and link the file fname
Load and link the file fna.J!l~ and start the result­
ing code executing

49

I .

Set TSS mode for the loader (load all comm!Qn hl!Ql:CU
a.fter program. h.locksJ
contents of. loaded a.nd linked core {w.itio,l/tt b~:um:n~r
words) ara liritten onto fi.le fD,taJ11:S

CJALIJJffi:~Q~lL.£ ~tll t rol ie ~ae~rb~: 1 ibc~Jr: w: J?j1£l@·{[;J1:~:
C:A'f AI.OlG!JE
COMPARE
COli'l.PA.2S
COPY
COPYL
CO~Yll
COPIBSF
CFC
D .Ml?
B.ElWIND
JRFI.
:RlHi
sN«rno:r.
UPD.A'f:S

CFIO
DE"BDJG
IO
l:ORJA:t:IB/4H1
KONl:UI
MEHt:rn.Y
REGDlift!P
BETPJ£N
TRACE

50
---=­:"!it .

. I

, I

I

CAL TSS Manual

--.....__ July 1971

3 .. 4 SERVICES and the BE!D GHOST

This section co.nsists of a list of the ccmmands understood by SERVICES
and the BEAD GHOST. An attempt has been made to indicate what sort of
parameter Cs) each conun.and expects., and scme examples of the different
kinds 0£ parameters are given below. A few of the commands are
understood by only one or the other of the dynamic duo, and they are so
marked. The commands are written in caps., the parameters are under­
lined. The command and the parameters are separated by one or more
blanks.

FIN

PURGE

RETRY

RETURN

is the command which terminates SERVICES; it
is not understood by the BEAD GHOST
(BEAD GHOST only) aborts the current subsys­
tem and returns to the Command Processor
{BEAD GHOST onln resumes execution of the
current subsystem right where it quit
{BEAD GHOS'I only} resumes execution of the
current subsystem without re-executing the
most recent system call, if that call pro­
voked an error
changes the user's password to password
creates a file fname in the directory direct

~~,-!:_~: (NEWPSW .E_assword
NEiDF direct:fnam§
ADDKEY ttlnum obits dirl££

adds a lock which can be opened by the access
key jsg_ym!]! to directory entry li£1.Q£; the
kinds of access allowed to_~w ielder 0£ Keffim- ~
are defined by obi!:,§. -::tf'C. - -:--"" -""

DELKEY keynum dirloc revokes privileges of access to the directory
entry o.irl,2,g for holders of access key tgY!U!.!!!

FRIENDP direct obj!.££ if there is a permanent directory named
direct, access to it is placed in obj_1oc; the
access is highly restricted

FRIENDT direct
PCAP pbject
PDATA datum
PDATA datumloc

objloc :same as FRIENDP, except temporary directories
prints the indicated object
prints the indicated datum

Q-9:.tum prints da.:t!:!.!1! words of data, starting at

MCAP object £bjlo£
MDATA datum datumloc
CHAIN direct1direct2

datumloc
places a link to object at objloc
moves datum to datumloc
makes di£g£1l look like an extension of
direct1
eliminates any extension of dirg£!
ere ates a new variable iden t
eliminates the variable ident
prints the contents of the directory direct

.Qi!::11!.l!l da tum3 datum4

UNCHAIN direct
NE"~V ident
KILLY ident
DLIST direct - -----
SP.ACE datumf

resources are reserved for the user; see
section on space control

MSPACE direct1 datum direct2
datu!]! sectors of disk space are moved from

51

. ,,.--.._.

July 1971

NEWU ident datum

KILLU ident

NEWDR ident datum

NEWBLK filadr
KILLBLK filadr
N.ElfKEY objloc
KILLOBJ object
DELLINK dirloc
DELOiN dirloc

P .. FDLL

P .. ASCII

P.INST

IN.OCT

IN .. DEC

CAL TSS Manual

direct1 to direct2 .. One must be the father
of the other. (One sector=64 words)
creates new user subordinate to the user
{i.e., a new fermanent directory named ident
of size dat~~ as a son of the user's per­
manent director~
the permanent directory ident is eliminated
from the user's permanent directory and
destroyed
creates a directory ident on the user's
permanent directory of size datum
cr-eates a new file block at filadr
deletes the file block at filadr
creates a new access key at objloc
deletes the inaicated object
removes the link at dirloc
the cwnership entry at girl.Q£ is removed and
the owned otject ~s destroyed
sets the Frint mode to print 20 successive
octal digits
sets the print mode to print 60 bit words in
groups of 4,7,7,7,7,7,7,7,7, useful for deco­
ding text files which the user has somehow
been reduced to inspecting in octal
sets the print mode to print octal digits in
groups of 15, useful for dumping code files

into the
be octal

(this

{this is the default mode)
the mode of numbers typed
Processor ccmflex is to
expressly marked otherwise
default mode}

Command
if not

the is

the mode cf numbers typed into the Command
Processor complex is to be decimal if not
expressly marked otherwise.

0A--l<J;Ug f ·<'' d;) (a::'.(,:>
~/i-f:)

01SPLA1 fC 1: ·.~

MJ'OLS'
ftil ,:r::r:-1P'

-I'; , t I:: TfLt- :'./'

'v.· ,J,. .. :+
/.,,.,Y.-J

Vtf"'I
~ J
6cA /)5 E:N S,q

(

, r , .
. 1·,, .. -,:_,

,/

52

,,,..-.:
I

CAL TSS Manual

July 1971

Parameters

datum parameters are evaluated to 60-bit integers; notice that if the
user gives the name 0£ a datum, the datum is looked up for him.
Examples:

7
11
1 1
5+10-15D
VABIABLE+4
7 CB+ (1-5 2 B + 4)

represents
represents
:r:-epresents
r,epresents
:r:-epresents
represents

7
9., if 'IN.OCTt
11, if 'IN.DEC'
-2, if 'IN.OCT•
7, if VARIABLE contains 3
56 plus the contents of
the subsystem which just
BEAD GHOST

cell 46 in
call the

g.at.fil!l_lO£ param,eters specify places where data can be kept.
NAME A variable called 'NAME 1

FILEIO The first word of a file FILE in the

#10
Command Processor name space
Cell e of the subprocess calling the
BEA.C GHOST

~irect pacameters specify a
PERMDIR

directory

TEMPDIR
USER:VV

USEB:YV:P

dirloc parameters specify names of
TEMPDIR:INPUT
TEMPDIR:VV:REACT

The user•s permanent directory
The user•s termporary directory
The directory name 1 vv 1 in the USER
directory
The directory .named 'P' in the
directory named 'YV' in the etc.

files in directories
A file in the user•s TEMPDIR
A file in the directory named VV in
the user's TEMPDIR

filadc parameters specity addresses within files
INPOTIO Word O of a file INPUT named in the

command Processor name space
TEMPDIR:VV:REACTf100 Word E4 of the file mentioned above

fname is any legal file name; here are mentioned only strings of
alphanumeric characters

INPUT
MYFILE10

ident is again, any string of aplbanumeric characters, blanks excluded

53
,..,,

I

i ,.

~·

I
CAL TSS Mi ~n a al.

Jaly 1971

keyn1rnt.b is j·ust a datum with a different name

ohject is a
stn.ff kept
if ·the user

301 A.eiCess key nu.ml::rer 301
V.1\RIABLE Same, if Y.ARIAllLE-=301

·two-word set of information .which is th,e internal f·@r~· nf
:by !h~ syste.m, _like files ~n:d di~ectories a;a,& access · ·eys;

spcecifies an <?.lJ,3loc, the obJect w:i.11 be :fetwea, ,
D\WN,.KEY The i\ls:-er 1 s private acoess key !

SCA NL The use;i: 1 s private nam,e space ·

.::9il2.jl•0;£ parameters speci:fy places
di.rectories and variables

wbere objects

The user can
NAME and m,ove
A a.irloc is a

i
are ike pt, suchj as

I

create a varia:bJ..e lvA:a­
objects to it I
special fnrm of ~~i~e

VARN.AME

PERMD.IR: .FN.A!i E
I

~-~.:~, ·\-,·-- :~:;~~-j•e:· 1::. .. ~
..... bUISlit • ...,. ti.lei*...., . >'!" - . '"!!'I btb;;.>~-- ·· ,,-:

1t
I'

I

I.

:1

I'
i

' .
! ·
,1

' ',

', ,:-

//
f .1/

' / ,,,.
·/<-.

PlWJ>OSim Cll \ l~Gfo:.S l•'lln TSS 10/R/71

-,

/
I './1 ,,

I) \ hnsic mnchinc rntc of 1200 per hour, divided up RB proposed in II A
note on ch ,rging 11 of 8/17/71. This restilts in the follow in~ rates:
(ro1tnded to 2 figures,)

II)

Cl'U
1,:cs
Te:'lpornr,v cl isk

1130. 00 per ho~r
S ,29 per 10 ~words-hour
$.047, per 10 -sector-hour

A connect ch,rge rnte so set that the effective connect charge for no
nctivit~ is

Direct wired TTY
Dial up lines

$2. 00 per !Dur
$2.50 per hour

,.. ;,,. \)· .. -

III) Permanent disk space charged at the effective rate of temporary disk
Rnnce for 200 hours per month. This rRle will not deJ~nG on the number
of hours the system is actually in service.

Permanent disk space · $;.40 per 103 -sector-month

1

: i

,. '

I
1
I'

··•.i ··_,.
. ~- ._ -~! ..• -.•

• ~ l' . . .' . .,.
: ".r', '':'

-·: . ';_./

:'.i

'' f ·

.-.,.-(. ,'

'; :t. ' ,, .

. .'

. ·_ ,-,'1',

. \:"':'

\

)

. ~ :/y;:-r.

· ... I
'\;:\,.' .

(.-. .,_.

I;.

'.1; "

.• ·,:, ', ',, t ;·.'

.. ':'.(.; .

' '
._.'1

.i

ABr ~

>FI N
C O lY, M C\ D PR GC ES S JP 4 ~ ? i:::
?PR! NTER
TSS DIS!~ S YST_,v PRI N..,.~q 2 1\J F;:> VE R 4 . 1
E'IJTER TEL F LI ~-
F OR V n f,J C E
SCOPE to QR.~T C' 'WVE)T T'-i~J: ?
y
E\JCH CL EAREl
PP I \JTPJS •••
C OMf,'lf\ MD PR0CSSS OR ~t:: :~ ~
! L O ,OUT
! 6:2Gl:l 3
08 /2 Ll /71 /
-1261717433 cci c-<;

2 23 71 131!5 <-_l'U
1,2 15 5056471111 Fi,a;c t er
0 J w-e: ,s,/ FCS
0 ? •

L162()15
(3 O 01) DAY $('

scr;Jy~r<

(~ , r/ -~

(

J r. ,,,,,

(_,4.,{/4,.:.-Vh< /4,, '")' /:;4 ! 30,- 4 ,# c((~<iY ' ' .t) ~ I 2 ('3,-~~)

7-'70 / V h.<LJV (;)OK-,~- C /·-- 3 13 ~ C)eC,~ }

$ 3 ,0u//4

rt-2.1 {)

d c.~ tf , 70

/-I 7
fai.~ e ,, /0. 50

" '

i

/

✓,,, ' '

INTRODCCTIO?\

H. Sturgis
8-17-71

Within the next few weeks it will be possible to begin charging for the use

of TSS. In fact we will probably begin testing the charging procedures on live

customers within a week. This note will explore various rationale.,; for setting

rates and the resulting charges for a few standard tasks.

RATIO:-:AL ES

There are a number of different ways to set rates. The method used in this

note is to set a nominal rate for the machine as a whole. This rate is then par­

titioned among the various resources for which we can account. The actual rate

for the machine as a whole will then depend on the percentage of utilization of

each of these accountable resources. The nominal rate for the machine as a whole

is then adjusted on an ad hoc basis to obtain the desired income.

Another method, not used in this note, is to attempt to set the rate for each

piece of equipment so as to pay its costs. Thus, for example, if disk storage

becomes full there would be enough income from the disk itself to pay for another.

This method has a number of problems. Not all components can be extended at will

and all components are not accounted. Moreover, this method makes no allowance

for various overhead costs, such as system programmers.

examine this method later.

It might be ,orthwhile to

Once a nominal overall rate has been set, it must be partitioned among the

accountable components. The obvious method that presents itself is to divide

the rate proportional to the cost of each component. This leads to similar prob­

lems to the other method, i.e., not all components can be accounted, and not all

of each accounted component can be accounted. Another problem is that one of the

accountable items, connect time, is not a component.

We can charge for part of each of the major components: CPU, ECS and the disk.

One procedure is to just ignore all other components, and that is what is done

in this note. Another question is whether to weight each component by its full

cost and require the accountable portion to pay for the full weight, or to weight

each component by the cost of its accountable portion. This is a real problem

for ECS since we can only account for half of it. Finally, there is the question

of how to determine the cost for a component, by the original cost to the Computer

Center, or by a probable replacement cost. These last two questions lead to four

possibilities, and in later computations all of them are examined.

--- -------------

A Xote on Charging 8-17-71

STA:i\D,\RD 'L\SKS

There arc a number of standarJ t2sks cun~iJcred in this note. The first is

the null task. Ti1e cosc for just log;;ing in to the system and doing nothing,

the so-called connect charge. This must be.distinguished from a charge for

connect time alone, since while a TTY is logged in it is sitting on some resources

that are accounted. The total connect charge would be the sum of the charge for

connect time alone and the charge for the resources reserved to the TTY.

It will turn out later, under the charging assumptions made in this note,

that the charge for the resources reserved to a logged in TTY are quite high, due

to a number of inefficiencies in the current system. It is hoped that they will

be reduced in the next six months. In the meantime we propose a negative charge

for connect time, so as to reduce the total connect charge to a reasonable amount.

This amounts to simply permitting the free use of a minimum amount of ECS, and then

charging for any additional.

The total resources used by a logged in TTY are .7. SK (decimal) ECS and

some disk sPace. The ECS space comes from two types of overhead. The first is

system overhead of 4K of fixed ECS,space, which should reduce over the next six

months. The second is due to a crude algorithm for the control of swapped ECS

space, which also should reduce to near zero under the forced swapped procedures

to be installed late this year. The cost of the disk ·space is ignored, since

it is at most $.10.

The next tasks considered will involve the use of the SCOPE Simulator. All

estimates of charging assume that ECS will be used for the same length of time

as is the CPU. This would be approximately true if only one user is on the

system. Since ECS costs will be low compared with CPU costs, the errors can be

ignored under low load. Under high load the increase in cost for ECS will be­

come significant, which may lead users to avoid the system during high load.

All of these SCOPE tasks will assume a field length of 45K (octal), suffi-

cient for large assemblies. Under these conditions, the SCOPE Simulator

requires 100K (octal) of swapped ECS. In order to run large assemblies more

disk space than the nominal amount for a logged in TTY must be reserved. Com­

pared to the cost for CPU this will be small, on the order of $10.00 an hour,

and therefore will be neglected.

====~------~-~--~-

A Note on Charging -J- 8-17-71

The particular SCOPE t.:isks will be: null, null asser.1.bly, and large assembly.

Under the current system the null use of the· SCOPE Simulator, call and return,

takes about 12 seconds. Running a null NO~~ASS assembly raises the total to

about 20 seconds.

The large assembly is one of the decks used in the system itself. The cost

on the A machine for assembling the deck under MOXPASS is 1 minute of CPU time

and 80 seconds of PPU time. At $400 per hour on the A machine the charge would

be about $6.70. Under the current TSS system the cost seems to be about 3 minutes,

including the overhead for calling the SCOPE Simulator.

The final task to be considered is that of permanent file storage. We will

attempt to compute the costs on a per month basis. Since the system accumulates
I

charges for disk space only while the system is actually running, we !need an esti-

mate of the number of hours the system will be up in a month. Since ·a month has

about 700 hours, it is unlikely that the system will be up more than 350 hours.

Next we need estimates of the amount of permanent disk space needed. These

are given for three classes of users: small, medium and large. The small user is

a student with a very small program to save, say about 1 or 2 pages. We estirr~te

that about 800 words or 12 sectors will be sufficient. The medium user has maybe

a 50 page program, about 20 thousand words or 300 sectors. Finally, the large

user has maybe 120 thousand words, or about 1800 sectors. (The system cannot

support many large users.)

RATE SETTING

In order to set a rate by the method chosen, we need a nominal rate for the

whole machine. For this purpose we have chosen $400 per hour so as to compare

with the A machine, which is slightly more than $400 an hour. The B machine is

probably somewhat cheaper than the A machine since it does not have as much cen­

tral memory, nor as many printers or tape drives. The operator overhead for

running TSS is considerably less than the SCOPE system, at present requiring an

operator only at start up and shutdown, plus an occasional tape mount. The pro­

gramming staff for TSS is also somewhat smaller than for the A machine.

The TSS should give a much higher rate of utilization for the accounted com­

ponents than does the SCOPE system, thus inherently producing a higher rate of

imcome for a fully loaded system. ($400 per hour, 24 hours per day, 365 days

per year amounts to $3.5*10 6 .)

A ~ate on Charging -!~- 8-17-71

of less than $400 per hour if the desire is to produce a competitively priced

system.

Hnving chosen a basic rate, we need the comparative costs of the various

components in order to divide up the rate. The following table contains the

basic information used in the subsequent calculations. These values were obtained

from Ken Hebert on August 12, 1971.

probable total
original replacement standard standard accountable

com12onent cost cost unit units (NSU) units (NASU)

CPU+ 32K CM . 69icl0 6 .5*10 6 l hour 1 .9

300K ECS . 48>~10 6 .6*10 6 1 K-words-hr 300 160

1/2 disk .26*10 6 .10*10 6 l K-sector- 1020 765
hr

other . OS>'cl0 6 .lO>'cl0 6

The following tables contain the computation of the rates per scandard unit

under different assumptions. The following symbols are used:

R = total rate to be distributed (using $400 per hour)
cc
tc
nsu

= component cost
= total cost for all components

number of standard units in the component
nasu = number of accountable standard units in the component
ac
tac

cost of accountable portion of a 1component = cc x nasu/nsu
= total cost of accountable portions of components

Next we give the formulas for the two methods:

Method A

rate/s.u. =Rx (cc/tc) x (1/nasu)

Method B

rate/s.u. Rx (ac/tac) x (1/nasu)

:lethod).

component

CPU + 32K G1
300K ECS
1/2 disk
other

Method B

tc =

comEonent

CPU+ 32K CM
300K ECS
1/2 disk

COSTS PER TASK

(original
cc cc/tc

. 69 .46

.48 .32

.26 .17

.08 .05
1.51

ac ac/tac

.62 .59

.25 . 23

.19 .18
1.06

costs) (repL,cement cos ts)
rate/su cc cc/tc rate/su

$ 205 . .5 . 38 $ 170 .
.80 . 6 .46 1.15
.089 .1 .08 . 042

.1 .08
1.3

rate/su ac ac/tac rate/su

$ 263. .45 . 53 $ 236 .
.58 .32 .38 .95
.094 .08 .09 .047

.85

The following table gives the charges for the tasks described above in the

4 cases· of rate division considered.

original costs reElacement costs
Method A Method B Method A :-1ethod B

connect time per hour $ 5.24 $ 4.05 $ 10.50 $ 6.75

SCOPE Simulator per hour
for CPU and ECS 230.00 281.00 207.00 266.00

null call . 77 .94 .69 .89

null NOMPASS assembly 1. 28 1.56 1.15 1.48

large NOMPASS assembly 11.50 14.00 10.04 13.30
~6.70 on A machine)

Disk storage/month (at
350 hours/month)

-•

small (800 wds) ,,. IJ, - .. .37 .40 .18 . 20
medium (20K wds) 9.40 9.90 4.40 5.00
large (120K wds) 56.00 59.00 26.00 30.00

A Note on Charging -6- 8-17-71

FINAL

After consideration of the above results, we propose that:

1) the basic charge rate be $300 per hour.

2) ~ethod B, based on original costs, be used to calculate the rates.

3) a negative connect charge be used so that the basic charge for
connect time is about 1 or 2 dollars an hour.

These proposals result in the following rates:

CPU $200.00 per hour
.-·~ ; I, ,·t-~ l _j

ECS 0.43 per K-hour
disk 0.07 per K-sector-hour _,--,.

and the following charges for the tasks considered above:

connect time per hour
SCOPE Simulator per hour

null call
null NO.:VlPASS assembly
large NOMl'ASS assembly

Disk storage/month
small
medium
large

$ 3.01 (not including negative connect fee)
210.00

.70
1.17

10.50

.30
7.40

44.00

I ~ ____ , ,

...

t10 ()

(J t) -

--
(0

-
40

fcl

-

I -

-,I--. ' / .
./,, / .•r rt /-,,,-/ .✓. ~-·•·f 'J-:,.. // , . .; ,, l •. /' . .

✓

. ,.

C ?C! r,,-, ,,,-i,. I. ,;t- ✓ry:t.~t!
,.,c>T ~· fi-7lJ"J,L,

~ c~J /.~Y:A' fcZ

~
,r ' \ .•

., i,,, • ~ ,c ,·/''·(I' /

·" '
I J .. ,.,··"' •: <. / 1"

!

- /-··~·,
/: 1 ,

"·
./

I 7 -{
. " .

/0() -

} (cJ

120 -,If'
e-,e.,-1,,,_ / ! t ,-'-{,

I //. ?/;,

-

l L;

l?O ,t/VL-rl- ,1,-rlc~ , //,<-'4V/~ ~ -~-~.
f3 ft If D 5 f t1 5 C- ,rt-, ,,~;-- /#.;(, f;/4d' ' . ..· .

I 'f 0 ~- ,t~/~ /~v, c.Lc <?'t.✓-vt(/t?.

I 'JtJ -

) co -

•

I I? (

/7i

- ,,Vt/~.·tY'L -/''' ; - i _,, __ .
..,..tc-· ~ .,I)

'+

....,,,., 1

·:-.f/ /•,'

.. C ." y, . ,. ... ,,.6,.

•

20 -

7 (J .,. c-w,,;c p f-'?- ~ ,-h•Al /•·cJ: i
lf rJ y.,-:4,- ~ # ,,._;,.,. ,A.-/ - I

)VU n t3f ~ 7 - ~ ~ C<,>, ~~
,u, oc105e1'1>Cr r~.l;d

{O - _,Y,/:.("'1,.-~ ~ ~.
I , ff-

~ ~l/lbury .

-
(0 -

•

.
I

I

Nv n 8 £R I/ · - i31;. ,1 Ds ~--y-r:
a,~ ~~ .,,t,..rfi.c--- ;_r. 4/_,__£t,.., ; -.-'/h.. 5 E ,t.. I) S).; 1-1 se,..

NU H 13£ R It - fY k)'QPL ea#
n ~DI T-ltlf

oo

)0

,.

lfo - . ~ h ,,~ er- fo-/~ZZ

. :;-CJ - -~~ ~. /l,t-rr ~

•

. .

/J () f1 IJ ;:; ii~ I 3 - ,u--e..-.,d ~ / c,;,6/

no D

60 - ~. fr,rrc tr>-,_. c ~,.,. , 1,,, 2/e J

,o
- '

- ~~·~rf~·

NtJD -- ...

o O - ~✓ k ~~? /~f,-£<-
f d.- ~I~ hJa) '·. ·•·.

I o - ~ ,JZt/ ,A.A/4 -~r \ ·. ·

[O - ~_;, ~_k~~
. .,tF- .-U..J ~ . . .

•

•

fV u n Bf t Is- - c;/.,,,.,y CL ~✓,,_ l,,,,4-;t,✓,,,.,,,.,L

P1DD
'

I O - ofi;,1,_,..-::,~ /l~~_z,/ ~ ,,A•,,;(-~~
... ✓. I' '

- -·-·- ___________ l-,±_-4 ----·-----. ··-·---·~-·-·-'-----·.
,.... ,,,. .. ·• ,= -~ ·-··-

,Jun i3;;. ~ 16 - ~ .~ "-o/7 k
~A-~~~ ,,···,

NJtJI)

00

cs--

--~ ffi'I~ o-/.~v<'~--··
~·r-,;._ /.MA,,

I I - e 1~rw1~ ~ ~ ~i ·_. ·
- ~ ~/ ~-~~

-

•

I 0 -

l> -

27 -

-

~fr .2t- v~ /f/4-Vl ~_,,..,~.,%. •·. . . .

~~ ~ ~ ~ ~7
F,/J!f-CCT ~~ ~~·

~
~ cf.~ ./4~/4 ~# ~··
.~ ;#· ~·?~ . .z;::._ µ~

, . .

~v- ,44,bi_ ~ ~ ./C7· ,zz..,..,.. .·
/4~· . ·.· .·

-1A-"?J;:y.e_' ~ ~ ~ /4'/4 ij~
~d-

•

II

·yo -

-

·~ 70 -

•
I -

NU /1 iJ f /f5

/\/j OD

00

Io

7-_ 0

-

-

-

-

t7
zo.

.....

- -- -..:__:::.:_-·-·=--=-======:::::=:========-== -- -----~---....... _____ _ ___ ;
IV U tlP:f r{

r1 c r)

-

' I
-

I

List corrections , suggestions , etc o, hereo

r

0

CAL TSS ftanua.l

July 1911

INTBODOCTION TC ClL fSS

Preface

1 •

2.

Genetal concepts

1.1 Access to CAL 15S
1.2 Piles, directories
1.3 Login, logout
1.4 Command Processor, subsystems
1. 5 Names, objects, na1e s ,aces, access locks, access keys
1.6 Command processor name space, BEAD name space, SCllfL,

PEBNDIB, TINPDIB, OWI.R!Y, ~ull key, PUB.KEY
1.1 S!EVIC.ES, BEAD GHOST, errors
1.e Space control (what to do about 6,1,? errors)
1.9 'WHO' and .PAtUCs, or how 'to untangle a console and how the

user stops something he wishes he hadn't started
1.10 A note on the Line Collector (how to erase mistakes)

lxaai:les
~. 1 Use of BASIC, not keeping peraanent files
2.2 Creation of a permanent disk file to be kept for future

sessions:
2.2.1 future access •automatic'
2.2.2 future access •• anual•

2.J Access to permanent disk files
2.3.1 Using BASIC on the file from example 2.2.1
2.3.2.1 Selective access tc permanent tiles
2.3.2.2 Making all the user•s permanent files available to

all subsystems
2.4 SCOPE Simulator: a simple interactive FORTRAN progra•
2. 5 SCOPE Simulator: an interactive SNOBOL program using a file

from a friend's directory
2.6 Login problems illustrated

3. Subsystem su• maries
3. 1 EDITOB
3.2 BASIC
3.3 SCOPE
3.4 SERVICES and the BEAD GHOS1

1

I

I
I
I
I
I

,.J

0

0

CAL TSS Manual

July 1971

PBBFAC!

This document is intended to provide inexperienced users with quick and
easy access to many CAL TSS facilities. It is not intended to be
logically co•Elete or fastidiously accurate.

The first part gives a brief descri~tion of the logical structure of
the system as seen by the user. The second part is a collection of
examples of some useful interactions. 1he examples provide a cookbook
approach which • ay be adequate for soae users, and it is hoped that the
section on general concepts will be helpful in easing the user into
productive and flexible use of the system. However it is doubtful that
these pages will answer all ~uestions or transfor• someone with no
previcus experience into a proficient usEr without some work.

Fortunately, one need not be an expert to use the system. One of the
advantages of interactive systems is that the user can "try it and see
if it works" without incurring a prohibitive cost in aoney or time.
Thus, a light reading of this docu •ent should be more than enough to
prepare the user to start experimenting on the systea itself. Of
course, having assistance fro• so1eone who knows CAL TSS is very
helpful. But in the absence of e1pert advice, going back and forth
between the examples, the console, and the description of general
concepts is hopefully a reasonable route to expertise.

The third section gives brief suaaaries cf the subsystems available on
CAL 1ss. These summaries are not inteEded to teach people hov to use
the subsystems. Bather, they are intended as convenient •crib sheets•
for people who already know how to use thea.

2

0

0

CAL TSS flanual

July 1971

To use CAL TSS, one must satisfy two requireaents. The first is to
make arrangements with the computer Center accounting office, or a Tl,
or scme such authority who has time to dispense. He will provide the
name of a permanent directory which will pay for use of the system, and
a password, which will verify the right to use that directory. The
second is to have access to a teletype (or other teletype compatible
terminal), connected to the 6400 B system. It is assumed that the
reader bas access to such equipment and knows how to operate the
equipment itself. Belew a.re noted a few useful features of keyboard
input to Clt TSS:

a) input lines are terminated by the RETU1Uf key (no line feed)
b) typing CTBL-Q erases the previous character entered
c) typing CTBL-Y erases all characters in the current line
d) typing CTRL-I skips to the next tab boundary (cols 11,21, ••• J

1.2

tilt! ar€ system-maintained objects in which a user can keep ioforaa­
tion (source code, programs, data, etc.). In particular, when a user
is not active on the syste•, virtually all the infor•ation he wants to
keef is stored on the disk in files.]i~tgrie~ keep track of the
names and locations of all the files in the system, plus various other
infor1aticn. Each user has bis own directory which keeps track of his
own personal files and contains inforaation pertaining to him. This
directory stays on the disk when the uset is not active and is called
the user•s .atill!!.!lL~i~i~l2Il to distinguish it from other directories
which are described later.

The process of aaking contact with CAL ~ss is called LOGIN. The user
tells the system he is present by typing CTRL-SHIPT-P on the console.
The system then starts to construct the machinery necessary to give him
access to his files and to the various subsystems available to
manipulate files. Nominal amounts of system resources are reserved for
hia. This nominal amount is sufficient to run a small BASIC program or
to use the EDITOB to modify a text file. The console responds by
asking the user to name bis peraanent directory and to prove that he is
authori~ed to use it by giving the passwcrd.

A temporary directory is then cteatEd to hold the files that come and
go as hE uses the system. The console asks hi• to naae his teaporary
directory. Since this na• e will be used globally a.cross the systea, it
must not be the same as someone else's temporary directory (if it is

3

--~-~--"~- --~.,--~--z---~~--e-------------.c.-·-~-....,f

0

0

0

CAL TSS tlanual

July 1911

the same name as another's, the usEr is
different name). The appearance of the
successful co• fletion of the LOGII procedure.

then asked to choose a
Command Processor signals

The temporary directory and any files which it owns will
when the user finishes using the systea and logs out.
logout: simply get into the Co •• and Processor and type
examples).

be destroyed
It is easy to

'LOGOUT' (see

Note that once the user has successfully logged in, he starts being
charged for the resources necessary to be active on the system. This
charging will step only after LOGOUT (not when the console is turned
off).

When the LOGIN procedure is co•Eleted, the user will be talking to the
Comaand Processor. The command Processor does not do many things for
the user itself, rather, it accepts coaaands to set up various
§.!UHUll~.!§ to work for him. Some standard subsystems which are always
available on the system are introduced io Table 1. A user may also
code and call (through the Coamand Processor) his own subsystems. The
exact method of doing this is not described here.

,--------- ---------- ------·-----------------
,suestSTEM llftE WHAT IT CCES I
t,-- ---------- I
IBDITCi prepares and aodifies text files. I
IBAS!C Prepares and runs prograas in the BASICI
I language. I
ISCOPE simulates most of the functions provided by thet
I operating systea which runs batch jobs on tlle ll
I machine; gives access to the FORTRAN, SNOBOL,t
I and COMPASS languages, and executes programs&
I co• piled with the •• I
IBCPL a prograaaing language aimed at non-nuaericl
I applications. t
fPBINTBi prints files on the line printer. I
ISBBVICES • anually aaniFulates user's files andl
I directories. I
L------------------------------------

The Com•and Processor and all the subsystems print some character at
the beginning of tbe line when they are ready to accept a comaand.
This is called a £~9i£! character. A table in section 1.9 shows the
different pro• ft characters for all the system-provided subsyste• s.
After the command Processor prompts, the user might tell it

-1

I
I

l
1
I
I
I
I
I
t
l
l
I

0

0

0

CAL TSS llanual

Jul :y 1911

!EOITOB INPO't
intending to edit a file called 'input• (the ! at the beginning of the
line was typed by the co• aand Prccesaor, not the user). l general
example of the form of com •ands accepted by the Coaaand Processor is

!£Sll!!ll~ illl! B!t;I! ••• .EJl.!.!
where £21!!Jg and R!,A! arE strings of characters separated by spaces.
Hov the Command Processor turns the characters at the console into
intetnally meaningful information is a lcng story, which is introduced
next.

1.5 !A!ll£-2lli.£1.!.,_!!!•~_§ll~~!..t-i£.£.!~§ locj§c !~SIS§ k~I!

When the user types
!EDITOR INPU'I

to the Coamand Processor, •!DITO&• and 'INPUT' are examples of vhat are
called Jllil in this document. 1he handling of both these names aakes
use of the concept of ll•§JRA£!• The trick is to turn a string of
characters into some internal form which will give access to a file or
a subsystem. A naae space can be thought of as a dictionary which
translates a string of characters (naae) into the required internal
form. There are several different types of internal forms all of which
are referred to as gR.i§tl!• Files and directories are exaaples of
objects. A directory contains the names of objects and also inforaa­
tion about those objects. Thus, one fora of naae space is a sequence
of directories to be searched in turn for the given naaes.

Another important concept in changing names into objects is that of an
~££.!!Llti• l given na •e in a directory •ay be shared by having an
iS.~U!--1~~! attached to it. In eroer to get access to the naaed
object, an ~SS!ll-AU must b• presented along with the naae. Access
locks not only control whether or not access is permitted, but also
what kind of access is ier1itted. Thus, a given file name in some
directory may be protected with two different access locks such that
when it is lcoked up with one key, the file may only be read froa,
while it •ay be read, written, or destroyed if it is looked up with the
other key.

The 1ost common form of name space is a sequence of pairs (directory,
access key). The scope and power of a given naae space are determined
by what directories are searched and what access keys are used.

There are several different naae spaces attached to each user, and
different cnes are used in different circuastances.

5

CAL TSS Manual

0 July 1971

0

The first parameter typed to the co11and Processor is looked up in the
command processor name space (see Table 2). fERff~ll is a naae used to
refer to the user's permanent directory. l!~fg!i is a na• ed used to
refer to his temporary directory. f111lf is the name of a directory
vhicb contains the names of all system-provided subsystems. For
example, it contains the na •E 'EDITOB'. If the user has just typed:

!EDITOR IMPU1
the cca •and Processor is guaranteed to find the name 'EDITOR•. Having
found the ·object named EDITOB, the ccamand Processor assumes that the
object is a file which it can use to construct the EDITOR subsystem.
It procedes to do this. Note that if a file naaed EDITOR were in the
user•s temporary directory, the Ccm • and Processor vould find that file
because it searches TEMPDIB first. It would then try to start up a
subsystem constructed fro• the user's file, which is fine if the file
contains the user's own private version of the EDITOR. Otherwise, an
error results. It is always best for the user to know what he is doing
before he tries it.

The interpretation of the paraaete~s after the first one is dependent
on the subsystem being called; each subsyste• specifies the na • e space
it uses to evaluate paraaeters. 1he three possible naaes spaces are
shown in Table 2. The .§~j.U J!!li !.E.!S! is an old fora left over fro•
previous incarnations of the system. It is being phased out. The
SCAJ!.L Jl.!ll !12.!~ is initial.ly as sho11n in Table 2, but the user aa.y
modify it to suit himself.

Huch of the complexity of the name space situation stems fro•
considerations atout the sanctity of peraaoent files (owned by the
peraanent directory) and the reliability of subsystems. Consider the
nature of the files in the user's permanent directory as opposed to the
nature of the files in his temporary directory. ftanr subsyste• s use
teaporaty or scratch files which are not of interest to the user.
These files come and go in TBMEDIB without troubling tbe user. They
aGtomatically disappear when he log outs. Free access to these files
is essential to the operation of the vatious subsyste•s. Presuaably it
is no great loss if a subsystem runs wild and a teaporary file gets
clobbered. PEBMDIB, on thE other hand, gives access to the user•s
per•anent disk files. The user would be justifiably annoyed to
discover that one of his files had been used as a scratch file by so• e
subsystem. There is no auto• atic backup of these files. If so•e
subsystem has access to a user's files acd uses one for scratch or goes
wild and destroys files, he is in troutlE. His files are gone, and it
will be • onstrously inconvenient and expensive to recover them.
Therefore the system does not autoaatically allow access by subsyste• s
to the files in the permanent directoxy. If the user trusts all the
subsystems he is going to call, there are ways he can grant those
subsysteas access to files in EEiftDIB (see 2.2-2.3), but great caution

6

0

0

0

CAL TSS flanual

July 1911

is advised. It is as though those files were the only copy of the
infor1a ticn.

One difference tetween the various name spaces is indicated by the
access key used when looking in the permanent directory. The !U!ll..-A.!l.
can only be used on one's own directories (PERMDIB, and TEMPDIB in aost
cases of interest). It gives unrestricted access to any file in those
directories. Qi!..Jll is the user's personal key which was created
along with his permanent directory. It is unique to hia, unless he
gives it away. The user • ay grant access to a given file in his
permanent directory from naae spaces less powerful than the co• aand
processor name space by attaching an access lock matching OWN.KEY to
the file. The access may be restricted (to read only access, for
exaaple) ty turning off suitable •option bits• in the lock one puts on
the file (see examples). f!!L!ll gl•es read only access to the files
in the POBLIC directory.

Now it aay be clear that there must be at least two name spaces. on
the one hand, unrestricted access tc the files must be possible,
otherwise the user might not be able to do something with his file that
he wants to do. On the other hand, there must be name spaces which
keep unreliable subsystems fro • wreaking havoc. The existence of more
than two naae spaces is an unfortunate historical accident.

?he existence and use of the naae spaces is complicated
ty features for subsyste•s following the conventions
early version of the system. For both •old' and •new•
command name is looked up in the coamand processor name
processing of the subsequent para •etexs varies.

by co• patibili­
of an extinct
subsystems, the
space, but the

Old subsystems have all parameters looked up in the BEAD name space.
During execution, they may xeguest further objects from the Coaaand
Processor, which are also looked up in the BEAD name space. All
existing subsystem$ are being converted to the new conventions as
quickly as possible.

New subsystems have their parameters looked up in the co• aand processor
name space. During execution, they aay request further objects in two
ways. If the subsystem makes up the maae of the object, it is looked
up in the SCANL name space. Objects • ay be obtained froa the command
processor name space only if thE user types in the name froa the TTY.
Thus, in either case, permanent files are protected fro • unruly
subsyste• s and from accidental use as scratch files.

1

---· ~-·-·-·----- ·----·--·-----.------- ----·-----•--------

CAL TSS Manual

0 July 1971

0

0

,.------ - ---~-----------...------------
CCftMlND PBOCESSOB t SCANtl I BEAD I

I IAME SPACE I NA~E SPICE I 111MB SPACE 2 I
-i ~----·-------t-----~----·---+-------------i

IDIBECTOBY IICCESS KEYIDIBECTOBY llCCESS KEY I DIRECTORY IACCESS KEYi
1----f-----+------+------+-------.1~----- t
I SOME SEE- I NO'l I I I I I
ICIAt NAMESlAPPLIClBLil I I I I
11.a., t l I I I I
t•tOG001'' I I t l I I
land I I I I I I
l 1 SEBVICES'J I I I I I
t--- t i------+------·-1------+----I t ~
ITEMPDIB I BULL ITEft2DIE fNUll l TEltFDIR I lftJLL I
•-------+--- . +----+-------------+------1-- I t
t P!BftDIB INULL IPIBftDIB ICiM.18! I PBRftDIR I OWNKEY I
t-------t-----t------+------+-----+----- ..
IFUBLIC PUB.KEY I PUBLIC I EUB.KEY ' I ---------------------.--------------------'

Por use of CAL TSS beyond the trivial, a knowledge of these two special
subsystems is required. SERVICES and the BEAD GHOST are similar to
normal sutsystems, but are actually just new 'hats• donned by the
command Processor appropriate to the occasion.

~lill£i§ is a general utility subsystem allowing manual manipulation of
files, directories, etc. The 1ain ~eason for removing this function
from the Command Processor p:oper is to 1ini• ize the nu • be:r of reserved
words which • ay not be used as na •es of user subsystea ('SEBVICBS',
'LOGOUT', etc.).

Unlike SERVICES, which is troutlescme because it aust be called, the
~llR.-~~~~1 is annoying because it appEats without being called. The
BEAD GHOST is the system detugger and its appearance is pro• pted by
some !.t££I• Whenever a subsystem makes a mistake in dealing with some
object or some part of the systea, ertot processing is initiated. so• e
errors are handled automatically by various subsystems along the way,

1 methods for altering SCAJL from the console are available.
2 The BEAD NAME SPACE really occurs i~ several forms. This is the • oat
common fotm. Othet forms are not of crucial interest and are not
described here.

8

-·-. .-· --------~------ -·----- '

0

0

0

CAL TSS Manual

July 1971

and tbe user usn•t even aware of them. Many are reported to the
console by a given subsystem to indicate that they were asked to do
something illegal or impossible (the Coa • and Processor is an outstand­
ing examfle of this). some represent unforeseen circumstances for
which no remedial procedures have been provided (called 'bugs• for
short). They are reported to the ccnsole by the BEAD GHOST in hopes
that the user will know what to do (like complain to a systea
progra111et). cui::rent ly, cnly class 6 errors ("6, n, 11 EBROB") should be
report~d to the console by the BEAD GBOS1 under normal circumstances.
Other appearances of the BBlO GHOST should be reported, along with all
the relevant console printout, to the system staff.

Class 6 errors mean that the resources reserved
becoae inadequate for the task being performed.
user must either obtain additional resoui::ces or
doing, which introduces the next topic.

for the user have
When they occur, the
abort vhat he was

Clt 75S has several types of storage for which there is currently no
automatic algorithm for sharing the available space among the users.
The only positive thing to be said for the scheme described below is
that it is better than simply handing out space until it is all gone
and then letting the system grind to a halt (or crash).

,-- ----..------------·------·, I TYPE IBOftlNAL IHODEBlT! LI!IT fMlXIftUNC
•--- --------------i--- I -•
11) s11apped ECS space I 7000 I 100000 I 100000 I
I (highest type) i I I I
12) fix4!d ECS space I 2000 I 1 I ? I
•· ---------· -t-- ..
f3) NOT slots I not concurrently controlled I
14) temporary disk space t not concurrently controlled I
I (lowest type) I I t.------------------.4-----------------·J

When a user logs on, he is allocated the nominal amount of space of
each type. A command is available to obtain space in excess of this
amount. If a user ceguests an aacunt of space larger than what is
currently available he is put into a queue waiting for someone to
release space. If the request is fer more space than the moderate
limit, be is put in a special queue which prevents more than one user
at a time ftoa being "very large" in any particular type of space.

There is
he bas it.
whenever

currently no mechanisa to force a user to release space once
several mechanisms !!Jg to prevent space hogging. First,

a user returns to the Command Processor, he is automatically

9

I

l
I

I
J

----~~----~-~-----·,~..,-......c--------~-----J

CAL TSS !anual ,o
\ Jul1 1971

0

0

reduced to nominal. Last, a user who has space over the noainal in
some category is not allowed to get acre space in that or any higher
category without first releasing his sface and going to the back of the
queue.

The space command works as follows and may be typed to the BEAD GHOST
or to 5El'UICES:

SPACE .EJ .£l R] R_!

.21 through .11! are the aaounts of swapped ECS space throttgh temporary
disk SEace, respectively, that are desired. The following algorithm is
executed for each parameter starting vitb J?!!:

if• -1 : space of this type is released to get down to nominal
if possible

if= 0 o~ not typed (trailing parameters): ignored

if > 0 . • 1) If space abo•e the nominal for that type or higher
type has been obtained~ error.

2) If paraaeter is higher than aaxiaua peraitted for
this type, error.

3) If para • eter greater than moderate li • it, enter YerJ
large gueue.J

4) If parameter less or= nominal, no further action.
5) Otherwise, accumulate this type of space until the

amount this user bas is up to the size of the
parameter, waiting in queue if necessary.3

There are two different starting fOints from which the user may find
himself requesting space:

1) Be is atout to call a subsyste1 and knows in advance how much
space it will require: enter SERVICES and request the
required amount of spacE and then go back to the Coaaand
Processor and call the subsystem. The request has to be big
enough - see below!

2) A subsystem he has called runs out of space and makes a class
6 error which invokes the BEAD GHOST: if be has not already
requested space, the user may do so now with the space
command. After be has gotten the space, he types BETRY (not
BETOBN) and the subsystem will resume. If he already has
spacE, there is no way for hi• to save hiaself - he must type

J A message will print if the Sface is net immediately available - a
panic (see 1.9) will remove the user frca the queue if he would rather
not wait.

10

I
I
I
l
I
I
l

l
l
l
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
l
I
I
I
i

I
I

0

0

July 1911

ClL TSS Manual

iuBGE. which aborts whatever wcrk the subsystea aay have done
for him, and start over in the Coa• and Processor.

1.9 !.l!ll2~..lU!LlUI~i.Jho.1!...!:.9-DD.UDDl!-L-cop12!1 1ag.,!2! .• ~»s u11,
il212L.!S.I, h,i ns_l!.!L.!ll!l!!L.!.L.!JS!!!Ll11I!til

WHO is a request that may be typed at the console to determine which
subsystem is in ccntrol. PANICS are a way of interrupting whatever is
going on if the user has somehow lost control. PllICs coae in tvo
flavors:

MINOS PANIC (or PANIC for short) - hold down the ~ and ~UilT
keys and simultaneously type P to send a minor PANIC;

MAJ06 PANIC - hold down the]!!!! key for at least three seconds
to send a ftAJOR FAHIC

The difference between a PANIC and a !AJCS PANIC is that subsysteas aay
handle PAIICs on their own if they wish to, but a !AJOR PANIC always
invokes scme arm of th~ Coa• and Processox.

The remainder of this section gives three procedures covering different
cases of console frobleas, plus a table telling how to recognize and/or
dismiss subsystems.

PBOCEOUBE I covers how to approach a console initially.

PROCEDUBE II tells what the user does if he is already logged in and
using the coo.sole but has eithei: forgotten what he was doin9 or the
console stopped responding the way he exfects it to.

PBOCEDUBE III is for those times when the user has started something
that ha wants to stop (e.g., the EDITOB is printing 2000 lines because
he • istyped so•ething o:c bis SlSIC pi:ogta• has been coaputing silent.ly
for an cainous length of time, etc.).

SometimEs the relevant frocedure bas a hafpy ending and the user can
continue. But, alas, the procedure •ay suggest that the console is
down, or the system is down, or there is a bug in the system. The user
can frequently distinguish between a sick console and a sick system by
seeing if other consoles in the area are operating. If they are, it
looks like the console is sick. If they aren•t, it looks like the
system is. The current procedures for reporting troubles of this
nature should be available fro• some other sources. They are not
included here because they are in a state of flux.

11
i ------~-------------------------·------------·------..:-~......J

-,
I
I
I

CAL TSS Manual I

Q· July 1911

0

PBOCBDUBE I - a user is just approaching a console to try to establish
contact with CAL !SS

,.--->
I
I

I

r-----
lttalte sure
IMalce sure
I hour
fftake sure

---------------------. the console is on and is connected to CAL TSS. I
CAL TSS is supposed to be available at this I
of the day. I
somebody else isn•t using this console. I

'-------------------------
,---------------- -----·,
ISend a FltlIC. I .__ _____________________________ _.

I
I

I nc
I response

I respcnse
I

r--- ---------, r-------------------,
1send a MAJOB PllIC t tresponse approximately= I ~------------~ ICAL !SS VEBSION soaething I

I I no response lPJ&ftANEJT DIRBCTOBY? I
I I

no l response
f --- ,
t Are you really sure I
tthe console is OK? I
t. -- -.J

I
I yes

r----------,

• I

I
l

flt locks like your I I
tconsole is down or I I
lthe system is I
tdown. I I L ________, ___ - __ ,., _.,, I

..__ ___________ , _____ _
I no I yes

r
I 1congratulations. You are
I I the LOGili procedure.

tSee the exa• ples.
I &.-

I ,----------------fResponse say something
tabout no space? ~----------

I 1
I no I yes ,

in
,
I
I
I

.J

I
I
I

l
I
t

1condolances. The system is I
&already loaded to capacity. t
t1ry again in a while. I .. ______________ _

I I
,- --·-- - ----------------------
I This • eans that the console was already logged in I
&(perhaps that man hurrying across the roo• with his cup I
Jof coffee will shed some light on the situation). This I
tis your problea. You can PODGE the guy and log hi• out I
lif that is your style or try to find hi• if you are I
tmore solicitous. I 1--------------------------------------

12

0

0

CAL TSS llanual

July 1911

I
PBOCED0BI II - the user is logged in and using the console and has
either fot~otten what he was doing or gotten into some mysterious state
where the console doesn•t respond the way he expects it to:

no
,--<
I

I
I
I
I
I
I
l

I

•
I
I

I
I
I
I
I
I

, ---------------IBEftlMBEB THAT ALL INPUT LINES !ND WITH l ClBRIAGE RET0BI I
l(THE KEY ftlRKED lll~I! ON t!LE1YPES) !II I

'------------------ ___ ,.,
r---------.-----.....-----
llf you haven't already done sc, look up the proapt
tcharactEr in the table. (Subsystems signal that they
&ready to process a request by frinting a character
tat the beginning of the line. 1he table will help you
lidentifJ the subsystem if there is a proapt character
I Visible.)
&.--,--------------------

I
are t

I
I
I
I

,---- ··-- --.......---- ·--------------------
I If you have just typed something, did the characters ecbol
l(print)1 I ' - '"" -_______________________________ ,.,

JES I ,--------------------------------IIf the lines are being happily swallowed by the console and
tno proatt characters are appearing, some subsystea is I
1gobblin9 the• up. Are ycu pGrbaps in insert •ode in the I
liDITOB or BASIC? Jou get out ot that mode by entering an I
1eapty line (no characters, just the BET0jJ key.) If you I
1were in insert • ode and you eater an empty line, a prompt I
lcharacter should appear and you can go from there. I l-.--~---------------------
r------- - --------------------------
1type WHO (followed hy illill, cf course). I
'------------------------------------J

I no
I response

I response
I r------------------------------I &Civilized subsystems respond to this guery by I

I 1announcing their name. Barbaric subsystems are I
I llikely to treat it as a non.sense co •• and and I
I IPrint some irrelevant diagnostic. In either I
I fcase, the table should tell you what•s going I
I I on. I -------------------------J ,------------,

Send a PANIC I
L-----, ---------J
I no I response

13

CAL TSS lta.nual

0 July 1911

0

0

I response l

I
I
I
I
I
I
I
I

,-----------------------------aso• e subsyste1s field (ainor} PANICs and allow I
tyou to resume control. Others duck the PANIC I
tand the BEAD GHOS1 afpears. You can tell the I
IBElD GfiOST to abort the subsystem by saying I
IPUBGE and you will get back to the Com •aod I
IProcessor. (You can also poke around in the I
tsubsyste• With the BEAD GHOST if you are I
tdebugging it, but that is fairly sophisticated.)
l------------------------~

r-,.._ _________ _.._.,._ ______ ,

I
l,

Send a MAJOR PANIC I ----------------"'
I no
I tEsponse

I tespcnse
I

,..- .. ---------..---, ,----------------·----~----------·----....
lit looks like your I I A subsyetem which swallowed PAIICs I
Jyour console or thel I was in execution. No system-provided I
1systea is down. l I subsystem should behave this way. Either I
'---------------.. ~ I it was a non-standard subsyste•, I

t or CAL 15S bas a bug. I '---~--~-------------------~

I
I
I
l
I
I
I
I
l
l
I
I
I
1
I

14 l _____ _J

0

0

0

CAL TSS Manual

July 1911

PROCEDURE III - the user has just staxted something he wishes he hadn't

r-------------~
I Send a PANIC '-------------~ t no

I tEsponse
I
I
I
I
I

' I
I
I
l
I

I response
I

t·· -----------------------' Nice subsysteas will stop what they're doing andl
I wait for the user tc tell them to do soaething I
I else. Not-so-nice subsysteas will duck the PlNICI
I and the BEAD GHOS! will appear. The user can I
I abort the subsystem and get back to the I
I Command Processor ty typing PURGE. or I
I if he decides that whatever was going on was I
I OK after all, he can tell the BEAD GHOST to I
I make the subsystem continue exactly what it wast
I doing when interrufted by typing BETBY. t ._ __________________________ _

-----------, 1send a !AJOB PANIC I &.----------------~
I no
I rEsponse

t response
I

r--. ··----...----------, ,-------------------------
1 It leeks like your I IA subsyste• which swallowed PllICs
tyoux console or thel 1vas in execution. No system- provided
fsystem is down. I 1subsyste• should behave that way. Either
I I lit was a non-$tandard subsystem, L------------ 1or Cit TSS has a bug. '-------------------·--------

15

I
I

I
I

l
I

CAL 'fSS !anaal

0 July 1971

0

0

TABLE 3 - HOW TO BECOGNlZE AND/OR DIS!lSS STANDARD SUBSYSTEMS
----.....-...------------------

SUBSYSTEM I PBOMiTIBBSPONSES TO INCOMPBEBENSIBLE(HOW TO DISMISS IT I
I IOB BBBONEO0S IRPU1 I I

------++-------+-------- t
COMMAND I ! I BAD SYNTAX tThis is the ground I

PROCESSOi I I or I state of a console. I
I I SAY AGAIN IPro• here, the user I
I for tmay call subsysteas I
I I UNIXFEC~ED P-BBTOBJ tor 'LOGOUT' when he I
I tor tis finished. I
l I UNElP!C'I!D EliROB I I
I I or I I
I I EBBOB OCCUBBID OIi CALL TO I I
I I CP.!DS I I
-t I -------------------·------t

LOGIN I • tsame as COftftAID PECC!SSOR IThe user has to suc-t
PROCESSOB I I lcessfnlly finish thel

I I I login (see examples) I ------+------+------------------•~------·- '
SBRVIC!S I • I same as CO ft MAND PiOCESSOR I' Fllf • I ---+----+--------- ----------t---------4
BEAD GHOST
(debugger)

I i I same as COMMAND PBOCBSSOR l'PURGE' will retura I
I I Ito the COMMAND PBO- I
I I fCESSOB; 'RETRY' or I
I I J'BETURN' will return&
I t Ito the currently t
J I I active subsystea. I

-----i---+-------------------11-----------·--t
EDIT0.8 I : I ???? 1•1• or 'Q' (see I

I I I EDITOR document) I ------~•-----i-----------------ti------------BASlC 1 : I ????
I or tor
l 1 I miscellaneous diagnostics
t I rele,ant tc erroneous
I t BASIC statements

-------+-t---~•------------
SCOPE 1 (see I ??1101?

I SCOPE) I

1saae
I
I
I
I

l'Filf'
I

as EDITOR I
I
I
I
t

- . i

-----•------- -----~------------------

16

---~--~,--,-

0

0

0

CAL TSS l'lanual

July 1911

1.10 1he Line Ccllectot

Unless the user does something extraordinary, all console input goes
through a piece of software called the Line Collector, which prowides a
large number of ways to correct/change the line being entered. The
chart below indicates the various manipulations that can be performed;
to invoke a given function, hold down the £lli key and type the
relevant key. A detailed explanation is available in the "Users
Guide••, sec. III.2.3. Here we give two exaaples and encourage the
user to experiment. Underlined characters represent one key or a
coabinaticn of keys, not the seguence of keys given by the individual
underlined characters; blanks that aigbt otherwise be "invisible" are
also undetliked.

First note that the Line Collector maintains the previously typed line
as the sld liJl! and uses it, in conjunction with typed characters, to
construct a &!~-1!&!• ihenever the new line is accepted (bf typing
!ll!llJ, for exa • ple), it becomes the cld line.

Suppose the user is talking to BASIC and has just entered the line
(considered as the old line) belo~ (which will have pro•oked a message
from BASIC objecting to the line).

old line:

!.U~

ill.kl
10_
£!ll:2

PBNIT X

aake an insert at the
beginning of the old line
this is what is to be inserted
copy the rest of the old lime
(all of it) into the new
line and accept the new line.

<

10_
PRNIT X

and the carriage
will return.

BASIC will issue anothEr diagnostic as it still will not recognize the
line as a valid statement.

old line: 10 PENIT X
!.IR..! ll!nipg
£.I.ll1=~ copy the old line into the

H
IK
C:tBL=,g
N
ill1=!!

new line up to the first occur­
rence of the next character typEd

you wanted IN and made a mistake
erase the M

copy the rest of the old line
into the new line

and ~D! !t¼etxpe reseoa~s
no response

10 PB
UJ
<-
• T_X

17

------.--.- ~ ·-----~--~~-"---

I

' l

0

0

0

July 1911

you remembered to print Y
you are satisfied with ycur
new line

BASIC should accept this line, which is

old line: 10 P lU IT X , Y

CAL TSS Manual

,Y
and the car­
riage will
return

18

:(')
--· -·· .. ·-~· ---·--·· , ----.--··---

(.-)
-.________ ---

"Ill
IJ•

Concatenate, Print, Accept~
l"1
(I)

.... Special

G2 -Q,2 - -. ill -(D __ ([) - (J) __ C)j(D J<D I~ IO O A/ccept ~
G) G)'~'tv'G)'G)'G)®G) -ackup: ~ \ W \ E , R ~ T \ Y , U L O (!) G @ i

Concatenate. Accept

\ \ \ 1.-.JRV \ TA?, \ \ TAB <t- @ E-

O,G),~,/tor\,f?.u\,~,/l\,0('\"(+\ ~ ~
opy: C:, \ A \\~ \'-.E./ ',\...v \~ \~ \\ J y.~ _y✓L V ~]

\ \ \ \ \ (OR \ 1' \ J L ~ • :,,:

kip, e \~ \Q \~ \~ ,© {D ,0 0 o o e i
~ \ T S t Insert Change QI

~
'° . ._

• • • • \. a e ,.,

0 g Cl),,C n c:
p ::s "O ::r "O
CD rt lb

CD rt '1 rt

g. C '1 0 lb 0
0 CD n

D> 11 P.rt rt C>
11 p. :r Cl) ::i
D> CD 11 p.
n
rt p r., ~
CD =

::s ::s
'1 rt 0

rt CD I-'
"" C: g. Cl) p.
p.

D> ::s
""

(IQ

D> ::s ,,
rt CD
CD ~

"' rt

•

c::
"ti

rt
0

1-i
D>
0"

(Release) Concatenate, Re-edit °'
Type State

C:
"ti

rt
0

Cl)
p.

(IQ
CD -.... CD

"" rt

0
'1

"' i
rt -

*CTRL-SHIFT

QI
t:,
0.

n
0
i:,

rt ,.,
0
n
::r
Ill
l'1
Pl
0
rt'
Cl)
l'1
(I)

,J

c..
~
I-'
-< ...
,J:J

" ...

n
>
t-+

1-3
en
en
3
Pl
:::,
~
Pl
I-'

---.......

CAL TSS !anual

0 July 1971

0

2. Examples.

These examples are not all-inclusive. They are provided to give a
feeling of how CAL lSS works, plus a few pointers on bow to do soae
commonly useful things. The first example is heavily com•ented,
subsequent ones are commented only where they contain points of special
interest. Characters typed by the system have been underlined in the
first example to distinguish them froa the things that the user typed.
Subsequent examples are not underlined.

20
' -.-----------------------------~- --------·----'

.~

0

Oc tobcr 1971

Example 2.1

CAL TSS VERSION 2.0
21:35:14 10/21/71
P~RMANENT DIRECTORY?
.GUF.S T
GI v;,: PASSWORD
.GU~S T
E~PORARY DIRECTORY?
.JO~N

{CO~F1A ~ID PROCESS OR HERE
\.!BA.SIC

BASIC VERSION 2.0
-PRINT PI
3.141593

-10 LF:T X = 13
-20 LET Y = 19+-3
-30 PRHIT X,YX*Y
EqRQR OPERATOR MISSING

-30 PRINT X,Y,X*Y
-40 END
-RUN

13 13
EXECUTION COMPLETE

-LIST 30
30 PRINT X,Y,X*Y
-EDIT 30
~0 PRINT X,Y,X*Y,X/Y
-RUM

13 18
EXFCUTIOH COMPLETE

-FIN
CHANGES NOT SAVED
-FIN
COMMA~D PROCESSOR HERE
!LOGOUT
20:37:10 10/21/71
CONNECT TIME= 97782.
CPU TIME= 6311602.
FIXED ECS = 3 44681550.
ti'DT SLOTS = 0.
SWAPPED ECS = 407565312.
TEMP DISK = 0.
MJNEY :$.297
GJOD DAY

·. CAL TSS Manual
'

234 0

0
0

0
@

2~4 .7222222

@

0

21

July 1971

~XA!'lPIE 2.1

1.0

1 • 1
1.2

1.3

2.0

2. 1

3.0
3. 1

3.2

3.3

3.4

3.S

3.6

3.7

3.8

3.1C

3. 11

4.0
4. 1

CAL TSS Manual

- SIMPLE USE CF BASIC. NC FILES KEPT

These lines constitute the login procedure. Prior to the
first line, the user has attracted the attention of CAL TSS
by typing P while holding down the CTRL and SHIFT keys.
'GUEST' is the name given fer the permanent directory.
The password to use the GUEST directory is also 'GUEST', but
the password is not usually the same as the directory name.
'JOHN' is the name the user chose to give to the temporary
directory.
The apFearance of the Command Processor signals the success­
fu 1 comple ticn of the login f rocedure.
The user tells the Ccmmand Prccessor that he wants to use
the BASIC sucsystem.
All these lines are a conversation with the BASIC subsystem.
BASIC announces its presence and signals that it is ready to
process commands by printirg '-'.
The user gives it an immediate command to print the value of
pi and it responds with the value.
Now the user decides tc ccnstroct a simple BASIC program, so
he begins entering indirect statements. These lines consti­
tute the text of the EASIC prcgram being constructed.
This is an example of erasing a mistake. The arrow printed
because the user typed fI]!=Q to erase the 9. The actual
line entered was '20 LET Y = 18•.
The us~r fcrgct a comma in this line, so BASIC does not
recognize it as a valid statement and complains. The
correct line is entered.
The user tells BASIC to run the program he just constructed
and it runs the program and prints the results.
He decides tc change the program and types the request 'LIST
30', which types line 30 for inspection.
The user tells EASIC that he is going to edit that line, so
it is made the cld line in the Line Collector.
'This line was ccnstructed l:y typing CT,RL-,tl, which copied all
of the old line, and then typing ',X/Y' followed by RETURN.
The user now runs his program again and the new results
appear.
The FIN command tells EASIC that the user is finished.
BASIC warns the user that changes have been made in the
program which will be lost if the user does not use the SAVE
command to save the new frcqram. The user repeats PIN to
inform BASIC that he dces not wish •o save the program he
has constructed.
The Command Processor resumes control of the console.
The user signals that he is finished using the system by
typing 'LOGOUT'. The system frints the accounting data for,·
the run and after it wishes him a good day, the console goes
dead.

22

CAL TSS Manual

July 1971

This page no longer contains information.

23

July 1971

0

Example 2.2

CAL TSS \/ERS I 0'l 1 .2
PF.P.MANENT 9IRECT~~Y?

. • !JS F. R: IJV
GIVF. PASS !-!ORD
• n. RB L
TFJ1P0RARY DIRECTORY?
• V

{ C Oi-1 MM-l'.J PROCESS JR HERE
!SERVICES
S E RV IC ES H ER E
:+dJF. 1•JDF PER:-1'.)IR: AUTO
*PCAP 0"-'M.KEY }
77777777777777(?-;r1i?. 73 7
~~rnrn~000m0rn000~53?02
*ADDKEY 53002 77777777777777 PERMDIR:AUTO
*NEl•/l1I~F PERMDIR:MANIJAL (9
*MCAP PERMuIR:MANUAL TEMP'.)!R:M ~ QJ}
*FI~I ~
COMMAND PROCESS OH HERE
! i;:D IT l)R AU T 0
: I
1 (,'I PRINT H'l*PI
2 0 PRHIT 20PI
30 END

: F
COMM AN'.) PROCESSOR HE~E:
I ~DI TOR M
: I
1 0 LET X - 10 -
20 LET y = 20
30 PRINT X* PI, Y*P I
40 END

: F
COMMA N!) PROCESS OR HERE
! L0'30UT
GOOD DAY

CAL TSS Manual

/

,/ 24

/

0

0

0

July 1971

CAL TSS Manual

EXAMPLE 2.2 - CREATION OF EEB!ANENT DISK FILES TO BB KEPT
FOB FUiOBE S!SSIONS

1.0 This is the login procedure again, except that the peraanent
directory na • e is 'USBB:vv• and the password is 'QIBL'. •v•
has beEn chosen as the name for the temporary directory.

2.0 The user tells the Command Processor to call the subsystem
SEBVICES.

3.0
3. 1

3.2

3.3

3.4

3.5

These lines are a conversation with SERVICES.
The usEr reguests SEBVICBS to make a new disk file by saying
NEWDF. He bas asked that it te created in his permanent
directory and named 1010.
The command 'PCAP CWN.KEY' causes the user•s private access
key to be displayed. This is done so that he can see the
number of the access key, which is required by the command
which adds locks to naaes. The number is the 53002 which
occurs in the second line.
This command adds lock 53002 matching his OWN.KEY, to the
file AUTO in his PEBMDIR. 1he string of 7 1s are the kinds
of access which the user is allowing, namely all kinds of
access. The addition of this lock to the name 'AUTO' makes
the file AUTO available in the BEAD name space, and it vill
automatically be available whenever he logs on in the
future.
l mistake was made in enteriEg
erased bJ typing ~111=~• The
'NEWDf PEBMDIB:MAHOAL', which
the user•s PEBftDIB.

this line; the first •t• was
line actually entered was
creates a new file ffAIOAL in

Because the user decided net to have automatic access to
MANUAL, he set up a naae in TEMPDIB which can be used to
access ~ANUAL during this console session. The sense of
this command is tc allow the file MANUAL in PEQ!DIB to be
referred to as Min TB~PDli.
This dismisses SERVICES ana the Command Processor returns.
The Editor is used to put some text in the files AUTO and
ftANOAL, alias ft, for future sessions.

25

October 1971

Example 2.3.1

CAL TSS VERSION ?..0
2"-l: L\ 0: -:> Q 1 J /2 l / 7 1
PERMANENT DI~ECTORY?
.US ER: VV
C':J vr., PASSWORD
.QRRL
~~PORA~Y DIRECTORY?
.v
COMMAND PROCESSOR HERE
!DAS IC
BASIC VERSIOM 2.0
-LOAD AUTO ._ - - - - - - - - - - • o
PrnOP OPERATOR MISSING} ~ •

2,,'"1 PRINT 20PI -- - - -.'-!:.!.9
-LIST - - _ _ ~
W ?RI NT l 0*PI \ - - - - - - - \!;.:JI
30 END 7+- - - - - <[)
-2-R0 PRINT 20*PI - - - - - - 0

UN - - - _ _ _ _ _ 0
31.41593
62.83185
EXFCUTION COMPLETE

-SAVE AUTO - - -
-FIN
COMMAND PROCESSOR HERE
!LOGOUT
20:41:43 10/21/71
CONN~CT TIME: 47156.
CPU TIME = 7245765.
FIXED ECS = 166224900.
~'DT SLOTS = 0.
sw~.PPED ECS = 224351232.
TEMP DISK = 0.
r-DNEY =$.296
CDOD DAY

- ---------- -----

- - -o

CAL TSS Manual

26

July 1971

CAL TSS Manual

EXAMPLE 2.3.1 - USE CF A PREVIOUSLY CONSTRUCTED FILE IN
BASIC

1.0 Only the interaction with EASIC is described, although the
reader should ncte that no srecial manipulations were done
after login to get access to AUTO.

1.1 The command 'LOAD AU!O' tells EASIC to load the file AUTO.
1.2 The user may not have noticed the mistake made when

constructinq AUTO, but BASIC does notice. It prints a
diagnostic message fellowed by the offending statement.

1.3 After BASIC has read the whole file, it prompts again. The
user tells it to list the frogram.

1.4 The program is printed and he sees that the statement in
error has been left out.

1.5 This is the correct fcrm of the statement.
1.6 He asks that the program te run and the results are printed

out.
1.7 Because the user made a correction to his program, he wants

to save the new version, ~o he does a 'SAVE'. The FIN
leaves BASIC destroying th€ prcgram in it.

27

October 1971

Example 2.3.2.1

CAL TSS vrRSION 2.0
20:"2:27 10/21/71
PF.RMANENT DIRECTORY?
.USER: VV
GI VE PASSWORD
.QRRL
TEMPORARY DIRECTORY?
.v !COMMAND PROCESSOR HERE
!EDI TOR MANUAL
:T ;P$

:Q

{

CO~MAND PROCESSOR HERE
!SF:RVI CSS
SFKVI CFS HERE
~'CAP PF:RMDIR:MANUAL TEMPDIR:M
#"IN
COMMAND PROCESSOR HERE
IBAS IC
BASIC VERSION 2.0
-LOAD M
-RUN
31.41593 62.83185
EXECUTION COMPLETE

-FIN
COMMAND PROCESSOR HERE
!LOGOUT
20:43:58 10/21/71
CONNECT TIME= 71783.
CPU TIME= 10849976.
FIXED ECS = 253038600.
rroT SLOTS = 0.
SWAPPED ECS = 31967 4880 •
TEMP DISK : 0.
l"DNEY :$.443
000D DAY

CAL TSS Manual

. r

28

.. ~·~~···====~~~~~--------~-~~----------------

CAL TSS Manual

,July 1971

EXA~fLE 2.3.2.1 - SELECTIVE MANUAL ACCFSS TO PERMANENT FILE
1.0 This shows that the Editor wasn't given a copy of the user's

file MANUAL, because he printed the file and it is empty.
2.0 The user talks to SERVICES to set up access to MANUAL.
2.1 This ccmmand sets up access tc MANUAL in his PERMDIR under

the name 'M' in TEMFDIE.
3.0 He calls BASIC, reads in his file MANUAL, alias M, and

executes the Frcgram.

29

October 1971

Example 2.3.2.2

CAL TSS VERSION 2.0
2~:46:04 10/21/71
PER~ANENT DIRECTORY?
.L:s :7R: VV
CJ VE P tiSSWORD
JJR8L
IT.!YIPORARY DIRECTORY?
.v

COMMAND PROCESSOR HERE
!S El VIC £S
SE'.iVIC~S HERE
~~AIN PERMDIR TEMPDIR
:!<JJNCHAI N PF:RMDIR
:>!CHAIN TEMPDIR PERMDIR
#"IN
C0MMAND PROCESSOR HERE
!BAS IC
BAS IC VE:RS I ON 2 • 0
-LOAD MANUAL
-RUN
31.41593 62.83185
EXECUTION COMPLETE

-FIN
COMMAND PROCESSOR HERE
!LOGOUT
20:47:14 10/21/71
CONNECT TIME= 52511.
CPU TIME:= 7699295.
F1XED ECS = 185104800.
t'f()T SLOTS = 0.
SWAPPED ECS = 247353344.
IF.MP DISK = 0.
f't'ONEY =$.317
000D DAY

CAL TSS Manual

30

0

0

0

CAL TSS Manual

July 1911

EXAMELB 2.3.2.2 - ACCESS POR soestste~s 10 ALL YOUB PERHAIENT FILES

1.0

1. 1

1.2
1.3

2.0

This conversation
look like part of
permanent files
temporary files.

with SEBVlCES makes the the user's PERMDii
his TEMPCIB and hence gives access to his
to all subsysteas which have access to the

CHAIM causes the first ditectory, PEBBDIB, to have the
second directory, TEMPDIE, appended to it. Oops, that•s
backwards.
So UNCHAIN takes any appended directory out of PERftDIR.
Nov CHAIN appends PE&MDIR tc TEMPDIR, which is what the user
was trying to do. If he hadn't unchained PBRMDIN froa
TEftPDIB back at step 1.2, the two directories would consti­
tute a loop and the code which looks up naaes would get
annoyed if it ever used tbea.
The same use of BASIC as in the previous exaaple.

31

' ---------------------------·~-----~

~·--------··

July 1911

Example 2-,4

r. AL TSS \J~~S I ON l .2
N () R 'l QM , S WP EC S
3()()') DAY
CAL TSS V~RSI ON l .2
1\Jf) R O0M, S 'vPECS
GO()f) DAY
CAL TSS VERSION 1 .2
:-.J() ROOM, S 1.JPECS
GOOD T)AY
CAL TSS VERSION 1.2
N I) P. () l)M ' s 1vP EC s
GOOD DAY
CAL TSS VERSI QN l .2
~10 R Ol)M, S 1•JP ECS
G00D DAY
CAL TSS \/ERS I l)IIJ 1.2
111 () ROOM, S 1•/PECS
GQOI) DAY
CAL TSS VERSION l .2
NO ROOM, S hlPECS
G()()f) DAY
CAL TSS VERSI'JN 1.2
N O R n ()M , S 1•JP EC S
GOO!) DAY
CAL TSS VERS I 0N l .2
I\J O R f) ()M, S '•JP EC S
G()l)I') DAY
C tlL TSS VERS I 0M l .2
N() R ooiv:, s 1vPEcs
300D DAY
CAL TSS \/ERS I ON 1 .2
NO R00M, S'•JPECS
GQ01 DAY
CAL TSS VERS I rm l .2
PERMANENT DIRECTORY?
• tJSER: VV
GI VE PASS 1.JORD
.0RBL
TEIV1PQRARY DIRr;:'.CTORY? . \/
COMMAND P~OCESS OR HERE
!SERVICES
SERVICES HERE
*l'rr,AP PERMDIR:TRIVIA TEMPDIR:INPIJT
* F'I N

CAL TSS Manual

•

32

0
July

0

CAL TSS ftanual

19 71

C ()MMA 11m
!SIHT0R
: T; P$

PR'JCESS rm
INPUT

@
,, A ""'

pq 1SR AM TRI\/(TTY! M, TTY OUT, T APE2= TTY IN, T APEi :TTY OUT)
'•IR IT E (1 , l 0 ni)

1'710 FOnMAT <*TRIVIA SPEAKING, WHO'S THERF.?*)
READ (2, 20~1) NAf4E

200 F rJR MA T (A 1 OI)

•~RIT2 (1,300) NAME
30!0 FOnMAT (*GOOD3YE,*A10)

ENJ
: 0
COMrAMO PR1CESS0R HER~
!SC()PE 400'710!
15:1\2:35 08/'.i'6/71 scnP3?.C OF (il~/01/71
>Rl'l\1 QJ}

'•IAITING AT TfJP fJF r:JUF:lJ~ FOR S 1~APPED ECS SPACE
C QM P IL IN G TR I V

>U,fJ
"'i:iAfTPl'l AT TOP OF nui;:•1f FOR SWAPPED ECS
1•JAITPIS FOR ACCESS TG S'.•/APPED ECS SPACE

3 AH EA J IM nuEUE
1•/A!T!'IS AT T()P OF ()!JE11E FOR SWAPPED ECS

8EGIN EXECUTI~N TRIV
TRIVIA SPEAKIN'3, 1,fHQ'S THERE?
tGEOR1E
'300DRYE,:1F.:ORGE
E~D TR IV
> FI~!
COMMAN') PROCESSOR HERE
! LOGOUT
GOOD DAY

---- --- - -----------" ----------------- -----

0
SPACE

SPACE

33

0

0

0

CAL TSS Manual

July 1911

EXAMPLE 2.4 - SCOPE SINULATOR: A SIMPLE lBTERACTIVB 109TBAN PROGRAM

This example was generated when the system was fairly busy. When the
user tried to log on, he was refused access because there was no space
to accomodate hi •• The space fluctuates on a short tiae scale, so the
user just kept trying until he got en. Subsequently, the SCOPE
subsystem requested additional space which was not i • aediately avail­
able and CAL TSS printed the 1essages saying •waiting at top of
queue ••• • and •waiting for access to ••• • so that the user would be
forewarned that processing his request aight take longer than usual.

1.1

2.0
2.1
3.0

3.1

3.2

The reader has seen this before. The file TRIVIA in PEBftDIB
is madE available in T!MPDIB as INPUT.
The file is ftinted vith the Editor.
Notice the SFecial file names used to talk to the console.
the user asks for the SCOPE Simulator. Characters typed by
thE user are underlined in this section.
SCOPE requests the SCOPE Simulator and the 40000 is an
optional parameter which detexaines the initial Pt in the
Siaulator. If it is 011ittEd, a default value of 11i000 is
used. 40000 is required to use the BUN complier so that is
vhy this value vas chosen. SCOPE prints the time and date.
> is SCOPE's prompt character, signalling that it is ready
to process a request. The user may type the same coaaands
that be would have put on his control cards when using the
batch system. In particular, BUN causes the FORTRAN co•pil­
er to coapile statements from the file INPUT.

3.3 Another command causes the compiled program to be loaded and
executed.,

3.4 the previous line was printed by the user's program. The ~
is tbe frompt character which signals that a prograa running
on the simulator is waiting for input, as opposed to the
si • ulator itself. After the user responds 'GEOBGE', (fol­
lowed by il1Yll, of course), the prograa grinds to its
rather uninspiring conclusion and SCOPE starts watching the
console again.

3.5 SCOPE prompts for another comaand and the user dismisses it.
The Command Erocessor reapEears.

34

I

l
I
l
I
I
I
I
I

I
I
I

l
I
I
I
l
t
I
I
l
l

l
I
I

I
l
I
I
I

----------·-------------------------·--------....

July 1971

Example 2.s

CAL TSS \IERSI0N 1.2
PE~MAMENT DIRECTORY?
.GllF:ST
',I\/E PI\SS '•/ORD
• 131Jr.:S T
TF.MPQR/\RY DIRFCTORY?
• VA 1·JC F:
COMMl\~J) PROCESS)R HElE
!SERI/ICES
S E:;{VICES 4ERE
*PCAP 01•J~l.1<EY }
7777777777777700273 7
00~~~~00000000123401
* FI r,J

COMMA ~m PR 0CESS 0R HERE
I L030UT
GOOD DAY

C A L TS S VE RS I) N 1 • 2
P ER MA NE NT '.) IR EC T () ~ Y 7
• US ER: VV
GIVi:.: PASS 1.•/0RD
• ORRL
TFMP0PARY DIRECTORY?
• VA~lCE
C OM M A M 1 PR OC ES S I) R HERE
!SER VICES
S ER\JICES HERE
*ADDKEY 123401 7142r PERMJIR:REACT
*ADDKEY 123~01 71420 PERMDIR:DATA
* FI ~l
COMMAND PROCESSOR HERE
! LOGOUT
GOOD DAY

CAL TSS Manual

35

July 1971

CAL TSS VERSION l .2
PER~ANENT DIRECTORY?
.GUEST
Gl\/E PASS 1tJORD
.GIJF.ST
TEMPORARY DIRECTORY?
.VAMCE
COMMAND PROCCSSOR HERE
!SF:P\/ICES
S ER \/ I CE S HER F.
*MCAP \JV:PEACT:O'•/N.KF.Y P~RMDIR:REACT
U~EXPECTED FRETIJRN
*MCAP •JSER:VV:REACT;01t/N.KEY PERMDIR:REACT
lJt\JEXPF.:CTED FRET!lRN
* FR IPHP US F.R: VV
BAD SYNTAX
*F°RIENTP !JSER:VV TEMPJIR:VV
BAD SYMTAX
*FRIEND? USER:VV TEMPDIR:VV
*MCAP VV:REACT;0!HJ.KEY PERMDIR:REACT
*MCAP VV:)ATA; 01,JN.KEY PERMDIR:DATA
*ADDKEY 123401 77777777777777 PERMDIR:REACT
*ADDKEY 123401 77777777777777 PERMDIR:DATA
*FIM
COMMAND PROCESSOR HERE
!LOGOUT
GOOD DAY

CAL TSS Manual

--------··-··--·"'·•--· ----------·--------
36

----------------·---- ------- ~---- -----

July 1q71

C/\L TSS VERSI0N 1.2
PF.RMANENT DIRECTORY?
.GUF.ST
GI \JF. PASS 1,,/0RD
• GUF.ST
TEMPORARY DIRECTORY?
• VANCE
COMM MID PP. ;C E:S SOR YE 1{E
!SCOPE
16:19:54 °'8/06/71 SC')P32C OF 08/01/71
>S M '18 OL t ! = REACT

SUCCESSFUL C OMPILATI 0N

WOULD ANYONE OUT THERE LIKE TO HEAR SOME POEMS?

tSURE

HELLO. WHAT IS YOUR NAME?

tVA NC E

I l•IRITE POETRY. 1•/0ULD YOU CARE FOR A POEM, VANCE?

tYES

Goon. I SPECIALIZE IN '·JRITING HAIKU. SHALL I EXPLAIN
ABnUT THE FORM IN '-JHICH HAIKU ARE 1~RITTEN7

tN O TH ANX

VA~ICE, I ALl•/AYS FIND ONE'S PHONE MUMBER A KEY TO
PERSONALITY. WHAT IS YOUR PHONE NUMBER?

t6425 823

NAME A SEAS ON-- OR l F YOU PREFER I 'LL CHOOSE ONE

tSUMMER

THA.NK YOU. SUCH A LOVELY SEASON. IT INSPIRES triE.

CAL TSS Manual

37

/~

V

July 1971

\

FISHERMAN'S BOAT DRIFTS
GLIMPSE OF YELL01•/ PINF. POLLEN
FIREFLIES 1,/ANDERING.

WOULD YOll CARE FOR ANOTHER POEM?

tNO

I UNDERSTANJ, VANCE. THE SOUL CAN TAKE ONLY
SO MUCH POETRY AT ONE TIME.

':!OIJLD A MY OM E OUT THERE LI KE TO HEAR SOME POEMS 7

tNO

THAT'S ALL RIGHT. I'M WRITINS A SONNET CYCLE

{
-~~~~AND PROCESSOR HERE
1 LOGOUT
GOOD DAY

CAL TSS Manual

38

0

(';
\._)

0

CAL tss Manual

July 1971

EXAMPLE 2.5 - SCOPE SIMULATOR: AN INTEBACTIVE SNOBOL PROGRAM USING A
FILE PECN A FRIEND'S DIEECTOBY directory

This rather complicated example involves four
sessi<ins.

separate console

1.0

1. 1

2.0

2.1

3.0

3.1

3.2

3.3

3.4

4.3

The whole purpose of this session is to find out the nuaber
of the user's access key so that his friend can add it to
the files she wants to let tbE user use.
The user tells SERVICES to print OWN.KEY so that he can see
its nuabec, which is 123401.
This session is done by the user's friend, in order to add
locks matching the user•s key to her files.
These commands to SEBVICES add locks aatching his key, which
is 123401, to his friend's files REACT and DATl in her
permanent directory. Only read access is allowed by the
option lists 11q20.
How the user is going to make links in his own permanent
directory to his friend•s files.
'this is an example of typing first and thinking later. Rone
of these commands did anything except provoke nasty messages
from SBBVICES.
Finally, fRIBNDP causes a search to be made for a peraanent
directory named 1 0S!B:VV', and if one is found, a link to it
named •vv• vill be placed in TE"PDIR. If a permanent
directory USER:VV isn•t found, the user will get some
messagE likE the ones frinted above.
These commands make links in PBRMDIB naaed 'REACT' and
'DATA• to files REAC'l' and DATA in the directory VV. The
meaning of 'VV:BEACT;OWI.KEY' scans roughly as: find
something naaed •vv•, (which will be the permanent directory
of the user•s friend OSER:VV) and look up file REACT in that
directory using the access key OWN.KEY.
These commands have been seen before. They give automatic
access in the future to the files named by 'REACT• and
'DATA' in the user•s permanent directory. Even though the
locks added here would allow all kinds of access, read only
access is all that is allo1uad because of the locks on REACT
and DATA in USER:VV.
This session uses the files to which the user has laborious­
ly gained access. It is program written in SHOBOL which
interacts with the console and writes poetry.
The user calls SCOPE and invokes SNOBOL on his file BE.ACT.
Kost of the rest of this exa• ple is a conversation with the
poet. Lines which start with the • indicate that the poet
is waiting for the user to say something and the characters
after the tare whatever the user chooses to respond.
When interest in poetry wanes, the poet goes away and SCOPE
resumes watching the ccnsole. The user leaves auch edified.

39

l

- ---·--- ~-- - - - - - - - - -----... - - - --- ' ----·- - _________:_ -------

July 1971

Example 2 •. 6

r. A L TS S VE RS I ON 1 • 2
~J () RO rJ.11, S hf PECS
G()()O DI\Y
C AL TS S VE RS I ON 1 • 2
MO R0')M, S1•JPECS
GO ()D fll\Y
CAL TSS VERSION 1.2
N 0 RO ()'VI, S i,JPECS
G() QD DAY
CAL TSS VERSI')N 1.2
PERMANENT DIRECTORY?
.lJSF.R:VV
3 I VE PASS ,., OR D
.0R3L
TEMPORARY DIRECTORY?
.v
C OMMAN!) PR CC ESS OR HERE
!LOGOUT
GOOD DAY

CAL TSS VEPSIUN 1.2
PF L~• ,~ t·!Et! T DI Fff CT OLY?
• V\/
U :·JEYPF C IF~ FF ET Uh N <iJ}
PERMA~ENT DI~ECTORY?
.usn:: vv;

EA'.i syrir.t,y 0
PEPrAMENT DIRECTOPY?
.US[F<: \IV
GI \IF PASS 1,,l() F; D
.PAS~;
?ASS \•l()f[l NOT COi,JFln~;Eo
PEF!'t At·'EtH DIF{ECT OFY?
• USE F : \fV
GI \IF PAS S 1,1 ORD

TE~POrARY Dlfi[CTORY?
• PA L1L
)lt_lPLICATE TE~1Pt1Ih
TE~PO~ARY DIPfClORY?
• \/A NCF.
C Of<~, MlD PE OCF SS OF: 1-1 Ef,E
!LOGOUT
GOOD DAY

CAL TSS Manual

40

CAL TSS Manual

0 July 1911

0

0

EXAMPLE 2.6 - LOGIN PROBLEMS ILLUSTRA1ED

1.0 When the user sent his ~ll1=~B!f.I:f to ClL TSS, there wasn•t
enough space to accoaodate bis. The space in the systea
fluctuates on a fairly short time scale, so trying again
every few seconds will genei:ally get the user on before be
can get annoyed.

2.0 This interaction illustrates the consequences of most of the
mishaps that can cccur during login.

2.1 'UNEXPECTED FB!!UBB 1 means that there is not a permanent
directory named •vv•.

2.2 'BAO SYNTAX' indicates that •usEB:Vv;• is not eYen a
possible name for a permanent directory.

2.3 Self-explanatory.

'DUPLICl'!E 't.EPIPDIB' aeens that someone else has already
nasEd bis TENPOIR 'PAUL'. The user must keep choosing a new
name until he gets one that does not conflict.

41
,______ •--•---• -----• - a--------------•~• --•----,

CAL TSS Manual

0 July 1971

0

0

The Editor subsystem enables the 1S5 user to construct and edit files
of coded information. A !il! consists of lines, where a line is a
string of coded characters ending with a carriage return character
(generated by the RBTOBN key on the teletype).

The Editor is callEd by typing a command of the fora:
EDITOB !J!i!!

vhete l.!A.I! is the name of the file to be created and/or edited. All
file names are looked up in the BEAD name space. The Editor proapts by
typing: and awaits a request. At any given time the Editor is
looking at a specific line called the current line. When the Editor is
first called, the current line is a pseudo-line which is always the top
line of every Editor file.

The following requests may be typed to move about the file for the
purpose of creating, dGleting, or editing text lines. Each request is
terminated either by a carriage return cc, if • ore than one request is
made on one line, by a semi-colon. some requests contain a •stop
condition" or li~e §~~Slfi!I, represented by§£ below. such requests
affect all lines from the current line to the line specified by §~,
inclusive. (If you•ve lost track of the current line, request •p• and
the Editor will print it.) JS may be:

1) a decimal number, specifying the line that nuaber of lines fro•
the current line,

2) '•!.1£' (where !!I is any string of characters except semi­
colon), specifying the next line containing the string of
ckaracters,

3) 'I.ill', specifying the next line starting with the given string
of characters, ignoring leading blanks,

") • S •, specifying the bot to•, o t end, of the file,
or 5) c•itted, specifying the current line.

After the Editor bas processed the reguest, the line specified by the
request bEcomes the nev current line.

!~gJ!§!~ ~n~!»g

I Insert, after the current line, the lines
which follow. Insertion is ended by entering
a null line {carriage return only).
Delete the Sfecified lines.
"ove to the tcp of the file (pseudo-line).
"eve forward over the specified lines.
ftove backward the specified number of lines.
(EtJ: ~ can only be a nuaber.)
Print the specified lines.
BeplacE the first occurrence of .iS.1 by !ll.1

42

-.--·-------------·------· ·---~

CAL TSS Manual

0 July 1971

Q

in the specified lines.
Replace every occurrence of str1
each of the specified lines.
JAi! the specified lines using
Collector.•

by~ in

the Line

Insert the contents of the file fna1,1 after
the current line.
Write the SfeCified lines, including the cur­
rent line, into the file {gay,
Finished - create the file ,na11 fro• the
latest versicn; simply entering 'F' causes the
updated text to replace tbe original file
specified vhen the Editor vas called.
Finished but de not save any file.

The Editor prompts with : and response 111?
understand.

to lines it does not

-~------------------O.· • Each line being ~~lled is made the cld line in the line collection
and may then be altered using the Line Collector. (See section 1.10 on
the tine Collector.)

0
I

43 I
-- --------·- ----·~- ·----~--- ------- ~-~::--· .,·----------_:~-~

CAL TSS Manual

July 1911

3.2 summary_of_EA~IC

BASIC is an easy-to-learn, general-purpose programming language similar
to FORTBAN but created specifically for time-shared computing environ­
ments. For details see the description in the CAL_CO.!!.E!!ter Cent~
Osers_Guide, available at the Ccmfuter Center Library.

BASIC accepts two types of statements: 1) indi~.!:, which are saved to
be executed sequentially as a frogram at some other time; 2) gir~£!,
which are carried out {executed) as seen as they have been entered
using the carriage return key (direct statements, especially the PRINT
statement, allow the teletype tc be used as a very powerful desk
calculatcr).

Althcuqh some statements may te used only directly (or indirectly),
most statements may be used either way. All indirect statements must
begin with a line numter and are exEcuted in order of ascending line
numbers. Those without line numbers are assumed to be direct.
Statements which may be indirect 2!11 are those that would only make
sense in a program. Statements which may only be direct are usually
for charging the frog.ram itself rather than the data it works on.

BASIC is called by typing a command of the form:
BASIC fnarne

where fB~~~, if sp~~Iiied, is a file containing a BASIC program to be
loaded. EA SIC responds with BA SIC VERSION • • • after which either
direct statements or a program cf indirect statements may be entered.

BASIC prcmpts with-.

There are three ways to enter a program cf indirect statements:

1. Pass BASIC a file fl!IH!!.§ as the first parameter when it is called;
the file is loaded in the same manner as when a 'LOAD' command is
given.

2. Use the 'LCAt' ccmmand to read in a program from a file. Lines
containing errors will be typed out after an error message and are not
included in the program.

3. Create a new program by tyring it into BASIC. Lines with errors
will not te saved.

BASIC
10C PBIN! "NU~EEB", "SQUARED", "CUBED"
ns PRINT
110 FOR X=1 TC 10
120 LE't S=X*X

44

CAL TSS Manual

,July 1971

130 PEINT x,s,x•s
140 NEX'I X
150 END
RUN
NUMBEB

1
2
3
4
5
6
7
8
9
10

SQUARED

1
4
9
16
25
36
49
64
81
100

EXECU1ICN COMFIETE

Now the_useLmay:

CUEEC

1
8
27
64
125
216
343
512
72°
10CO

1. Edit his program using direct statements and rerun it.
2. Quit (and return to the Ccwmand Processor) by typing FIN.
3. Save his program by typing .SAVE !1!.2!&•

1isi_of Indirect er Direct Statemgnts

LET Ys£=[• • • _!_g£=]_g.!££
Each variable 5 takes en the value cf the expression.
Examrle: 10 LET A=E=4.35-F

DIM .s!£i.Y (ili.!!! 1 i2!J (• • • , _gf.I,~.Y (.Q l!! 1 i§!) J
Reserve space for arrays
dimensions > 10.

with more than two dimensions and/or

20 DIM A(60),L{5,N,3*N)

SIG ~llf
Number of significant digits priTited for numbers is changed to the
value of g_!.Qf•
Exanq:le: 30 SIG N

DEF FN letter(£,gram)=ex1r
Defines a one line function whose name has three letters starting
with FN and whose single aummy parameter is ~£.2.!!•
Examfle: 35 DEF FNG(X3)=X3/10 - A0/13

RE AD ~l ••• , .Y.2.£]
Reads from a DATA defined list and assigns values to the variables

5 A variable may only be a letter optionally followed by a digit, or by
a list of expressions separated by cowmas and enclosed in parentheses.

45

,July 1911

in sequential order.
Examfle: 40 READ A*E,G2

IN PUT ..Y-2.f[••• , .Yl!.f]

CAL TSS Manual

Requests input values from the T'IY by typing? and assigns values
to the variables in sequential order.
Examfle: 12 INPUT A,E,C

PRINT [• • • 11JH1 J
Prints and/or moves the teletype head as indicated by the iteJ!{s)
which may be num expr, string var, 'characters•, TAB(expr), ,, ;,
an a : •
Examfle: 100 PRINT "VALUE+", TAN(E1*B1)

RBSTOI<E
Restores the fOinter into the DA'IA tank to the top.

IF l cg ~!H GOTO l.!U!.!!!
IF 12.9 f.!H THEN ln.!!.!!!

Transfers central tc the statement with line number lBY.!!! if the
logical expression is true.
Examrle: 105 IF A>E/SIN (X) GOTO 11 '::

GOTO .11!.!!.!
1ransfers control to line number 1~~!•
Examfle: 20 GCTO 300

ON ~!.E£ GCTO !!!.!!!![••• ,.1.!l.1!.!!!]
If ~.!BI has value= 1, GOTO statement having first 1lli!.!!! in list; if
~!.EI has value 2, GO'IO statement having second lnJ!.! in list, etc.
!xamtle: 10 LET X=1

20 ON X GOTO 3C,40,50
transfers to statement 30.

REM £h~! gtri.ng
A comment statement.

GOSUE lDJ!.!!:
Go tc the statement Sfecified by the line number but return to the
line following the GOSUB when a EETORN statement is encountered.

MAT REAC c - Reads values frcm DATA list into array c.

MAT PFINT c - Prints values frcm array c.

~AT c = !RN(a) - Matrix c tecomes transrcse of a.

MAT c = ZFR - Zeros every elemert in matrix c.

46

CAL TSS Manual

July 1971

Ml\'!' C = ICN - Square matrix C is set to identity matrix.

MAT C = CCN - Array C is set to all ones.

r-tA'T' C = a+b - Array C is set to the sum cf a plus b.

MAT C = a-b - Array C is set to the di ff ere nee between a

MA'T' C = a*b - Array C is set to the 1=rcd uct of a and b.

MAT c = (fZEI)* b
Array c is set to the scalar prcduct of exe~ and b.

MAT c = !NV(a) - Matrix c becomes the inverse of a.

List of_Indirect Statement§

DATA .YsJ:[••• ,val]

and b.

Fcrms a list of data values to be used by READ statements.
fxamrle: 12 DATA 5,7.3,30+52

PAUSE(.§!f]
Fxecution pauses and§!£, if given, is printed.
direct statements er editing request; execution
IINUE is entere~.

BASIC will accept
resumes if CON-

END
Fnds execution; must have highest line number.

STOP
Stops execution (acts like a jumf tc END statement).

FOR Y2£=§z£~ TC ~lif[STEP §~EI]
NEX'I .Yl!I

Defines the limits of a loof. !he three expressions give the
initial values of the control variable, the terminating value and
the increments, if not equal to 1.
Examrle: 40 FOR I=1 IO 10 StEP .5

'RETURN

50 LET S=S+I
EO NEXT I

Execution gees tc the line following the last GOSUB for which no
FETUBN has been executed.

List of_tirect_Statement~

LIMI'I 1.n!§g~I
Specifies a maximurr number cf statements that can be executed
withcut control returning to the console; prevents infinite loops.

47

CAL TSS Manual

July 1971

RUN
Causes execution of the prcgram teq inning 11ith lowest line number.

CONTINUE

LIST

Execution continues where it last stopped.

[line_nymber[-line_nurnberl]
Prints out the specified lines
numbers are omitted er are replaced
frcgram is printed.

en
by

the teletype.
'ALL', then

If the line
the entire

DELETE line _number[-line_number]
Deletes the specified lines frcm the program. If 'ALL' is typed
instead of the line numbers, then the whole program is deleted.
Note that this statement has no effect on the values that may have
been stored into any variables.

ED r r liruL.!l.Y.!!1Ht£ [- !in e_JH!Jllf!!H: J
The specified lines are passed one at a time to
for editing. Note that if the line number is
is larger than what it vas before but is still
number of the last line in the range specified,
be edited again when the new line number's turn

the line collector
altered so that it
smaller than the
then the line will
comes.

-"f.01\B [lifte vil.1 bs ee.jt@B. a,!aiA when the new line fHlll:RQJ;S t 11 ra cGld@S.

LOAD f !.!l.~J
Loads a program from a text file cf the given name. (No lines
which may have been entered into EASIC are deleted.) The name, if
given, is a simple name which is looked up using the scan list
SCANI, created by the system in the user's temporary directory.
SCANL looks for the file in the user's temporary directory, his
permanent directory (with the user's own access key) and then in
the public directcry. To type a more complicated name, fname is
emitted and a prompt character quote (") will appear, after which
any Command Erocessor name can be specified.

S/'\VE (fD~!!!.§]

WHO

QUIT
FIN

Writes all the text onto a file of the given name, which must be
in the same format as fer load. Ho~ever, if a name is given and
no file by that name exists, then a new file is created in the
user's tempcrary directory with that name.

TypES out BASIC.

Both of these statements return to the Command Processor after
destroying any program that «ay have existed.

48

~Tu1y 1971

Ari t,hJ!!gti£
t Exponentiation
* ~tltiplication
/ Division
+ Addition

Subtraction

Functions
ABS(X) IXI

J:.2.9.ic-91,
! logical
& Logical
NOT Logical

ACS {X) areas (x)
ASN (X) arcs in (x)
ATN (X) arctan (x)
COS (X) COS (X)
EXP (X) e"-
I NT (X) integer
LOG (X) 1 C g 10 X

R~lational
= Equal
< >, ><, I Not equal
< less than
<=, =< less than or equal
> GreatEr than

CAL TSS Manual

>=, => Greater than or equal

OR
AND
NOT

LGT (X)
RND (X)
SGN (X)
SIN (X)
SQR (X)
TAN (X)
TIM (X)

leg x
random num
sign (x)
sin (:x)
fx
tan (x)
seccnds used

4att

0

0

0

CAL TSS ftanual

July 1911

SCOPE provides an operating environment
CAL•s 6400 batch systea (SCOPE 3.0
real-time control over the construction
by a user at a console.

fo many programs written for
or CALIDOSCOPE), as well as

and execution of such programs

SCOPE is called with the following coamand:
SCOIE .f.l

where !! is an cptional parameter specifying the field length. When
omitted, 14000 is the default value. SCOPE responds by typing the date
and time and then awaits requests after typing>, which is its proapt
character. Programs executing under SCOPE prompt with ,-t when they want
input frca the console.

SCOPE ci:Eates .several standard files necessary for its opera.ti.on
whenever it is called, notably a SYSTEXT file called *OUTPUT'.
whenever it needs a file to process a re~uest, it gets it froa the BEAD
NAME SPACB. If there is no file by the appropriate naae available, one
is created in TEMPDIR.

~£Qf)jil.Yls,!O t l§,9,Y.!.§!§

J.!.9.U.!! .H.tU!.il!.9
TEXT,!U..I!

PlL!,llil.!

MSG,O.FP or ON

G IT , !.U.l!l
p U'l', !J!!.U
STEP

FIN

12A2ill-~JgY.@§!§:

L,tJB!!!
LGO, !DJ.I!

Declare a new SYSTEXT file I.DU.! (will not
change to S!S'IEX'? a file which already exists
in another mode).
Use the file fna.1! as the .source of SCOPE
Simulator requests.
suppresses prcgtaa messages to the console or
:restarts the1.
Get the file !!.Ill fro• the BEAD NAME SPACE.
Bet urn !..!!.!ll tc its director J•
Trace calls aade on the Simulator by code
setting cell 1.
SCOPE will print each cell 1 call in octal and
then await a reEponse:
B call the debugger
s pecfor• the request
E ign~re the request and perform END

instead
G leave step mode and then perform the

i:equest
Exit froa SCOPE Simulator.

l~!.41111.9
Load and link the file tn~!!
Load and link the file !.nt•t and start the
ing cod~ executing

result-

-.-:·-·~--------~------·--·------- ::------.---- -----------------~---

CAL TSS aanual

0 July 1911

0

0

LDCTL,75S Set TSS •ode for the loader (load all coa•on blocks
after program biccks)

OVBBLAY,U!A! Conte.nts of loaded and linked core (without banner
words) are writte11 onto file ,na!.i

~!.LIDO §£.Qll-.£.2.lll.I&l-U.9.!l!!il§ :
CATALOGUE
CCIUABB
CCMl?ASS
COPY
COPYL
COPYN
COPYBSI-'
CPC
JH!P
REW nm
RPL
BUH
SN08C L
UPDATE

~----·--·-------

1Jt~~&l.fI09£&IS:
C.PIO
DEBUG
IO
IORAHOOM
KOKMON
t1EllOBY
REGOUftP
SETPBU
TRAC!

50

CAI. TSS Manual

0 July 1971

0

0

This section consists of a list of the cc•aands understood by SERVICES
and the BEAD GHOST. An attempt has teen •ade to indicate what sort of
parameter ts) each command expects, and some exaaples of the different.
kinds of parameters are given below. A few of the coaaands are
understood by only one or the other of the dynamic duo, 4nd they are so
marked. The commands are written in caps, the parameters are under­
lined. The com • and and the para • etets are separated by one or aore
blanks.

FIN

PUBGB

BETBt

BETllBli

Ii E W PS II llil.!2£l
II Ii D F gil'.:.!.S:!: !.!lil.!
AtDRBl !il.!lll £Bil§

is the coamand which terainates SERVICES; it
is not understood by the BEAD GHOST
(BEAD GHOS1 only) aborts the current subsys­
tem and returns to the Coaaand Processor
(BBAD GBOST only) resumes execution of the
curr~nt subsystem right where it quit
(BEAD GHOS1 only) resu•es execution of the
current subsystem without re-executing the
most recent system call, if that call pro­
voked an ertor
changes the user•s password to eas1101d
creates a file llll.! in tbe directory diE!S:!

9!£12£
adds a lock which can be
key !!l!Y~ to directory
kinds of access allowed
a.re defined by 2ili!.!

opened by the access
entry dt,12~; the

to wielder of lslUAU

DBLKEY !exnum ditl . .Qg x:evokes pri v.ileges of access to the directory
entry ii"l..2, for holders of access key Ullll

fBIBNOf dires:! g~jlgs; if there is a permanent directory naaed
!!~2£!, acc~ss to it is placed in 9bjl.2S,; tbe
access is highly restricted
same as FRI!IDP, except temporary directories
prints the indicated QQjeGt
prints the indicated 9..!!JIJ
prints il!!! words of data, starting at
2!!.!l!l.2S
places a link to W!&i at gbjJ.9g
•oves 9ll.!!! to atu1\oc
sakes j!U£!1 look like an extension of
iliI.!Sl.!
eliminates any extension of aikegt
crea tea a new variable !,gu,t
eliminates the variable i.si!.D!
priats the ccntents of the directory .~U,,1;e5r1:,

~~!Y!~ ill!!~1 ~!!qi!
tesources are reserved for the user; see
section on space control

NSPAC! ~!It.£!1 il!Y• g11~s!1
.9.!!91 secto~s of disk space are moved fro•

51

------------ --------- ___ , ----·-------------- ----~---.----

I
I
I

I
I

0

0

0

July 1911

KitlO !gi.n!

NEWOB !9~!1! S~!il

N IW EL K !lid!:
kILtBLK !.il!SI
!IEWKEY opjlgc;
Klt.LOBJ g,U~!
D!LtlllK 9.iI.l.2£
OBLOWJ il.ti.2£

P.Fl'.JLL

P.ASCII

P.IIST

Ut. OC'!

II.DEC

CAL TSS ftanual

g!n~jj to g!li£!1· One must be the father
of the other. tone sector:64 words)
creates ne~ user subordinate to the user
(i.e., a nEw peraanent directory named iAeat
of size il!~! aa a son of the user's per­
manent directory)
the permanent directory 19.!.!l! is eliminated
from the user's permanent directory and
destroyed
creates a directory !de.JU on the user•s
permanent directory of size d1tg1
creates a new file block at filtdi;
deletes the tile block at !ilili
creates a new access key at objlq~
deletes the indicated glj§S!.
removes the link at iltl.2£
the ownership entry at gitl2£ is removed and
the owned otj•ct is destroyed
sets the print mode to print 20 successive
octal digits
sets the print mode to print 60 bit words in
groups of q,1,1,1,1,1,1,1,1, useful for deco­
ding text files which the user has soaehow
been reduced to inspecting in octal
sets the print mode to print octal digits in
groups of 15, useful for dumping code files
(this is the default mode)
the mode of ouabers typed into the Coaaand
Processor co• plex is to be octal if not
expressly aarked otherwise {this is the
default aode)
the 1ode cf numbers typed into the Coaaand
Processor complex is to be decimal if not
e•pressly marked otherwise.

I

~--~-~---s_2 ____ j

CAL TSS Manual

0 July 1911

0

0

g,!!il parameters are evaluated to 60-bit integers; notice that if the
user gives the name of a datum, the datua is looked up for hi ••
Exa•~les:

7
11
11
5+10-15D
Vl1UABL!+4
70B+ (*528+4)

represents
represents
represents
represents
represents
represents

g~!.lll.2S parameters specify places
lUME
PIL.EfO

110

7
9, if 'IN.OCT'
11, if 'IN.DEC'
- 2 , i f ' I N. OCT '
7, if VARIABLE contains 3
56 plus the contents of cell 46 in
the subsystea which just call the
BEAD GHOST

where data can be kept.
A variable called '11KB'
ThE first word of a file FILE in the
Co111and Processor oaae space
Cell 8 of the subprocess calling the
BEAD GHOST

dires! farameters specify a
PEB!DlB

directory

TifUDIB
OSEB: VV

OSE&:VV:P

~lllsS iarameters specify names of
TlUIFDIB:INPUT
!EMPDlB:VV:BElCT

The user's peraanent directory
The user's teraporary directory
ThE directory name •vv• in the USEB
directory
The directory naaed •p• in the
ditectory named •vv• in the etc.

files in directories
A file in the user's TEftPDIR
A file in the directory naaed VV in
thE user's TEftPDIB

fi,la~&: parameters specity addresses withi11 files
INFOTIO Word O of a file INPUT naaed in the

Coamand Processor na •e space
TEMPDIB:VV:RBJCTt100 Word 6• of the file mentioned aboYe

Ln~&~ is any legal file name; here are mentioned only strings of
alphanuaeric characters

UiPUT
NYFILE10

id~Bl is again, any string of aElbanu •eric characters, blanks excluded

53
- - - ---· - - ---------·----·-- ---------~--· --------------- - -·-----"-----~-·:~~--

CAL TSS Manual

0 July 1911

0

0

!lllllR is just a datum vitb a different naae
301 Access key number 301
VARI.Ult! Same, if YARIABLE-=301

2~5 is a two-word set of inforaaticn which is the internal fora of
stuff kept by the systea, like files and directories and access keys;
if the user specifies am 2Rjlg~, the object will be fetched

OWN.KE! The user's private access key
SCAHL TbE user•s private Qa• e space

ggj.J.j2£ Fata •eters specify places
directories and variables

VARNA!tE

PERl!DIR:PtiAME

where objects ace kept, such as

The user can create a variable Vll­
lA!E and move objects to it
A ~i.IAoc is a special form of .sud~

54
...---·----__..____ . --~--·--~~•-,.-.~. ----------------

Tentative CAL TSS consulting schedule, effective 20 Oct '71s

Monday
Tuesday
Wednesday
Thursday
Friday

Ti.me: 2-JPM
Place: 201 Evans ha 11

Keith Standiford
Bruce Lindsay
Dave Redell
Vance Vaughan
Gene McDaniel

Phone: (64)2-5817, to be changed to (64)2-5008 sometime soon

For the time being, I hope you will try to find out who you a re talking to and how to
contact him, as we don't know some of the people who are using the system. Please
note each (coherent) contact with a customer in the 'Consultant's Log 1 o Who knows?
We may identify some common problems that are correctable before the bookkeeping gets
out of hando ·

The only entertainment currently available on the system is ELIZA and REACT, bot.h
available in the directory USER:VV, password~o Somebody is adapting his
learning cubic program to the system, hopefullyLailable soono

AMl(i

CAL Time-Sharing System

Status and Information, 19 October 1971

Schedule

CAL TSS will be run from 10:00 a.m. to 10:00 p.m. on weekdays. The hours from
12 to 6:00 will be reserved for customers. Customers who successfully login at
other times may use the system at their own risk - they may be ch'ased off on
5 minutes notice.

Consulting

A member of the CAL TSS staff is available from 2:00 to 3:00 p.m. on weekdays to
answer questions, demonstrate the system, help new users through initial sessions,
etc. The consultant will temporarily be located in Room 201, Evans Hall,
(64)2-5817; to be changed to (64)2-5008.

Documentation, Information

The Introduction to CAL TSS, available from the Computer Center Library, hopefully
provides a means of getting new users acquainted with CAL TSS. It also provides
a good deal of information that may interest experienced users.

Charging

Free use of CAL TSS will end effective 25 October 1971. Arrangements can be made
now with the Computer Center Accounting Office; (64)2-7355, 237 Evans Hall to
have TSS funds available on the 25th. thus avoiding any interruption in your ser­
vice. Please note that even if you have a valid Computer Center job number, you
must still file another form to make those funds available on TSS.

Details of the rate structure are appended.

Teletypes

All teletypes connected to the system as of 18 September should be functioning as
before. Report all line problems and problems with Computer Center teletypes to
Gil Costa, (64)2-4775. Some details specifying the problem will be required.

Access to Teletypes

The TTYs which were available for general use in 225 Campbell has disappeared
in the machine shuffle. Some TTYs are being installed in B30 Evans Hall, but
the use of these TTYs will be subject to some control not as yet specified. It
will also be a week or more before these TTYs are connected at all. If this
interferes with your access to the system, please contact th~ CAL TSS consul­
tant and make the detail• of your problem known to him •

. ,

CAL Time-Sharing System

Status and Information, 13 August 1971

Availability

CAL TSS is currently available weekdays from 2-6 PM. There are 8 teletypes avail-
2:23

able for general use during these· hours in Rooms 225 and a; Campbell Hall. For infor-

mation about connection of additional teletypes, contact Vance Vaughan (see below).

Documentation

The fundamental document for users is the Introduction to CAL TSS, available from

the Computer Center librarian. Other documentation is also available at the library,

but it is spotty and users should consult with someone on the TSS staff before acquiring

any.

TSS Consultant

A member of the TSS staff is available in Room 225 Campbell Hall, ext. 2-5008,

from 2-3 PM every weekday except Wednesday. He will answer questions, demonstrate the

system, help new users through initial sessions, etc. Users unable to reach the con­

sultant should contact Vance Vaughan, 207 Evans Hall, ext. 2-5823. He is there Thurs­

days from 1-2 PM, or by accident, or by appointment. Leave a message in the main Com­

puter Center office, 239 Evans Hall, ext. 2-0851 to arrange an appointment.

Getting help, reporting problems, etc.

Sections 1.7 and 1.9 of the Introduction to CAL TSS give procedures and information

for diagnosing and understanding problems encountered when using the system. If the

user's teletype is dead, or has gone crazy, he should first consult those sections. They

may solve the problem, or be irrelevant, or give some such helpful advice as 'call a

system progrannner' or 'the teletype is down or the system is down'. If they are irrele­

vant, or say to contact a system progrannner, or something like that, contact the TSS

consultant (not the regular programming consultant). When the diagnosis is that the tele­

type is down or the system is down, the u;er should call the shift supervisor, (64)2-3043,

and explain the problem. If the system is down, he will give information about when it

will be up. If the system is up, there is some problem with the teletype or the line.

The user should contact the person responsible for the maintainence of the teletype

(Computer Center teletypes are maintained by Charles Cuff el, ext. 2-4403).

Complaints and suggestions:

These should be made to the TSS consultant. The TSS staff is especially anxious to

get feedback on the documentation. Corrections to con~ent and suggested style modifica­

tions are both welcome.

I

How to f ind the teletype watcher in ~ PM dump o

This involves f:i .ndinf the special event channel that the watche r h a11gs on and
looking at its queueing word ., The MOT of the watcher doesn't change unless
initialization changes , s o noting the most recent MO'f wi ll s hort- cut this
procedure in most cases .

lo Find the MOT and print the fi r t few cells o The beginning of the 1'~ T
by the symbol EC oMOT, defined in the deck ECSINIT in the ECS system o

ever changes ., Currently= 411B

is given
It hardly

2 o Two items are of inte rest: unique name 2 is th e master C- list
unique name 3 is t he interrupt obj ect file o

Print the address specified f or the interrupt objec t file o The very first word
contains a pointer to the data block , usually jus t a few dells down from the
f ile header itsel f o Print the first word of the data blocko Th i s is the index
i n the master c-l i s t of the even t channle whe re t he watcher hangs o

3 o Ta ke the a ddres s of the master c - list f rom the MOT, add l and add the inde.x

..

of t h e watcher 's event channel twice to find the a ddress of t he exeh:z«~aE.ziit.~x
f?{illltxth:extxe Xtg!ll:'MZ x0:fz .t!Mtz~a~alci.i:itµzx:fbte xZR~ru.iiz11e.0.x0.xixz :idzerzN:z izi-eoi:e xzuxzlil«
exebt;Xf)x:iJXtxi:tzx watchers event channel stuff o Print J capabilities (6 wor ds)
starting at t hat addresso You s hould find a file followed by two evchs o The

t evi;:h is where the watche r hangs o Print its MOT slo t o

4 0 Use the MOT po.i nter you just found to print the first two words of the vvch o
The second word is the process queueing wordo If it star ts wi th 17761 the
watcher wasn ' t hanging when the dump was taken, sorryo Otherwise , the low 6
di gits of the word a re the MOT of the watchero Congratulations o

5o A second page o n how to find the use r proce s ses , given the xoc location of the
watcher, i s forthcoming o That may be even more fun o

current origin o_ }OT current NOT of watcher

origin date MOT date

1-8-IJ tJI '7 /

	Chapter 1: What CAL TSS is and how it runs
	Chapter 2: Desiderata
	Chapter 3: Documentation
	Status and Information, 13 August 1971
	Introduction to CAL TSS, July 1971; October and November updates

	Chapter 4: Charging
	Proposed Charges for TSS, 8 October 1971
	Example of charges for a typical session, 24 August 1971
	Notes on proposed charges, undated
	A Note on Charging by H. Sturgis, 17 August 1971

	Chapter 5: Bead errors
	Chapter 6: COOKBOOK
	Correction/suggestion page
	Introduction to CAL TSS, July 1971; October updates
	Examples
	BLIST TSS
	BLIST^ROOTD:PDLIST
	BLIST TSS:ECS.S
	BLIST TSS:VV
	QLIST TSS:CODE

	Chapter 7: CONSULTANT LOG
	Tentative schedule, effective 20 October 1971
	Log, 18 November 1971

	Chapter 8: CONSULTANT INFO
	Status and Information, 19 October 1971
	Status and information, 13 August 1971 [compare with Chapter 3]

	Chapter 9: BUGS, ETC.
	How to find the teletype watcher in a PM dump, with current orgin of MOT, 28 October 1971
	Log, 28 October 1971

