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1.0 INTRODUCTION 

CAL-TSS is a large-scale general-purpose time shared operating system, 

implemented on the CDC 6400. The function of the system is to repre-

sent the physical resources of the computer as a universe of "objects", 

within which large numbers of parallel computations may occur in an 

orderly fashion. The notion of computation is embodied in a distinguished 

class of objects called "processes", which can manipulate the various 

objects in the universe. The definition and regulation of these mani-

pulations is a major aspect of the. operating system. 

A central concept of CAL-TSS is that of "layering"; the user-system 

dichotomy has been replaced by a general scheme of flexibly graded spheres 

of protection or "layers". Instead of one very large and totally privi-

leged supervisory program, CAL-TSS is implemented as a small, fast, 

thoroughly debugged "core" system, surrounded by several layers of suc-

cessively larger, slower, and more general routines. Each layer sees 

all previous layers as one unified system, and in turn, 

fied extension of that system to the subsequent layers. 

layer cannot destroy the system of previous layers upon 

layer is running. A special construct, the "operation" 

large overhead in calls to the layered system. 

presents a uni-

Failure of a 

which the offending 

is used to avoid 

The innermost layer of CAL-TSS is called the "ECS system". The universe 

of objects defined by the ECS system includes: 

a. FILES: sequences of addressable words (< 260 words long) 

b. PROCESSES: virtual processors, each with associated address 
space (map) and capabilities (C-list) 

c. C-LISTS : Lists of capabilities (access privileges) which allow 
the orderly distribution of protection/privilege among 
processes 

d. CLASS CODES: protected words used by the system as "nametags" 
in various circumstances 

e. EVENT CHANNELS: special queue structures used for interlocking, 
synchronization, and communication between processes 

f. ALLOCATION BLOCKS: "bank accounts" allowing the orderly allocation 
of and accounting for system resources (ECS 
space and CPU time) 
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g OPERATIONS: Objects used to facilitate the transfer of control 
between spheres of protection/privilege in an effi-
cient, uniform way. 

The ECS system allocates (and periodically compacts) ECS and schedules pro-

cesses to be swapped from ECS to CM and be run. The ECS system also per-

forms various manipulations of primitive objects on behalf of processes, 

and updates allocation blocks, thus serving as an accountant for the system. 

The second layer of CAL-TSS is called the "Disk system". All objects, ex-

cept files, in the universe defined by the disk system are identical to 

those defined by the ECS system. The introduction of the disk improves 

files in two ways: 

a. the total space available for files is increased by a factor of 
30; 

b. files becomes permanent objects, surviving system restarts. 

Further logical structure is also introduced into files, including opening 

and closing of files, and a procedure whereby a process may declare its 

"working set" of f ileblocks to increase swapping efficiency. 

The third layer of CAL-TSS is called the "directory system", and defines 

a universe including several kinds of permanent objects, which are referred 

to by symbolic name. New objects, "directories", hold the symbolic names 

of objects, and function as permanent bank accounts for funding those 

objects. 

The outermost layer of CAL-TSS is called the "executive". It provides a 

civilized interface to "user--programs" and to users at consoles. Included 

under "user-programs" are compilers, editors, utilities, and so on, as 

well as "application" programs. 

2.0 HARDWARE CONFIGURATION AND ITS IMPLICATIONS 

All hardware is CDC Standard, except the teletype multiplexor, which was 

built by the Computer Center. Extended Core Storage (ECS) makes the 6400 

especially attractive for time sharing. ECS differs from IBM's LCS in 

that: 

a. it is not addressable as an extension of the central memory (CM); 

b. it performs block transfers to CM at a very high rate (10~ 60 bit 

words/sec.). 
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The addressing hardware of the 6400 is very simple. CM and ECS each have 

reference address (RA) and field length (FL) registers which are inacces-

sible to the running program. This feature allows only a single contiguous 

block of physical core to represent the address space, as opposed to the 

more sophisticated "paged" memories on some machines. 

The 6400 is capable of "exchange-jumping" (saving and restoring the entire 

state of the CPU) in 2 microseconds. This is very important for efficient 

multiprogramming. The standard 6.400 allows only the PPUs to initiate 

exchange jumps. CAL-TSS requires a CDC standard option which allows the 

CPU to exchange-jump itself. This option also provides hardware "user" 

and "system" modes to control the specification of the new CPU state in 

CPU initiated exchange jumps, and to synchronize CPU and PPU initiated 

exchange jumps. 

All I/O on the 6400 must go through the 10 Peripheral Processors. These 

small (4K 12-bit) machines are totally unprotected and uninterruptible, 

whereas the large (32K 60 bit) CPU is both protected and interruptible. 

The design of CAL-TSS is based on the following conclusions about the 

hardware: 

a. Since the PPUs are slow and unprotected, no sophiticated tasks 
are performed by them. A "Master PPU" maintains clocks, enforces 
quantum overflows, and exchange jumps the CPU on request by other 
PPUs. The other PPUs function as sophisticated data channels, 
rather than sattelite computers. 

b. Since the CPU is fast, is protected, has a high speed link to ECS, 
and can exchange-jump itself ("CEJ" instruction), the body of the 
system, including I/O control, runs on the CPU. 

c. Since the simple addressing hardware complicates the storage 
allocation software, and since the ECS transfer rate saturates CM, 
so that swapping, and computing cannot be overlapped, only one pro-
cess Is= allowed in CM at a time. 

d. Since ECS Is randomly accessible, complex data structures and 
small inter-related objects can be used to advantage. 

e. Sinc the memory-mapping hardware is very simple, no attempt is 
made to provide an extended or segmented "virtual memory". Instead, 

a software mapping mechanism is provided, which flexible maps ECS 

into CM during swapping. 
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3.0 MECHANISMS OF PROTECTION AND PRIVILEGE 

3.1 Capabi lities: tickets to use of objects 

Within the context of a multi—user system, it is essential that access to 

objects which are maintained by the operating system (e.g., files, processes, 

directories, etc.) be strictly controlled by the system. Within the ECS 

system, capabilities are the entities which authorize access to and mani-

pulation of the objects existing within the time sharing system. A capa-

bility identifies the object to which it refers. It also controls the kinds 

of manipulations (e.g., for files: read, write, destroy, etc.) which the 

"owner" of the capability may perform on the object. Since capabilities 

authorize access to objects within the system, they may never be facricated 

by the user. Therefore, capabilities are gathered together in arrays of 

capabilities called capability lists (C-lists) where the user may refer to 

them but not directly modify them. C-lists are primitive objects created 

and maintained by the ECS system. Moving capabilities from one C-list to 

another, 
while (possibly) downgrading the set of manipulations allowed on 

the Object, facilitates the sharing of objects and provides precise and 

flexible control over the limits of access to shared objects. 

The ECS system maintains a Master Object Table (MOT). It contains the 

unique name and ECS address of each primitive object in ECS. It is the 

only critical table in the ECS system. All capabilities point to objects 

through the MOT. This design facilitates the process of compacting ECS, 

and the unique name in MOT provides a necessary check on the validity 

of capabilities. 

Thus, a capability for an object consists of 1) unique identification, 

2) an MOT index, 3) a type, and 4) a set of allowed manipulations. When-

ever a new object is created for a process, the ECS system returns to the 

process C-list a capability for the new object, which authorizes all possible 

manipulations of the object. 

To summarize, control of access to objects within the system is enforced 

by the mechanism of capabilities. A program running on CAL-TS S can mani--
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pulate an object maintained by the ECS system only by presenting a capa-

bility authorizing access to the. object and permitting the requested mani-

pulation. 

3.2 Processing  environment or sphere of protection/privilege 

The processing enviroment is the context in which a program executes instruc-

tions within CAL-TSS. It consists of 1) a set of capabilities, 2) the size 

of the address space, and 3) the contents of the address space. 

The set of capabilities which may be directly invoked by a program defines 

the access privileges of the program. This set of capabilities (called the 

full C--list) is the logical concatenation of one or more C-lists . Capa-

bilities may be referred to by their index in the array of capabilities 

which makes up the full C-list. The set of objects and allowed manipulations 

given in the full C--list defines the privileges enjoyed by the associated 

program. 

The CAL-TSS address space is a one level vector of words. The size of the 

address space and its contents (including the program) are clearly part of 

the processing enviroment. The content of the address space is defined by 

a map which associates areas of the address space with areas of files. The 

map in interpreted as a swapping director when the process is activated. The 

address space is a sequence of addressable words in which the addresses can 

be interpreted by the hardware. A file is a sequence of addressable words 

whose addresses must be interpreted by the ECS system. 

Whenever a program is to run on the CPT, its address space must be con—

structed from files which are residing in ECS. Only the required portions 

of the files need be resident in ECS. To reduce the overhead involved in 

constructing the address space (swapping),. the logical ..map entries (file, 

file address, address space address, and word count) are "compiled" to the 

absolute ECS addresses of the file data. Portions of the address space 

which are either "pure" procedure or a constant data base are not copied 

back to their respective files when the address space is being swapped out 

of central memory. 
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The configuration of the processing environment clearly limits the pri—

vileges of a program. Programs can be protected from one another by 

associated with each its own processing environment. 

3.3 Process and Subprocess or Combining program  environments 

As a logical follow—up to the discussion of the mechanisms used by the 

innermost layer of CAL--TSS to define a processing 'environment, it will 

now be shown how a number of related programs with different processing 

environments are combined into one process. A process is 1) a CPU state 

(registers, etc.), 2) a set of state flags, 3) a set of subprocesses, and 

4) a call stack. Associated with each subprocess is a "local" processing 

environment which consists of a C-list, the size of the address space, and 

a map. So one makes each program a subprocess in order to build protection 

walls between them. 

The subprocesses within a process are organized in a rooted tree structure. 

The unique path through the subprocess tress from any subprocess to the °;' 

root of the tree defines a set of subprocesses called the "ancestors" of 

the subprocess. In addition, a subprocess is defined to be its own "ances-

tor". In general, subprocesses closer to the root of the subprocess tree 

are through of as being more "powerful" than subprocesses near the leaves 

of the tree. 

At any given time, there are two distinguished (not necessarily distinct) 

subprocesses within a process. These are called the 1) "current" sub-

process and the 2) "end-of-path" subprocess. The "current" subprocess is 

always an "ancestor" of the "end-of-path". It is the subprocess currently 

in control (i.e., the subprocess whose program is running). The subprocesses 

between the "current" and "end-of-path" subprocesses (inclusive) are called 

the full path. The processing environment of the "current" subprocess is 

the concatenation of the "local" processing environments of all the sub-

processes in the full path. Thus, the full C-list is the concatenation of 

all the C-lists of all the subprocesses in the full path. The size of the 

full address space is the sum of the sizes of all the "local" address spaces 

in the full path and the contents of each "local" address space is defined 

by the map of the corresponding subprocess. 
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The concept of the full path implies that less "powerful" subprocesses 

i.e., near the leaves of the subprocess tree) may, under the proper full 

path conditions, have their "local" processing environment annexed to the 

"local" environments of other, more "powerful", subprocesses. The most 

obvious application of this concept is one in which a "debugging" subpro-

cess annexes the processing environment of the "debuggee". Another appli-

cations allows two subprocesses to be "protected" from each other if they 

are on different branches of the subprocess tree. 

Control may pass from one subprocess to another by mechanisms discussed 

in section 3.4. As control passes between subprocesses, the full path 

is defined dynamically by the relationship between the subprocess receiving 

control and the "end-of-path". The subprocess receiving control becomes 

the "current" subprocess. If the new "current" subprocess is an "ancestor" 

of the present "end-of-path", then the "end-of-path" remains unchanged. 

Otherwise, the "end-of-path" is set equal to the new "current" subprocess. 

To keep track of the flow of control each process maintains a call stack. 

The call stack records the "current" and "end-of-path" subprocess and the 

P-counter of the "current" subprocess. This information is sufficient to 

reconstruct the processing enviroment and to restart a program which has 

been interrupted by calling another program. 

In the example of the dubugging subprocess, we can assume that the debugger 

is a proper "ancestor" of the "debugee" . We see that, if a breakpoint has , 

been inserted in the "debuggeee" which causes control to be transferred to 

the "debugger", the full path includes both the "debugger" and the "debuggee" 

(with the debugger in control) . Considering subprocesses om different sub-

trees, one subprocess may never annex the environment of the other since 

the two subprocesses do not have any descendants in common so each is pro-

tected from the other. Therefore, the transfer of control from one sub-

process to the other will always result in the "end-of-path" being reset 

to be the same as the subprocess receiving control. 
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3.4 Transfer of Control or Protected Calls 

Often, one program may wish to initiate_ execution of another program which_ 

requires a different processing environment. This occurs not only in the 

case of transferring control between subprocesses, but also when a program 

calls upon the system to perform some manipulation on an object maintained 

by the system. To accomplish there transfers of control, it is desirable 

to provide a clean interface between programs running in different proces-

sing enviroments in order not only to facilitate the calling of one program 

by another, but also to obscure the distinction between calls to the basic 

system and calls which activate subprocesses. Given this clean interface, 

calls on the basic system may have the same format as calls upon subprocesses 

which may perform "system like" actions. 

When control is transeerred from one program to another, the parameters of 

the call must also be transferred to the environment of the program being 

called. Parameters come in two varieties: datum parameters representing 

numerical values or pointers; and capability parameters which refer to objects 

within the system. In the calling interface it is desirable to do checking 

on the capability parameters. A program expecting a capability to write on 

a file would surely be in trouble if it received, instead, the capability 

for a C-~lis t or a file capability without write access. Thus, capability 

parameters must be checked to insure that they are of the correct type and 

that they permit the required manipulations of the object. 

Next, the calling interface must control the number of parameters transferred 

to the environment of the program being called. Since the parameters must 

occupy some space in the new environmmnt, the called program must allocate 

this space. Should an aribtrary number of parameters arrive, other inf or--

mation within the new environment would be destroyed. 

Finally, the entry point (the address at which execution is initiated) of 

the called program must be implicit in the specification of the program to 

be called. This consideration is necessary to protect the called program 

from being initiated at other than its expected starting point. 
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The mechanisms to manage the transfer of. control between spheres of pro-

tection are incorporated in the primitive objects called operations.

Operations specify the program which is to be entered and provide parameter 

checking information. An operation is invoked by calling the ECS system 

(executing an exchange jump - CEJ) and passing a pointer to a parameter 

vector. The zero-th element of the vector is the capability-list index 

of a capability for the desired operation. 

Parameter checking is controlled by a set of parameter specifications con-




