

/ 1,bINTRODUCTION
i

CAL-TSS is a large-scale general-purpose time shared operating
system, implemented on the CDC 6400. The function of the system is

to represent the physical resources of the computer as a universe

of "objects','&! within which large numbers of parallel computations

may occur in an orderly fashion. Tte notian~of computation is embodied

in a distinguished class of objects called "processes", which can

manipulate the various objects in the universe. The definition
'

and regulation of these manipulations is a major aspect of the operating
system.

A central concept of CAL-TSS is that of "layering"; the user-system

dichotomy has been replaced by a general scheme of flexibly graded

spheres of protection or "layers." Instead of one very large and totalfy

privile(ged supervisory program, CAL-TSS is implemented as a small,

fast, thoroughly debugged "core" system, surrounded by several

layers of successively larger, slower, and more general routines.

Each layer sees all previous layers as one unified system, and in turn,

presents a unified extension of that system to the subsequent layers.

Failure of a layer cannot destroy the system of previous layers upon

which the offending layer is running. A special constnuct, (Ythe
"operation"ris used to avoid large overhead in calls to the layered

system. 1

Tije innermost layer of CAL-TSS is called the "ECS system." Tie
universe of objects defined by the ECS system includes:

t.0
a) FILES: sequences of addressab.l_e words (<2 words long)

b) PROCESSES: virtual processors, each with associated

address space,~wap) and capabilities (C-list)
c) C-LISTS: ;,,I,~s of capabilities (access priviledges)

d)

e)

which allow the orderly distribution of protection/

2rivilege among processes.
'CJIJ,JSC.OdE.S
KE¥S: protected words used by the system as "name-

tags" in various circumstances.
EVENT CHANNELS: special queue structures used for

interlocking, sypchronization, and communication between

processes.
f) ALLOCATION BLOCKS: "bank accounts" allowing the orderly

allocation of and accounting for system resources

(ECS space and CPU time)

t

g) OPERATIONS: Objects used to facilitate the transfer

of control between spheres of protection/privelege

in an efficient> uniform way..

2

:;,;--~~•✓-·"
y

Tfle ECS system allocates (and periodically compacts) ECS and schedules ';]\·
processes to be swapped from ECS to CM and be runt The ECS system also ., ,,., ,,

performs var,ious manipulations of primitive obj_ects on behalf of 1 ~-~ ~
pr O Ce S S e S ,::. CUl\d.. ~ ~ a,U0e.aicol .bloels ._, #.u,o ~ Q,o a,«_ ~ ~ . ;I

T-e second layer of CAL-TSS is called the "Disk system." -All

objects>except filesJin the universe defined by the disk system are
to

identical swi-t-h those defined by the ECS system. The introduction of the

disk i-mproves files in two ways: ,[JJ''"-~ "..
a) The total space av~ilabl~is increased by a factor of 30

b) Files become permanent objects, surviving system

restarts. ~
Further logical structure islintroduced into files, ..ineludi.n~ opening

"'.
and closing of files, and/? procedure whereby a process may declare its 1- "working.set" of fiJ,.e=blocks to increase swapping efficiency.

The third layer of CAL-TSS is called the "directory system," and

defines a :i;mi verse including SE:_~~~al, .kind.,,,s ,of,, permanent objects, wh:fu.o.h
~.r ..,,-(1--"-e,11;1.\t:~CAY!UAJ "1

are referre.d to by symbolic name. ·m~o-e4;&ri~_s) hold the symbolic

names of objects> and function as permanent bank accounts for

funqing those objects.

The outermost layer of CAL-TSS is called the "executive." It

provides a civilized interface to "user-programs" and to users at

consoles. Included under "user-programs" are compilers, editors,

utilities, and so on, as well as "aJtplication" programs.

1 .,. O HARDWARE CONFIGURATION AND ITS IMPLICATIIilNS
)-,

(f) F~~S/\v{'~~ All hardware is CDC ti:=

~ndard7"xcept the t~letyp_e. multiplexor)which _was built ~Y,: the

Computer Center. ·. Extended Core Storage (ECS)- makes the ~- especially

attractive for timebharing. /.E.~S differs from IBM's LCS in that:, r u k~ tJ..,Cr&.. oP-4 le. fl/\ >
a) It is no;11an extension of the central memory/,MPES?r

~~:.tor~s block-trM'l~e~~0 o.t ~_J
b) ~~very high. . rate (107 60 bit words/sec.)

hctlf"t:!.w~e..
The addressing i' I 11 a of the 6400 is very simple. CM and

ECS each have reference address (RA) ~~ieJ&.2-ength (FL) registers .,£,V~~L
~/inaccessible to the running program. -9:!E4..-s~allows· only a single

contiguous block of physical core to represent the address space,

as opposed to the more sophisticated "paged" memories on some machines.
'' e,'ICChQ.n~ e. ~ j lll'Yl f iri ~ 11

The 6400 is capable of~saving and restoring the entire state of \~~e
the CPU)in 2 micros~~nds, · T}iis is very important for efficie~inilta.~o~f-.:»:
~_n1ltipro~ramming. .!I!H€ standard 6400 allows only the PPUs toysf]>m · J

LiJ _I · i Ii I ti'i is t if U II JJ. IBP C , CAL-TSS requires a ~ ~~a~ ~ _
option which allows the CPU to exc~a~nge-jump _itseJf / F I il.a11 7 ILH a .J ,, ,,
Sf'R 11 ,ff =Y'~:iw:,;; 11nli -~:iffil?ifila:t••·•" nlim trM a!liWifl il :,MIIPT ~• •• nMs ~ ~

/~i.h,~ 41 - ,,, -?-"- ~-- • ../._,. .· -·· ,., g.,. J __,/2'!.-,, ,,, ,A_,,.,; ,l_.4;;~,,.,_ ..Jt:,,./ t2.,,,el' ;,.~•(II", -- ---<.-er c.e,;1 U...t:•-C. ~_,_:c-_ "o/'Yc,·,,,.! r.•,:,., ~;,z _ ., • .,,,n,R-£,,v"" ,;.,r':"° .,-;~, ~;: _.,-,, ,._,-v< ___ .f;L" [I?,

· ;Mcc/4t-~c. ~-;;,r.,/.J& ~~tc/2 ~ .c.. · 1!,/Jc/ a,...-c//;4t/ ~ t'tt:/_,zi/t'·.,1,1r,i:::A~4,,;,5-£,~, r-0- ~
~.Kll I/0 6n ~he 6400 must go through the 10 Peripheral Processors.
-~~ small (4K x 12-bit) machines are totally unprotected and

uninterruptible, whereas the large (32K x 60 bit) CPU is both

protected and interruptible.-

c..
The design of CAL-TSS is based on the following con~lusions about

the hardware:
a) Since the PPUs are slow an'd unprotected, no _sophistieat~d-

taaks are performed by them. '
-- a. ·~tM6! l/0 71 ;?'l~~ d,ie/45) .ltNR-~~G-,, Z7y-;.

(7?x:~/a~ 1 f2-,t.~ l ~ ~~tt. -~ 4 Cft{ -. .
D?, NP-'-~ 'If ,,l7 ~L-L ,..,Or'O-S. 7,:·:,{,;_ ~iJ-d'.et, PP U. s

/ t· ~ .: ., •A ,. / ~
/,u-1 t c {,,t.,,c', ·, a _ _.,, ,.-.;J..,e/, At./J ·::ca {.-, :'{ c,/a, ta, <? ,.f' a. --:1 (/1< ,:" 4 1 , . . .

~~~~:~. 



,./ 
t) SJ..,c.e -rke CP<l.. rs .fa.st) ;~ rrofevfed.; ~as a.. h;J h sfeeJ. 

li11k -to £CS:; a.11.d. CM 1cx:~e-~ ~ C'c£J"" 

·,ns1Yuc:f1ov..) J +he hod,:1 of -J.J..e $/Jew.; (nclvdi, 
I/0 eol'l+rol, ru11s o~ 4e. C PIA, 

cl) S i"ce ~ e si M_P I e o.J,lYess i i::, ha.tdUJaKe. 001>1f I leole.s -#1 e 

Stortt8e o.,tloc-t1-ti01A. sot+war-e_ J ~ since. +he. ECS · 
~fe:r tolre. sct+uva.tes . CM, So~ swo;fl'j ~ 
~Mf Uhl"lj CO..n110-t be... ol/ey- lc.pfedt , o n {) on e. f l'Ocess 
I.$ a..llowed -il\ CM-~ ~ +; .... c~ 

d 
·--,:\ ;-··· ·-:•o,•··1'.i 
. . : __ -, ~r. ~;- ~ ~ . 

. - - ·:.' ~. ~i 

7lT-Sir1e~ mIB"J'..s ·ra£~m2LJ!~~~:Lble ~ - complex data struc-=-:., ..... '.,.. ~~:Ji 
. - tures and smal3/sbjects can be used to advantage - "• ' t-•,, 1 

without incurring large overhead costs.doe+o J~+e~~# 

, . 

e) · Since the memory-mapping hardware is,. yery simple, 
o.~ e,.iehded.. or se,rnel'\ted. 

no attempt is made to provide;" 1 . r "virtual memory". . 

Instead~. a software m?,pping mechanism is provided1 whie-k +Je,.ibf) ~ps 
t JU • J ff · 11,J■ ? ECS into CM during swapping. 



~Q; •• ,-

,._ If.,~ 
q'.'./. 9.,,D 
. " ;,j'!ll!WJ fS MECHANISMS OF ·PROTECTTON AND PRI'i,EGE 

© 
3, l )¥. Capabilities$tickets to use of objects 

Within the context of~a multi-user system, it is essential that ,. ' 

access to obj~cts which are.maintained by the operating system (eg. files, 
dJNl,(jM?_V.ffi' . . 

processes,/ etc,.) be strictly- ~Qntrolled by the system. Within the 

ECS system,capabilities are the·entities which authorize access to and 

manipulation of the objects existing within the time sharing system. 

A capability identifies the object to which it refers. It aiso controls 

the kinds of manipulations (e~.Jfor files: read, write, destroy, etc.) 

which the nowner" of the capability may perform on the object. Since 

capabilities authorize access to objects within the system, they 

may never be fabricated by the user. Therefore, capabilities are gathered 

together in arrays of capabilities ~led capability lists (C-lists) 

where the user may refer to them but~directly modify them. C-lists 

are primitive objects created and maintained by the ECS system. Moving 

capabilities from one C-list to another, while (possibly) down-

grading the set of manipulations allowed OJ?:r the object, facilitates 
1rJMdAA •,,.._t11-

the sharing of objects and provides/flexible control over the~ 

limits of access to shared objects. ~ 

The ECS system maintains a Master ~ject \;able (MOT) .. It contains 

the unique name and ECS address of each primitive object in ECS. 

It is the only critical table in the ECS system. All aapabilities 
. 'i'~~~ . L s...\,l,v___ e.--oces6. of ~ • point to objects the MOT. TJOO. s design facilitates garbage COV'l'lf~~I' 

103 lsotiea ~ ECS)and the unique name in thEw MOT provides a necessary 

3:erno1 s& »sehti'il:lia~ check~the validity ~~capabilities. 
Thus, a c~pability for an object consists of 1) unique identiQ. 

fication, 2) an MOT index, 3) a. type, and 4) a set of allowed 

manipulations. Wftenever a new object is created for a process, the 

ECS system returns to the process C-list a capability for the new 

object,which authorizes all possible manipulations of the object. 

le>~~ 
'JJDus, we h~>sse1 1 liki& control of ~access to objects within 

the system is enforced by the mechanism of capabilities. A program 
C AI..-T~S. o.'1\ 

running on 'WI.• 1:1ia-..s(rt1iaw'11egJ1"ilDIIIJ'IIMI can maninulate"'obj ectf maintained 

by the ::ii-£ syste;· only by presenting a ca~ability authorizing 

access to the objectl and permitting the -e-e~~~~~e manipulation, 



• Processing environment or Sphere of protection/privtlege 

The processigg environment is the context in which a program 
c.AL.-rss 

executes instructions witnin tAl@m~iff!.@r aherin~ sy1i@offl. It consists 

of 1) a set of capabilities., _Z) the ·size of the address space, 

and 3) the contents of the address space. 

The set of capabilities which may be directly invoked by a program 

defines the access privf*es of the program. _This set of capabilities 

(called the full C-list) is the logical concatenation of one or more 

C-lists. Capabilities may be referred to by th~ir index in the array 

of capabilities which.makes ,up the full C-list.~ ~ set of objects 

2 

q l.v..eAv lM, t\..t, ~ C.-1.,v;,i 
and allowed manipulations defines the priv~leges enjoyed by the associated 
program. 

CAL--TSS 
The._ address space is a one level vector of words. The size 

of the address space and its contents (including the program) are #Clt~r\j ra.~t 
~the processing environment. The content.of the 

~ 
address space is defined by a'ffla.p which associates i-ntervals 

. ~ 
of the address space with int~rva-3:s of files. The map is interpreted 

as a swappin3 direct~ when the process is activated. The address 

spac~ is a sequence of addressable words in which the addresse,Scan be 

interpreted by the hardware. A file is a sequence of addressable 

words whose addresses mµst be interpreted by the ECS system. 

Whenever a program is to run on the CPU, i~s address space must .,L,e_ 

constructed fJ?om files ·which are residing in ECS. Only the required 

portions of the files need be resident in ECS. To reduce the over

head i~volved in constructing the address space (swapping) the logical 

map entries (file., file address, address space address., and word co~nt) 

are "compiled"· to the absolute ECS addresseSof the file data. :ei~ls 

of the address space which are either 

data base,~ not• copied back to 

address space is .. being swapped out of 

ma~ ti~■ .. j .ri o•~~-

"4t1re" procedure or a constant 

their respective files when the 

central memory. 'I'Nw<y~ 001::q:n 



3 

The configuration the processing environment clearly limits the 

privileges of a program. 'llieFe: ·niilllllllaii ,mHli!lilld, w.4i i!'l lil II iimtksags,bli!lt R,-o'J~S ei~..,JI 
IWlliJ?;IJiCli. g iiliH'lillt1F3Plt~~ protect~da a J IF from c":,o 

one &"lother by associating with each f g Mill its own processing environment. 

Process· and Subprocess or Combining program environments 

A:B :;;{t~ -~~"",; .h btu-OU/J~Wll 1 t\'\l'lermos+ la-y er 
. , the mechanisms used by the 1• ■ t · e of ~- CAL-TS.S 

. ;.J u;JJ, n..ouJ k 
to-define a processing environment, we sHarl .. 

..::::AWJ✓X. 
_a:Iacu.S:S how a number of related programs with different processing 

• I 

environments are combined into one process. A process is 1) a CPU 

state (registers, etc), 2) a set of state flags ... P?iliit • W&Jtr 

3) a set of subprocesses, and l'A 4)lcall stack. Associated wi~h each 

@@ubprocess is a "local" processing environment which consists of a l 
C-list, the size ?f the a.9-dress spaci8, and a~ () So o~ 1vt~IC'.is e.a.o 
pw~r~ &l, s, .. /bp,~,~~'$ r,.,.· o·r-~ i1) bvd.f-¼¥n~~l<O. V,.....i!t, Hs ~.,i,,,vee~ ~-

',J u.>1-l-h,n I'• -

The subprocesse~••• a process are organized in a rooted tree structure. 

The unique path through the subproc¢esSf'rJ.ee from any subprocess'tt~ 
tb~proot~sf the tree defines a set of dubprocess called the "ancestors" 

of the subprocess. In addition, a subprocess is defined to be its 

own "ancestor". In gemeral, •••••• subprocesses closer to the 
o:re. +h1,111-4h-t of 

root of the subprocess treeAas ""being more "powerfuln than subprocesses 

near the leaves of the tree. 

At any given time, there are two distinguished (not necessarily 

distinct) subpTocesses within a process. These are called tie 

l)"current" subprocess and the 2) "end-of-path" subprocess. The 

"~urrent" subprocess is always an "ancestor" of the "end-of-path." 

It is. the subprocess currently in control ( ie. the subprocess) whose 

program is running). 'TI.he subprocesses between the "current" and 
"end-of-path" subprocesses (inclusive) are cal·l:ed the full path. 

The processing environment of the"current" subprocess is the concatenation 

of the "local" processing environmtnts of_ all the subprocesses in the 

full path. Thus, the full C-lis~ is the concatenation of all the 

C-lists of all the subpro~esses in the full path. The size of the 

full address space i~ the sum of the sizes of all the "local" address 



4 
If 

spaces in the full path and the contents of each "l~calf address space 

is defined by the map of the corresponding subprocess. 

,~,,1~-e 
of the full path i-144:i.--e:atos that less "powerful" 

subprocesses (i.e. near the leaves of the subprocess tree) may, 

under the proper full path condition~, have their "local" p~ocessing 

envi~?nment annexed to the "local" environments of other, more "powerful*") 
subprocesses. The most obv:t,ous appli-eation of this concept is one. in 

which a "debugging" subprocess annexes the processing envi~onment of 

the "de'§:uggeeft. is a =t±v:.e. Another application allows two subprocesses 

to be "protected" from each other if they are on different branches 

of the subprocess tree. 

Control 
discussed in 

full jath is 

may pass from one subprocess to another by mechanisms 
3.14 . 

section IIrD~ As control passes between subprocesses, the 
defined dynamical~y by the relationship between the sub-

process receiving control and the ,"end-of;path". The subprocess 

receiving control becomes the "current" subprocess. If the new 

"current" subprocess is an "ancestor" of the present "end-of-='path", then 

the "end-of-path" remains unchanged. Otherwise, the "end-of-path" is 

set equal to the new "current" subprocess. 

To keep track of the flow of control each process maintains a 

call stack. The call stack records the "current" and "end-of-path" 

subprocess and the P-counter of the "current" subprocess. Tfiis .., 
information is sufficient to reconstruct the processing environment 

and~e.rt a program which has been interrupted by calling another program~ 
/\ 

In the example of the depugging subprocess, we can assume that 

" the debugger is a proper "ancestor" of the "debugee". We see that, if 
a breakpoint has been inserted in the "debuggee" which causes control 

to be transferred to the "debugger_,,'_'., the full path includes both the 

"debugger" and the "debugee"(with.the.-debugger being in controJ). Consi-
'" t\\~-\' s-... ~~~ dering t~@ ~eu;t::::en,. subprocesses, one subprocess may never annex the 

' ~ 

environment of the other since the twp ,:aubpro~esse.s do not have any 
sa, f'e!i-.:~ -i's 'Prc-~ie~ h.,,o~ ~ (l~ 

descendants in common~ Therefore, the transfer of control from one 

subprocess to -~he other will always result in the "end-of-path" being 
.:Z/U ~ibl ©f-A 

reset to be~ the subproc~ss receiving control. 



J 

~ 

" .... . 
'• 5 

;; ~ 
t,b;, 1 

Transfe·r of Co"nt·rol' or Protec·ted els 

Often, one program may wish to initiate execution of another 

program which requires a different processing environment. This occurs 

not only in the case of transferring control between subprocesses~ 
-~ , ~ 

but. also@ when a program calls upon th~ .. <sys~em to perform some 
manipulation on an.object maintained by the.system. To accomplish 

Ll- 1 '5, ~ 
these transfers of control,~ to provide a clean interface, .1. 

lA,L. 52CA.U....
between programs ranning in different processing environments wnieh, 

to. -.. ;.Jr 
not only facilitate~ the cal].,pe'f one program by another, but also 

~bscureA, the distinction between ~h.a-"""calls tQ the basic system and 
~ 9.~ 1~ ~ -u..t.tJ~liutA-

calls Y1hich a~tivate subprocesses. If ::w:e caIP accomp~M:14.~ calls on 

the basic system IJl!lY have the same format as calls upon subprocesses 

which may perform "system like" actions. 

When ""'!""!"'ferrl,a.g contr~l~e program 
parameters of the call must alsolle transferred 

to another, the 
to the environment 

of the program being called. Parameters come in two var:ie,ies: 
datum parameters ~epresenting numerical values or pointers; and 

capability parameters which refer to objects within the system. 
~ ~the calling interface it is desirable to do checking on the capa-

. . 
bility parameters. A program expecting a capability to write on a file 

would surely be i•n trouble if it reCjeived, instead, the capability 

for a C-list or a·file capabilitY. without write access. Thus, we wish t-o 
~~* iu ~ 

checic capability parameters~to insure that they are of the correct 

type and that they permit the required manipulations of the object. 

Next, the calling ~nterface must control the number of parameters 
transferred to the environment of the program b.eing called. Since 

the parameters must occupy some space in the new environment, the 

called program must.allocate this space. S\-ibuld an arbitrary number 

of parameters arrive, other information within the new environment would 
be destroyed,. 

Finally, the entry point (the address at which execution is 

initiated) of the called program must be implicit in the specification 

of the program to be called. Tfuts consideration is necessary to 
protect the called program from being inmtated at other than its 

expected starting point. 



The mechanisms to manage the transfer of control between 

sphere's of protection are ~ncorporated in the primitive objects· 

called opprations. Operati9ns specify the ppogram which is to 

be entered and provide parameter checking information. An opera

tion is inv~ by cal1ing the ECS system (executing 

jump~OEJ) and passing a pointer to alarameter vector. 

an exchange 

The zero:t:i 
'r _JiJ 

element of the vector is the capabilityAindex of a capability for 

the desired operation. 

Parameter checking is controlled by a set of parameter 

specifications contained in the operation. The parameter speci

fications direct the processing of the parameter vector. Datum 
~ . ,........,_,.~..,,-- ~~IF parameters are simply copied from the paramet.\)r vector. Oapa_bili t;?,-~ 

are denoted in the parameter vector by their index in the user1 s full 

0-listo The capability is checked, using the parameter specifi-

cation, for the correct type and required set of permissible 

manipulations. 

Operations must also specify the program which is to be calledo 

For ECS system programs it is sufficient to provide an integer 

to identify which EOS system program should be called. The specifi

cation of a subprocess to be called involves more subt\e considerations. 

' iii" process. 
+he s..,,te~ ovtsit.Je the CS syteM Q.N"e. \Mp\eWll~"+ed.. a.&• subprocesses wh~~t of every ordinary 

JhA. ~r/.M_ k ~_.......... 
We sho1:1ld 3:ike to avoid.creating separate operations for each !f ks rrcc.e.s" J 

, .;):, ~ .fo 
Th1:1s, :we need a "naming" facili tyA ey WR1.ch w@ oan identify 

subprocesses. With such a facility, thfperation may carry the 

subprocess 11na,:me-:f''!i Operations ma e shared by all 1 r pj fl: 
i,i'kt~ 

processesAare equipped with the 11named 11 subprocess. 



1~ 
Om' 11naming 11 facility must 1) ··produce unique u1hames 11 $15 g rt w 

(/~s-t the wrong subprocess get called); and 2) provide for mechanisms 

of protection and restricted access to the unamesu (so that the 

careless user cannot use 11 names 11 already assigned to other sub

processes). By making these 11namesu primitive objects within 

the basic system, we a chieire. the protrection and access control \ 
~ IJ__Ut~ J 'T: 

of the capabiliti mechaDism( ki eho~ ~he basic system provides 
· T-~~ co& ) ~ CtA.12-, 

objects (called~ ~hich ~protected 60 bit data items. 
e.f a. clnss cc,l!e:,;: \;. 

The con ten i • 7$ PM ( i $ e. the 60 bit datum) a!!! used by operations 
c\M~ C-e.~I?. 

to identify the subpro·cess to be called; while the i111J (i.e. the 

object) ·is used to construct operations or to unm:te.tl subprocesses 
0-,ut ~ !$(.;Uii,,,S: ~...., •. t d 

when they are created. w:e sbaJ l see in ssot'ion - 'how el~ss eod~ 
are also used to identify users and authorize access to file 

directories/4 r~ ~ (_~ -f..e...~ lf~O) 

a)J(JlJ.l d;};rJJ.fl!fi 1 ~ 
• Ha:v1.ng diseufssse. the inechanisms invotV.:ed when one program 

~ 
calls another ,-we shall proeecd to the question of how control 

is returned when a program has completed its function. 

. s vib .. f>'i'O&i~ 
A p-rogr&tJJ may ,: complete either by performing its computation 

' or manipulation to completion or by discovering it cannot complete 

the desired computation or function':, <Jhis dist:irction is analogous 

to the success and failure transfers in SNOBOL when trying to 

match a pattern~ For example, a file read by the ECS system will 
. ~ 

fail if ~portion of the file referenced b~_ the read is not 

currently in ECS. 

When a program completes successfully, it should i~te 

a normal return (by calling theEOS system with an operation for 
3,~ 5 

return). A return causes the call stack (&ectio~) to be rofpe.~~ 



• The environment specified by the new top of the call s~ack is 

established. Execution is resumed ,:at the locat.ion obtained; 
-

by adding the P-counter saved in the call stack to the low order 

18 bits of the CEJinstruction word originally used to initiate 

the transfer of control. 

__J- ~ ~ 
If a program fails, we~y wish to provide for some other 

program to attempt to complete the function of the first program. 

Within the basie system, the mechanism of"1F.1"returns ''provides this 

feature. To achieve this result, it is necessary to extend the 

notions embodied in the operation mechanism. Operations a~~~.._\\'J ~ 
specify a sequence of programs to be called in case of f.!:returns. 

When a program 1n1tates~~Filreturn, the next program in the sequence .. J 
specified by the/~;ion is called. The program specifications 

for alternative actions must be restricted to subprocess calls 

to protect the integrity of the ECS system. Another feature of the 

',p;l.return mechanism is to provide for additional parameter specifi

cations with each program specification. This allows additional 

. parameters to be passed to the subse\tent programs. If the sequence 

of alternative subprocess specifications has been exhausted by on~ orlll\o~e 

( ;'O.SG.:L ... J · '} r i;::28 '-sv'.n)l..Peturns, a l g eltr I return must be made to the 

o~lginating program. However, the P-counter is !l2!_ offset~inn 
()M,d, IJIA!.),L6 Jo 

this case as in the normal case of the regular return, ~ notif,¼-s-

the originator of the call (s) that the requested function was 

:not :performed. 
' 

I ~u.,.;, i-, 
The preturn mechanism is useful iR that system action r~ests 

are first attempted at t:p.e lowest (most ·efficient) levels of the 

system. Un.su~l conditions are automatically reflected to higher \djtr! ~+
the- system .. a,Jil'-11 as• 1:!r_gw Bill!! Cill!@tfi&!bt%Zll!:s •• 

Hierarchies 1 of processing and data structure manipulation can be 



embedded in the~return mechani?~s while appearing to be sin~1"

off!~"tt~ from the point of view of tf~~:~Lt~~<':f)l/f$~:~s 
._l I ,._; U 



- -+-

-r.;; 

£CS 
It ~ 7 
~r.L l ~~--:::::--==-=-=-~=-.;... 

( 

a 



CC:.l!t., ~ , -_It _,(-

~ 'tQ~l_ 

~~ if ~ v-1c~c1/. 6- ~- , f . ,r[.4 . 
• ® -;,j: ~~~ &1,,4 -
-~✓&· _g__,; ,__,~,-,, ~ ~Y ~ 3/7r 

+ __.._-I-- - _._. _,.__. 
- ./ -L./ ;>I" • . t 0-/ 
/L(I ...,L'~"J:L_ '. :;.;...! T -

~~~(¼_~~~--~ ~ , -+---+-

___..,Iii--+'~-c:_ ~ l{ ~ fo14 & M' ~ ~ ~
:)

~ 6'L,4~ ~/rlif ~~) ;,,k~~tti

A ~ : ~? . - 0JJ...W_ °'--
L

•
.__,L,-,-6/' (?'f_ • (' :<-') -

~-----~ .

(

? • .

~ ½ ~ c(< _..-=:..:_~4

/4J-tll.e.__, 0,;/'£« ~ -,~., ., M _,,,r::, - . H
. ~ ~ ~ nd_ffl~ ~_;; 7f- ~ l

. (~ fl_ ¥ /4aj j

t --- l- - .. +

- - -~ - + t t- t. - ~ +- -

' . . 1(~ ~ ;7)/4;_;,~ cl -
..._
I

r , t

.. ---.--- ---L-

..,. -~ -t - - -v~.... ,.-- r< .. ;-" ~~ -:.-e ~(R' C, ~. « ..-f • "" ·-- ,.. v-~7~ - - - + ...

:~r>?car , H t1 :;;r~ ~~~•

t

i t

t-

, .

~ ~r

4

~•-- e ::kf ¥~~,g~ ~)~ ~d~ ~~Oaef_-2:0-;: :_ -r

L

_.d, ;.... '"zi" ,:;4 ,- ,

t1. ~_; _

I . ..

..... --+- - .. I-

+ --+ t- I- I

+----t- __...,_._ _ _.. - +---+ ---+- - +-- +--- +---

_..__ _..._ • --+ -+--+--- --t-t----+--- -+- - .,.. --+-™ I
-+--..- -;---+-- + 7- ----+-- +---

+ l

+- --1 t ' I

- - --1 L

- .. - -+ -~-
+--r-

- t- y --
I - + .. I-

..

t/ ,~ &~CR~
. .

e'!""<-1.44¥ ~ /

~ 'C~t. ~ ~:
,·

..-:4 e~-:-•~ .
(, ..

. . - .,Cl 1/ / d~, . ,,.,. ~.

~ A~
. ~ ~- .

~//~ r•. V

\\ . . . • ~ .-.... . II ~

~ -

I ,_J_.1 .J.- J +
~ ~ .

--; x 6? r .m:• ,~,
~ (/d' ~ , ~ . - ~ <id 4,J ,,c

-/v~a_~ _·' -.
\\ . ,, / / ~ - ::.. ~

C r: JUJ ~ I , ~ I

i ;? -· ~ ~~

(

1

J2£ ~~,J!C ➔_) ' ,, •

} '. .

. .

~« (}.A.. .~ ;J -U ~ ~ ~
....-..+----+-

... .,__

,___

t-

I

- -'? ? z: ... /4

~~'7
~ /A zLu G

d.e_ ·:!'~ L-

1 · • · ,d;- ~$u~/

z✓~ (~1--

;~~ -~ - • + +,._..~~·

- k +-r- - _,_
~ s: /4 \:.w~_:.._- a (✓~ ~

+

,,

..i),' ~ L~~c./ _/4/., ~A& -0L ~~v

~~~~~~~~~~~&._i .. 
~ --✓-2. - ~ ~ .. 

~~~;( 

I-

+-

J l "'. f ~.-.rLJ<At../ ~ -

_/

a-~ ~#~ ~~~ d

V. ¥4
71' ~ ,, / ~

...

~~ ~

~/l,a(;_IZ I) ~L ~:.-t" . y-:z.- - ~J

~~1~ d'~

. . -?~ d e,_,;
,---~--r---~-.,-~~~

-

~-- -
-4- ~~~~ ~ ~---..;.:......::....~,.;,=..:,;;.,.._,;;;,; I

¥' /4_ ·t,£_ ···•

~ .
- .. -+- - ..

.+ -r +

+

'4

.. ..
+- +-
+-

.-.- l t

- ... t .. t

+-- .. . -
t- i-
+- +-

- t ---+- +-- -+--

~

t

+- - --- t- ----, ..

+ - --I--

t t,-

t- - - + ..
-- -- +- +

-+- -I- +- ..--, - +- - - t- i ------.. -t- +---- +--

-+ +

·t---- +-- +- ... +

-+--- -+- ..;.

- -t----........ - --- +

..
t .. t

..-

+

,,...,

I\
l
'

Progress Report on 6400 CAL Time-Sharing System {10/2//6P

In order to understand the status of TSS, it is necessary to understand
its architecture. TSS is built up in three layers called the ECS_layer, the
disk layer and the executive layer. The ECS layer is the core of the system.
Its design has strong implications for all higher layers. Its function is to
create,manage anddestroy objects in ECS and to provide protection walls and
and communication paths between processes and other TSS objects. It also
includes the process scheduler and the ECS-CM swapper. The disk layer reflects
JCS files up into the disk store. It provides facilities for creating, managing
and destroying disk files as well as opening and closing them. The executive
consists of a command processor, log in-log out procedures, accounting routines
and a directory system. Its duties are comparable to those at SCOPE except
that the objects that it manipulates are the disk/ECS objects created by the
low-level systems. Compilers, interpreters, editors and user-constructed
subsystems run 110n top 0£ 11 the exec just as the exec runs 110n top of 11 the
disk system. '

Currently the ECS system is operative. About four months of work and
an equal.amount of documentation remain to be done on it. There is a provi
sional executive program running on top of the ECS system allowing TSS to be
written on itself (see Figure 1). Currently TSS has enough CPU to support 60
systems programmers (or about 150 ordinary users). However, there is only
enough ECS for about 10 active processes. There are 6 teletypes connected to
TSS. We are confident that TSS will gracefully support 1000 student users
when it is complete.

Tne design of the disk system.is almost complete. Implementation has begun
recently and shou~d be complete by Feb. 1. This project is in series with a
disk driver program which will be available in mid-Decemh~r. With the advent
of the disk system, a new porivisional executive will be written. At that
point TSS will be able to support many (~ 60) users. We plan to offer TSS
to persons who can provide their own teletypes and-who are developing sub
systems for TSS (e.g., Basic, CAL~ APL, FORTRAN, •••). A manual on the
system is being prepared for this eventuality.

The executive is in the preliminary design stages. A reasonable guess
of its delivsry date is m~d-sUID1uer 1970.

A background batch system is in development. It will run simple SCOPE
jobs (no tapes) and will be SCOPE-compatible. It requires routines to drive
card readers and printers, a display driver and a dayfile generator. Almost
all other work to interface SCOPE with TSS is done in the SCOPE simulator
now running.

Progress Report on 640.0 CAL Time-Sharing System -2

To facilitate systems programming one software subsystem (not part of TSS)
is being implemented. It is an assembler/debugger called Cool Aid. The
assembler has an Algol syntax and an elegartt macro-facility. It is designed
to be very fast (~ 10 times faster than Compass) and compac~ and is re-entrant.
It will feed a loader which is SCOPE-compatible. There will be a run time
interactive debugger which will allow the teletype to examine and modify
(symbolically) a running program without complete reassembly.

Also in development is a sophisticated editor. Members of the CS and EECS
departments are supervising the development of a BASIC and an APL.

I plan to implement a JOSS-like language next spring (with the help of CS
undergraduates) and to supervise FORTR../1,N and ALGOL syntax checkers at that
time.

The developers of Cool Aid have exp.ressed an •interest in producing- an
interactive SNOBOL 4.

Current Status (October 10, 1969)

ECS system

- .I . 1 d (B d) t'rovisiona comman process©~ ea

SC/ Text ed~eletype

/\~ (provisional) I/0

COMPASS .•• SNOBOL

February 28, 1970

ECS system
I

core 1disk system

· .7 l d - -
provision~- comman

/r~~
SCOPE EDITOR Assembler/ tape
/ ! j "'- (new) debugger printer

card reader
teletype
I/0 routine

SCOPE batch
processor

ape
driver

-~.-"- ~ -~-·-~--~ ----- -

/ -i
'~"-1/ ' ' /' Proares? Report on 6400 CAL Time-Sharing System
/- O t s

/ ; '
The. current personnel allocation is

•
Malbra¾h
McJones;

Redell
Bentley
Vaughan

Lampson
Lindsey

·Morris
Redell
Sturgis

Lindsey
Redell .

Sturgis

Gray·

Standiford

Debugger/assembler (Feb. 28)

Complete and document ECS system (Jan. 1)

Design executive system (mid-summer)

Implement core disk (Feb. 1)

Implement disk driver (Jan. 1)

Design and Implement editor (Jan. 1)

Implement batch system (April 1)

-3

	Table of Contents [Bentley]
	1 Introduction [Redell]
	2 Hardware Configuration and Its Implications
	3 Mechanisms of Protection and Privilege
	3.1 Capabilities: tickets to use of objects
	3.2 Processing environment or Sphere of protection/privilege
	3.3 Process and Subprocess or Combining program environments
	3.4 Transfer of Control or Protected Calls

	4 Process communication and synchronization
	4.1 Event channel_ coordinated processing [Lindsay]
	4.2 Process interrupt: asynchronous processing [Lindsay]
	4.3 Illustrative examples [Gray]
	4.4 Capabilities and keys [Gray]
	4.5 Subprocess structures [Gray]
	4.6 Operations and the flow of control [Gray]

	5 External I-O [Sturgis]
	6 Progress Report [Gray]

