\ . o Q0 Meares ‘70
\ i

EVALUAEON OF WORK YET TO BE DONE ON THE ECS SYSTEM AS OF 30 MARCH 70

STUFF NEEDED FOR THE OPERATION OF THE ILSK SYSTEM

1) Allocation mod 6l for DAE map entrues (Vance)
2) Compactifier (Vance)
7 3) Change to movex block operation (Paul)
g a) Check map reference count
b) Return dirty bit in X6

sscr/7ly) Change probe operation to return # of map refs in X7 (Paul)
/.= 5) New operation to turn off/on map entries for a subprocess (?)
6) Implementation of two new parameter types, block parameters and return parameters
‘*ﬂ 7) Indireet C-list (Bruce) (Bruce)
r_)rrklﬁ’,”"’.'/"{ -’ -,-,'4/-5-,"’:'.-

Stuff IMPORTANT T0 THE OPERATION OF THE ECS SYSTEM =

1) Find descendent of subprocess (Dave) —

2) Change map compiler to do F-return in case of missing map block instead of DISASTER
ey (Paul & Bruce)

3) Change to change unique name operation vis-a-vis option bits yzA W 5

i) Get more system code out of central and into ECS (Vance) % '

- ,

. STUFF WHICH WILL BE NICE WHEN IT GETS DONE, IF IT EVER DOES
\k,) Set temporary part of class code)
) Put check in PUTACT and PUTEGS for length of ACTIONL
A) Implement accounting of CPU time
[/) Reset end of path to self
) Get the option bits into the operations (Vance)
| 6) Fast actions
— 7) Implement the error return operation
) Fix up CCCLOA (what does this mean?)
) General destroy operation
3 Send interrupt to pseudo-process (Howard, is this still needed?)
) Ch
)
)
)
)
i)
)

S~

Move £xwsx CLASSCNT to ECS
Check ftek GARBCNT in subprocess environment establishment at the point of doing the
direct access map entry
Fix up the O-level file name hassle (Paul)
Fix error returns from OPINIR
F-return when subprocess to be deleted is not a leaf (Bruce)
In process and subprocess creation, correct test of lower limit for entry point
Design and implement display process desecriptor operation
Incremental map compilation (Paul)

N = O\ G)\'IO\UU:‘\»N

STUFF ON WHICH THERE WAS NO IMMEDIATE CONSENSUS

1) Provide date and real time

2) Move from one allocation block to another

3) Move an allocation block to another allocation block
L.{J W lai ot -/““nz’ "/4 .

YU Marnety ' 70
2

Disagreements as to the above classifications will be cheerfully discussed. IBd=periaps
gmgsdy People indicated as being somehow responsible for performing changes may try
to wriggle out of it (volunteers for mmwxmxmjmmix unassigned projects will be
courteously received)e

I left the meeting without and understanding of how the file block dirty bit wast o
perform kkbcfmmekiawy its functions It was supposed to be maintained by the ECS system
and somehow save the disk system the trouble of writing out blocks from read-write files
unless they had actually been altered. Exactly what is the proposal?

ALLOCATION BLocKS

Mach thinking has been going into allocation blocks, ECS space accounting, and CPU time
accountinge Here is a semi-solid proposale
1) CPU time should be taken out of allocation blocks and put s brobably, into the
process descriptor, Several reasons
a) AB's are really to control ECS usage and the current CPU time stuff is
Jjust a hopeful, incompletely evaluated after-thought
b) If a process is allowed to run at different weights, the time has to be
accumlated separately for the different weights (and you don't want to
keep a weight in the 4B)
2) CPU time should be counted down. When a process mkmmk is swapped in, if it has
no time in the slot currently being charged, an error is generated and either
a) if there's more than one pool of CPU time, control is switched to
another pool to cover the processinge If the last pool runs out, it's
an error error or the equivalent, and the process is shut down, perhaps
destroyede
b) if there's only one pool of CPU time, the process is loaned epiilon time
by the swapper and marked bankrupte If it's already bankrupt, error errore
The system operation which puts money in the CPU time pool clears the
banlﬂ‘upt sign,al. G R S R N Rt
In both ® methods, it is anticipated that the initial error will be intercepted
by s mebody competent to straighten things out, like a very priveleged system
accounting subprocess. If the user intercepts the error inone of his own
subprocesses and blows it, he gets hade
3) ECS space accounting in AB's is to be changed to charge for the amount of ECS that
the AB has tied mp, not the amount that it happens to be usinge The latest
model allocation block will contain 3 space parameters, 2 time-aEpmmspace integrals,
and the invisible time of last bill fielde (See fige 793=L42B403f)
a) UPPER BOUND - can be set arbitrarily and doesn't reflect any real memory
anywhere. It is used to controel somebody you don't truste
b) CHARGED SPACE - this is available to the AB on demand and is the amount
charged for, Space rmmmxkm added to this field comes from
its father AB and increases may fail for lack of space
in the father or for exceeding the local limit.
¢) SPACE IN USE = space currently in use, may not exceed charged space or
an error is generated,
Nice guys and poor guys will try to keep charged space dwon around space in usej
rich guys may keep a lot of charged space in case tthey might need it, ImExEazmx
Meaningful increases to charged space will presumably entail a call on a
priveleged system boutine to get space from a system pool, and delays may result
'cause space imn't availablee .
d) CONTINUOUS TS - starts at O when the AB is created and buklds up
continuously. Facility to display it will be provideds
e) DISCONTINUOUS TS - I don't like this field for reasons explained below.
When it is displayed, it is reset to Oe
A DAEMON process runs periodieally and touched the AB's, to prevent deficit

spendinge Bruce wants to use the discontinuous field charge the guy right
avI:ay, so.that if the system crashes, he stangs cﬁarged% some T#S, which he

R Y X O R R X X RIS R

) f’ya:/ “0
i

may or may not have derived any benefit frome The guy will almost certainly
complain bitterlye I think that the continuous field should be used by the
DAEMON to check against deficit spending, but that the DAEMON should do
nothing in the normal case, leaving the log-off procedure to do all the
actual charginge

FIGURE 793-L2B403f

i])
J ALLOCATOR'S W oORD TusS7T LIKE A«c
ORBIBECTS

HEADER wJIRD

MOT R
P CHARGED SFPACE SFACE IN USE

PTRS TO ALLOCHRTION BLOCK CHAIN
NHEARD (0LoesT) TAIL (NEVEST)

(TIME OF LAST BiLl| UPPER BOUND

CONTINUOUS TxS

DiscoNTiIvupus T x S

o na A+ P i 3 t 4

If the time of last bill is kept in units of micro-seconds/1024
30 bits allowse sbout 1 P ;“ 1 3 P h 3 3 3 Tl
50 bits allows out 10 days of running, If this is deemed
insufficlent, speak now, More bits may be used or the units

can be changed,

1"y 7 Do

ALIOCATION BLOCK OPERATIONS

A)

B)

c)

D)

E)

F)

Create allocation block (no change)
IP1 €¢: father AB (OB.CREAB)
IpP2 D: C-1list index for returned capability

Transfer charged space
IP1 C: Donor AB (OB.GIVE)
Ip2 C: Donee AB (OB.GET)
IP>3 D: Space to be transfered, or donation
fails if CHARGED SPACE+DONATION exceeds UPPER BOUND in donee
or DONATION exceeds CHARGED SPACE&SPACE IN USE in donor

Set upper bound
IP1 C: AB (new option bit)
LB2 D: new upper bound
fails (or F-returns) if new upper bound less than charged space

Read discontinuous T#¥#S

IP1 C: AB (new option bit')

IP2 D: where T*S is returned (or return it in X6%)
resets discontinuous T#S to O and returns updated value

Display AB
IP1 C: AB
1P2 D: buffer
updates both versions of T#S, doesm't reset discontinuous T#3

Return capability for nth object on the AB (no change)
IP1 C: AB (0B,GOD)

IP2 D: full C-1list index for returned capability

IP3 D: number of desired object (n)

Destroy AB (no change)
IP1 C: AB (OB.DSTRY)

13 %/’70
3

DIRTY BITS

In order to save the disk system some unnecessary writes, it was
decided to provide a dirty bit on file blocks which would enable
the disk system to tell whetker or not a block had to be copled
back out to the disk, The flinal specs were:

1) File blocks are created clean
2) Blocks are dirtied by
a) File writes, including ones with words counts of 0
b) Being put in a map RW
c¢) Being put in a direct-access map entry
3) An operation to test and reset the dirty bit will be
provided,

AWK XAXXKX ERY U3 90 4.1 90.56.3 5 003 6 44
Hg %Eﬁi caan&agag%%ﬁé‘62?fzi3euoﬂ£2¢§AL4£4.
With this machinery, it is claimed that blocks from a file opened
RW will not have to be written out to the disk if

1) Somebody Jjust scans through the fide and doesn't actually
write in some of the blocks

2) A block hasn't been written in since it was last written
out, due to a pseudo-close or somesuch mechanism

Just for some concrete examples,

I 720

“ DELIVERY OF INTERRUPT DATUM

It is proposed to alter the location where the interrupt datum is
delivered from IPO (cell 6 of the subprocess) to cell 2 of the
subprocess, Current delivery clobbers the first input parameter,
Any objections?

CHANGE TO CHANGE UNIQUE NAME OPERATION

It is proposed thet CUN be altered to have 2 parameters:
IRAXXXBAX EXX XK XX ANABXX ERX BN FEEX XX ARBEEHNANIX
IRPXXXAN
IP1 C: capability for object (OB,CHNAM)

IP2 D: C=1iest index for return of new capability.

This is a funny thing from the point of view cf the user, since the
old capability becomes no good after the operation, but it allows
the system to do its option bit testing in the usual place instead
of in the CUN code,

CHANGE UNIQUE NAME AND MISSING MAP BLOCKS

A block refered to in a map may be caused to disappear by the use
of the change unique name operation, The question 1s, what should
. the map machinery do when it encounters a2 map entry with miss ing
‘ blocks? The only answer secms to be that &he offending map entry
should be zeroed and error processing should be initiated, This
1s unpleasant, as the error is go ing to be discovered in the swapper,
but it seems like there 1s no alternative, How about 1it%

ot
)

ALLOCATICN
T ——

Work on the allocator (initially undertaken to write a compactifier)
has revealed certaln problems:

1) The documentation is scanty and not overly helpful, For
example, the purpose for the two O-length free blocks isn't
mentioned, how compactification is to be [incrementally)
achieved 1s left as an exercise, etec,

2) There are bugs
a) Free blocks are merged without due regard for limitations
on their size '
b) Interrupt objects are scattered through core in such a
way as to make keeping them fixed during compactification
a somewhat bewildering problem
¢) There are miscellaneous quirks in the initialization,.

3) Objects are limited to 2%#17 - 1, This limits DAE's to
2##17 - epsilon for O-=level files
216 for other level files

4) The top and bottom of ECS are both fixed by various factors,
This makes 1t difficult to dynamically change the size of ECS,

It's easy enough to fix the bugs and improve the documentation,
And the top of ECS can be freed by various ploys which can be simple
and 1lnefficient or medium difficult and as efficient as at present,
The stopper is item 3, Extensive rewriting will give a factor of 4
extensive rewriting plus an additional word or redsign of the
allocation chalin are necessary to completely unrestrict object sizes,

-
?

It 1s roughly true that the redesign and changes necessary to deal
with 3 and 4 are internal to the allocator and can be redone later
without affecting other code (the main possible exception is the

file code, which shares one of the allocator's words), I feel that
it 1s smewhat a matter of style as to whether we fix these things now
or later, but I would like to have some commitment on item 3 right
away,

INCREMENTAL COMPACTING

It 1s deemed desireable that the compactifier should be designed in
such a way that some process may run whigg compactification is in
progress, Namely, a speed freak shouldn't have to wait for
compactification to complete before running, There seem to be two
different schemes which allow suspension of compacting in mid-stream;

1) To tell the compactifier in advance only to co so much and
then to check for speed freaks when it returns, You could
tell it to collect n objects ofr example, But you have to
understand that it may get into something big that it has
to finish,

2) To have a flag which the comp=ctifier looks at which tells
it to stop as soon as possible, I prefer this, as it is
more efficient, There 1is still a 1imit to how fast the

compactifier can react, but Xk control is better than with 1,

