

1.

2.

TABLE OF CONTENTS

INTRODUCTION

LANGUAGE DEFINITION

2. 1 Program
2.2 Elements
2.3 Expressions

2.4
2.5

2.6

2.3.1
2.3.2
2.3,3
2.3.4
2.3,5
2.3.6
2.3,7

Addressing operators
Arithmetic operators
Relations
Shift operators
Logical operators
Conditional operator
Constant expression

Blocks
Commands

2. 5. 1 Assignment
2.5.2 Conditional commands
2.5,3 Looping commands
2.5.4 For command
2.5,5 Resultis command, and
2.5.6 Swi tchon command
2.5,7 Transfer of control

Declarations

Global
Manifest
Dynamic Cell
Vector
Function
Routine
Label

value blocks

2. 6. 1
2.6.2
2.6.3
2.6.4
2.6.5
2.6.6
2.6.7
2.6.8 Simultaneous declarations

2.7 Miscellaneous Features

2. 7. 1 GET
2.7.2 Comments and spaces
2.7,3 Preprocessor

2.8 The Run-time Library

2.8.1 Input-Output Routines
2.8.2 Other useful subroutines
2.8.3 Global variables for 1/0

Page
1

3

3
3
4

6
10
10
11
11
12
12

12
13
14
14
15
15
16
16
17

17

17
18
18
19
19
20
21
21

22

22
22·
22

23

23
25
25

3. Using BCPL under SCOPE

3 . 1 Comp i 1 i ng

3.1. 1 The Control Card
3.1.2 Field Length During Compilation
3.1.3 Library Declarations
3.1.4 Diagnostics

3.2 Executing

3 . 2. 1 Load i ng
3.2.2 The Main Program

3,3 A Complete Job

Appendix A: Reserved Words and Tokens

Appendix B: BNF of BCPL

Appendix C: The Run-time Environment

Appendix D: Display Code ASCII Correspondence

Page

26

26

26
27
27
28

29
29

29

31

34

39

44

--- ----------------------------------

,,

LNTRODUCTLON

BCPL is a progrannning language for non-nmneric applications such

as compiler-writing and general systems programming. It has been used

successfully to implement compilers, interpreters, text editors and a

batch-procesS'i.ng operating system. The BCPL compiler is written in

BCPL and runs on the Computer Centerrs CDC 6400.

Some of the distinguishing features of BCPL are:

The syntax is extremely rich, allowing a variety of ways to
write conditional branches, loops, and subroutine definitions.
This allows one to write quite readable programs.

The basic data object is a word (60 bits on the 6400) with no
particular disposition as to type. A word may be treated as
a bit-pattern, a number, a subroutine entry or a label. Neither
the compiler nor the run-time system makes any attempt to enforce
type restrictdi.ons. In this respect BCPL has both the flexibility
and pitfalls of machine language.

Manipulation of pointers and vectors is simple and straight
forward.

All subroutines are re-entrant and recursive since all data
are kept in a stack.. This is useful for multi-programming or
applications where recursion is useful (e.g., tree-processing).

This manual is not intended as a primer; the constructs of the language

are presented with scant motivation and few examples. To use BCPL on the

6400 effectively one must have a good understanding of how a computer works

and be familiar with the operation of the 6400 and the SCOPE operating sys

tem. It is a useful language but has few provisions for protection of

the naive user.

Acknowledgement~

In the interest of making documentation of BCPL available quickly,

large portions of this manual were taken from a very well-written memo

randum by R.H. Canady and D. M. Ritchie of Bell Telephone Laboratories.

Naturally any errors or omissions in this manual are my responsibility.

The initial design and implementation of BCPL were done by

Martin Richards of Cambridge University, England.

The implementation for the 6400 was done with the assistance of

Richard Aronoff.

3

LANGUAGE DEFlNLTLON 2

2.1 Program

On the outermost level, a BCPL program consists of declarations: 'function',

'global', 'manifest', and 'label~ declarations. But rather than starting

from the outside and working in, the constructs of a BCPL program will be

described from the inside out. The most basic construct is the 'element'.

2.2 Elements

<element>::= <identifier> I <integer constant> I
<octal constant> I
<string constant> I
<character constant> I TRUE I FALSE

An <identifier> consists of up to 20 alphanumeric characters, the first

of which must be a letter.

An <integer constant> is a sequence of digits. An <octal constant> begins

with $8 followed by octal digits. The reserved word TRUE denotes

-0 = $8777 .•...• 777 (i.e., a word of 1 bits) and FALSE denotes +o • How

ever, in any context where a truth value is expected, any negative value is

interpreted as true. r
,t 'v

A <string constant> consists of up to 128 characters enclosed by ='s.

The internal character set is ASCII. The character can be represented

in a string constant only by the pair *= and the character * can be

represented only by the pair **
follows:

Other characters may be represented as

*n is newline

is horizontal tab (space up to column 11,21,31, etc.)

represents the octal character code nnn where nnn
is three octal digits.

4

A string is represented as a sequence of 60 bits words with eight 7-bit

characters packed in the low-order 56 bits of each word. In the last

word the characters are left justified, followed by at leas~ one .ze..o byte.

'~.
I l I ' A s T R I N I G

I N M E M 0

i
R y *,0000 *ftOOO *fOOO *..nooo *,,0'000 i *,iooo

Each appearance of a string constant generates a new static vector of cells

to contain the string. The value of the string constant is the address of

this vector. /

A character constant consists of up to 8 characters enclosed by +

characters. The character + can be represented in a character constant

only by the pair *+
a string constant.

The other escape conventions are the same as for

A character constant is right justified in a word. Thus

+A+= $8141

2.} Expressions

The next construct in BCPL is the expression. Because an identifier has no

type information associated with it, the type of an element is assumed to

match the type required by its context.

All expressions are listed below. El, E2 and E3 represent arbitrary expres

sions except as noted in the descriptions which follow the list, and CO, Cl,

etc., represent constant express.ions (whose value is known at compile time -

see Section 2.3.7).

primary

result

functi.on

addressing

arithmetic

relational

shift

logical

conditional

table

element

(El)

VALOF block

El (E2,E3, ..•)

El.E2

LV El

RV El

+El

-El

E1*E2

El/E2

El REM E2

El+E2

El-E2

El= E2

El+ E2

El< E2

El> E2

El< E2

El> E2

El LSHIFT E2

El RSHIFT E2

El t E2

-i El

El V E2

El/\ E2

El EQV E2

El NEQV E2

El-+E2,E3

TABLE co,c1,c2, ...

5

subscripting

address generation

indirection

Integer remainder (modulus)

not equal

left shift by E2 > 0 bits

right shift by E2 ~ 0 bits

arithmetic shift or El*2EZ

not (complement) El

inclusive or

and

bitwise equivalence

bitwise not-equivalence
(exclusive or)

2. 3. 1

The- relative binding power of the operat?rs is as follows:

(highest) VALOF

(lowest)

function

(subscripting)

LV RV

* I REM

+
LSHIFT RSHIFT t

relationals
-,

V

/\

EQV NEQV

TABLE

The VALOF expression will be described in 2.5.5, after the construct

<block> has been described. < ,

6

The value of a TABLE expression is the address of a static vector of cells

initialized to the values of the constant expressions CO,Cl, •... A table

is thus closely analogous to a string constant.

Addressing operators

The most interesting operators in BCPL are those which allow one to gener

ate and use addresses. An address may be manipulated with integer arith

metic and is indistinguishable from an integer until it is used in a con

text which requires an address. For example, if X contains the address

of a word in storage, then

X + 1

is the address of the next word.

If ID is an identifier, then associated with ID is a single woro. of

memory, which is called a cell.

7

ID --- cell for ID

The content of this cell is called the value of ID. The address of the

cell is called the address of ID.

An address may be used by applying the operator RV. The expression

RV El

has as value the contents of the cell whose address is the value of the

expression El. Only the low-order 18 bits of El are used.

An address may be generated by means of the operator LV. The expression

LV El

is valid only if El is

(1) an identifier, in which case the value of LV ID is the address
of ID.

(2) a vector expression, in which case the value of LV El.E2 is
El+ E2.

(3) an RV expression, in which case the value of LV RV El is

Case (1) is self-explanatory. Case (2) is a consequence of the way vectors

are defined in BCPL. A vector of size n is a set of n+l contiguous

words in memory, numbered 0,1,2, ••. ,n. The vector is identified by the

address of word O. If V is an identifier associated with a vector, then

the content of V is the address of word O of the vector.

cell for V
V ---

The value of the expression

V.El

•I---
' '

l

i

vector
(n+l)cells)

. . . .

0
1
2

n

is the value of cell number El of vector V, as one would expect. The

8

address of this cell is the value of

V + El

hence

LV V.El = V + El

This relation is true whether or not the expression

V.El

happens to be valid and whether or not V is an identifier.

Case (3) is a consequence of the fact that the operators LV and RV are

inverse.

The interpretation of

RV El

depends on context as follows:

(1) If it appears as the left-hand side of an assignment statement,
e.g.,

RV El := E2

El is evaluated to produce an address and E2 is stored there.

(2) LV (RV El)= El as noted above.

(3) In any other context El is evaluated and the contents of that
value, treated as an address,are taken.

Thus, RV forces one more contents-taking than is normally demanded by

the context.

As a summarizing example, consider the memory configuration depicted below

. . .
A. • • • Cl y

. . .
y 5

. . .
B •••• 6 cS

. . .
7

. . .

9

I.e., a and B are the addresses of A and B respe~tively. Then each

of the following assignments induces the memory configuration shown adjacent,

Aa 0

A := B

y, 5

B B 0

l
oJ 7

A .- RV B Aa 7

y 5

B B 0

0 7

RV A := B A a y

y 0

B S 0

7

Note that

LV A := B

is not meaningful, since it would call for changing the address associated

with A, and that association is permanent.

)
\)

2.3.2

2.3.3

10

Arithmetic operators

There are two kinds of addition and subtraction, short and long. A short

operation is undefined if eithe.r of its operands or its result is greater

than 217 in absolute value1 • The. long operations are defined for any

60-bit quantities. The short operations are written

El+ E2 and El - E2

while the long are written

El+. E2 and El-. E2

-0 = $87 ..•• 7 behaves like +0 under addition and subtraction.

In general, multiplication, division, and remainder are defined only when

the operands and results are less than 248 in absolute value 2 • The beha

vior of -0 is undefined.

A REM B = A - (A/B) * B

Relations

As with addition and subtraction, there are two kinds of relational opera-

tors, short and long. The long version is obtained by suffixing ·a

to the short version. (E.g., =., +., <., >., .:::_., ~-)

11 II .

A relational expression of the form

is equivalent to

El Rl E2 A E2 R2 E3 A ••• A E R E
n-1 n-1 n

The result of relations involving -0 is undefined.

2

In the current implementation only operations involving small constants
(i.e., Ix I <21 7) are performed in 18-bit mode.

In the current implementation multiplication by constants having less
than 7-bits in their absolute value is accomplished by shifts and adds
so 60-bit operands are possible. Division or remainder by a constant
power of 2 is done by shifting or masking respectively.

2.3.4

11

Shift operators

In the expression El LSHIFT E2 (El RSHIFT E2) E2 must evaluate to a non

negative number. The value is El, taken as bit-pattern, shifted left (right)

by E2 bits. Vacated positions are filled with Obits. The expression

EltE2 calls for an arithmetic shift of El by E2 places. If E2 is posi

tive El is shifted left circular; if E2 is negative El is shifted

right with sign extension1 •

2.3.5 Logical operators

The effect of a logical operator depends on context. There are two logical

contexts: 'truth-value' and lbit'. Truth-value context exists whenever the

result of the expression will be interpreted as TRUE or FALSE. In this

case each subexpression is interpreted, from left to right, in truth-value

context until the truth or falsehood of the expression is determined. Then

evaluation stops. In truth-value context, any positive value means FALSE

and any negative value means TRUE. Thus

El v E2 A~ E3

will be true if

or if

El is true (negative), in which case E2 and E3 are not
evaluated

E2 is true (negative) and E3 is false (positive).

In 'bit' context, the·-. operator causes bit-by-bit complementation of its

operand. The other operators combine their operands bit-by-bit according

to the following table
! .:'

f-= ·,

operands A V

0 0 0 0 1
0 1 0 1 0
1 0 0 1 0
1 1 1 1 1

On the 6400 arithmetic shifts are slightly faster than logical shifts.

2.3.6

2.3.7

2.4

12

Conditional operator

The expression

El+ E2,E3

is evaluated by evaluating El in truth-value context. If it is true,

then the expression has value E2, otherwise E3. E2 and E3 are never

both evaluated.

Constant expression

A constant expression is any expression involving only constants and opera

tors other than LV, RV, VALOF, vector application(.), and TABLE.

Blocks

A block consists of one or more commands and/or declarations, enclosed by the

symbols [called 'sectbra', at the beginning and], called 'sectket',

at the end.

A sectbra or sectket may be "tagged" with up to 8 alphanumeric characters,

terminated by the first nonalphanumeric character following the sectbra or

sectket. A sectbra or sectket immediately followed by a space is in effect

tagged with null.

A sectbra can be matched only by an identically tagged sectket. When the

compiler finds a sectket, if the nearest sectbra (smallest currently open

block) does not match, that block is closed and the process repeats until

the matching sectbra is encountered.

Thus it is impossible to write blocks which are overlapping (not nested).

A block may be used wherever a command is allowed, and in addition is

required in a few contexts where a command is not permitted. A block may

be used for two purposes: to group a set of commands which are to be treated

as a unit, and to delimit the scope of declarations.

13

2.5 Commands

Connnands are separated by semicolons(;). However, in most cases the com

piler automatically inserts a semicolon at the end of each line if it is

syntactically correct there (see Section 2.7.3).

~e pair of reserved words DO and THEN are synonymous.

qR\{lre not operat._qrs.
'

The complete set of commands is shown here, with E, El, E2 and E3 1denoting

expressions and C, Cl, and C2 denoting commands:

routine

assignment

conditional

El(E2,E3, •..) -1--- .;

<expression list> := <expression list>

IF E DOC

I i
,.-,,-,\, i' "i,c\ <,/ ,,._,_,, ~ ·/'. . -

looping

for

result

swtichon

transfer

block

UNLESS E DOC

TEST E DO Cl OR C2

WHILE E DOC,_,...,... __ ~
C REPEAT

C REPEATUNTIL E

C REPEATWHILE E

FOR N=El TO E2 DOC

RESULTIS E

SWITCHON E INTO[.••]

GOTO E

FINISH

RETURN

BREAK

[..• J

Discussion of the 'routine' command

El (E2, ...)

which calls the routine whose address is El will be deferred to

Section 2.6.6.

I

2.5.l

L:

14

Assignment

The command

El := E2

causes the value of E2 to be stored into the cell specified by El. El

must have one of the following forms:

(1) an identifier
(2) a vector expression
(3) a value-as-address expression
(4) a conditional

ID
E3.E4
RV E3
E3 + E4,E5

Case (1) is obvious. Cases (2) and (3) have been described in Section 2.3.1.

E3 + E4, ES:= E6

has the same effect as

[LET t = E6
TEST E3

DO E4 .- t
OR E5 := t]

where t is a new identifier.

A list of assignments may be written thus:

El,E2, •.• ,En := Fl,F2, .•. ,Fn

where Ei and Fi are expressions. This is equivalent to

El.- Fl
E2 := F2

En := Fn

2.5.2 Conditional commands

IF E DO Cl

UNLESS E DO C2

TEST E THEN Cl OR C2

· Expression E is evaluated in truth-value context. Command Cl is exe

cuted if E is true (negative), otherwise command C2 is executed.

2.5.3 Looping commands

WHILE E DO C

UNTIL E DO C

C REPEAT

C REPEATUNTIL E

C REPEATWHILE E

15

Command C is executed repeatedly until condition E becomes TRUE or

FALSE as implied by the command. If the condition precedes the command

(WHILE, UNTIL) the test will be made before each execution of C. If it

follows the command (REPEATWHILE, REPEATUNTIL), the test will be made after

each execution of C. In the case of

C REPEAT

there is no condition and termination must be by a transfer of control com

mand in C. (C usually will be a block.)

Within REPEAT, REPEATUNTIL, and REPEATWHILE C is taken as short as possible.

Thus

IF E DO C REPEAT

is the same as

IF E DO (C REPEAT]

2.5.4 For command

FOR N=El TO E2 DOC

N must be an identifier. This command will be described by showing an

equivalent block.

Note: The declaration

(LET N,t = El,E2
UNTIL N>t DO

(c
N := N+l]]

LET ID = E

declares a new cell with identifier ID (see Section 2.6.3).

Note that t is a new identifier not occuring in C.

2.5.5

2.5.6

16

The most unusual feature of this command is that the identifier N is not

available outside the scope of the command.

Resultis command, and value blocks

The expression

VALOF [.... .]

defines a 'value block'. It is evaluated by executing the commands (and

declarations) in the block, until a RESULTIS command

RESULTIS E

is encountered. The expression E is evaluated and its value becomes the

value of the value block. Execution of commands within the value block ceases.

A value block must contain one or more RESULTIS commands and one must be

executed.

In the case of nested value blocks, the RESULTIS command terminates only the

innermost VALOF block containing it.

Switchon command

SWITCHON E INTO <block>

where the block contains labels of the form:

CASE <constant expression> : or

DEFAULT:

The expression E is first evaluated and if a case exists which has a con

stant with the same value then execution is resumed at that label; otherwise,

if there is a default label then execution is continued from there, and if

there is not, execution is resumed just after the end of the SWITCHON command.

The switch is implemented as a direct switch, a sequential search or binary

search depending on the number and range of the case constants.

2.5.7 Transfer of Control

GOTO E
FINISH
RETURN
BREAK

17

The command GOTO E interprets the value of E as an address, and

transfers control to that address. The connnand FINISH causes an imple

mentation-dependent termination of the entire program. RETURN causes

control to return to the caller of the routine. BREAK causes execution

to be resumed at the point just after the smallest textually enclosing

looping command. The looping commands are those with the following key

words:

UNTIL, WHILE, REPEAT, REPEATWHILE, REPEATUNTIL and FOR.

2.6 Declarations

2.6.1

There are eight distinct declarations in BCPL: GLOBAL, MANIFEST, dynamic

cell, dynamic vector, function, formal parameter, routine, and label.

Global

A BCPL program need not be compiled in one piece. The sole means of com

munication between separately compiled segments of a program is the global

vector. The declaration

GLOBAL [Name: constant-expression]

associates the identifier Name with the specified location in the global

vector. Thus Name identifies a static cell which may be accessed by

Name or by any other identifier associated with the same global vector

location. Global declarations may be combined:

GLOBAL [Nl:Cl;N2:C2; .•. ;Nn:Cn]

Note the absence of a final; •

The scope of a global declaration, i.e.,the region of program where the

identifier is known, is the region immediately following the global decla

ration up to the end of the smallest textually enclosing block, except

where the identifier is redeclared within that scope.

2.6.2

2.6.3

18

Manifest/ ;,

An identifier may be associated with a constant by the declaration

MANIFEST [Name= constant-expression]

The scope of this declaration is the same as for a global declaration.

Within the scope of this identifier, use of the identifier is exactly

equivalent to using the constant expression.

The constant expressions in a multiple manifest declaration are all

evaluated before the declarations take effect. Thus

MANIFEST [MASK= $8777; NMASK =-1 MASK]

is illegal (unless MASK has been declared in a previous MANIFEST declara

tion). However

MANIFEST {MASK= $8777]
MANIFEST !NMASK = -, MASK]

will declare NMASK as --, $8 77 7 .

A manifest constant, like any constant, does not have an address. Mani

fest declarations may be combined exactly like global declarations.

Dy nam i c Ce l l

The declaration

LET Nl,N2, .•. ,Nn = El,E2, .•• En

creates n dynamic cells (words) and associate them with the identifiers

Nl,N2, ..• ,Nn. These names are known in the remainder of the block containing

the LET declaration. They are also known in the expressions 1 El,E2, .•• ,En.

They are not known within the body of any function or routine declared

subsequently in the block.

Exap.ple

{LET A= El
LET B = E2
LET F(x) = E3
Cl;C2; ... ;Cm]

1 This convention is not particularly useful.

A is known in El,E2,Cl, .•• ,Cm
B is known in E2,Cl, •.. ,Cm
F is known in E3,Cl, ..• ,Cm

19

The words reserved by a dynamic cell declaration are released when the

block in which the declaration appears is left.

Example

[LET A= 1
B := LV A]

[LET X = 7
C := RV B]

The effect of this program segment is not defined. In the current imple

mentation, it is likely that 7, not 1 will be assigned to C.

2.6.4 Vector

The declaration

LET N = VEC m

where m is a constant expression, creates a dynamic vector of m+l

cells by reserving m+l cells of contiguous storage in the stack, plus

one cell which is associated with the identifier N. The scope of N

2.6.5

is the same as for a dynamic cell declaration (2.6.3). Execution of the

declaration causes the value of N to become the address of the block of

m+l cells. The storage created is released when the block is left.

Function

The declaration

LET N(Pl,P2, ••. ,Pm) = E

declares a function named N with m parameters. The parentheses are

required even if m=O . The scope of the parameter names is the expres

sion E. A parameter name has the same syntax as an identifier.

If the declaration is within the scope of a global declaration for N,

then the global cell will be initialized to the address of the function

before execution of the program. Thus the function N may be accessed

from anywhere. Otherwise a static cell is created, is associated with

the identifier N, and is initialized to the address of the function.

In this case the identifier has the same scope as a global cell declaration.

The function is invoked by the expression

EO (El, E2 , •• , Em)

20

· where expression EO evaluates to the address of the function. In

particular, within the scope of identifier N the function may be

invoked by the expression

N(El,E2, .. ,Em)

if the value of N has not been changed during execution of the program.

Each value passed as a parameter is copied into the argument list, even

if the expression for the parameter is a simple identifier. Thus argu

ments are always passed by value. The value passed may, of course, be

an address.

2.6.6 Routine

The declaration

LET N(Pl,P2, ... ,Pm) BE <block>

is identical in effect to a function declaration except that

(1) the body is a block rather than an expression
(2) no value is returned to the caller.

The scope of the parameter identifiers is the block.

The routine is called by the connnand

EO (El , •.• , Em)

where expression EO evaluates to the address of the routine. As in the

case of a function, the routine N may be invoked by the command

N(El, •.• ,Em)

within the scope of identifier N.

Any function may be called as if it were a routine, but if a routine is

called as a function, the value returned is undefined.

2.6.7

21

Label

A label is declared by

Name:

A label declaration may precede any command or label declaration, but may

not precede any other form of declaration. Exactly as in the case of a

function or routine, the label declaration creates a static cell if it is

not within the scope of a global declaration of the same identifier. The

local or global cell is initialized before execution with the address of

the first command following the label declaration, so that the command

GOTO Name

has the expected effect.

The scope of a label identifier is different from any other declaration,

because it includes all of the largest enclosing routine or function

including the portion before the declaration itself.

Labels may be assigned to variables and passed as parameters. In general -

they should not be declared global, but can be assigned to global variables.,

(see 3.2.2. for an exception). Transferring to a label after the block

in which it was declared has been left will produce chaotic (undefined)

results.

2.6.8 Simultaneous declarations

Any declaration of the form

LET

may be followed by one or more declarations of the form

AND------
where any construct which may follow LET may follow AND . As far as

~1 :. ,;1,J-, ~'(;~l;>E; is concerned, such a sequence of declarations is treated like a single

declaration. This makes it possible, for example, for two routines to know

each other without recourse to the global vector.

/

22

2.7 Miscellaneous Features

2.7.1 GET

2.7.2

The command

GET =string-=

causes the file identified by =string-= to be included in the source text

in place of the 'get' command. The translation of the string into a file.

name, and the internal format of the file, are implementation dependent.

Under SCOPE, the first seven characters of the string are used as the file

Name. The corresponding file is expected to be Hollerith card images.

Comments and spaces

The character pair // denotes the beginning of a comment. All characters

from (and including) // up to (but not including) the character 'newline'

will be ignored by the compiler.

Blank lines (lines including only the characters 'space', 'tab', and/or

'newline') are ignored also.

Space and tab characters may be freely inserted except inside an element,

inside a system reserved word (e.g. VALOF), or inside an operator (e.g.

:=). Space or tab characters are required to separate identifiers or sys

tem reserved words from adjoining identifiers or system reserved words.

2.7.3 Preprocessor

In order to make BCPL programs easier to read and to write, the compiler

allows the syntax rules to be relaxed in certain cases. Source text input

to the compiler is scanned by a preprocessor which is capable of inserting

semicolons, and the reserved word DO (or THEN), where appropriate.

Thus the programmer normally can write BCPL programs without using the

command terminator (semicolon) and with fewer DOs than the strict syntax

requires.

23

The preprocessor inserts a semicolon between adjacent items if they appear

on different lines and if the firs.tis from the set of symbols which may

end a command, namely:

BREAK RETURN
) <element>

FINISH
J

REPEAT

and the second is from the set of items which may start a command, namely:

TEST FOR
SWITCHON
RESULTIS
FINISH I

IF UNLESS UNTIL WHILE GOTO
(RV <element>
CASE DEFAULT BREAK RETURN

The symbol DO is inserted between pairs of items if they appear on the

same line and if the first is from the set of items which may end an

expression, namely:

) <element>]

and the s.econd is from the set of items which must start a command, namely:

TEST FOR IF UNLESS UNTIL WHILE GOTO
RESULTIS CASE DEFAULT BREAK RETURN
FINISH SWITCHON I

An as example, the following two program segments are equivalent:

IF A= 0 DO GOTO X;
A := A - 1;

2.8 The Run-time Library

2.8.l Input-Output Routines

IF A = 0 GOTO X
A := A - 1

The input/output facilities of BCPL are quite primitive and simple,

INITIALIZEIO(Y,SIZE) is a routine that sets up a buffer area in the vec

tor Y of length SIZE. It initializes a global pointer to the buffer

area (IOBASE) and the character conversion tables (C6T07 and C7T06),

If N is the maximum nubmer of simultaneously open files expected during

the job, SIZE should be N*BUFFERSIZE (a manifest constant= 7 + the

real buffer size, declared as 136 in BCPLGD).

24

FINDINPUT(LFN) is a function taking a display-coded file name (LFN)

and returning a stream-pointer_ to he used by the input routines. FIND

INPUT initializes an input buffer and attempts to read a buffer-load of

the named file. If no information is found, a warning message is printed,

the file rewound, and a second read attempted. If this read fails the

job is aborted. If the file has already been opened, the job is aborted.

CREATEOUTPUT(LFN) is a function taking a display-coded file name (LFN)

and returning a stream-pointer to be used by output routines. No testing

of the external file environment occurs, but a file may be opened any

number of times.

READCH(STREAM,CH) is a routine which reads the next character from an

input stream and stores it (indirect) in CH. Thus to get the character

into a variable, A, one executes READCH(S,LV A). If the stream is at

an end of the record the character ENDOFSTREAMCH (= $8255) is stored.

WRITECH(STREAM,CH) is a routine which writes a character onto an output

stream.

READVEC(STREAM,V,N,EORL,EORC) reads N words from STREAM into

V.O, ... ,V.(N-1) . If less than N words remain in the STREAM the num

ber of words actually read is stored (indirect) in EORC and a transfer

to EORL is performed. Mixing calls of READVEC and READCH on the

same stream produces undefined results.

WRITEVEC(STREAM,V,N) writes N words from V.O, ... ,V.(N-1) onto STREAM.

Mixing calls of WRITEVEC and WRITECH on the same stream produces undefined

results.

ENDREAD(STREAM) positions the file at the next end of record and releases

the buffer space associated with STREAM.

ENDWRITE(STREAM) writes out anything remaining in the buffer, writes an

end of record, and releases the buffer space. This action is not performed

until the file has been closed as many times as opened.

ENDOFSTREAM(STREAM) returns TRUE if the stream is at an end of record,

otherwise FALSE.

2.8.2

25

CLOSEA.LL () performs ENDWRITEs and ENDREADs on all open streams

until they are closed.

ABORT () performs a CLOSEALL and aborts the job.

Other useful subroutines

PACKSTRING(V,S) packs characters V.1,V.2, .•. ,V.(V.O) into the vector

S (i.e. into S.O,S.\ ... ,S.(V.0/8 + 1)).

UNPACKSTRING(S,V) stores the characters of S in V.1, ... ,V.N and stores

N in V.O.

BCDWORD(S) produces a left-justified, display-coded word from a (long)

string S.

ASCII(D,A) packs the display-coded word D into vector A.

5
"-WRITE1S) writes the characters of S onto the output stream OUTPUT

global variable).

WRITEN(N) writes the number N onto the output stream OUTPUT.

(a

WRITEO(N) writes the number N (in octal) onto the output stream OUTPUT.

2.8.3 Global variables for 1/0

The following global variables are used by the I/0 routines. They are

declared in BCPLGD (see section 3.1.3).

IOBASE: holds pointer to buffer area; initialized by INITIALIZEIO,
used by FINDINPUT, CREA.TEOUTPUT, and CLOSEALL.

C6T07: ·points to a display-code to ASCII conversion vector; initialized
by INITIALIZEIO, used by REA.CH and ASCII.

C7T06: points to an ASCII to display code conversion vector; initial
ized by INITIALIZEIO, used by WRITEC~_end ~DWORD.

OUTPUT: points to an output stream; used h~f¥tii,and WRITEO.

MONITOR: points to an output stream for error messages; should be
initialized before any I/'O is attempted.

26

Using BCPL under SCOPE 3

The four common files, BCPL, aCPL2, SCPLLO, and BCPLGD are public and

may be accessed by any user i.n the normal way. (BCPL2 is the second pass

of the compiler.)

3 . 1 Comp i 1 i ng

3.1.1 The Control Card

The BCPL compiler is directed to translate a source deck by the SCOPE

control card:

LGO,BCPL,I=input,L=listing,B=binary,C=compass,O=ocode,N=name,T=tree,SA,D.

All parameters are optional and may appear in any order. Their inter

pretation is as follows:

Parameter

I

L

B

C

0

N

T

SA

D

Default
Value

INPUT

OUTPUT

LGO

Use

Designates the file containing the source code to
be compiled. If the file appears to be empty, it
is rewound and tried again. The source deck is
terminated by an end of record.

Designates the file on which the source text, along
with diagnostics and other information will be
written. L=O suppresses listing except for diag
nostics which will appear on OUTPUT.

Designates the file on which the relocatable binary
will be written. B=O suppresses the output of
binary.

0 Designates the file on which a COMPASS version of
the program is written. This version may be assem
bled by COMPASS. C=O suppresses COMPASS output.

OCODE Designates the scratch file to be used for trans
mitti.ng an intermediate object code between passes
of the compiler. This file is always rewound at
the start of compilation.

(same as B) Gives a name to the binary and/or COMPASS program
produced. I.e. , N=name would cause "I DENT name"
to be the first line of the COMPASS program.

0 Designates a file on which a representation of the
parse tree will be written. T=O suppresses the
printing of the tree.

If included as a parameter, suppresses abortion of
the job if the compiler finds errors in the source
program. (The compiler often produces an executable
[but dangerous] program even when errors occur.)

If included as a parameter, the listing will he
double-spaced.

3. 1. 2

27

Field LengtQ Dur~ns Compilation

A field length of 4S,OOO8 should allow sufficient space for the compiler

to translate most programs. If the stack space needed grows beyond the

declarErl field length, an Arithmetic Error - Mode 1 will occur. There

should never be an Arithmetic Error for any other reason, but there may

be. The distinguishing characteristics of an Arithmetic Error caused by

stack overflow are

1. B6 contains a number relatively close to the field length.

2. The offending instruction is either

SAi B6 + K

or

or

SAi Xj + K

SAi Xj + Bk

where i = 6 or 7 and the effective address is greater than
the field length.

If these conditions are not satisfied, there is a bug in the compiler.

3. 1.3 Library Declarations

If the program to be compiled references any routines from the library

(see 2.8 for a description of these), it must include appropriate global

declarations for the routines .. and global cells referenced. The simplest

way to accomplish this is to prefix the command

GET =BCPLGD=

to the program text. This will insert the contents of common file BCPLGD

in the program at that point. The information in BCPLGD is shown below.

If the library BCPLIO is ever to be loaded with the program, then no

other global identifiers should be given the numbers assigned by the file

BCPLGD to the IIO routines.

GLOBAL II SUBROUTINE NAMES

[INITIALIZEI0:2 II Sets up buffers
FINDINPUT:3 II Opens input file
CREATEOUTPUT:4 II Opens output file
READCH:5 II Reads a character
WRITECH:6 II Writes a character
READVEC:7 II Reads words
WRITEVEC:8 II Writes words
ENDREAD:9 II Closes input file
ENDWRITE:1O II Closes output file

3. 1. 4

ENDOFSTREAM:11
CLOSEALL:12
ABORT:13
PACKSTRING:14
UNPACKSTRING:15
BCDWORD:16
ASCII :17
WRITES:18
WRITEN:19
WRITE0:20

GLOBAL

[IOBASE:30
C6T07:31
C7T06:32
OUTPUT:33
MONITOR:34

MANIFEST

fBUFFERSIZE=136
ENDOFSTREAMCH =

Diagnostics

II
II
II

II
II
II
II
II

II
II
II
II
II
II

II
25511

Tests end-of-record
Closes all files
Aborts job

ASCII-display code converter
Display code-ASCII converter
Writes a string
Writes a number
Writes a number in octal]

VARIABLES

Pointer to buffer area
Display-code-ASCII vector
ASCII-display-code vector
Output stream pointer
Error stream pointer]

A 129 word buffer+ 7 word FET
EOS signal]

28

There are three types of diagnostics given during compilations: parse,

translation and general.

A parse diagnostic occurs when a relatively simple syntactic error is

detected during the early phases of compiling. An arrow (t) is printed

under the last character read in before the error became apparent. A

brief description of the error is printed. No more than one error (the

first) on any given line is reported. Errors reported on lines subsequent

to the first error should be regarded with suspicion since the compiler

does not recover very well.

A translation diagnostic occurs in the later phases of compilation and

reports errors such_ as. use of an undeclared identifier. Each error is

hriefly described and a representation of the relevant portion of the

parse tree is printed.

A few general diagnostics may occur at any time. They include such mis

haps as table overflows and missing input files.

- ---------- -----------

29

3,2 Executing

3.2.1 Loading

3.2.2

The common file BCPLIO contains an initializing program, START, and the

input-output library routines, 101 and 102. Under normal circumstances

this file should be loaded before any compiled BCPL prog·rams.

If any programs not produced by the BCPL compiler (or disguised to

appear so) are to be loaded (e.g., the TRACE package) then the load sequence

should be

BCPLIO
All BCPL programs
TAIL (shown below)
All other programs

The program for TAIL can be produced by the following COMPASS program

IDENT
SAl
SB4
JP
END

TAIL
BS+ Bl
Xl
B4

See Appendix C for details of the BCPL run-time conventions.

The Main Program

The first command executed in a core-load of BCPL programs is the one

labelled by a global name (e.g. BEGIN) declared to be GLOBAL 1 in the

source program. Before any input-output can be performed, INITIALIZEIO

must be called, A minimal main program is shown below.

3,3 A Complete Job

The following deck constitutes a simple BCPL job.

J6000,30,45000.
COMMON,BCPL.
COMMON,BCPL2
COMMON,BCPLIO.
COMMON,BCPLGD.
LGO,BCPL,N=MAIN.
LGO , BCPL, N= BUS •
LOAD , BCPL IO .
LGO.
(7-8-9)

GET 3BCPLGD~

GLOBAL {BEGIN :1; BUSINESS: 100]
BEGIN:
{LET BUFFER= VEC BUFFERSIZE

30

II To declare IO routines
and global cells

II Private global decs.
II Execution starts here
I I One buff er

INITAILIZEOIO (BUFFER, BUFFERSIZE
OUTPUT:= CREATEOUTPUT (BCDWORD(=OUTPUT=))
MONITOR:= OUTPUT II Put errors on output
WRITES (=NOW WE. GET DOWN TO BUSINESS *N =)
BUSINESS ()
CLO SEA.LL() J II Close output file
(7-8-9)

I/ THE SECOND PROGRAM

GLOBAL [BUSINESS: 100]
LET BUSINESS () BE f RETURN]

31

APPENDIX A Reserved Words and Tokens

The following list of words and symbols are treated as atoms by the BCPL

syntax analyzer. The alternate forms may be used to avoid multiple

punching.

Standard

AND

t

BE

BREAK

CASE

DO

DEFAULT

=

FALSE

FINISH

FOR

>

>.

GET

GLOBAL

>

>.

IF

INTO

<

<.

LET

A

V

<

<.

Multiple Punch

11-5-8

12-5-8

11-7-8

5-8

0-7-8

11-0

12-0

Alternate

ASHIFT

THEN

EQ

LEQ

GE

LGE

GR

LGR

LE

LLE

LOGAND

LOGOR

LS

LLS

32

Standard Multiple Punch Alternate

LSHIFT

LV

MANIFEST

t (_apostrophe) NE

+. LNE

NEQV

-. 12-6-8 NOT

OR ELSE

REM MOD
•

REPEAT

REPEATUNTIL

REPEATWHILE

RESULTIS

RETURN
;

RSHIFT

RV

SWITCHON

TABLE

TEST

TO

TRUE

UNLESS

UNTIL

',VEC

VALOF

' ' WHILE

+

+.

*
I

12-8-7

33

Standard Multiple Punch Alternate

2-8

(

)

[8-7 $(.--7
(

] 0-8-2 $) ,,.
.-

0-8-5 + - -;;,
+ -* ' ~
$8 --~{~ K l·,,..-

A string constant is delimited by ='s (0-6-8) and a character

constant by +'s (11-6-8).

1.

34

APPEND LX B BNF of BCPL

This appendix presents the Backus-Naur form of the syntax of BCPL. The

whole syntax is given, with_ the following exceptions:

1. Comments are not included, and the space character is not represented
even where required. In fact this only occurs between an identifier
and a system word, and between two system words; that is, where an
obvious misinterpretation would occur if the space were left out.

2. Block. delimited tags are not included, since they are impossible to
represent in BNF.

3. The graphic escape sequences allowable in strings are not represented.

4. No account is made of the preprocessor rules which allow dropping of
semicolons and DO in most cases. It seemed that these rules unneces
sarily complicate the BNF syntax yet are easy to understand by other
means.

5. BCPL has several synonymous system words and operators: for example,
DO and THEN. Only a "standard" form of these symbols is shown in
the syntax; a list of synonyms is found in Appendix A.

6. Certain constructions can be used only in specific contexts. Not
all these restrictions are included: for example, CASE and DEFAULT
can be used only in switches, and RESULTIS only in a VALOF block.
Finally, there is the necessity of declaring all identifiers before
they are used.

The brackets {} are used to group categories without inventing a name

and a suffixed * means "an arbitrary number (>O) of".

Identifiers, Strings, Numbers

<null> : :=

<letter> ::= AIBI.,. lz
<octal digit> ::= Oil!,,, 17
<digit> ::= <octal digit> IBl9

<string constant> 1 ::= =<128 or fewer characters>=

<character constant> ::= +<8 or fewer characters>+
/ *

<octal-number> ::=$8 <octal digit>
.·· *

<number> ::= <octal-numher> I <digit>.<digit>

<identifier? : := <letter> { <letter> !<digit>}*

2.

4.

Operators

<addressop> ::= LV RV

<multop> ::= * I / I REM

<addop> : := + I - I +. I
<shiftop> .. - LSHIFT I RSHIFT

<relop> . ·= = I + I < I > I <

<eqvop> . ·= EQV I NEQV

Expressions

\ t
, ~, = +. I<. I >. I<. >.

<element> ::= <character constant> I <string constant>

<number> I <identi.f i.er> I TRUE I FALSE

<primary E> : := <primary E> (<expression list>) I (<expression>)

VALOF <block> I <element>

35

<vector E> ::= <vector E> . <primary E> I <primary E>

<address E> 3 ::= <addressop> <address E> I <vector E>

<mul t E> : : = <mul t E> <mul top> <address E> I ~:1,.t,~_p- "'J (CS ~ [)
<add E> ::= <add E> <addop> <mult E> I <mult E>

<shift E> ::= <shift E> <shiftop> <add E> I <add E>

* <rel E> ::= <shift E>{<relop> <shift E>}

<not E>: :=.., <not E> I <rel

<and E> ::= <not E> { A not

<or E> ::= <and E> { v <and

<eqv E> ::= <or E>{<eqv op>

E>

* E>}
* E>}

* <or E>}

\

<conditional>

<expression> 4

.. -

.. -
<eqv E> + <conditional>,<conditional>l<eqv E>

<conditional> I TABLE <constant expression>{,<constant
* expression>}

Lists of Expressions and Identifiers

<exp-list> ::= <expression> I <expression> , <exp-list>

<expression-list> ::= <null> I <exp-list>

<n-list> : := <identifier> I <identifier> , <n-list>

<name-list> : := <null> I <n-list>

36

5, Declarations

6.

<manifest-item> 4 : := <identifi.er> = <constant-expression>

<manifest-list> ::= <manifest-item> I <manifest-item>; <manifest-list>

<manifest-declarati.on>. : := MANIFEST I <manifest-list>]

<global-item> ··= <identifier> : <constant-expression>

<global-list> ::= <global-item> I <global-item> ; <global-list>

<global declaration> .. - GLOBAL !<global-list>]

<simple-definition> 5 ::= <n-list> = <exp-list>

<vector-definition> : := <identifier> = VEC,A<;.c~mstant-expression>
n,l,i,.,.,, -

<function-definition> : := <identifier>.,,(,.) = <expression>
r,~,;t "

<routine-definition> ::= <identifier> (A) BE <block>

<definition> ::= <simple-definition> I <vector-definition>

<function-definition> I <routine-definition>

<simple-declaration> ::= LET <definition>

<decl-tail> ::= AND <definition> I AND <definition> <decl-tail>

<simultaneous-declaration> ::= <simple-declaration> <decl-tail>

<declaration> ::= <simple-declaration>

<global-declaration>

<simultaneous-declaration>

<manifest-declaration>

<declaration-part> ::= <declaration> / <declaration>~claration-part>

Left-hand-side Expressions

<simple-LHSE> ::= <identifier> I <vector-application> I RV<address E>
-- ----- -------....

<LHSE> : := <simple-LHSE:::,_f <wcp-ression::> -+~-<.":'ttts-E;➔ -,,-,<LHSE>

<left-hand-side-list> ::= <LHSE> I <LHSE>, <left-hand-side-list>

7, Commands

<assignment> 5 ::= <left-hand-side-list> := <exp-list>

<simple-command> ::= BREAK I RETURN I FINISH

<goto-command> ::= GOTO <expression>

<routine-command> ::= <function-application>

<resultis-command> ::= RESULTIS <expression>

<switchon-command> .• - SWITCHON <express.ion> INTO <block>

<repeatable-command> : := <assignment> I <simple-command>

<goto-command> I <routine-command>

<resultis-command> <repeated-command>

<switchon-command> <block>

)

37

<repeat-command> ;::::: <repeatable-command> REPEAT

<repeatwhile..-.command> :::::: <repeatable-command> REPEATWHILE <expression>

<repeatuntil-connnand> ::= <repeatable..--command> REPEATUNTIL <expression>

<repeated-command> ::= <repeat-command> I <repeatwhile-command>

I <repeatuntil-command>

<test-command> ::= TEST <expression> DO <command> OR <command>

<get-command>::= GET <stringconst>

<if~command> ::= IF <expression> DO <command>

<unless-command> ::= UNLESS <expression> DO <command>

<while-command> ::= WHILE <expression> DO <command>

<until-connnand> ::= UNTIL <expression> DO <command>

<for-command> ::= FOR <identifier>= <expression> TO <expression> DO <command>

<unlabelled-command> ::= <repeatable-command> I <repeated-command>

<test-command> I <if-command> I <get-command>

<unless-command> I <while-command> I <until-command>

8. Labels, Prefixes, and Labelled Commands

<label-prefix> ::= <identifier> :

<case-prefix> ::= CASE <constant-expression>

<default-prefix> ::=DEFAULT:

<prefix> ::= <label-prefix> I <case-prefix> <default-prefix>

<command> ::= <unlabelled-command> I <prefix> <command>

9, Blocks

<command-list>::= <command> I <command> ; <command-list>

<body> ::= <command-list> I <declaration-part> I <declaration-part>

list>

<block> ::= [<body>]

<program> ::= <body>

See 2.2 for further res.trictions on string and character constants.
2

<command-

An identifier may not be a res.erved word. See Appendix A for the list of
reserved words.

3

4
The operands of LV are restricted as per 2.3.1.

A <constant-expression> is a <conditional> evaluable at compile time. Spe
cifically, it cannot contain identifiers which are not manifest or the

5
operators LV, RV, VALOF, vector application(.) and TABLE.

The lengths of the two lists. must be equal.

38

39

APPENDIX C The Run-time Environment

1. _?torage Al location and Regi_ster Usase

Like any programs loaded by the SCOPE loader, BCPL object programs begin

at 1008 . The last program is followed by the first word of blank common.

Under normal conditions a special pro~ram START should be loaded before any

BCPL programs. A sample START is shown in the next section. The following

registers are used by BCPL programs:

Bl
B2
B4
BS
B6
XO---XS
X6
X7

always contains 1
always contains -1
scratch register, used for all non-local transfers
always contains the first common address+ 1
contains the dynamic stack pointer (>BS)
scratch registers
always contains 0
used for all non-zero stores

Depicted below is a core map with certain special locations noted:

0

77
100

BS-+

B6-+

-

,__

j

Communication

START

BCPL

PROGRAMS

GLOBAL AREA

STACK AREA

area

-

-

+ TAILOC (1st word of common)

+ GLOBALO

2.

40

Linkage

Connnunication between independently compiled programs is done through

the Global Area rather than through the ENTRY - EXTERNAL mechanism of

SCOPE (sorry). Each program has the responsibility of initializing the

global cells for its entry points. This activity is accomplished as

follows:

1. From th~ loader's point of view, START is the initial entry point
to be transfered to after loading. After initializing various
registers, START stores some transfer instructions in TAILOC (the
first word of connnon) and simply falls through to the program loaded
after it.

2. That program initializes the appropriate Global cells and falls
through to the program following it.

3. The last program loaded falls into the ambush left in TAILOC by START.

A

These instructions effect a transfer to the address stored in GLOBALO
+ 1 (i.e., GLOBAL 1). Hopefully, some program has stored a label there.

sample START

RESET

ONES
MASKTAB

ZEROS

ONES

TAIL

GSIZE
START

program:

IDENT START

MACRO This macro initializes the important registers
SB5 =XGLOBALO
SA2 BS
SB6 X2 Reset stack pointer
SBl 1
SB2 -1
BX6 X6-X6 Zero X6
ENDM
ENTRY START,MASKTAB~GLOBALO
SET 60 These instructions set up a table of masks
BSS O to be used
DUP 61
SET 60-0NES by compiled shift instructions
VFD ZEROS/0,0NES/-O
SET ONES-!
ENDD

B5+Bl
Xl
B4

These will be stored in TAILOC SAl
SB4
JP
EQU
SX7
SA7

400 400 is maximum global index
GLOBALO+GSIZE+l First instruction executed
GLOBALO Leave stack pointer for reset

RESET
SAl TAIL
BX7 Xl
SA7 TAILOC
USE //

Initialize registers
Lay ambush and
fall through

Put what follows in COMMON
(,

•

41

TAILOC BSS 1 Instructions stored here
GLOBALO BSS 1 Holds B6 while non-BCPL code is running

BSS 15000 Lots of spac~, can be truncated by RFL
USE 0
END START Signal Loader to start at START

3. CALL - SAVE - RETURN Conventions

By convention each subroutine takes its local storage from locations imme

diately above the address held in B6 at the time the subroutine is entered.

Any parameters are placed in B6+2, B6+3, etc.

Between two BCPL programs, the rules are as follows:

1. The Caller

a. Stores calling parameters in B6+N+2, B6+N+3, •.. where N is
the number of words it is currently using for local storage.

b. Places the entry point of the Callee in B4.

c. Increments B6 by N.

d. Places the return address in X7.

e. Transfers (through B4) to the Callee,

2. The Callee

a. Stores X7 (the return address) in the address in B6.

b. Finds its parameters in B6+2, B6+3, etc.

c. If returning a value, leaves it in Xl.

d. Returns by a transfer to the contents of the contents of B6
(again through B4).

3. The Caller

a. Decrements B6 by N, restoring it to its original value.

b. May expect a result in Xl.

A typical function call, say X := F(X+l), might appear as follows:

SAl B6+30 Xis in local location 30
SX7 Xl+Bl Add 1
SA7 B6+47 Save 45 locations
SAl B5+10 F is GLOBAL 10
SB4 Xl
SB6 B6+45 Increment Stack Pointer
SX7 RLOC Leave Return in X7
JP B4

RLOC SB6 B6-45 Decrement Stack Pointer
BX7 Xl Expect result in Xl
SA7 B6+30 Store X

42

The operations of the callee are quite simple. A skeleton for F would be

F SA7

SAl
SA2
SB4
JP

4. A BCPL-COMPASS Interface

B6

B6+5
B6
X2
B4

SAVE RETURN

RESULT

RETURN

The following macros provide a fool-proof way of making a COMPASS program

look like a BCPL program to the linkage mechanism and any calling program.

The means for calling BCPL programs from COMPASS are analogous.

LINKAGE

HEAD

ENDC

L

GLOBAL

SUBROUTINE

SAVE

RETURN

MACROS

MACRO
LOCAL L
EQ L
MACRO
HERE
BSS
ENDM
ENDM
MACRO
SX7
SA7
ENDM

0

MACROS

MACRO
SA7 B6
SX7 B6
SA7 BS
ENDM
MACRO
RESET
SA2 B6
SB4 X2
JP B4
ENDM

Transfer around code
Define macro to be placed at end

NAME,INDEX Initialize a global
NAME
B5+INDEX

Save Return
Hide B6 in GLOBALO for resift

See START

43

These MACROS might be used to write some floating-point functions as

follows:

IDENT FLOAT
HEAD

FMULT SAVE
SAl B6+2
SA2 B6+3
FXl Xl*X2
RETURN

FDIV SAVE
SAl B6+2
SA2 B6+3
FXl Xl/X2
RETURN
ENDC
GLOBAL FMULT,201
GLOBAL FDIV ,202
END

44

APPENDIX D Display Code ASCII Correspondence

Display Code Graphic

A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
p

Q
R
s
T
u
V
w
X
y

z
0
1
2
3
4
5
6
7
8
9
+

*
I
(
)
$

Sp

ASCII Graphic

a
b
C

d
e
f
g
h
i
j
k
1
m
n
0

p
q
r
s
t
u
V

w
X

y
z
0
1
2
3
4
5
6
7
8
9
+

*
I
(
)
$
=
sp

ASCII Octal

141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172

60
61
62
63
64
65
66
67
70
71
53
55
52
57
50
51
44
75
40

Display Code Graphic

-+

V

A

t
+
<
>
< -
> ..,
, ..

ASCII Graphic

-7

er '
%
[
]

II
?

I
&
\
,A

<
>
{
}
A

45

ASCII Octal

54
41
45

133
135

72
43
77

174
46

130
47
74
76

173
175
136

63

The string constituents *N and *T map into the ASCII characters

newlire (128) and horizontal tab (118), respectively.

