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System entry/exit 

Control passes from the user to the entry point (TJSERCAL) of the system 

entry/exit routines when the user executes a CEJ instruction. Control 

returns to the user (at S.RETU) at the end of the system entry/exit routines, 

again by a CEJ instruction. Thus the system runs . in monitor mode, while 

the user runs in user mode. The function of these routines is to determine 

the reason for the users call upon the system, to collect and check the 

parameters needed for the action, to transfer control to the proper system 

action routine, and to handle the return to the user after the system action 

.s completed. 

On entry to the system entry/exit routines (at USERCAL) the origin of the process 

descriptor (see Processes) has been picked up in B1 by the exchange jump. The origin 

of the process descriptor will remain in B1 through all system actions. First, the 

system and user clocks are updated. The difference between S.OLDTM, which contains 

the value of S.CHARG from the last time it was updated, and S.CHARG, which runs when-

ever the interrupt system is not running, is added to the system total user time (S . URSTr 

in system core and to the user's total user time (P.USRTM) in the process descriptor. 

The CEJ instruction which caused the transfer of control is then examined 

to find the address of an input ' parameter list (see Figure 1) . It is expected that the 

CEJ which the user executed was in the upper two parcels of the instruction 

word. The low order 18 bits of the 30 bit CEJ instruction are extracted and 

interpreted to locate an input parameter list. If the 18 bit field is negative, 

the complement of the low order 4 bits specify which register in the user's 

exchange package contains the input parameter list (IP list) pointer (e . g . , 

-3 -'- B3; -10 } X2) . Otherwise, the 18 bit field is taken to be the IP list 

.pointer. This pointer is checked for legality (i.e., must be positive and less 

• than user FL) and an error is generated if necessary. Finally, the IP list 

pointer is saved in the process descriptor at P.IPLIST in case it is needed to 

form a stack entry for a subprocess call. Also the stack manupulation flag 

(P.OLDP), which controls the updating of the old stack entry in case of a sub-

process call, is reset. 

Next, the first word of the IP list (called IPO) is interpreted 

as a C--list index and the corresponding capability is fetched by calling 

GETCAP (note that a negative or overly large C~-list index will cause an error 
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to be generated). This capability is checked to see that it is a capability 

for an operation; if it is not, an error is generated. The parameter speci-

fications of the operation are interpreted by OPINTER and an actual parameter 

list is formed in the process descriptor starting at P.PARAM. 

Parameters which are fixed in the operation are copied directly to the actual 

parameter list. User supplied parameters are drawn from the IP list which is 

expected to contain, in successive words, data parameters or C-list indices. 

User supplied capabilities are checked for the correct type and required options 

unless the parameter specification is "any capability". All capacility indices 

are checked to be sure they fall in the range of the full C--list. If an "any" 

parameter specification is encountered, an error is generated and parameter 

processing is terminated. 

For operations which are flagged as being parameterless, the interpretation of para-

meter specifications is omitted. After the completion of the actual parameter list 

(AP list), the operation is checked to see if it requires a subprocess name and para-

meter type bit masks (i.e., it is a subprocess call operation) . If so, the subprocess 

name is copied from the operation to P.PARAMC in the process descriptor, the number of 

parameters is stored in P.PARAMC-1, and the bit mask(s) are copied from the operation 

into the cells preceding P.PARAMC-l. 

Finally, the ECS action number is extracted from the operation; it is used as 

an index to jump into the ECS action jump table starting at ACTIONL where 

there will be a jump to the proper entry point for the desired ECS action. 

Upon completion of an ECS action, the ECS action routine normally returns to 

the system entry/exit routine to return control to the user. The only excep-

tion to this is the case in which the user process has blocked on an event 

channel, in which case the event channel routine exits to the swapper. 

There are three points to which ECS action routines may return. The normal 

return is to SYSRET. This return updates the users P-counter in accordance 

with the user supplied P---counter offset which is stored in the low order 18 

bits of the CEJ instruction word 'originally used to call the system. The 

legitimacy of the new P--counter (old P-^counter + P-counter offset) is checked 

and an error may be generated. The system time clocks at S.SYSTM in system 

core and P.SYSTIM in the process data area are updated, and a check is made 

to see if the user's quantum has run out. If S . QUANT is positive (quantum 

has run out) the sapper is entered at SWAPOUT . Otherwise, an exchange jump 

is executed to return control to the user. 
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The second return is to TOUSER and is the same as the return to 

SYSRET except that the user's P-  counter is not modified. This return is 

used by the subprocess calling and the subprocess return routines. The 

third return is at S.RETU and simply does the CEJ to the user. It is 

used by the swapper to transfer control to the user. 

Figure 1 

SYSTEM CALL 
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CEJ / IP LIST % P-counter 
POINTER // offset 
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ALLOCATION OF ECS 

The lower portion of ECS contains system code and certain other specialized 
system cells. The remainder of ECS is divided into blocks of three varieties: 
objects, free blocks, and file blocks. 

The Master Object Table (MOT) is located in low ECS and contains an entry 
,for each object in ECS.. Each entry occupies one cell and contains a pointer 

to the object as well as a "unique name" associated with the object. Except 

for the special case of "direct access" all references to an object are made 

through the MOT entry. The unique name must be checked against a "unique name" 

provided by the user in his capability before allowing access to the object. 

This insures protection even after an object has been deleted and the MOT entry 

has been reassigned. Furthermore, the MOT facilitates object relocation. 

The unused entries in the MOT compose an available space list, to which a 
pointer is maintained in ECS at EC.ABPCK. The next available "unique name", 
issued serially, is kept at EC. ABPCK+1. System disasters occur when the MOT 
free list is exhausted or the next available unique name exceeds 2 39 - 1. 

Objects are the true residents of ECS and are classified as: Allocation 
Blocks, Capability Lists, Event Channels, Files, Operations, or Processes. Each 
of these occupies one block except files, which constitute a tree structure of 

blocks. The root of this tree is the file descriptor, the actual object. The 
leaf nodes are data blocks and the other nodes are pointer blocks, classified 
jointly as file blocks. Each file block is located by a single pointer, 
guaranteeing ease of relocation for file blocks as well as objects. 

Each continuous portion of unused space in ECS forms a free block, which 

is linked into a two-way circular list. Pointers to this, the Free Chain, 
are maintained in two cells at EC.APACK. 

ALLOCATION BLOCKS 

The allocation block is the object which relates ECS allocation to funding. 

An allocation block can be provided with a sum of money and a portion of ECS 

space, which can only be obtained from another allocation block. Every object 

is associated with an allocation block; these objects are linked in a two-way 

circular list. The allocation block has pointers to this list, and each object 

has a backpointer to its father allocation block. The objects of ECS, there-

fore, form a tree, all but the leaf nodes of which are allocation blocks. The 

root of this tree is the Master Allocation Block which is created at initializa-

tion and provided with an infinite amount of money, and all of ECS. 

The allocation block will be billed for CPU-time used by its daughter 

processes, and will be charged rent on the ECS space occupied by its daughter 

objects. FUND is the routine which charges this rent and must be called when-

ever the size of a daughter object is to be changed. It must also be called 

periodically to prevent deficit spending. As of this writing, policy decisions 

are pending regarding allocation blocks (e.g., what to do if an allocation 

block runs out of money) . 
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FUND is called with an allocation block, and an increment to ECS space. 
It compares the master clock with the "time of last bill" field, updating the 
latter, and charging rent for the interim on ECS space in use. "ECS in use" 
and "$ used for rent" are updated. "ECS in use" cannot exceed "Allocated ECS" 
and "$ used" cannot exceed "$." 

FUND has three entry points: 

FUND -- B2 ... Increment to ECS space 
B3 ... Return link 
X5 ... 2nd word of capability for alloc bk 

FUNDX7 - B3 ... Return link 
X5 ... 2nd word of capab. for alloc bk 
X7 ... increment to ECS space 

FUNDB - B3 ... Return link 
Al ... S . ABLOCK 
XØ ... ECS address of alloc bk 
X7 ... increment to ECS space 

BLOCK MANIPULATION 

At initialization the following blocks are created: the Master Allocation 
Block, two zero-length free blocks, and (a free block) several free blocks 
(max. size = 217 - 1) consisting of the rest of ECS. After that, block struc-
ture is in the hands of four routines: 

ALLOC creates a block of specified size 

The free chain is scanned for a block of sufficient size. If none 
is found, GBGCOLL is called. Otherwise, a determination is made 
whether the free block is sufficiently larger than the requested 
size to justify splitting it up. If so, the new block is taken off 
the beginning of the free block, whose size field is updated. If 
not, the entire block is used and is removed from the free chain. 
The allocator`s word is written and a pointer to the block is stored 
at a caller-specified call. The block is zeroed. 

On entry: B2 - size of block 
B3 - type of block (1 - pointer block; 0 - data block or object) 
B7 - return link 
X5 - ECS address of pointer to be set. 

REALLOC changes the size of a block (always an object) 

First it is determined if a new block will be required (it will not 
be if the increment is negative or less than the slop). If not, FUND 
is called with the increment, and the size field is updated. Otherwise, 

FUND is called with the total size of the new block, and ALLOC is 
called to find the block. FUND is again called to defund the original 

block (without this double call, a system disaster would occur if ECS 

were saturated) . The contents are transferred from old block to new, 

FREE is called to release the old block, and the MOT entry is updated. 
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On entry: Xl increment 
X2 - MOT index of object 
X6 -- return link 

FREE inserts a block into the free chain 

The block is merged with either or both adjacent blocks when 
they are free. The pointer to the block is zeroed. 

On entry: B7 -- return link 
• X5 - ECS address of pointer 

GBGCOLL, when written, will compact the block structure. 

OBJECT CREATION AND DESTRUCTION 

MAKEOBJ creates an object 

FUND is called; an MOT entry is created;.ALLOC,/is called. A 
capability for the object (all option bits- set) is created and 
stored in "CAPAB" . The list associated with the father allot bk. 
is updated (the header word is written). 

On entry: B2 - size of object to be created 
B4 - return link 
X5 - 2nd word of capability for alloc bk (father) 
X7 - type of object 

On exit: X5 - address of first usable word 

DELOBJ destroys an object 

The father allocation block is found, and the object_ is removed 
from its list. FUND is called to defund the space FREE to 
release it. The MOT entry is added to the MOT free list.

On entry: B7 return link' 
X5 2nd word of capability for object to be deleted 

FILE BLOCK CREATION AND DESTRUCTION 

MAKEFIL creates a file block 

It calls FUND and ALLOC only. 

On entry: B6 - type of block (1 - ptr blk; 0 - data blk) 
B7 - return link 
X5 - 2nd word of capab. for allot bk. 
X6 - ECS address of p tr to new block 
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RTRNFIL deletes a file block 

It calls FUND and FREE. 

On entry: B7 - return link 
XS - 2nd word of capab for allot bk 
Xb ECS address of pointer 

MISCELLANEOUS ROUTINE'S 

ECSINIT initializes ECS appropriately 

Four ECS actions: 

NEWUN changes a unique name 

This is the system "Indian-giver" -+'~ 

APl = D : C-List Index of Object whose unique name 
is to be changed. 

CREALBK creates an allocation block 

AP1 = C : Father alloc bk 
AP2 = D : Index for new capability 

CCCLOA constructs a capability (all option bits set) for the 
newest-born child of the alloc bk. 

AP1 = C : Allocation block 
AP2 = D : Index for new capability 

DONATE transfers space and money from one allot bk to another 

AP1 = C Alloc Bk (DONOR) 
AP2 = C Alloc Bk (DONEE) 
AP3 = D ECS space to be transferred 
AP4 = D Money to be transferred 
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Capabilities and Capability-Lists 

User access to ' all objects within the ECS system is controlled by capabilities.

A capability identifies the object it refers to, specifies the type of the 

object, and the set of allowed actions on that object (options). Capabilities 

are grouped together in capability-lists (C--lists) which are themselves objects 

within the ECS system. Individual capabilities are referred to by their index 

within a C-list. Since the capability, residing in a C-list, authorizes access 

to an object, the user is never allowed to fabricate a capability. The system 

creates a capability with all options allowed when an, object is created. Sys-

tem actions are provided to permit the user to examine a capability, to copy 

capabilities between C-lists and within a C-list , and to downgrade the option 

mask (see System Actions). Thus, the user can transfer they right to access an 

object and can curtail that access, but he may never manufacture that right or 

increase the set of allowable actions on the object. 

CAPABILITY 

A capability consists of two 60-bit words (see Figure 1) . The first word con-

tains the type of the object to which the capability refers and a bit mask 

indicating the allowed actions on the object The type field occupies the 

lower order 18 bits of the first word and must have exactly 9 of the 18 bits 

set. The remaining 42 bits comprise the option mask. The meaning of the 

bits in the option mask, of course, depends on the type of the object. 

The second word contains the information necessary for the ECS system to 

access the object (or, in thecase of a class code, the object itself) . 

The system uses the low order 18 bits of the 'second word', which contain the 

master object table (MOT) index, and the high order 39 bits, which contain 

the unique name of the object. The remaining 3 bits o the second word are unused. 

Capabilities are created by the allocation routines at the point when storage 

is allocated for a new object. The new capability with all options allowed 

is placed at CAPAB and CAPAB+1 by the allocation routines. The routine 

creating the new object then moves the capability to its user-designated 

position in the user's full C-list by calling PUTCAP. 
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CAPABILITY LIST 

A capability list (C-list) is a sequence of capabilities and "empty" posi-

tions (see Figure 2) . It is prefixed by the total number of spaces for 

capabilities. "Empty" positions are simply two zero words. Each C-list is 

filled with "empties" upon creation. 

A C-list is assigned to every subprocess within a process. (See Figure 4). For 

every process there is defined a sequence of subprocesses called the full path. Cor-

responding to the full path, the full C--list is defined as the concatenation 

of the C-lists belonging to the subprocesses in the full path. When referring 

to capabilities within the full C-list, the capability index is interpreted 

as if the C-lists in the full C-list have been joined to form one long C-list . 

The full C=-list is implemented by maintaining a full C-list table within the 

process descriptor (see Figure 3). The full C-list table is a sequence of two 

word entries each o which_ identifies.. a C--list and the length of the C-list. 

P. CLIST in the process descriptor holds a pointer (relative to the origin of 

the process data area) to the first entry in the full C-list table. The full 

C-list table is terminated by a zero word. The first C-list (called 

the local C-list)  in the full C-list is copied into core with the process while 

the remaining C-lists remain in ECS. P.CTABLE, in the process descriptor, 

holds a pointer to the end of the full C--list table (the zero word), the number 

of entries allowed in the table (maximum length of the full path), and the 

size of the core buffer for the local C-list (maximum local C-list size) . 

Three routines are used to access C-lists. GETCAP is used to fetch a 

capability from the full C-list . PUTCAP copies a capability to the full 

C-list . If the capability falls within the local C-list , it is copied to both 

the ECS copy and the in-core copy of the local C--list. Finally, ARECAP 

is used to copy a capability to or from an arbitrary C-list (not the full 

C-list) . 
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Figure 3 
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Files 

A file is an ECS system object, containing a sequence of addressable 

(60 bit) words, used to provide storage for code and data. In order to 

permit a large file address space and, at the same time, make efficient 

use of ECS space, ECS files are organized in a tree structure, The 

"leaves" of the file tree are called data blocks and con-

tai.n the addressable words of the file. The non-terminal nodes of the file 

tree are called pointer blocks (see Fig. 3) and contain links to either 

data blocks or other pointer blocks. With this tree structure, only the 

necessary pointer blocks and data blocks are allocated in ECS. Empty or 

non--existent portions of the file are not allocated until they are needed. 

For any file, there is a sequence of positive integers, (S0,51,. .. ,S) 

n > 0, which describe the shape of the file. Each Si, for 0 < i < n, is 

the number of branches in the file tree at nodes of level i (the root of 

the tree is at level 0; all nodes connected to the root are at level 1; 

etc.). Each Si for i > 0, must be an integral power of 2 (note: this 

does not apply 
to 

the first shape number S0 ) The last shape number, 

Sn, is the size of the data blocks. Thus, the number of addressable words 

n 
in a file is given by L = . II 

Si
 . The words of a file are addressed by 

integers which may range from 0 to L-1 . 

The shape of a file is represented by the dope vector for the file,.

v The file descriptor,, ...-.. 

is pointed to from the master object table (M0T) contains the dope 

vector, the length of the file, a pointer to either a pointer block or a 

data block (zero level file) , and the MOT index and unique name of the 

Allocation block which funds any changes in the ECS space occupied by 

the file. The dope vector contains instructions which are executed to 

obtain the path through the file tree which leads to a particular address 

within the file. When a file is created, only the file descriptor is 

constructed, and the file may be destroyed only when it is in this state. 
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Pointer blocks (Fig. 3) link the file descriptor to the data blocks in all 

files with more than one shape number (n > 0) . Pointer blocks are con-

structed only when needed to link to data blocks. The allocation inf or-

mation which prefixes each block in ECs is used to provide a return path 

through the file tree. This backpointer contains the absolute ECS address 

of the single word which points to the pointer block (in the file descriptor 

or in a pointer block at the preceding level) . A count of non--empty pointers 

within the pointer block is also maintained in the allocation prefix to 

the pointer block (note: the counter is greater than 0; otherwise, the 

pointer block is not needed). The word following the last pointer in the 

pointer block contains a negative number which is a relative pointer to 

the first word of the allocation prefix. 

Data blocks (Fig. 4) contain the addressable words of the file. 

The count of maps (see Maps) which reference the data block is maintained 

in the second of the allocation words. 

File actions 

When a file is created, only the file descriptor is formed.. Data 

blocks may be subsequently added, one at a time, to hold data or procedures. 

When a data block is added to a file, it may also be necessary to create 

some or all of the pointer blocks between that data block and the file 

descriptor. Data blocks may also be removed and, again, one or more pointer 

blocks may be deleted if they are no longer needed to link to the remaining 

blocks in the file. A data block may not be deleted if it is referenced by 

an entry in some subprocess map (reference count 0) . 

Files may be read and written. This action transfers words between the 

address space of the running subprocess and the data blocks of a file. If 

a transfer is requested which involves a f Lle address corresponding to a 

non--existent data block, the transfer proceeds until the non--existent file 

address is encountered and then an FRETURN is initiated. 
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Processes 

Processes are the active elements, of the ECS portion of the time sharing 

system. Only within the context of a process may code be executed and 

system actions initiated. A process consists of a set of central regis-

ters (exchange jump package) , a set of subprocesses organized in a tree 

structure, a call stack recording the flow of control among the sub-

processes, and a set of state flags describing the state of the process. 

Swapping: Periodically, a process with its running flag set (see below) 

will be swapped into CM to run on the CPU. When this occurs, the process 

descriptor and local C-list are read in, and the entries in the full pro-

cess map are swapped in from the indicated files in ECS to the indicated 

regions in GM. The exchange jump package of the process is loaded into 

the central registers of the CPU and the CPU is allowed to compute for 

awhile or until the process hangs. Then the central registers of the 

CPU are copied to the exchange jump package of the process, and the process 

is swapped out. 

Process Descriptor 

The data necessary to maintain and run a process are gathered together in 

the process descriptor which is stored in two sections: the fixed length 

process descriptor and the variable length process descriptor. These two 

sections of the process descriptor are copied into CM when the process is 

being run on the CPU. While the process resides in ECS (See Figure 1), the 

fixed length descriptor and variable length descriptor are separated by 

the process queuing word buffer (see Event Channels). Information about 

the size of the queuing word buffer is contained in the first word of the 

process descriptor (P.ROHEAD). Data necessary to access and move the 

variable length descriptor are contained in the second word of the process 

descriptor (P.ROHEAD + 1). 

When the process descriptor is copied to CM to run the process on the CPU 

(see Figure 2), it is preceded by a scratch area (used by the system while 
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performing system calls) and the actual parameter area used to pass the 

parameters of system calls (P.PARA.M). In addition, a copy of the local 

C--list is copied to CM following the fixed length descriptor and preceding 

the variable length descriptor. All pointers within the Droc 

descriptor are com•uted relative to the be:innin: of the scratch area. The 

absolute CM address of the scratch area is maintained by the system in 

S.USRB1 in system core and in Bl of the system exchange package. 

The fixed length process descriptor is divided into the read/only descriptor 

and the read/write descriptor. The read/only descriptor may not be modi-

fied without locking out the PPU interrupt system (I.LOCK). It contains 

(see Figure 3) the state flags of the process, process interrupt information, 

and process scheduling data. The read/write portion of the fixed length 

descriptor contains the process exchange jump package, data and pointers 

used to access and modify the variable length descriptor, and a few words 

of global process data. 

The variable length process descriptor (see Figure 4) contains the full 

C-list table, the call stack, the subprocess descriptor table, logical map 

and error selection mask (ESM) storage, and compiled map storage. Organiza-

tion of the variable length descriptor is maintained by pointers and values 

in the fixed length descriptor. When the process is in CM running on the 

CPU, the variable length descriptor is separated from the fixed length 

descriptor by the local C-list buffer, which is large enough to contain 

the largest C-list assigned to any subprocess in the process. Both the 

call stack and subprocess descriptors contain pointers into the variable 

length descriptor. These pointers, like those in the fixed length des-

criptor, are .relative to the origin of the process scratch area (P.SCR). 
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PROCESS DESCRIPTOR (IN ECS) 

R 
READ ONLY 
DESCRIPTOR 

FIXED LENGTH 
DESCRIPTOR 

READ/WRITE 
DESCRIPTOR 

g 
PROCESS QUEUING 
WORD BUFFER 

VARIABLE LENGTH 
DESCRIPTOR 

0 

i 

Figure 1 
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PROCESS DESCRIPTOR IN CORE 

4 

P.SCR=O 

P. SCR2 

P.SCR2L 

P.TEMP1 

P. TEMP 7 

P.PARAM 

P.PARAML 

P . PAIWIC 
P . ROREAD 
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SCRATCH 
AREA 

~1 
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Actal Parameter 
Area 

. PROCRO 

i 
READ ONLY Descriptor 

.XPACK Lt 
P.PROCRW 

P.LOCALC 

b 

FIXED LENGTH. 
R WRITE Descriptor 
Descriptor 

LOCAL C~LIST 

Variable Length 
Descriptor 

Figure 2 
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FIXED LENGTH DESCRIPTOR 
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P4 I ~E

P . ROHEAD 

P.SCHED 
P . u SR `:Ir 
P.SYSTIIV 

P. SWPT 

P.XPACK 

P.CLIST 

P.CTABLE 

P. STACK 

P. SUBPDT 

MAPE SM 

P .OLDP 

P.INTERR 

P.IPLIST 

P.LOCALC 

process clocks: user time 
system time 
swap time 

process state flags 

15 

LENGTH 
VAR 
DISC 
LEN 

exchange jump 
package 

FULL 
C--TJ ST 

LEN - LEN FULL ORIG 
LIST BUF C-TABLE C-TABLE 
STACK
  ORIGIN ,TSTA~K 

READ ONLY 
DESCRIPTOR = 

~P . S CH]DL P . PROCRO 

1 
WD S . 

AT SUBp ORIG NUMBER 1 READ WRITE 
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C~O1`~ MAPS COMP MAF S MAPESMI P • PROCRW 
FLAG FOR 
~S_UBP_..CALL 
NUM INT 

ST IP 
 LAS 

CE
 

LIST 
LOCAL 

LOCAL C-LIST 
BUFFER 

State f lads 

P = something "pending" 
on swapin; check 
W,I,D,& V 

W = "wake-up waiting" 

R = "running" 

I = "interrupt" 

D = "destroy" 

E = 0 ECS process 
1 pseudo--process 

C = process "in core" 

V = "event" 

<Q-BUF> ::= size of process queueing word buffer -= max number of queuing words + 1 
<PROC MOT> ::= NOT index of process 
<PROC LENGTH> length of process in core [includes process descriptor (Fig. 2)] + 

maximum full . address space] 
<VAR DISC LEN>. :: = length of variable length descriptor 
<ECS ORIG DISC> ::= origin relative P.ROHEAD in ECS of variable length 

descriptor = Q'-BUF + P . PROCRO + P . PROCRW 

Figure 3 
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Process State Flags 

Eight flags describe the state of the process. These state flags,  stored 

in P.ROHEAD (see Figure 3), are used primarily to control the swapper, 

but are set and checked by other routines (event channel, process inter-

rupt, and destroy process). Since the state flags are used to indicate 

the "state" of the process, they must never be modified without the PPU 

interrupts first being locked out to prevent 'test and set' overlaps. 

The eight flags function as follows: 

The E flag indicates that the process is actually a pseudo-process and 

is used by the event channel routines to distinguish 

between genuine and pseudo-processes. 

The "in core" flag, C, is set whenever the process is actually run-

ning on the CPU. This flag is checked by the process 

interrupt routine. 

The "pending action" flag, P, directs the swapper to interrogate 

the "W", "I", "D" and "V" flags.  These four flags 

cause the swapper to: 

W - (the wakeup waiting . flag) unchain the process flow from the 
event channels; 

I -- check the "ancestors" of the current subprocess for an inter-
rupt subprocess; 

D - destroy the process; and 

V - modify the swapper return because of the arrival of an event 
for the process. 

The "running flag", R, indicates that the process is scheduled to run 

or is running on the CPU. The running flag (R) and 

the wake-up waiting flag (W) interact in the event 

channel routines as well as in the process interrupt 

routines. They are used to permit the process to 

"hang" on several event channels and still be able to 

accept an incoming event. 
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SUBPROCESS TREE AND FULL PATH 

The subprocess tree is organized so that each subprocess references only 

its predecessor (see Figure 5). For each subprocess, the term "ancestors" 

refers to the sequence of subprocesses which starts with the subprocess 

and terminates with the root of the subprocess tree. Note that a sub-

process is always an "ancestor" of itself. At any given time, there are 

two distinguished subprocesses within the process. They are known as 

the current subprocess and the end-of-path subprocess. The current sub-

process process is always an "ancestor" of the end-of-path subprocess; the sequence 

of subprocesses from the end-of-path to the current subprocess (inclusive) 

is called the full path. The end-of -path is defined dynamically by the 

flow of control among the subprocesses. The current subprocess may be 

considered to be the subprocess currently in control. The end-of-path and 

current subprocesses are reassigned whenever a new subprocess is called. 

The subprocess being called (.the callee) becomes the new current subprocess. 

If the callee is an "ancestor" of the old end-of-path, then the end-of-path 

remains unchanged. If the callee is not an "ancestor" of the end-of-path, 

the new end-of-path becomes the same as the callee (i.e., the full path 

consists of a single subprocess - the callee) . See Figure 5a. 

The full path defines the sphere of protection invoked by the current sub-

process. The access into the current subprocess permitted to other objects 

within the system is controlled by the full C-list. The full map determines 

the configuration of the address space available to the current subprocess, 

and the full address space is the size of the address space available to 

the current subprocess. The full C-list , full map, and full address space 

are defined by the full path. The configuration of the subprocess tree defines 

the static relationship between the subprocesses (subprocesses closer to 

the root may be given the privileges of their descendents) while the full 

path dynamically controls the boundaries of access applied to the current 

subprocess. This system of controlling the bounds of protection allows 

the construction of processes which may exercise varying degrees of pro-

tection while maintaining synchronization between the subprocesses involved. 

n 
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n 

SUBPROCESS TREE 

SUBP 3 

1 SUBP 9 

FULL PATH EXAMPLE 

CALLING SEQUENCE 

SUBPO 
SUBPQ calls SUBP9 
SUBP9 calls SUBP6 
SUBP6 calls SUBP4 
SUBP4 calls SUBPO 
SUBPO calls SUBP5 
SUBP5 calls SUBP3 

Root of subprocess tree 

Figure 5 

CURRENT SUBP 

SUBPO 
SUBP9 
SUBP6 
SUBP4 
SUBPO 
SUBP5 
SUBP3 

SUBP $ 

SUB? 10 

END-OF-PATH SUBP 

Figure 5a 

SUBPO 
SUBP9 
SUBP6 
SUBP6 
SUBP6 
SUBP6 
SUBP3 

FULL PATH 

SUBPO 
SUBP9 
SUBP6 
SUBP6 ,5,4 
SUBP6,5,4,0 
SUBP6, 5 
SUBP3 



Processes 10 

CALL STACK 

The call stack records the flow of control among the subprocesses. It 

contains the information necessary to reactivate a subprocess when con-

trol returns to the subprocess after one or more subprocess calls. Each 

stack entry is two words long (see Figure 6). The current subprocess, 

the end-of-path subprocess, and the P--counter must be saved at the time 

of the subprocess call to reconstruct the full path and to re-initiate 

processing where it was terminated by the subprocess call. The address 

(within the full address space of the subprocess) of the input parameter 

list (see System Entry/Exit) used for the last system call initiated by 

the subprocess, and the count of orders processed in the operation used 

in the last system call (see operations) are retained to enable processing 

of F returns. Finally, three flags are used to control the return of 

control to a subprocess. The "interrupted" flag indicates that the sub-

process was interrupted and that the P-counter is not to be modified in 

the usual way (see System Entry/Exit) . The "forced F-return" flag indi-

cates that F return action had been interrupted and instead of returning 

to the current subprocess, F return action should be initiated. Finally, 

an "inhibit interrupt" flag is used by the interrupt machinery to inhibit 

the interruption of the current subprocess by itself. P.STACK is used to 

control the call stack and contains the stack origin, stack end, and top 

of stack pointers relative to the incore process descriptor. The P-counter 

and input parameter list address in the top of the stack are not always 

maintained since the P-counter is-in the process exchange package (P.XPACK) 

and the last IP list address is maintained in '.IPLIST. Each subprocess 

is assigned a maximum stack pointer value to prevent the stack from being 

filled to such an extent that the. subprocesses closest to the root of the 

subprocess tree cannot be called to rectify the situation or to handle 

errors. 
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ERROR PROCESSING 

The use of improper parameters in making an ECS system call is detected by 

the ECS system and is considered to be an error on the part of the pro-

cess making the system call. The process must be informed of the exis-

tence and type of the error and in addition is given some control over 

which subprocess is to handle the: error condition. 

Associated with each error detected by the ECS system is an error class and 

an error number. Furthermore, associated with each subprocess is an error 

selection mask (ESM) (see Figure 7) indicating which classes of errors the 

subprocess is prepared to handle. 

When an error is detected, it is first assigned an error class and error 

number. Then the "ancestors" of the current subprocess are checked (starting 

with the current subprocess) to find a subprocess whose ESM indicates it 

is willing to handle this class of errors. Finally, the subprocess which 

accepts the error is called, and is passed the error class and number as 

parameters of the call. In addition, in the ESM of the subprocess which 

accepts the error, the bit corresponding to the error class of the error 

is turned off to avoid error loops (i.e., a subprocess makes an error, 

accepts the handling of the error, and makes the same error). 
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Class 32 ' 

ERROR PROCESSING AND PROCESS INTERRUPT 

SUBPROCESS DESCRIPTOR (error processing data) 
(process interrupt data) 

interrupt flag 
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~ESM MAX

P.INTERR 
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ERROR SELECTION MASK (ESM) 

Class 0 Class 31 
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Figure 7 
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PROCESS INTERRUPT 

Two mechanisms are available by which one process may affect the execution 

of another process: the event channel, used to synchronize otherwise 

asynchronous processes; and the process interrupt, used by one process to 

force the calling of a specified subprocess (called the interrupt subprocess) 

within another process (called the interrupt process). Thus one process can 

force a second process to enter a specified subprocess. Furthermore, 

the interrupt process will not enter the interrupt subprocess until the 

interrupt subprocess is an "ancestor" of the current subprocess. In this 

way, the interrupt is given a "priority" based upon the position of the 

interrupt subprocess in the subprocess tree of the interrupt process. 

With the process interrupt, an 18-bit interrupt datum is passed as the 

parameter of the call of the interrupt subprocess. Once a subprocess 

becomes an interrupt subprocess, and until that subprocess has been called 

r as an interrupt subprocess, interrupts to that;) p ocess are disabled
} 

(i.e., additional interrupts specifying that subprocess have no effect). 

It is also possible to disarm interrupts which are the same as the current 

subprocess (.recall that the current subprocess is an "ancestor" of itself 

and thus could interrupt itself). When an interrupt subprocess is called, 

interrupts are automatically disarmed for the current (= interrupt)process. 

If the interrupt process is "hung" when a process interrupt is initiated, 

the "ancestors" of the current subprocess (of the interrupt process) are 

scanned to see if the interrupt subprocess is among them. If the inter-

rupt subprocess has "priority" over the current subprocess, the "wake-up 

waiting", "running", and "interrupt" flags are set in the interrupt pro-

cess and, if necessary, the process is scheduled to run. 

At every normal subprocess call and return, the number of pending inter-

rupt subprocesses (P.INTERR) is checked. If there are interrupt subprocesses 

waiting, the "ancestors" of the new current subprocess are scanned to see 

if any of them are interrupt subprocesses. To facilitate this scan, the 

first bit of the subprocess descriptor (see Figure 7) is the "interrupt 

pending" f lag . The interrupt datum is also stored in the subprocess 

descriptor. The "interrupt inhibit" flag (interrupt disarmed) in the 



Processes 15 

stack is always checked if the interrupt subprocess is the same as the 

current subprocess. An interrupt subprocess call may also be initiated 

either when the "interrupt inhibit" flag is reset, or by the swapper, 

where a scan of the "ancestors" of the current subprocess is performed 

whenever the. "interrupt'` flag is set in P . ROHFAD (see Figure 3). 
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SUBPROCESS 

Every process is constructed as a set of related subprocesses in order to 

permit dynamic control of the privileges and protection applied to the process. 

The envelope of protection/privilege associated with  process may change as 

the process executes, but all changes in protection can be seen as being syn-

chronous with the process execution. It is only through a subprocess transfer 

that the envelope of protection/privilege is modified. 

SUBPROCESS DESCRIPTOR 

The data necessary to describe each subprocess is gathered into an eight 

word subprocess descriptor (see Figure 1) . The subprocess descriptors are 

stored together in the subprocess descriptor table in the variable length process 

descriptor (see Processes). Each subprocess has a name by which it can be iden-

tified and accessed. This subprocess name is a class code, the value of which 

is stored in the subprocess descriptor (word 1). In addition to its own name, 

each subprocess must maintain a link to its "father" in the subprocess tree 

(see Processes) . This link is maintained in the descriptor (word 0) as a pointer 

to the parent subprocess. Process interrupt (words 0,4) and error handling in-

formation (word 6) are also maintained in the subprocess descriptor. 

Associated with each subprocess is a local envelope of protection/privilege. 

The local C-list controls access to other objects within the system, while the 

subprocess map dictates the contents of the local address space. Information 

concerning the limits of the local address space (word 0) , identification of 

the local C-list (words 4,5) and the subprocess map (words 3,4) are maintained 

in the subprocess descriptor. 

The subprocess entry point (word 2) is the address, relative to the local 

address space, at which a normal subprocess call will initiate execution of the 

subprocess. The maximum allowable stack pointer (word 6) is used to avoid the 

filling of the process stack to such an extent the more privileged subprocesses 

(i.e., subprocesses nearer the root of the subprocess tree) cannot be called to 

rectify the situation or to handle errors. The sum of the lengths of the local 

C-lists and subprocess maps of all the subprocesses on the path to the root of 

the subprocess tree is maintained (word 2) to help compute the relative origins 

within the full map and full C--list of the calling subprocess during subprocess 

transfer operations. Finally, the last word of the subprocess descriptor is used 

to maintain a list of the maps which have been swapped into CM while the process 

is running on the CPU. 
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SUBPROCESS DESCRIPTOR 
Figure l 1 

INTERRUPT FLAG 
MAPIN FLAG 

WORD 0 

WORD 1 

WORD 2 

WORD 3 

WORD 4 

WORD 5 

W RD 6 

WORD 7 

RA + FL faA T PTR TO 
FATHER 

SUBPROCESS NAME 

i ENTRY 
POINT 

MAP 
ORIGIN 

C--LIST 
ORIGIN 

COMP BUF 
SIZE 

LOGICAL 
MAP PTR 

COMPILED 
MAP PTR 

i 

INTERRUPT 
DATUM 

Ii LOGICAL 
MAP ENTRIES 

C--LIST 
- L $ Th

C--LIST UNIQUE NAME C-LIST 
,MOT t 

ESM 
POINTER 

MAX ERROR 
CLASS 

MAX STACK 
POINTER 

—0— # c ~e 
PA 3 S 

MAP IN 
LIST LINK 

WORD, .0 Interrupt f lag : interrupt pending for this subprocess 

mapin flag:  set if map of subprocess has been swapped in 

RA origin of local address space (relative to process CM origin) 

RA + FL end of local address space 

Ptr to father: link to father in subprocess tree (relative to process 
CM origin) 

WORD 1 subprocess name: the class code used to identify the subprocess 

WORD 2 entry point: address relative to RA to begin execution on a normal 
subprocess call 

Map origin: sum of "# logical map entries" of all "ancestors" except self 

C-list origin: sum of "C--list length" of all "ancestors" except self 

WORD 3 comp buf size: number of words allocated for the compiled map buffer 

logical map ptr : pointer (relative to process CM origin) to logical 
map of subprocess 

compiled map ptr : pointer (relative to process CM origin) to compiled 
map buffer 

WORD 4 interrupt datum: interrupt parameter if interrupt flag s e t 

II logical map entries: number of swapping directives permitted in 
logical map 

C--list length: number of capabilities or "empties" in local C-list 
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WORD 5 C—list unique name and NOT index: identification of local C—list 

WORD 6 ESM pointer: pointer (relative to process CM origin) of first error 
selection mask. ward 

max error class: maximum error class which is possible to recognize 
in ESM 

max stack pointer: maximum permissable stack pointer for the subprocesses 
to be called 

WORD 7 mapin list link: if mapin flag is set then link to subprocess whose map 
is swapped in below this subprocess in CM. If this 
subprocess is at the end of the map chain; then zero. 
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SUBPROCESS TRANSFER 

The envelope of protection/privilege applied to a process is modified by 

switching control from one subprocess. to another. Subprocess transfers fall 

into two categories: subprocess calls and subprocess returns. A subprocess 

call causes a new entry to be made on the call stack, the full path to be re-

computed, parameters of the call to be passed, and execution to be initiated 

at the proper entry point of the subprocess. A subprocess return passes no 

parameters and draws the full path and P-counter from an existing stack entry. 

In each case, the processing environment must be reconstructed to reflect the 

new full C--list, full map, and full address space. This reconstruction requires 

the swapping of one or more subprocess maps, the re-building of the full C-list 

table (see Capabilities and C-lists), the fetching of a new local C-list and 

setting of the full address space limits. 

SUBPROCESS CALLS 

There are three kinds of subprocess calls. The normal subprocess call is 

initiated by calling on the system in the usual manner, using an operation (IPO) 

whose action is "subprocess call". A normal subprocess call may also be initiated 

as the result of F-return action under the control of a multi-ordered operation 

(see Operations). 

The error subprocess call is initiated by the ECS system or by a user 

request and will call the closest "ancestor" of the current subprocess which 

has the proper error class selected in its error selection mask (ESM) (see 

Processes, Error Processing). Finally, an interrupt subprocess call is initiated 

whenever a subprocess which is an interrupt subprocess has priority over the 

current subprocess (see Processes, Process Interrupt). 

For all subprocess calls, a new stack entry is constructed and the new pro-

cessing environment is established. The P-counter and last IP list address of 

the current subprocess are stored in the old top of the stack. Then cells 0 and 

1 of the full address space are zeroed. These cells are used in the event of 

hardware arith errors and to simulate SCOPE system calls. Next, the origins 

(relative to the local environment) of the address space, C-1 is t , and map of 

the calling subprocess are computed and stored in cells 2, 3, and 4 of the full 

address space. If the calling subprocess is not a member of the new full-path 
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(see Processes), then these cells are Zeroed (see Figure 2) . Following the 

relative origins of the caller's address space, C-list , and map, the parameters 

of the subprocess call are copied to succeeding words of the subprocess address 

space. 

For a normal call, the parameters of the call are first formatted in the 

actual parameter area (P.PARAM) of the process descriptor by the system entry 

mechanism. These parameters are drawn from the users input parameter list 

(IP list) under the direction of the operation being used for the subprocess 

call (IPO) . In addition, the system entry routine places the name (class code) 

of the called subprocess at P . PARAMC, the number of parameters at P . PARAM - 1, 

and a bit string denoting the types of the parameters at P .PARAMC - 2. After 

establishing the correct processing environment for the called subprocess, the 

parameters are transfered, under the control of the parameter type bit mask, 

to the local address space and local C--list of the called subprocess. Datum 

parameters are simply copied to the next parameter cell in the local address 

space. Capability parameters are copied to successive positions in the local 

C-list and the index of the parameter in the local C-list is stored in the 

next parameter cell in the local address space. On completion of the parameter 

passing, execution is initiated at the entry point of the called subprocess. 

During all subprocess transfer operations, if the interrupt pending count 

(P.INTERR) is non zero, the "ancestors" of the current subprocess are checked 

to see if any of them are "interrupt" subprocesses (word 0 of subprocess des-

criptor). If so, the subprocess transfer operation is terminated and an 

interrupt subprocess call is initiated. As part of the termination of the 

previous subprocess transfer operation, the "interrupted" flag is set in the 

stack entry corresponding to the subprocess that was to be executed (if F-return 

action was interrupted, the "forced F-return" flag is set in the stack instead 

of the "interrupted" flag) . As with the other subprocess calls, the processing 

environment, a new stack entry, and the origins of the previous subprocess are 

constructed for the interrupt subprocess call. The interrupt datum from the 

subprocess descriptor (word 4) is stored in cell 5 of the new local address 

space, and the "interrupt inhibit" flag is set in the new stack entry. 

Finally, the interrupt subprocess is entered 2 words before the entry 

point specified in the subprocess descriptor. 

I 1V 
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An error subprocess call is ini.tated by the ECS system or by user request. 

An error subprocess call passes as its parameters the error class and error 

number which describe the error causing the call. Also, the bit in the ESM of 

the error subprocess corresponding to the error class must be reset to avoid 

error loops (e . g . subprocess makes error gets called as error subprocess —

makes the same error — gets called as error subprocess etc.). The entry to 

an error subprocess is one word before the normal entry point. 

SUBPROCESS RETURN 

Like the subprocess call, the subprocess return must construct a new 

processing environment before returning control to the user. The return routines 

re--activate a subprocess using information left in a stack entry. The full path 

recorded in the stack. entry is sufficient to reconstruct the processing environ-

ment. The P--counter from the stack entry, along with the "interrupt" flag, 

control where in the subprocess execution is initiated. The normal return 

requires the P--counter to be modified by the low order 18 bits of the CEJ 

instruction which originally caused control to pass to another subprocess (see 

System Entry/exit). If the "interrupted" flag is set, the P-counter is not 

to be modified. Finally, the "forced F-return" flag in the stack will cause the 

subprocess return routine to transfer to the F-return routine (see Operations). 
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Class Codes 

A Class code is a protected 60-bit datum by which a user 
may identify himself or some ECS system obj ect. Within the 
ECS system; class codes are used as the names of sub-
processes (See SUBPROCESSES); in the future they will be used 
to identify users within the disk system and will be called 
access keys. 

The 60-bits of a class code are divided into two 30-bit parts 
(See Figurel). The upper 30-bits constitute the-"permanent 
part" and are. assignedby the system when the class code is 
created, Once assigned, the permanent part cannot be altered. 
The low order 30-bits of a class code, called the "temporary' 
part", are set by the user and may be altered by him any time. 

Since each class code occupies only one word, they are not 
allocated space of their own in ECS, but instead each is kept 
in the second word of the capability which refers to the class 
code. Since the second word of the capability usually con-
tains the unique name and 1~OT index for the object, this 
choice of location for the class code seems reasonable. 

There are two system actions connected with class codes: 
The first allows the user to obtain from the system a new 
class code. The system keeps a counter for generating the 
"permanent part" of a class code, and each time one is re-
quested, the counter is incremented and a new and unique class 
code is generated. The second action allows the user to set 
the temporary part of a class code. He must already have 
permanent part, the capability for which (with the proper 
option bit set) he supplies as the first parameter. The 
second parameter is the 30-bit datum which is to be inserted 
into the temporary part of the class code. The 3rd parameter 
is a O 1st index to return the updated class code. A class 
code is destroyed only when the capability is destroyed by 
being written over. 

s~ 
Figure 1. Class Code 

It 

OPTIONS TYPE 

Permanent part Temporary part 

Capability 
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Associated with each subprocess is a map which directs the swapping of the 

subprocess address space between central memory and ECS files. A map con-

sists of a fixed length sequence of map entries each of which is either "empty" 

or contains a swapping directive. A swapping directive (see Figure 1) 

designates a contiguous portion of an ECS file, a CM . address within the local 

address space of the subprocess, and whether or not that section of subprocess 

memory is read only (not to be swapped out). 

When a subprocess is to be swapped into CM, each non-empty map entry is pro-

cessed in sequence and a file read action is effectively performed to copy 

the section of the file designated by the swapping directive to the local 

address space of the subprocess starting at the designated CM address. When 

a subprocess is to be swapped out, only those swapping directives not marked 

as "read only" need be processed. Note that there is nothing to prevent 

several swapping directives from designating overlapping areas in CM or in a 

file. The results of overlapping swapping directives may be determined by 

remembering that swapinjswapout processes the map entries in sequential order. 

To minimize the time spent in swapping maps in and out, the logical map 

(sequence of "empties" and swapping directives) is "compiled", or converted, 

to a form containing the absolute ECS address of the sections of ECS files 

referenced by the swapping directives (see Figure 2). Since one swapping 

directive may span several data blocks in a file, the size of the compiled 

form of the map will reflect the need for additional entries in the compiled 

map. Both the number of entries in the logical ma and the4number of words i h p g map

compiled clap^ are declared when the subprocess is created 

and may not be altered.  I  o carp 
i 

rn&r

The absolute ECS addresses in the compiled map are sensitive to changes in ECS 

due to garbage collection. Thus, the map must be re-compiled whenever a 
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garbage collection is in progress or has occurred since the last re-compilation. 

A word in ECs (GARBCNT) indicates whether or not a garbage collection is in 

progress and contains the number-+ of garbage collections since system ini-

tialization. Each compiled map contains, as a prefix, the count of garbage 

collections at the time the map was last compiled. This count is compared 

with GARBCNT whenever the compiled map is about to be "executed" and will 

cause a recompilation if the counts are unequal. A recompilation of a map 

may be forced by setting the count in the compiled map prefix to zero. 

Access to both the logical and the compiled forms of the map is through the 

subprocess descriptor (see Fig. 3). The subprocess descriptor also contains 

the number of entries in the logical maps and the size of the buffer allocated 

for the compiled map. In addition, the subprocess descriptor contains a flag 

indicating whether the map for that subprocess has been swapped into CM and a 

chain pointer used to keep track of which subprocess maps are in CM. The 

origin (relative to B1 the CM process origin) of the subprocess address space 

(RA) and the origin + length (RA + FL) of the subprocess address space are also 

available to the map machinery in the subprocess descriptor. 

The maps of the subprocesses in the full path are concatenated to form the full 

map in much the same way as the full C-list ( see C-list) is formed. Each map 

however, is swapped relative to the address space of its subprocess, as if it 

were the only map being considered. The address space of the running subprocess 

is enlarged to form the full address space, which includes the address space(s) 

of all other subprocesses in the full path. The code and data in the maps above 

(in the full path) the running subprocesses may be accessed as if the address 

spaces of the other subprocesses were simply added (one after another) onto the 

end of the local address space of running subprocess. Note, however, that the 

data and code within these maps is not relocated to reflect the new addresses 

used to access them. 

11 
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Maps 

Map Actions 

3 

When map ent ies are to be changed, care must be/taken when the map involved 

is part o the full map. In this case, if thqmap entry involved is not 

empty, it must be swapped out before it can be/replaced. The new entry 

of there is one) can then be constructed and swapped in. Note that overlapping 

map entries will behave oddly since the whol ma is not swapped. At the 

present time, the entire map is recompiled, fince a change in the logical map 

may change the length of the compiled map. Incremental compilation is not 

precluded by the design since the logical ap contains pointers into the 

compiled map; however, the implementation of this feature has been deferred. 
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: := 0 -~ 260  _l 

LO G I CAL MAP 

< file > or < empty > 
<R/0 FLAG> 

< file address > 

f <COt P3 . FTR>F CM ADDR> <raD crrT>1

< empty > : := +0 

< file > • • 

39 

1st logical map entry 

2nd logical map entry 

last logical map entry 

end of logical map 

Denotes an "empty" map entry 

UNIQUE NAME 

I 8 

MOT IND1X file identification 

< file address > 

< R/0 FLAG > ::= 1 read only; 0 read/write 

< compile ptr > ::= index in compiled map buffer of first compiled map 
entry for this swapping directive 

< CM ADDR > ::= CM address within subprocess local address space 

< WD CNT > ::= word count 

Note: < CM ADDR > + < WD CNT > < length of subprocess local 

Figure 1 

address space 
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COMPILED MAP 

GARBCNT r 
/ /f/~~//  %/// COUNT(>0~ 

(in ECS) 
set if garbage collection in progress 

< S PAC E> , < COU NT> 

<ECS ADDR><CM ADDR1<WD CNT> 

:$ ECS ADDR <CM ADDR)<WD CNT> 
< R/ 0 FLAG>247

<LAST ENTRY> 4r ~i 

SECS ADDR<CM ADDR !<WD CNT> 
K x 

+0 END 

PREFIX 

< COUNT > 

Compiled map words 

0 must recompile 

>0 map is good if same as GARBCNT 

< SPACE > : : = number of un-used words in the compiled map buffer 

< WD CNT > :: = number of words to transfer 

< CM ADDR > ::= CM address relative to CM process origin (Bl) 

< ECS ADDR > ::= absolute ECS address to start transfer 

< R/ 0 flag > ::= read only flag 
0 read/write 

1 read only 

< last entry > ::= 1 last compiled map word corresponding to a particular 
swapping directive 

Figure 2 

r1 
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SUBPROCESS DESCRIPTOR MAP DATA) 

NAP IN BIT 

,Q 

0 

1 

2 

3 

4 

5 

6 

7 

n 

~' ̀ RA + FLI

2' 7 / 

/ 
/ / 

'2 ' 
`.f 

COMP BUF 
Sly

I;OG LCAL COMPILED 

f// 
J 

//% / /% / ' MAP ENTB S i J
i/// /2' 

,// 
//,/// 1/ /1 /, / 

74://' / 
LIST LIN 

Figure 3 
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Event Channels 

Event Channels are ECS system objects used to synchronize running pro-

cesses as well as to implement "block" and "wake up" mechanisms. Basically, 

a user process may request an event from a particular event channel. If the 

event channel does not have an event, the user ̀ s process is blocked (stops 

running) until some other process sends an event to the event channel. The 

exact mechanisms of sending and receiving events will be described in full 

detail. 

The event channel (see Figure 1) consists of a three word header followed 

by the event queue. The event queue is a circular buffer controlled by pointers 

and values located in the first and third header words. 

First header word: The "in" and "out" pointers in the first word are 

manipulated to point relative to the beginning of the event channel. The 

"in" pointer always points to the location in which an event is to be put 

should one arrive. The "out" pointer points to the location of . the next 

event to be removed from the event queue. The "in" pointer will equal the 

"out" pointer when the event queue is either empty or full. Therefore, the 
s,jo•w.M SJoits 

number of empty in the circular buffer is maintained in the third 

header word. Finally, the length of the entire event channel is recorded in 

the first header word. 

Second header word: The second header word is used to maintain a queue 

of waiting processes. When a process requests an event and the event queue 

is empty, the process is added to the process queue. The process queue is a 

bi-directional list through the processes on the queue and the event channel 

(see Figure 2). The high order 30 bits of the second word of the header, called 

the process queuing word, hold the forward pointer while the. low order 30 bits 

hold the backward pointer. Each pointer consists of a Master Object Table (MOT) 

index and a queuing word index. The queuing word index, in the high order 12 

bits of the pointer, is an index relative to the beginning (in ECS ) of the process 

which is designated by the MOT index of the low order 18 bits of the pointer. 

X 

X 
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n 

P'1 

Within the process, at the location indicated by the queuing word index, 

there should be another process queuing word with forward and backward 

pointers. The queuing word index is stored in such a way that the unpack. 

(JXi Bj ,Xk) instruction will result in the true queuing word index in the 

B register. Furthermore, if the pointer refers to the event channel, the 

queuing word index will unpack to a -2 in the B register. For example, 

the pointer: 20618 10001238 refers to the 618 -st word (in ECS) of the process 

with MOT index 1238. Similarly the pointer; 17758 1003218 refers to the pro-

cess queuing word of the event channel with MOT index 3218. If the process 

queue is empty, the process queuing word in the event channel will point to 

the event channel itself (e.g., (1775$1000321811775810003218) 

Event Channel Routines 

)• 

It is important to note before discussing the event channel routines that 

they are one of the few places in which there is interaction between the ECS 

action routines and the interrupt system. Since the interrupt system may 

call upon the event channel routines at any time, it is necessary to lock 

out the interrupt system while manipulating event channels and to release the 

lockout upon completion of any event channel manipulations. To lock out the 

interrupt system, it is only necessary to set I.LOCK (in system core) non-

zero. To release the lock, simply clear I.LOCK. 

Sending Events 

Events are sent by user processes and by the interrupt system. An event 

consists of two words. The first word is the MOT index of the process which 

is sending the event. The second word is a 60 bit datum provided by the sender 

of the event. A response is always given to the sender of the event to indi-

cate the disposition of the event (see Figure 3) . For a user process, the 

response is, returned in X6. 

If the event queue of the appropriate event channel is not empty, then 

it may or may not be searched for an event duplicating the new event. This 

is to allow for the elimination of redundant events. If the event queue 

search was desired and if a duplicate event is found, a response is given to 

the sender indicating that a duplicate event was discovered, and the event 

sending routine returns. 
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If no duplicate event checking was requested or no duplicate event was 

found, the event queue is checked to see if i.t has more than one empty slot. 

If the event queue is full, the. sender of the event is notified that the queue 

is full, and control returns to the sender of the event. If there is only 

one slot left in the event queue, the datum word is replaced by a special 

"you lose" datum (--0) and the sender is notified by the "you lose" response. 

This "you lose" datum allows the process which ultimately receives that "you 

lose" event to discover that the event queue had been full and that informa-

tion was lost. 

If the event survives the duplicate event checking and the full event 

queue conditions, it is copied into th.e event queue and the pointers are moved 

to reflect its presence. Again, the sender of the event is notified of the 

deposition of the event. 

If the event queue is empty, the process queue must be checked. (Note 

that if the event queue is not empty, then the process queue must be empty.) 

The process queue is scanned for the first process which does not have its 

"wake-up waiting" flag set, i.e., has not already been handed an event, received 

a process interrupt, or been marked for destruction. If such a process is 

found, and it is not a pseudo process (used by interrupt system to interface 

with the event channel logic and other purposes) , th_e "wake-up waiting" flag 

is set on that process. The P counter in the process exchange package is incre-

mented and the event is copied to X6 and Xl of the process exchange package in 

ECS . Note that the testing and setting of the "wake-up waiting" flag must not 

be interrupted by any other access to this f lag . If the process is not running V 

("running" flag)  the scheduler is called to schedule the process to run. If the 

first process without "wake-up waiting" is a pseudo process, it is removed from 

the process queue; otherwise, it is not removed until the process is swapped in 

to run. Also, in the case of a pseudo process, the event channel routines return 

to UNHUNGI in the interrupt system. 

Finally, the "running", "event", and "pending action" flags are set in 

the process. The "pending action" flag, the "event" flag, and the "wake-up 

waiting" flag are used to control the swapper and the routines for hanging a 

process on several event channels, process interrupt, and process destruction. 

If the process queue is empty or has no processes without "wake-up 

waiting", and the event queue is empty, the event is copied to the event 

queue and the appropriate response is passed to the sender. 
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Getting Events 

A user process may attempt to get an event from an event channel. If the 

event queue is empty, the process may wait ("hang" or "block") until an event 

arrives before resuming execution. Also, a process may attempt to get an event 

from any one of a set of event channels and, in the absence of any events, the 

process may discontinue execution ("hang" or "block") until an event arrives 

for one of the event channels. If more than one process is awaiting an event on 

a single event channel, the first event to be set to that channel is passed to the 

first process while the other process(es) continue to wait. 

The mechanism of getting an event or hanging (waiting for an event to 

arrive) begins with a check on the event queue of the event channel. If the 

event queue is non---empty, the head of the event queue is removed and the 

event is passed to the process (in X6 and X7 for a user process). 

If the event queue is empty th.e process must be added to the queue of 

waiting processes (process queue) using a process queueing word in the ECS 

image of the process. The "running" flag in the process is cleared and the 

process is removed from the scheduling queue (de-scheduled). Next, the P-

counter of the process is decremented by one. This is to allow for the possi-

bility of a process interrupt causing the process to resume execution. In this 

case, when the interrupt subprocess returns, the process will re-execute the 

exchange jump, which calls the system to try to get an event from the event 

channel. When the process has been chained on the process queue, the system 

and user clocks are updated and the event channel routines exit to SWAPOUT in 

the swapper to swap out the process. 

When an event arrives for a process which is hung on an event channel, 

the event sending mechanism will set the appropriate flags and schedule the 

process to run as described above. The swapper will detect the "event" flag 

and return through SYSRET instead of TCUSER of the system entry/exit' routines. 

The swapper will have already removed the process from any process queues on 

which it had been hung. 
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To get an event from one of a set of event channels, the event channel 

routines must interrogate the event channels one at a time. If an event 

channel has an empty event queue, the. process is queued in the process 

queue of that event channel using the next queuing word of the process. The 

sequence of "in use" queuing words in the process must be terminated by a 

zero word. Between the interrogation of event channels, the "wake-up waiting" 

flag is checked. I.f this flag is set, an event has arrived on one of the 

event channels which. has already been interrogated. If an event has arrived 

or an event is discovered on an event queue of an event channel, the process 

is removed from all the process queues on which it is already chained, and the 

event channel routines exit to the system entry/entry mechanism. When interrogating 

the set of event channels periodic pauses must be made to allow the interrupt 

system to run. Otherwise, the interrupt system might be locked out for an 

intolerably long time. If, after interrogating the last event channel, the 

"wake-up waiting" flag is not set (note that the interrupt system is still 

locked out), the process is descheduled, the P-counter is decremented, and 

the event channel routines exit to SWAPOUT in the swapper. 

Figure 1 
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Time Sharinj System Text Standard 

The System Standard Text (Systext) is the standard method of storing coded 

information for the Time Sharing System. Information in Systext format exists 

in a file. ( semi-infinite array of 6Q bit words) and is terminated by an end-

of-information word. A Systext file is composed of lines, which contain 

character coded information, and segments which contain no information and 

are called sloppy segments. 

Systext Lines 

A line is a sequence of 7 bit ASCII characters terminated by the control 

character CR (= 1558) . Each line is packed left-justified into succes-

sive 60'bit words, 8 characters (56 bits) per word ! The first 4 bits of 

each word serve to signal the beginning of a line: for the first word of a 

line these leading bits are 1001; for all other words in a line they are 

0000. Consider the line ABCDEFGHIJ CR which would be stored in Systext 

as: 

1001ABCDEFGH 0000 I J CR * * * * * 

Characters which follow the appearance of CR in a word are ignored. 

Multiple blanks in a line are compressed by inserting a count of the number 

of blanks rather than the blanks themselves. The ASCII character ESC (=1738) 

is reserved for this purpose. Whenever ESC occurs in the Systext file, the 

character following it is interpreted as a blank count, 'n' (0 ≤ n < 128 ) . 
io 

On output these two characters are replaced by n blank characters. 

Character Representation 

The internal ASCII code used in System Standard Text is the external ASCII + 

1408 (mod 200$). The conversion is performed by the system I/O routines (see 
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Section ) . This scheme maps blank onto 0, 0 onto 208 and A onto 418 . 

See Table 1. 
oN

n.

-graphic characters, however, are. not allowed to occur in 

System Standard Text. (CR and ESC in the contexts described above are 

the only exceptions.) Therefore, the character % has been reserved as a 

special prefix for representing non-graphic characters; if the graphic fol-

lowing a % maps onto a control character under the mapping: internal 

ASCII + 1008 (mod 2008), the pair is interpreted as that control character 

(see Table 2). Otherwise the % leaves its successor unchanged. So 

%% represents % and %M represents CR 

Sloppy Segments 

A sloppy segment in the Systext file is a group of n words (0< n < 218) 

that are to be ignored. The first word of such a segment is of the form: 

-INDEF 

6000 

59 47 18 0 

where n is the count of words in the segment. The system ignores the 

middle 30 bits of this header word and the succeeding n-1 words. 

End-of-information 

The end of Systext is signaled by an end-of-information (EOI) word of the 

' form: 

_ Co 

4000 

59 47 

The low order 48 bits of the word are ignored. 

0 



Table 1 

•Graphic TTY Character Representation 

Internal ASCII. 
TTY Character Representation 

0 
1 

" 2 

14
15 

• 16 
/ 17 
0 20 
1 21 
2 22 
3 23 
4 24 
5 25 
6 26 
7 27 
8 30 
9 31 
• 32 

33 
< 34 
= 35 
> 36 

37 
@ 40 
A 41 
B 42 
C 43 
D 44 
E 45 
F 46 
G 47' 
H 50 
I 51 
J 52 
K 53 
L 54 
M 55 
N 56 
0 57 
P 60 
Q 61 

Internal ASCII 
TTY Character Representation 

R 62 
S 63 
T 64 
U 65 
V 66 
W 67 
X 70 
Y 71 
Z 72 
j 73 

74 
] 75 
+ 76 
+ 77 

' 100 
a 101 
b 102 
c 103 
d 104 
e 105 
f 106 
g 107 
h 110 
i 111 

J 112 
k 113 
1 114 
m 115 
n 116 
o 117 
p 120 
q 121 
r 122 
s 123 
t 124 
u 125 
v 126 
w 127 
x 130 
y 131 
z 132 
{ 133 
t 134 

} 

rubout 

• 135 
136 
137 



Table 2 

No Graphic TTY Character Representation 

Character 

NUL 

SOH 

STX 

ETX 

EOC 

EN 

ACK 

BEL 

BS 

HT 

LF 

VT 

FF 

CR 

SO 

SI 

DLE 

DC1 

DC2 

DC3 

DC4 

NAK 

SYN 

ETB 

CAN 

EM 

SUB 

ESC 

FS 

GS 

RS 

US 

Internal ASCII 
Representation 

140 

141 

142 

143 

144 

145 

146 

147 

150 

151 

152 

153 

154 

155 

156 

157 

160 

161 

162 

163 

164 

165 

166 

167 

170 

171 

172 

173 

174 

175 

176 

177 

K.e~r Combination 
Syatext Repreaentation 

0 

%A 

%B 

C 

% D 

%E 

%F 

%G 

%H 

%I 

%J 

%L 

%M 

%N 

%0 

%P 

%Q

%R 

%S 

%T 

U 

% V 

%W 

%X 

Y 

% Z 

[%0 
\%0 

j%0 

f 

a 

Function 

Bell 

Backspace 

Horizontal Tab 

Line Feed 

Vertical Tab 

Page Eject 

Delete Line 
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The Line Collector 

The line collector collects a line from the TTY using the previously typed 

line as a template. It maintains two lines simultaneously, an old one and 

a new one. The old line is the last line received by the Teletype (or 

from INITIAL) and is local to the virtual TTY buffer; it may possibly be 

empty. A new line is constructed from the old one using the characters 

typed in from the Teletype. To visualize the process of constructing each 

new line, imagine two cursors or pointers, one called OLD which runs over 

the old line and one called NEW which is positioned on the new line as it 

is created. Normally when a character is entered from the TTY, it is 

appended to the new line and both cursors advance on place. If certain non--

graphic characters, called Control Characters (see Table 3) are entered, 

the cursors can be manipulated so that, for example, characters are COPIED 

from the old line to the new one, or parts of the old line are SKIPped, or 

the cursors BACKUP over undesired characters. 

The most obvious application for the line collector would be in conjunction 

with an on-line compiler which performs a simple syntax check of each line 

as it is entered. If the line ,is bad it output a diagnostic, rejects the 

line, and calls on the line collector. The user edits the old line which 

still resides in the yirtual buffer and resubmits it to the compiler. 
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The line collector permits the following actions to be performed via the 

appropriate control characters, ; 

Operation 

Accept 

Type State 

Concatenate and 
Accept 

Concatenate, Print 
and Accept 

Tab Set/Release 

Tab 

Control Characters. Action 

The current new line is accepted 
as is. 

Advances the printed paper to a 
fresh line. Spaces to the current 
position of the New cursor, prints 
a copy of the remainder of the old 
line,  and on the following line prints 
a copy of the new line to the cur-
rent position of the cursor. 

e.g.: remainder of old line 

current new line 

(New cursor) 

Concatenates the remainder of old 
line onto the current new line and 
accept. 

Concatenates the rest of the old 
line onto the new line, prints 
it out, and accepts. 

Sets (releases) a tab stop at the 
current position of the cursor in 
the new line if entered an odd 
(even) number of times. 

Inserts blanks up (both cursors ad-

vance) to the next tab stop. 

For each of the three actions Backup, Copy, and Skip, the distance can be 

specified in 6 ways (see Table 3) . In the descriptions which follow, a word 

is defined as a sequence of one or more non-alphanumeric characters delimited 

by non-alphanumerics; when looking for the beginning of a word, the cursor 

passes over all non--alphanumerics until it encounters one or more consecutive 

alphanumerics. Next character entered refers to the first occurrence in the 

If the first key specified is 

while the first key is still depressed. 

the second key must be pressed 
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line of the next character typed in after the control characters. If at any 

time an edit request is made which cannot be fulfilled, the line collector 

echoes a bell instead of the graphic specified. 

Operation 

Backup one 
character 

Backup one 
word ' 

Backup to next 
character entered 

Backup to and 
including next 
character entered 

Backup to tab 

Backup to edge 

Copy one 
character 

Copy one 
word 

Copy up to next 
character entered 

Control Characters Action 

Cursor in the new line backs up 

(erases) one character* ~ is 
echoed on the printer. 

Cursor in the new line backs up 

(erases) one word* <- is echoed 

once on the printer. 

Cursor in the new line backs up 
(erases) up to but not including 
the new character entered* + 
is echoed on the printer. 

Cursor in the new line backs up 
(erases) up to and including the 

next character entered -- is 
echoed on the printer. 

Cursor in the new line backs up 
(erases) up to the preceding tab 

setting* { is echoed on the line 
printer. 

Cursor in the new line backs up 
(erases) up to the left edge, thereby 
starting the line anew* - is 
echoed on the line printer. 

The next character in the old line 

is appended to the new line, and 
the character is printed. 

The next word in the old line is 
appended to the new line and is 
printed. 

Characters in the old line up to 

but not including the next character 
entered are appended to the new line 
and printed. 

The old cursor moves simultaneously with the new cursor. 
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Copy up to and 
including next 
character entered 

Copy to tab 

Copy rest of 
old line 

Skip one 
character 

Skip one word 

Skip to next 
character entered 

Skip up to and 
including next 
character entered 

Skip to tab 

Skip to end 
of line 

* 

Characters in the old line up to 
and including the next character 
entered are appended to the new 
line and printed. 

Characters in the old line up to 
the next tab setting are appended 
to the new line and printed. 

The remainder of the old line is 
appended to the new line ,and printed. 

Note that 

valent to 

- is equi 

above. 

Cursor in the old line moves ahead 
(skips) one character* $ is echoed 
on the printer. 

Cursor in the old line moves ahead 
(skips) one word* $ is printed 
for each character skipped. 

Cursor in the old line moves ahead 
(skips) ,to but not including the 
next character entered* $ is printed 
for each character skipped. 

Cursor in the old line moves ahead 
(skips) to the position immediately 
after the next character entered.* 
$ is printed for each character 
skipped. 

Cursor in the old line moves ahead 
(skips) to the next tab setting.* 
$ is printed for each character 
skipped. 

Cursor in the old line moves ahead 
(skips) to the end of the line # $ 
is printed for each character skipped. 

The cursor on the new line moves simultaneously with the cursor on the 
old line. 
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Insert Change: If entered an odd number of times 
since the beginning of the first line, 
the cursor in the old line is not 
moved on Backup or normal entry 
operations, thereby allowing the 
insertion  of characters into a line. 
Odd numbered entries of the control 
characters are echoed by < . 
Even numbered entries return the 
cursor to its normal action and 
are echoed by > . 
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Teletype I/O Functions 

The TS System 110 functions are a set of reentrant routines which should be 

loaded into a continuous section of core. If absolute images are used, they 

must reside in the right part of core. To initialize these functions, one 

jumps to .TTY. ON with 

B1 set to the base of a 1338 CM word data area (TTYBUFF) for 
this teletype. 

B2 set to the index in the C-list for the TTY file. 
($2)+1 is the index of the CF to PP event channel 
(B2)+2 is• the index of the PP to CF event channel. 

X7 is set to the return address in calling program. 

I/O operations are performed upon strings or lines where a string is a sequence 

of characters and a line is a string terminated by a CR character. Every 

string or line is quantified by a two word entity called a string descriptor. 

The first word of a string descriptor points to the word base address of a given 

string= the second word indicates the length of the string, or for a line, 

the upper bound on the length, since the terminating CR character signals 

the end of a line. 

Output 

To output a string described by the string descriptor DESC, DESC+1 the following 

macro call is invoked; 

PUTOUT 

+ 

MACRO TTYBUFF, DESC 

SB1 TTYBUFF 
SA4 DESC+1 
SX7 +1 
JP PUTL 
ENDM .PUTOUT 

The data area for the TTY 

.PUTOUT outputs characters up to and including a CR or until the length spe-

cified in the second word of the descriptor is exceeded, whichever occurs first. 

Lines with blanks compressed as well as uncompressed lines may be output by 

.PUTOUT. If a CR is encountered, a LF is also echoed. 

NOTE: If the flag at TTYBUFF + FORCE (FORCE = 23g ) in the TTY data area is up 

the TTY buffer will be flushed (PP is notified that there is something in the 

buffer) each. time... . PUTOUT finishes. This kind of call-by--call flushing 
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is expensive and should be suppressed when possible, 

file is to be listed, the FORCE fl ag should be turned 

With the flag off, lines will be forced out only when 

full. Initialization leaves FORCE up. 

Therefore, if a large 

off until the last line. 

the TTY buffer becomes 

A single character is output when a macro call to .OUTPUTC is invoked: 

.OUTPUTC 

+ 

MACRO 
SBl 
S.Xl 
SB7 
JP 
ENDM 

TTYBUFF, CHAR 
TTYBIJFF 
CHAR 
*+1 
PUTCTTYT 
OUTPUTC 

The output buffer is flushed when a macro call to FLUSH is invoked: 

FLUSH 

+ 

Input 

MACRO 
SB1 
SB7 
JP 
ENDM 

TTYBUFF 
TTYBUFF 
*+1 
FLUSH 
FLUSH 

Teletype input is significantly more complex than output. The routine 

INGET is called to get a line from the TTY: 

INGET 

+ 

MACRO 
SB1 
SX7 
JP 
ENDM 

TTYBUFF 
TTYBUFF 
~+1 
GETL 
TTYBUFF 

INGET causes a new line to appear as the string described by the string 

descriptor stored at TTYBUFF + NEW (NEW = 1018). Th.is new line does not 

yet have blanks compressed and the first four bits of each word are zeros. 

INGET obtains the new line from the teletype using the line described by the 

descriptor TTYBUFF + OLD (OLD = 76 8) as a template. To modify the template 

merely involves updating the OLD descriptor and its image with desired new line. 

The line must not exceed 86 characters in length since that is the maximum 

length of a line which INGET can return. 
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A call to the following macro enables the user to detect the reserved 

control character 1 U . 

INGET . 

+ 

MACRO TTYBUF, COMMAND 
SB1 TTYBUF 
SX7 COMMAND 
LX7 18 
SX6 *+2 
BX7 X6+X7 
JP GETL 
ENDM INGET . 

If the line gotten from the TTY buffer is terminated by % U instead of CR , 

then control returns to COMMAND rather than *+1 This allows the TTY to 

earmark certain lines as special. For instance, consider a file editor which 

allows lines to be appended to a file.  There must be a way for the user to 

signal which line is the last line to be appended to the file. However, every 

key has a pre-assigned meaning or can appear in a line; the only exception is 

U . Thus the editor could designate % U to terminate the last line of the 
—-

and control will return to COMMAND. 

The input buffer can be cleared (the contents are removed and discarded) by a 

macro call to CLEAR: 

CLEAR 

+ 

MACRO 
SBl TTYBUF 
SB7 +1 
JP .CLEAR 
ENDM CLEAR 

Since these routines should suffice for most circumstances, the following 

esoteric features can be ignored by the majority of users. 

The routine GETS concatenates characters up to and including the next break 

character (see p. 4) onto the string described by the string descriptor DESC. 

All but the break character are echoed; the break character is returned in Xl. 

GETS is called as follows 

GETS 

+ 

MACRO TTY, DESC 
SB1 TTY 
SA4 DESC+1 
SB6 1 
SX7 +1 
JP GETS 
ENDM GETS 

file 
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There is one anomoly connected with GETS; if no check were provided, it would 

be possible for GETS to accept a string that was long enough to clobber storage 

when it was concatenated onto the string described by DESC. To avoid this, 

GETS expects DESC+2 to contain an upper bound on the length of the resulting 

string. If GETS receives a string which. when concatenated would exceed this 

upper bound, it returns in x.CHAR the negative of the first character in 

the string which causes the bound to be exceeded. 

The routine GETCTTY gets the next character from the TTY buffer 

Xl ; it is called as follows: 

GETCTTY MACRO TTYBUF 
SBl • 1 

+ SB7 *+1 
JP GETCTTY 
ENDM GETCTTY 

placing it in 

GETCTTY does not echo the retrieved character even if the SOFTECHO (= 21$) 

flag in TTYBUFF is on. (The SOFTECHO flag signals that the PP has not been 

able to echo a character and therefore that GETS should.) 

The macro call to NEWBREAK is used to switch from nne table of break characters 

to ano the r . 

NEWBREAK MACRO TTYBUFF,I 
SB1 TTYBUFF 
SB2 I 

+ SB7 +1 
JP NEWBREAK 
ENDM NEWBREAK 

If the break table is switched, it should be restored to break table #2 before 

using GETL . Other routines will work with any break table. 

Table Number, Characters which signal a_break 

o 

none 
1 any character 
2 non--graphics 
3 non'-a1phanumerics 
4 non"numerics 
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