
S4Id1≥

-lia 7 1:7-; 1969

System entry/exit

Control passes from the user to the entry point (TJSERCAL) of the system

entry/exit routines when the user executes a CEJ instruction. Control

returns to the user (at S.RETU) at the end of the system entry/exit routines,

again by a CEJ instruction. Thus the system runs . in monitor mode, while

the user runs in user mode. The function of these routines is to determine

the reason for the users call upon the system, to collect and check the

parameters needed for the action, to transfer control to the proper system

action routine, and to handle the return to the user after the system action

.s completed.

On entry to the system entry/exit routines (at USERCAL) the origin of the process

descriptor (see Processes) has been picked up in B1 by the exchange jump. The origin

of the process descriptor will remain in B1 through all system actions. First, the

system and user clocks are updated. The difference between S.OLDTM, which contains

the value of S.CHARG from the last time it was updated, and S.CHARG, which runs when-

ever the interrupt system is not running, is added to the system total user time (S . URSTr

in system core and to the user's total user time (P.USRTM) in the process descriptor.

The CEJ instruction which caused the transfer of control is then examined

to find the address of an input ' parameter list (see Figure 1) . It is expected that the

CEJ which the user executed was in the upper two parcels of the instruction

word. The low order 18 bits of the 30 bit CEJ instruction are extracted and

interpreted to locate an input parameter list. If the 18 bit field is negative,

the complement of the low order 4 bits specify which register in the user's

exchange package contains the input parameter list (IP list) pointer (e . g . ,

-3 -'- B3; -10 } X2) . Otherwise, the 18 bit field is taken to be the IP list

.pointer. This pointer is checked for legality (i.e., must be positive and less

• than user FL) and an error is generated if necessary. Finally, the IP list

pointer is saved in the process descriptor at P.IPLIST in case it is needed to

form a stack entry for a subprocess call. Also the stack manupulation flag

(P.OLDP), which controls the updating of the old stack entry in case of a sub-

process call, is reset.

Next, the first word of the IP list (called IPO) is interpreted

as a C--list index and the corresponding capability is fetched by calling

GETCAP (note that a negative or overly large C~-list index will cause an error

System entry/ exit -2

to be generated). This capability is checked to see that it is a capability

for an operation; if it is not, an error is generated. The parameter speci-

fications of the operation are interpreted by OPINTER and an actual parameter

list is formed in the process descriptor starting at P.PARAM.

Parameters which are fixed in the operation are copied directly to the actual

parameter list. User supplied parameters are drawn from the IP list which is

expected to contain, in successive words, data parameters or C-list indices.

User supplied capabilities are checked for the correct type and required options

unless the parameter specification is "any capability". All capacility indices

are checked to be sure they fall in the range of the full C--list. If an "any"

parameter specification is encountered, an error is generated and parameter

processing is terminated.

For operations which are flagged as being parameterless, the interpretation of para-

meter specifications is omitted. After the completion of the actual parameter list

(AP list), the operation is checked to see if it requires a subprocess name and para-

meter type bit masks (i.e., it is a subprocess call operation) . If so, the subprocess

name is copied from the operation to P.PARAMC in the process descriptor, the number of

parameters is stored in P.PARAMC-1, and the bit mask(s) are copied from the operation

into the cells preceding P.PARAMC-l.

Finally, the ECS action number is extracted from the operation; it is used as

an index to jump into the ECS action jump table starting at ACTIONL where

there will be a jump to the proper entry point for the desired ECS action.

Upon completion of an ECS action, the ECS action routine normally returns to

the system entry/exit routine to return control to the user. The only excep-

tion to this is the case in which the user process has blocked on an event

channel, in which case the event channel routine exits to the swapper.

There are three points to which ECS action routines may return. The normal

return is to SYSRET. This return updates the users P-counter in accordance

with the user supplied P---counter offset which is stored in the low order 18

bits of the CEJ instruction word 'originally used to call the system. The

legitimacy of the new P--counter (old P-^counter + P-counter offset) is checked

and an error may be generated. The system time clocks at S.SYSTM in system

core and P.SYSTIM in the process data area are updated, and a check is made

to see if the user's quantum has run out. If S . QUANT is positive (quantum

has run out) the sapper is entered at SWAPOUT . Otherwise, an exchange jump

is executed to return control to the user.

System entry/exit -3

The second return is to TOUSER and is the same as the return to

SYSRET except that the user's P- counter is not modified. This return is

used by the subprocess calling and the subprocess return routines. The

third return is at S.RETU and simply does the CEJ to the user. It is

used by the swapper to transfer control to the user.

Figure 1

SYSTEM CALL

51 30 17

CEJ / IP LIST % P-counter
POINTER // offset

£ 1i l 1969

ALLOCATION OF ECS

The lower portion of ECS contains system code and certain other specialized
system cells. The remainder of ECS is divided into blocks of three varieties:
objects, free blocks, and file blocks.

The Master Object Table (MOT) is located in low ECS and contains an entry
,for each object in ECS.. Each entry occupies one cell and contains a pointer

to the object as well as a "unique name" associated with the object. Except

for the special case of "direct access" all references to an object are made

through the MOT entry. The unique name must be checked against a "unique name"

provided by the user in his capability before allowing access to the object.

This insures protection even after an object has been deleted and the MOT entry

has been reassigned. Furthermore, the MOT facilitates object relocation.

The unused entries in the MOT compose an available space list, to which a
pointer is maintained in ECS at EC.ABPCK. The next available "unique name",
issued serially, is kept at EC. ABPCK+1. System disasters occur when the MOT
free list is exhausted or the next available unique name exceeds 2 39 - 1.

Objects are the true residents of ECS and are classified as: Allocation
Blocks, Capability Lists, Event Channels, Files, Operations, or Processes. Each
of these occupies one block except files, which constitute a tree structure of

blocks. The root of this tree is the file descriptor, the actual object. The
leaf nodes are data blocks and the other nodes are pointer blocks, classified
jointly as file blocks. Each file block is located by a single pointer,
guaranteeing ease of relocation for file blocks as well as objects.

Each continuous portion of unused space in ECS forms a free block, which

is linked into a two-way circular list. Pointers to this, the Free Chain,
are maintained in two cells at EC.APACK.

ALLOCATION BLOCKS

The allocation block is the object which relates ECS allocation to funding.

An allocation block can be provided with a sum of money and a portion of ECS

space, which can only be obtained from another allocation block. Every object

is associated with an allocation block; these objects are linked in a two-way

circular list. The allocation block has pointers to this list, and each object

has a backpointer to its father allocation block. The objects of ECS, there-

fore, form a tree, all but the leaf nodes of which are allocation blocks. The

root of this tree is the Master Allocation Block which is created at initializa-

tion and provided with an infinite amount of money, and all of ECS.

The allocation block will be billed for CPU-time used by its daughter

processes, and will be charged rent on the ECS space occupied by its daughter

objects. FUND is the routine which charges this rent and must be called when-

ever the size of a daughter object is to be changed. It must also be called

periodically to prevent deficit spending. As of this writing, policy decisions

are pending regarding allocation blocks (e.g., what to do if an allocation

block runs out of money) .

2

FUND is called with an allocation block, and an increment to ECS space.
It compares the master clock with the "time of last bill" field, updating the
latter, and charging rent for the interim on ECS space in use. "ECS in use"
and "$ used for rent" are updated. "ECS in use" cannot exceed "Allocated ECS"
and "$ used" cannot exceed "$."

FUND has three entry points:

FUND -- B2 ... Increment to ECS space
B3 ... Return link
X5 ... 2nd word of capability for alloc bk

FUNDX7 - B3 ... Return link
X5 ... 2nd word of capab. for alloc bk
X7 ... increment to ECS space

FUNDB - B3 ... Return link
Al ... S . ABLOCK
XØ ... ECS address of alloc bk
X7 ... increment to ECS space

BLOCK MANIPULATION

At initialization the following blocks are created: the Master Allocation
Block, two zero-length free blocks, and (a free block) several free blocks
(max. size = 217 - 1) consisting of the rest of ECS. After that, block struc-
ture is in the hands of four routines:

ALLOC creates a block of specified size

The free chain is scanned for a block of sufficient size. If none
is found, GBGCOLL is called. Otherwise, a determination is made
whether the free block is sufficiently larger than the requested
size to justify splitting it up. If so, the new block is taken off
the beginning of the free block, whose size field is updated. If
not, the entire block is used and is removed from the free chain.
The allocator`s word is written and a pointer to the block is stored
at a caller-specified call. The block is zeroed.

On entry: B2 - size of block
B3 - type of block (1 - pointer block; 0 - data block or object)
B7 - return link
X5 - ECS address of pointer to be set.

REALLOC changes the size of a block (always an object)

First it is determined if a new block will be required (it will not
be if the increment is negative or less than the slop). If not, FUND
is called with the increment, and the size field is updated. Otherwise,

FUND is called with the total size of the new block, and ALLOC is
called to find the block. FUND is again called to defund the original

block (without this double call, a system disaster would occur if ECS

were saturated) . The contents are transferred from old block to new,

FREE is called to release the old block, and the MOT entry is updated.

3

On entry: Xl increment
X2 - MOT index of object
X6 -- return link

FREE inserts a block into the free chain

The block is merged with either or both adjacent blocks when
they are free. The pointer to the block is zeroed.

On entry: B7 -- return link
• X5 - ECS address of pointer

GBGCOLL, when written, will compact the block structure.

OBJECT CREATION AND DESTRUCTION

MAKEOBJ creates an object

FUND is called; an MOT entry is created;.ALLOC,/is called. A
capability for the object (all option bits- set) is created and
stored in "CAPAB" . The list associated with the father allot bk.
is updated (the header word is written).

On entry: B2 - size of object to be created
B4 - return link
X5 - 2nd word of capability for alloc bk (father)
X7 - type of object

On exit: X5 - address of first usable word

DELOBJ destroys an object

The father allocation block is found, and the object_ is removed
from its list. FUND is called to defund the space FREE to
release it. The MOT entry is added to the MOT free list.

On entry: B7 return link'
X5 2nd word of capability for object to be deleted

FILE BLOCK CREATION AND DESTRUCTION

MAKEFIL creates a file block

It calls FUND and ALLOC only.

On entry: B6 - type of block (1 - ptr blk; 0 - data blk)
B7 - return link
X5 - 2nd word of capab. for allot bk.
X6 - ECS address of p tr to new block

4

RTRNFIL deletes a file block

It calls FUND and FREE.

On entry: B7 - return link
XS - 2nd word of capab for allot bk
Xb ECS address of pointer

MISCELLANEOUS ROUTINE'S

ECSINIT initializes ECS appropriately

Four ECS actions:

NEWUN changes a unique name

This is the system "Indian-giver" -+'~

APl = D : C-List Index of Object whose unique name
is to be changed.

CREALBK creates an allocation block

AP1 = C : Father alloc bk
AP2 = D : Index for new capability

CCCLOA constructs a capability (all option bits set) for the
newest-born child of the alloc bk.

AP1 = C : Allocation block
AP2 = D : Index for new capability

DONATE transfers space and money from one allot bk to another

AP1 = C Alloc Bk (DONOR)
AP2 = C Alloc Bk (DONEE)
AP3 = D ECS space to be transferred
AP4 = D Money to be transferred

PICTURES

MOT entry

free block

Object

block
bits

block
bits

Pointers
point here

unique name pointer

p tr to next
free blk

SIZE

p tr to last
free block

p tr to next free
block + 1

SIZE

size in
use

MOT index SIZE

TY
PE

MOT Index ''
MOT

Alloc Bk
Windex
Last
Obj

MOT Index
Next Obj

FIRST USABLE WORD

Block Bits
1 if block is free
0 if block is not

free

Allocation Block

59 58

pointers point .here

SIZE

 Allocator's Word

Header Word (Alloc Bk
Chaining Word)

.SIZE

1 if the preceding contiguous block
is free

0 if the last block is not free

Alloc Word (see object)

Header Word (see object)

Allocated ECS ECS in use

pointers to AB - chain

time of last bill $ $ $

$ used for CPU $ used for rent

Capabilities and Capability-Lists

User access to ' all objects within the ECS system is controlled by capabilities.

A capability identifies the object it refers to, specifies the type of the

object, and the set of allowed actions on that object (options). Capabilities

are grouped together in capability-lists (C--lists) which are themselves objects

within the ECS system. Individual capabilities are referred to by their index

within a C-list. Since the capability, residing in a C-list, authorizes access

to an object, the user is never allowed to fabricate a capability. The system

creates a capability with all options allowed when an, object is created. Sys-

tem actions are provided to permit the user to examine a capability, to copy

capabilities between C-lists and within a C-list , and to downgrade the option

mask (see System Actions). Thus, the user can transfer they right to access an

object and can curtail that access, but he may never manufacture that right or

increase the set of allowable actions on the object.

CAPABILITY

A capability consists of two 60-bit words (see Figure 1) . The first word con-

tains the type of the object to which the capability refers and a bit mask

indicating the allowed actions on the object The type field occupies the

lower order 18 bits of the first word and must have exactly 9 of the 18 bits

set. The remaining 42 bits comprise the option mask. The meaning of the

bits in the option mask, of course, depends on the type of the object.

The second word contains the information necessary for the ECS system to

access the object (or, in thecase of a class code, the object itself) .

The system uses the low order 18 bits of the 'second word', which contain the

master object table (MOT) index, and the high order 39 bits, which contain

the unique name of the object. The remaining 3 bits o the second word are unused.

Capabilities are created by the allocation routines at the point when storage

is allocated for a new object. The new capability with all options allowed

is placed at CAPAB and CAPAB+1 by the allocation routines. The routine

creating the new object then moves the capability to its user-designated

position in the user's full C-list by calling PUTCAP.

Capabilities and Capability-Lists -2

CAPABILITY LIST

A capability list (C-list) is a sequence of capabilities and "empty" posi-

tions (see Figure 2) . It is prefixed by the total number of spaces for

capabilities. "Empty" positions are simply two zero words. Each C-list is

filled with "empties" upon creation.

A C-list is assigned to every subprocess within a process. (See Figure 4). For

every process there is defined a sequence of subprocesses called the full path. Cor-

responding to the full path, the full C--list is defined as the concatenation

of the C-lists belonging to the subprocesses in the full path. When referring

to capabilities within the full C-list, the capability index is interpreted

as if the C-lists in the full C-list have been joined to form one long C-list .

The full C=-list is implemented by maintaining a full C-list table within the

process descriptor (see Figure 3). The full C-list table is a sequence of two

word entries each o which_ identifies.. a C--list and the length of the C-list.

P. CLIST in the process descriptor holds a pointer (relative to the origin of

the process data area) to the first entry in the full C-list table. The full

C-list table is terminated by a zero word. The first C-list (called

the local C-list) in the full C-list is copied into core with the process while

the remaining C-lists remain in ECS. P.CTABLE, in the process descriptor,

holds a pointer to the end of the full C--list table (the zero word), the number

of entries allowed in the table (maximum length of the full path), and the

size of the core buffer for the local C-list (maximum local C-list size) .

Three routines are used to access C-lists. GETCAP is used to fetch a

capability from the full C-list . PUTCAP copies a capability to the full

C-list . If the capability falls within the local C-list , it is copied to both

the ECS copy and the in-core copy of the local C--list. Finally, ARECAP

is used to copy a capability to or from an arbitrary C-list (not the full

C-list) .

Capabilities and Capability-Lists

Figure 1

CAPABILITY

OPTION MASK TYPE

UNIQUE NAME 2,/
MST
INDEX

1 St WORD

2nd WORD

Figure 2

CAPABILITY LIST

LENGTH

OPTIONS TYPE

UNIQUE NAME ~ MØT

OPTIONS -TYPE

UNIQUE NAME % MST

OPTIONS TYPE

UNIQUE NUNIQUE NAME MOT

Number of Capabilities in C—list

Capability (Index 0)

Capability (Index 1)

Capability (Index = LENGTH-l)

Capabilities and Capability-Lists -4

Figure 3

FULL C—LIST TABLE

P.CLIST
ri irr

Carl ist

LENGTH

P.CTABLE

LENGTH LENGTH ORIG OF
OF OF

C-TABLE
C-LIST C-TABLE
BUF

LENGTH
UNIQUE NAME

MOT
INDEX

LENGTH

UNIQUE NAME
MOT
INDEX

LENGTH

UNIQUE NAME
MOT
INDEX

~ ZERO WORD

} LOCAL C-LIST

}2nd C-LIST

} LAST C-LIST

END OF TABLE

Capabilities and Capability-Lists -5

SUBPROCESS DESCRIPTOR (C--LIST DATA)

0

I

Z

3

4

5

6

7

I"1

//.. 7 ' ' L //t/' < ,
/ // / //// /

r/ :
t

////
! "2

UC--LIST UNI E NAME ~
MOT

EX t

Figure 4

Files

A file is an ECS system object, containing a sequence of addressable

(60 bit) words, used to provide storage for code and data. In order to

permit a large file address space and, at the same time, make efficient

use of ECS space, ECS files are organized in a tree structure, The

"leaves" of the file tree are called data blocks and con-

tai.n the addressable words of the file. The non-terminal nodes of the file

tree are called pointer blocks (see Fig. 3) and contain links to either

data blocks or other pointer blocks. With this tree structure, only the

necessary pointer blocks and data blocks are allocated in ECS. Empty or

non--existent portions of the file are not allocated until they are needed.

For any file, there is a sequence of positive integers, (S0,51,. .. ,S)

n > 0, which describe the shape of the file. Each Si, for 0 < i < n, is

the number of branches in the file tree at nodes of level i (the root of

the tree is at level 0; all nodes connected to the root are at level 1;

etc.). Each Si for i > 0, must be an integral power of 2 (note: this

does not apply
to

the first shape number S0) The last shape number,

Sn, is the size of the data blocks. Thus, the number of addressable words

n
in a file is given by L = . II

Si
 . The words of a file are addressed by

integers which may range from 0 to L-1 .

The shape of a file is represented by the dope vector for the file,.

v The file descriptor,, ...-..

is pointed to from the master object table (M0T) contains the dope

vector, the length of the file, a pointer to either a pointer block or a

data block (zero level file) , and the MOT index and unique name of the

Allocation block which funds any changes in the ECS space occupied by

the file. The dope vector contains instructions which are executed to

obtain the path through the file tree which leads to a particular address

within the file. When a file is created, only the file descriptor is

constructed, and the file may be destroyed only when it is in this state.

Files --2

Pointer blocks (Fig. 3) link the file descriptor to the data blocks in all

files with more than one shape number (n > 0) . Pointer blocks are con-

structed only when needed to link to data blocks. The allocation inf or-

mation which prefixes each block in ECs is used to provide a return path

through the file tree. This backpointer contains the absolute ECS address

of the single word which points to the pointer block (in the file descriptor

or in a pointer block at the preceding level) . A count of non--empty pointers

within the pointer block is also maintained in the allocation prefix to

the pointer block (note: the counter is greater than 0; otherwise, the

pointer block is not needed). The word following the last pointer in the

pointer block contains a negative number which is a relative pointer to

the first word of the allocation prefix.

Data blocks (Fig. 4) contain the addressable words of the file.

The count of maps (see Maps) which reference the data block is maintained

in the second of the allocation words.

File actions

When a file is created, only the file descriptor is formed.. Data

blocks may be subsequently added, one at a time, to hold data or procedures.

When a data block is added to a file, it may also be necessary to create

some or all of the pointer blocks between that data block and the file

descriptor. Data blocks may also be removed and, again, one or more pointer

blocks may be deleted if they are no longer needed to link to the remaining

blocks in the file. A data block may not be deleted if it is referenced by

an entry in some subprocess map (reference count 0) .

Files may be read and written. This action transfers words between the

address space of the running subprocess and the data blocks of a file. If

a transfer is requested which involves a f Lle address corresponding to a

non--existent data block, the transfer proceeds until the non--existent file

address is encountered and then an FRETURN is initiated.

Files 3

FILE TREE

LEVEL 2

FILE
DESCRIPTOR

LEVEL 0

ROOT of
FILE TREE

File Shape = (2, 2,4)

Figure 1

~4CO LEVEL 3 (Data Blocks)
 S1 pointers

Oy

S pointers 4'0 ~ ~
.yam'

~O

Files 4

FILE DESCRIPTOR

T POINTER

<ALLOCATION BLOCK >

< LENGTH >

< 0th DOPE WORD >

4

nth. DOPE WORD >

SHAPE = (SO,Sl,...,Sn)

< P 0 INT ER > :: =

or

or

Po inter to Root of File Tree

Allocation Block Identification

File Length.

DopeVector

+0

1g
0000 1 0 ABS ECS ~0

I i ADDR

1777810 1 O ABS ECS
ADDR

39 3 18

< ALLOCATION BLOCK> :: = Unique Name % _ MOT Index

n
LENGTH > :._ (maximum file address) + 1 = II si

i=0

< 0th Dope Word > AX6 Q
i

MXO JP B7

If root doesn't exist

If root is pointer
block (n > 0)

If root is Data Block
(n = 0)

n
Q = ~ log2 (Si)

i=1

_ n
< j th Dope Word > ::_ ' AX6 Q MXO m JP B7 Q = log (S .)

i=j+l

< nth. Dope Word > .._ LSX6

or

JP B7+4

SB5 • S JP B7+5

Figure 2

m = 60 - log2 Cs.

S = Sn 1 (n> 0)

S So (n = 0)

Files 5

POINTER BLOCK

Pointer block at level k

Pointers point
here

18

l+Sk+l

21

Back
Pointer

Po inters.
in Use

< 1st Pointer >

< kth Pointer >

< end fla >

Shape =

< j th pointer > :: =

ci

< k)

or

or

< END FLAG >

ALLOCATION PREFIX

Sk Pointers

+0

12 6 18 3 21

0000 0 j 0 ABS ECS
POINTER

12 6 18 3 21

17778 0 j 0 ABS ECS
POINTER

Figure 3

Corresponding pointer or
data block doesn't exist

Corresponding pointer
block (k < n-1)

Corresponding data
block (k = n-1)

Relative pointer to
first allocation word

Files

Shape = (50,S1,...,Sn)

21

Pointer points
here

DATA BLOCK

18

1 jj IAP
References

1st Data Word

1
S

S th_ Data Word
n

Figure 4

Allocation Prefix

S Data Words
n

z

1969

Processes

Processes are the active elements, of the ECS portion of the time sharing

system. Only within the context of a process may code be executed and

system actions initiated. A process consists of a set of central regis-

ters (exchange jump package) , a set of subprocesses organized in a tree

structure, a call stack recording the flow of control among the sub-

processes, and a set of state flags describing the state of the process.

Swapping: Periodically, a process with its running flag set (see below)

will be swapped into CM to run on the CPU. When this occurs, the process

descriptor and local C-list are read in, and the entries in the full pro-

cess map are swapped in from the indicated files in ECS to the indicated

regions in GM. The exchange jump package of the process is loaded into

the central registers of the CPU and the CPU is allowed to compute for

awhile or until the process hangs. Then the central registers of the

CPU are copied to the exchange jump package of the process, and the process

is swapped out.

Process Descriptor

The data necessary to maintain and run a process are gathered together in

the process descriptor which is stored in two sections: the fixed length

process descriptor and the variable length process descriptor. These two

sections of the process descriptor are copied into CM when the process is

being run on the CPU. While the process resides in ECS (See Figure 1), the

fixed length descriptor and variable length descriptor are separated by

the process queuing word buffer (see Event Channels). Information about

the size of the queuing word buffer is contained in the first word of the

process descriptor (P.ROHEAD). Data necessary to access and move the

variable length descriptor are contained in the second word of the process

descriptor (P.ROHEAD + 1).

When the process descriptor is copied to CM to run the process on the CPU

(see Figure 2), it is preceded by a scratch area (used by the system while

Processes August 18, 1969 -2

performing system calls) and the actual parameter area used to pass the

parameters of system calls (P.PARA.M). In addition, a copy of the local

C--list is copied to CM following the fixed length descriptor and preceding

the variable length descriptor. All pointers within the Droc

descriptor are com•uted relative to the be:innin: of the scratch area. The

absolute CM address of the scratch area is maintained by the system in

S.USRB1 in system core and in Bl of the system exchange package.

The fixed length process descriptor is divided into the read/only descriptor

and the read/write descriptor. The read/only descriptor may not be modi-

fied without locking out the PPU interrupt system (I.LOCK). It contains

(see Figure 3) the state flags of the process, process interrupt information,

and process scheduling data. The read/write portion of the fixed length

descriptor contains the process exchange jump package, data and pointers

used to access and modify the variable length descriptor, and a few words

of global process data.

The variable length process descriptor (see Figure 4) contains the full

C-list table, the call stack, the subprocess descriptor table, logical map

and error selection mask (ESM) storage, and compiled map storage. Organiza-

tion of the variable length descriptor is maintained by pointers and values

in the fixed length descriptor. When the process is in CM running on the

CPU, the variable length descriptor is separated from the fixed length

descriptor by the local C-list buffer, which is large enough to contain

the largest C-list assigned to any subprocess in the process. Both the

call stack and subprocess descriptors contain pointers into the variable

length descriptor. These pointers, like those in the fixed length des-

criptor, are .relative to the origin of the process scratch area (P.SCR).

Processes

PROCESS DESCRIPTOR (IN ECS)

R
READ ONLY
DESCRIPTOR

FIXED LENGTH
DESCRIPTOR

READ/WRITE
DESCRIPTOR

g
PROCESS QUEUING
WORD BUFFER

VARIABLE LENGTH
DESCRIPTOR

0

i

Figure 1

Processes

PROCESS DESCRIPTOR IN CORE

4

P.SCR=O

P. SCR2

P.SCR2L

P.TEMP1

P. TEMP 7

P.PARAM

P.PARAML

P . PAIWIC
P . ROREAD

S.USRBI

SCRATCH
AREA

~1
`"Dead cell

Actal Parameter
Area

. PROCRO

i
READ ONLY Descriptor

.XPACK Lt
P.PROCRW

P.LOCALC

b

FIXED LENGTH.
R WRITE Descriptor
Descriptor

LOCAL C~LIST

Variable Length
Descriptor

Figure 2

Processes

FIXED LENGTH DESCRIPTOR

5

P4 I ~E

P . ROHEAD

P.SCHED
P . u SR `:Ir
P.SYSTIIV

P. SWPT

P.XPACK

P.CLIST

P.CTABLE

P. STACK

P. SUBPDT

MAPE SM

P .OLDP

P.INTERR

P.IPLIST

P.LOCALC

process clocks: user time
system time
swap time

process state flags

15

LENGTH
VAR
DISC
LEN

exchange jump
package

FULL
C--TJ ST

LEN - LEN FULL ORIG
LIST BUF C-TABLE C-TABLE
STACK
 ORIGIN ,TSTA~K

READ ONLY
DESCRIPTOR =

~P . S CH]DL P . PROCRO

1
WD S .

AT SUBp ORIG NUMBER 1 READ WRITE
9 SUBP TABLE of SUBP ' DESCRIPTOR = ORIG LENGTH LENGTH

C~O1`~ MAPS COMP MAF S MAPESMI P • PROCRW
FLAG FOR
~S_UBP_..CALL
NUM INT

ST IP
 LAS

CE

LIST
LOCAL

LOCAL C-LIST
BUFFER

State f lads

P = something "pending"
on swapin; check
W,I,D,& V

W = "wake-up waiting"

R = "running"

I = "interrupt"

D = "destroy"

E = 0 ECS process
1 pseudo--process

C = process "in core"

V = "event"

<Q-BUF> ::= size of process queueing word buffer -= max number of queuing words + 1
<PROC MOT> ::= NOT index of process
<PROC LENGTH> length of process in core [includes process descriptor (Fig. 2)] +

maximum full . address space]
<VAR DISC LEN>. :: = length of variable length descriptor
<ECS ORIG DISC> ::= origin relative P.ROHEAD in ECS of variable length

descriptor = Q'-BUF + P . PROCRO + P . PROCRW

Figure 3

Processes

VARIABLE LENGTR DESCRIPTOR

6

LOCAL
C-LIST
BUFFER

3.

FULL
C-LIST
TABLE

CALL
STACK

SUBPROCE
DESCRIPTOR

TABLE

MAPS &
ESM

LOCAL C--LIST

ZERO

TOP OF STACK

FIRST SUBPROCESS
DESCRIPTOR

r

LAST SUBPROCESS
DESCRIPTOR
DEAD -

CELLS. . _
FIRST LOGICAL MAP

FIRST ESM

LAST LOGICAL MAP

LASfi ESM

OMPILED
MAPS

FIRST COMPILED MAP
PJJ'FER

P . CLIST

P.CTABLE
LEN G-LI pRIG F[~'~
BUFFER ~~i,g C-TABLE

-LI~'~~l

P. STACK

END OF

P . SUBPDT

LAST SUBP

ORIG 0r
STACK '

r0
STACK

B P ~IF~'

P~MAp~S
tORIG LENGTh 1 NCT'lrti
tCOMPJ►2A-P . COMP_ MAP MAP? F,SM

LAST COMPILED MAP
BUFFER Figure 4

Processes 7

Process State Flags

Eight flags describe the state of the process. These state flags, stored

in P.ROHEAD (see Figure 3), are used primarily to control the swapper,

but are set and checked by other routines (event channel, process inter-

rupt, and destroy process). Since the state flags are used to indicate

the "state" of the process, they must never be modified without the PPU

interrupts first being locked out to prevent 'test and set' overlaps.

The eight flags function as follows:

The E flag indicates that the process is actually a pseudo-process and

is used by the event channel routines to distinguish

between genuine and pseudo-processes.

The "in core" flag, C, is set whenever the process is actually run-

ning on the CPU. This flag is checked by the process

interrupt routine.

The "pending action" flag, P, directs the swapper to interrogate

the "W", "I", "D" and "V" flags. These four flags

cause the swapper to:

W - (the wakeup waiting . flag) unchain the process flow from the
event channels;

I -- check the "ancestors" of the current subprocess for an inter-
rupt subprocess;

D - destroy the process; and

V - modify the swapper return because of the arrival of an event
for the process.

The "running flag", R, indicates that the process is scheduled to run

or is running on the CPU. The running flag (R) and

the wake-up waiting flag (W) interact in the event

channel routines as well as in the process interrupt

routines. They are used to permit the process to

"hang" on several event channels and still be able to

accept an incoming event.

Processes 8

SUBPROCESS TREE AND FULL PATH

The subprocess tree is organized so that each subprocess references only

its predecessor (see Figure 5). For each subprocess, the term "ancestors"

refers to the sequence of subprocesses which starts with the subprocess

and terminates with the root of the subprocess tree. Note that a sub-

process is always an "ancestor" of itself. At any given time, there are

two distinguished subprocesses within the process. They are known as

the current subprocess and the end-of-path subprocess. The current sub-

process process is always an "ancestor" of the end-of-path subprocess; the sequence

of subprocesses from the end-of-path to the current subprocess (inclusive)

is called the full path. The end-of -path is defined dynamically by the

flow of control among the subprocesses. The current subprocess may be

considered to be the subprocess currently in control. The end-of-path and

current subprocesses are reassigned whenever a new subprocess is called.

The subprocess being called (.the callee) becomes the new current subprocess.

If the callee is an "ancestor" of the old end-of-path, then the end-of-path

remains unchanged. If the callee is not an "ancestor" of the end-of-path,

the new end-of-path becomes the same as the callee (i.e., the full path

consists of a single subprocess - the callee) . See Figure 5a.

The full path defines the sphere of protection invoked by the current sub-

process. The access into the current subprocess permitted to other objects

within the system is controlled by the full C-list. The full map determines

the configuration of the address space available to the current subprocess,

and the full address space is the size of the address space available to

the current subprocess. The full C-list , full map, and full address space

are defined by the full path. The configuration of the subprocess tree defines

the static relationship between the subprocesses (subprocesses closer to

the root may be given the privileges of their descendents) while the full

path dynamically controls the boundaries of access applied to the current

subprocess. This system of controlling the bounds of protection allows

the construction of processes which may exercise varying degrees of pro-

tection while maintaining synchronization between the subprocesses involved.

n

Processes 9

n

SUBPROCESS TREE

SUBP 3

1 SUBP 9

FULL PATH EXAMPLE

CALLING SEQUENCE

SUBPO
SUBPQ calls SUBP9
SUBP9 calls SUBP6
SUBP6 calls SUBP4
SUBP4 calls SUBPO
SUBPO calls SUBP5
SUBP5 calls SUBP3

Root of subprocess tree

Figure 5

CURRENT SUBP

SUBPO
SUBP9
SUBP6
SUBP4
SUBPO
SUBP5
SUBP3

SUBP $

SUB? 10

END-OF-PATH SUBP

Figure 5a

SUBPO
SUBP9
SUBP6
SUBP6
SUBP6
SUBP6
SUBP3

FULL PATH

SUBPO
SUBP9
SUBP6
SUBP6 ,5,4
SUBP6,5,4,0
SUBP6, 5
SUBP3

Processes 10

CALL STACK

The call stack records the flow of control among the subprocesses. It

contains the information necessary to reactivate a subprocess when con-

trol returns to the subprocess after one or more subprocess calls. Each

stack entry is two words long (see Figure 6). The current subprocess,

the end-of-path subprocess, and the P--counter must be saved at the time

of the subprocess call to reconstruct the full path and to re-initiate

processing where it was terminated by the subprocess call. The address

(within the full address space of the subprocess) of the input parameter

list (see System Entry/Exit) used for the last system call initiated by

the subprocess, and the count of orders processed in the operation used

in the last system call (see operations) are retained to enable processing

of F returns. Finally, three flags are used to control the return of

control to a subprocess. The "interrupted" flag indicates that the sub-

process was interrupted and that the P-counter is not to be modified in

the usual way (see System Entry/Exit) . The "forced F-return" flag indi-

cates that F return action had been interrupted and instead of returning

to the current subprocess, F return action should be initiated. Finally,

an "inhibit interrupt" flag is used by the interrupt machinery to inhibit

the interruption of the current subprocess by itself. P.STACK is used to

control the call stack and contains the stack origin, stack end, and top

of stack pointers relative to the incore process descriptor. The P-counter

and input parameter list address in the top of the stack are not always

maintained since the P-counter is-in the process exchange package (P.XPACK)

and the last IP list address is maintained in '.IPLIST. Each subprocess

is assigned a maximum stack pointer value to prevent the stack from being

filled to such an extent that the. subprocesses closest to the root of the

subprocess tree cannot be called to rectify the situation or to handle

errors.

Processes 11

ii , iYrf. ~111~

CALL STACK

i

f 1T~~f

Forced Freturn

Interrupted
Interrupt Inhibit

P. STACK

{\\\\ S P. IPLIST

STACK ENTRY

F -RETURN. END OF CURRENT
I COUNT 'fiLTH SURF SUBP

r
. /l

IP LIST
Anng pCOUNTE

Figure 6

Processes 12

ERROR PROCESSING

The use of improper parameters in making an ECS system call is detected by

the ECS system and is considered to be an error on the part of the pro-

cess making the system call. The process must be informed of the exis-

tence and type of the error and in addition is given some control over

which subprocess is to handle the: error condition.

Associated with each error detected by the ECS system is an error class and

an error number. Furthermore, associated with each subprocess is an error

selection mask (ESM) (see Figure 7) indicating which classes of errors the

subprocess is prepared to handle.

When an error is detected, it is first assigned an error class and error

number. Then the "ancestors" of the current subprocess are checked (starting

with the current subprocess) to find a subprocess whose ESM indicates it

is willing to handle this class of errors. Finally, the subprocess which

accepts the error is called, and is passed the error class and number as

parameters of the call. In addition, in the ESM of the subprocess which

accepts the error, the bit corresponding to the error class of the error

is turned off to avoid error loops (i.e., a subprocess makes an error,

accepts the handling of the error, and makes the same error).

Processes 13

Class 32 '

ERROR PROCESSING AND PROCESS INTERRUPT

SUBPROCESS DESCRIPTOR (error processing data)
(process interrupt data)

interrupt flag

~\ 1

\\\
\\

~ESM MAX

P.INTERR

IDiTF.BBUP I

ERROR SELECTION MASK (ESM)

Class 0 Class 31

Class 63

Figure 7

Processes 14

PROCESS INTERRUPT

Two mechanisms are available by which one process may affect the execution

of another process: the event channel, used to synchronize otherwise

asynchronous processes; and the process interrupt, used by one process to

force the calling of a specified subprocess (called the interrupt subprocess)

within another process (called the interrupt process). Thus one process can

force a second process to enter a specified subprocess. Furthermore,

the interrupt process will not enter the interrupt subprocess until the

interrupt subprocess is an "ancestor" of the current subprocess. In this

way, the interrupt is given a "priority" based upon the position of the

interrupt subprocess in the subprocess tree of the interrupt process.

With the process interrupt, an 18-bit interrupt datum is passed as the

parameter of the call of the interrupt subprocess. Once a subprocess

becomes an interrupt subprocess, and until that subprocess has been called

r as an interrupt subprocess, interrupts to that;) p ocess are disabled
}

(i.e., additional interrupts specifying that subprocess have no effect).

It is also possible to disarm interrupts which are the same as the current

subprocess (.recall that the current subprocess is an "ancestor" of itself

and thus could interrupt itself). When an interrupt subprocess is called,

interrupts are automatically disarmed for the current (= interrupt)process.

If the interrupt process is "hung" when a process interrupt is initiated,

the "ancestors" of the current subprocess (of the interrupt process) are

scanned to see if the interrupt subprocess is among them. If the inter-

rupt subprocess has "priority" over the current subprocess, the "wake-up

waiting", "running", and "interrupt" flags are set in the interrupt pro-

cess and, if necessary, the process is scheduled to run.

At every normal subprocess call and return, the number of pending inter-

rupt subprocesses (P.INTERR) is checked. If there are interrupt subprocesses

waiting, the "ancestors" of the new current subprocess are scanned to see

if any of them are interrupt subprocesses. To facilitate this scan, the

first bit of the subprocess descriptor (see Figure 7) is the "interrupt

pending" f lag . The interrupt datum is also stored in the subprocess

descriptor. The "interrupt inhibit" flag (interrupt disarmed) in the

Processes 15

stack is always checked if the interrupt subprocess is the same as the

current subprocess. An interrupt subprocess call may also be initiated

either when the "interrupt inhibit" flag is reset, or by the swapper,

where a scan of the "ancestors" of the current subprocess is performed

whenever the. "interrupt'` flag is set in P . ROHFAD (see Figure 3).

Auguet•H, 1969

SUBPROCESS

Every process is constructed as a set of related subprocesses in order to

permit dynamic control of the privileges and protection applied to the process.

The envelope of protection/privilege associated with process may change as

the process executes, but all changes in protection can be seen as being syn-

chronous with the process execution. It is only through a subprocess transfer

that the envelope of protection/privilege is modified.

SUBPROCESS DESCRIPTOR

The data necessary to describe each subprocess is gathered into an eight

word subprocess descriptor (see Figure 1) . The subprocess descriptors are

stored together in the subprocess descriptor table in the variable length process

descriptor (see Processes). Each subprocess has a name by which it can be iden-

tified and accessed. This subprocess name is a class code, the value of which

is stored in the subprocess descriptor (word 1). In addition to its own name,

each subprocess must maintain a link to its "father" in the subprocess tree

(see Processes) . This link is maintained in the descriptor (word 0) as a pointer

to the parent subprocess. Process interrupt (words 0,4) and error handling in-

formation (word 6) are also maintained in the subprocess descriptor.

Associated with each subprocess is a local envelope of protection/privilege.

The local C-list controls access to other objects within the system, while the

subprocess map dictates the contents of the local address space. Information

concerning the limits of the local address space (word 0) , identification of

the local C-list (words 4,5) and the subprocess map (words 3,4) are maintained

in the subprocess descriptor.

The subprocess entry point (word 2) is the address, relative to the local

address space, at which a normal subprocess call will initiate execution of the

subprocess. The maximum allowable stack pointer (word 6) is used to avoid the

filling of the process stack to such an extent the more privileged subprocesses

(i.e., subprocesses nearer the root of the subprocess tree) cannot be called to

rectify the situation or to handle errors. The sum of the lengths of the local

C-lists and subprocess maps of all the subprocesses on the path to the root of

the subprocess tree is maintained (word 2) to help compute the relative origins

within the full map and full C--list of the calling subprocess during subprocess

transfer operations. Finally, the last word of the subprocess descriptor is used

to maintain a list of the maps which have been swapped into CM while the process

is running on the CPU.

Subprocess 2

SUBPROCESS DESCRIPTOR
Figure l 1

INTERRUPT FLAG
MAPIN FLAG

WORD 0

WORD 1

WORD 2

WORD 3

WORD 4

WORD 5

W RD 6

WORD 7

RA + FL faA T PTR TO
FATHER

SUBPROCESS NAME

i ENTRY
POINT

MAP
ORIGIN

C--LIST
ORIGIN

COMP BUF
SIZE

LOGICAL
MAP PTR

COMPILED
MAP PTR

i

INTERRUPT
DATUM

Ii LOGICAL
MAP ENTRIES

C--LIST
- L $ Th

C--LIST UNIQUE NAME C-LIST
,MOT t

ESM
POINTER

MAX ERROR
CLASS

MAX STACK
POINTER

—0— # c ~e
PA 3 S

MAP IN
LIST LINK

WORD, .0 Interrupt f lag : interrupt pending for this subprocess

mapin flag: set if map of subprocess has been swapped in

RA origin of local address space (relative to process CM origin)

RA + FL end of local address space

Ptr to father: link to father in subprocess tree (relative to process
CM origin)

WORD 1 subprocess name: the class code used to identify the subprocess

WORD 2 entry point: address relative to RA to begin execution on a normal
subprocess call

Map origin: sum of "# logical map entries" of all "ancestors" except self

C-list origin: sum of "C--list length" of all "ancestors" except self

WORD 3 comp buf size: number of words allocated for the compiled map buffer

logical map ptr : pointer (relative to process CM origin) to logical
map of subprocess

compiled map ptr : pointer (relative to process CM origin) to compiled
map buffer

WORD 4 interrupt datum: interrupt parameter if interrupt flag s e t

II logical map entries: number of swapping directives permitted in
logical map

C--list length: number of capabilities or "empties" in local C-list

• Subprocess 3

WORD 5 C—list unique name and NOT index: identification of local C—list

WORD 6 ESM pointer: pointer (relative to process CM origin) of first error
selection mask. ward

max error class: maximum error class which is possible to recognize
in ESM

max stack pointer: maximum permissable stack pointer for the subprocesses
to be called

WORD 7 mapin list link: if mapin flag is set then link to subprocess whose map
is swapped in below this subprocess in CM. If this
subprocess is at the end of the map chain; then zero.

Subprocess

SUBPROCESS TRANSFER

The envelope of protection/privilege applied to a process is modified by

switching control from one subprocess. to another. Subprocess transfers fall

into two categories: subprocess calls and subprocess returns. A subprocess

call causes a new entry to be made on the call stack, the full path to be re-

computed, parameters of the call to be passed, and execution to be initiated

at the proper entry point of the subprocess. A subprocess return passes no

parameters and draws the full path and P-counter from an existing stack entry.

In each case, the processing environment must be reconstructed to reflect the

new full C--list, full map, and full address space. This reconstruction requires

the swapping of one or more subprocess maps, the re-building of the full C-list

table (see Capabilities and C-lists), the fetching of a new local C-list and

setting of the full address space limits.

SUBPROCESS CALLS

There are three kinds of subprocess calls. The normal subprocess call is

initiated by calling on the system in the usual manner, using an operation (IPO)

whose action is "subprocess call". A normal subprocess call may also be initiated

as the result of F-return action under the control of a multi-ordered operation

(see Operations).

The error subprocess call is initiated by the ECS system or by a user

request and will call the closest "ancestor" of the current subprocess which

has the proper error class selected in its error selection mask (ESM) (see

Processes, Error Processing). Finally, an interrupt subprocess call is initiated

whenever a subprocess which is an interrupt subprocess has priority over the

current subprocess (see Processes, Process Interrupt).

For all subprocess calls, a new stack entry is constructed and the new pro-

cessing environment is established. The P-counter and last IP list address of

the current subprocess are stored in the old top of the stack. Then cells 0 and

1 of the full address space are zeroed. These cells are used in the event of

hardware arith errors and to simulate SCOPE system calls. Next, the origins

(relative to the local environment) of the address space, C-1 is t , and map of

the calling subprocess are computed and stored in cells 2, 3, and 4 of the full

address space. If the calling subprocess is not a member of the new full-path

Subprocess 5

(see Processes), then these cells are Zeroed (see Figure 2) . Following the

relative origins of the caller's address space, C-list , and map, the parameters

of the subprocess call are copied to succeeding words of the subprocess address

space.

For a normal call, the parameters of the call are first formatted in the

actual parameter area (P.PARAM) of the process descriptor by the system entry

mechanism. These parameters are drawn from the users input parameter list

(IP list) under the direction of the operation being used for the subprocess

call (IPO) . In addition, the system entry routine places the name (class code)

of the called subprocess at P . PARAMC, the number of parameters at P . PARAM - 1,

and a bit string denoting the types of the parameters at P .PARAMC - 2. After

establishing the correct processing environment for the called subprocess, the

parameters are transfered, under the control of the parameter type bit mask,

to the local address space and local C--list of the called subprocess. Datum

parameters are simply copied to the next parameter cell in the local address

space. Capability parameters are copied to successive positions in the local

C-list and the index of the parameter in the local C-list is stored in the

next parameter cell in the local address space. On completion of the parameter

passing, execution is initiated at the entry point of the called subprocess.

During all subprocess transfer operations, if the interrupt pending count

(P.INTERR) is non zero, the "ancestors" of the current subprocess are checked

to see if any of them are "interrupt" subprocesses (word 0 of subprocess des-

criptor). If so, the subprocess transfer operation is terminated and an

interrupt subprocess call is initiated. As part of the termination of the

previous subprocess transfer operation, the "interrupted" flag is set in the

stack entry corresponding to the subprocess that was to be executed (if F-return

action was interrupted, the "forced F-return" flag is set in the stack instead

of the "interrupted" flag) . As with the other subprocess calls, the processing

environment, a new stack entry, and the origins of the previous subprocess are

constructed for the interrupt subprocess call. The interrupt datum from the

subprocess descriptor (word 4) is stored in cell 5 of the new local address

space, and the "interrupt inhibit" flag is set in the new stack entry.

Finally, the interrupt subprocess is entered 2 words before the entry

point specified in the subprocess descriptor.

I 1V

Subprocess 6

An error subprocess call is ini.tated by the ECS system or by user request.

An error subprocess call passes as its parameters the error class and error

number which describe the error causing the call. Also, the bit in the ESM of

the error subprocess corresponding to the error class must be reset to avoid

error loops (e . g . subprocess makes error gets called as error subprocess —

makes the same error — gets called as error subprocess etc.). The entry to

an error subprocess is one word before the normal entry point.

SUBPROCESS RETURN

Like the subprocess call, the subprocess return must construct a new

processing environment before returning control to the user. The return routines

re--activate a subprocess using information left in a stack entry. The full path

recorded in the stack. entry is sufficient to reconstruct the processing environ-

ment. The P--counter from the stack entry, along with the "interrupt" flag,

control where in the subprocess execution is initiated. The normal return

requires the P--counter to be modified by the low order 18 bits of the CEJ

instruction which originally caused control to pass to another subprocess (see

System Entry/exit). If the "interrupted" flag is set, the P-counter is not

to be modified. Finally, the "forced F-return" flag in the stack will cause the

subprocess return routine to transfer to the F-return routine (see Operations).

I. ` Subprocess 7

r'1

ST
R

U
C

TU
R

E

U

H

H

1'

A-+

U)

Cl

U)

N

U)

H

U)

O

CU)

O

Cl

P-~

A
U)

N

a pa
U)

o o L 0 cf
O

L(
N H

H

p-+ P4 P4 P4 PA H
~ 00 ~

Cl
'0 H

U) Cl N

H

Q+ G4 f~ P4 P4 P4 P4
0

O M H H
U Cl H

O

0000
A O to N H
U) Cl

4.3 Pi P4
o O O O

o
o

0 N H O
'.t O

0
43

w S
ub

p
o
ri

g
in

lo
c
a
l

a
d

d
r

C -
li

s
t

le
n

g
th

C -
li

s
t

o
ri

g
in

ne
ap

le

n
g

th

sn
ap

o

ri
g

in

a) 0)
H

U)
U)
4)
v
O
1.4

Ua

ST
R

U
C

TU
R

E
w
a

U

Z
H,

H, I 1 1 P4 1

o
a 0 ~ O H 0

HZ
W U) H

a s H. I 1 0 0 1 0 1 0
~i 1 fy O O N H O Cl O H
000 1 C 1 i

xU) Z

1

A a O
U cn O i

I 0 0 1
L

N OI

0
Lf

H

E
cvi

b1
1~
.r4
H

0 ~
N

U

U)
U)
4)
C-)
O
14

U)

U)
to W H
W OH pq P4 P4 t~ P4 P4 P4 P4 c~ Z 0 0 0 0 0 0 0 0
A A-+ H O tf> u'1 Lrl N N to LI

U) Z
U) W H
W U C.7 PU P4 P4 A4 P4 P4 P4 P4
p~ H 00000000

A cano ~ ~ ~ ~ ~ ~ M ~

x
H H

P O ('*4 cV

a ,

'U) UU)) U)

SU
B

PR
O

C
E

SS

C
A

L
L

S

su
b

p

2
,1

, 0

SU
B

PO

c
a
ll

s

SU
B

P2

SU
B

P2

c
a
ll

s

S
U

B
P

1

S
U

B
P

1
c
a
ll

s

SU
B

PO

SU
B

PO

c
a
ll

s

S
U

B
P

3

S
U

B
P

3
c
a
ll

s

SU
B

PO

SU
B

PO

c
a
ll

s

SU
B

P4

SU
B

P4

c
a
ll

s

SU
B

PO

Class Codes

A Class code is a protected 60-bit datum by which a user
may identify himself or some ECS system obj ect. Within the
ECS system; class codes are used as the names of sub-
processes (See SUBPROCESSES); in the future they will be used
to identify users within the disk system and will be called
access keys.

The 60-bits of a class code are divided into two 30-bit parts
(See Figurel). The upper 30-bits constitute the-"permanent
part" and are. assignedby the system when the class code is
created, Once assigned, the permanent part cannot be altered.
The low order 30-bits of a class code, called the "temporary'
part", are set by the user and may be altered by him any time.

Since each class code occupies only one word, they are not
allocated space of their own in ECS, but instead each is kept
in the second word of the capability which refers to the class
code. Since the second word of the capability usually con-
tains the unique name and 1~OT index for the object, this
choice of location for the class code seems reasonable.

There are two system actions connected with class codes:
The first allows the user to obtain from the system a new
class code. The system keeps a counter for generating the
"permanent part" of a class code, and each time one is re-
quested, the counter is incremented and a new and unique class
code is generated. The second action allows the user to set
the temporary part of a class code. He must already have
permanent part, the capability for which (with the proper
option bit set) he supplies as the first parameter. The
second parameter is the 30-bit datum which is to be inserted
into the temporary part of the class code. The 3rd parameter
is a O 1st index to return the updated class code. A class
code is destroyed only when the capability is destroyed by
being written over.

s~
Figure 1. Class Code

It

OPTIONS TYPE

Permanent part Temporary part

Capability

Mays

Associated with each subprocess is a map which directs the swapping of the

subprocess address space between central memory and ECS files. A map con-

sists of a fixed length sequence of map entries each of which is either "empty"

or contains a swapping directive. A swapping directive (see Figure 1)

designates a contiguous portion of an ECS file, a CM . address within the local

address space of the subprocess, and whether or not that section of subprocess

memory is read only (not to be swapped out).

When a subprocess is to be swapped into CM, each non-empty map entry is pro-

cessed in sequence and a file read action is effectively performed to copy

the section of the file designated by the swapping directive to the local

address space of the subprocess starting at the designated CM address. When

a subprocess is to be swapped out, only those swapping directives not marked

as "read only" need be processed. Note that there is nothing to prevent

several swapping directives from designating overlapping areas in CM or in a

file. The results of overlapping swapping directives may be determined by

remembering that swapinjswapout processes the map entries in sequential order.

To minimize the time spent in swapping maps in and out, the logical map

(sequence of "empties" and swapping directives) is "compiled", or converted,

to a form containing the absolute ECS address of the sections of ECS files

referenced by the swapping directives (see Figure 2). Since one swapping

directive may span several data blocks in a file, the size of the compiled

form of the map will reflect the need for additional entries in the compiled

map. Both the number of entries in the logical ma and the4number of words i h p g map

compiled clap^ are declared when the subprocess is created

and may not be altered. I o carp
i

rn&r

The absolute ECS addresses in the compiled map are sensitive to changes in ECS

due to garbage collection. Thus, the map must be re-compiled whenever a

Maps 2

garbage collection is in progress or has occurred since the last re-compilation.

A word in ECs (GARBCNT) indicates whether or not a garbage collection is in

progress and contains the number-+ of garbage collections since system ini-

tialization. Each compiled map contains, as a prefix, the count of garbage

collections at the time the map was last compiled. This count is compared

with GARBCNT whenever the compiled map is about to be "executed" and will

cause a recompilation if the counts are unequal. A recompilation of a map

may be forced by setting the count in the compiled map prefix to zero.

Access to both the logical and the compiled forms of the map is through the

subprocess descriptor (see Fig. 3). The subprocess descriptor also contains

the number of entries in the logical maps and the size of the buffer allocated

for the compiled map. In addition, the subprocess descriptor contains a flag

indicating whether the map for that subprocess has been swapped into CM and a

chain pointer used to keep track of which subprocess maps are in CM. The

origin (relative to B1 the CM process origin) of the subprocess address space

(RA) and the origin + length (RA + FL) of the subprocess address space are also

available to the map machinery in the subprocess descriptor.

The maps of the subprocesses in the full path are concatenated to form the full

map in much the same way as the full C-list (see C-list) is formed. Each map

however, is swapped relative to the address space of its subprocess, as if it

were the only map being considered. The address space of the running subprocess

is enlarged to form the full address space, which includes the address space(s)

of all other subprocesses in the full path. The code and data in the maps above

(in the full path) the running subprocesses may be accessed as if the address

spaces of the other subprocesses were simply added (one after another) onto the

end of the local address space of running subprocess. Note, however, that the

data and code within these maps is not relocated to reflect the new addresses

used to access them.

11

I^1

Maps

Map Actions

3

When map ent ies are to be changed, care must be/taken when the map involved

is part o the full map. In this case, if thqmap entry involved is not

empty, it must be swapped out before it can be/replaced. The new entry

of there is one) can then be constructed and swapped in. Note that overlapping

map entries will behave oddly since the whol ma is not swapped. At the

present time, the entire map is recompiled, fince a change in the logical map

may change the length of the compiled map. Incremental compilation is not

precluded by the design since the logical ap contains pointers into the

compiled map; however, the implementation of this feature has been deferred.

Maps 4

: := 0 -~ 260 _l

LO G I CAL MAP

< file > or < empty >
<R/0 FLAG>

< file address >

f <COt P3 . FTR>F CM ADDR> <raD crrT>1

< empty > : := +0

< file > • •

39

1st logical map entry

2nd logical map entry

last logical map entry

end of logical map

Denotes an "empty" map entry

UNIQUE NAME

I 8

MOT IND1X file identification

< file address >

< R/0 FLAG > ::= 1 read only; 0 read/write

< compile ptr > ::= index in compiled map buffer of first compiled map
entry for this swapping directive

< CM ADDR > ::= CM address within subprocess local address space

< WD CNT > ::= word count

Note: < CM ADDR > + < WD CNT > < length of subprocess local

Figure 1

address space

Maps 5

COMPILED MAP

GARBCNT r
/ /f/~~// %/// COUNT(>0~

(in ECS)
set if garbage collection in progress

< S PAC E> , < COU NT>

<ECS ADDR><CM ADDR1<WD CNT>

:$ ECS ADDR <CM ADDR)<WD CNT>
< R/ 0 FLAG>247

<LAST ENTRY> 4r ~i

SECS ADDR<CM ADDR !<WD CNT>
K x

+0 END

PREFIX

< COUNT >

Compiled map words

0 must recompile

>0 map is good if same as GARBCNT

< SPACE > : : = number of un-used words in the compiled map buffer

< WD CNT > :: = number of words to transfer

< CM ADDR > ::= CM address relative to CM process origin (Bl)

< ECS ADDR > ::= absolute ECS address to start transfer

< R/ 0 flag > ::= read only flag
0 read/write

1 read only

< last entry > ::= 1 last compiled map word corresponding to a particular
swapping directive

Figure 2

r1

Maps 6

SUBPROCESS DESCRIPTOR MAP DATA)

NAP IN BIT

,Q

0

1

2

3

4

5

6

7

n

~' ̀ RA + FLI

2' 7 /

/
/ /

'2 '
`.f

COMP BUF
Sly

I;OG LCAL COMPILED

f//
J

//% / /% / ' MAP ENTB S i J
i/// /2'

,//
//,/// 1/ /1 /, /

74://' /
LIST LIN

Figure 3

~, 1969

Event Channels

Event Channels are ECS system objects used to synchronize running pro-

cesses as well as to implement "block" and "wake up" mechanisms. Basically,

a user process may request an event from a particular event channel. If the

event channel does not have an event, the user ̀ s process is blocked (stops

running) until some other process sends an event to the event channel. The

exact mechanisms of sending and receiving events will be described in full

detail.

The event channel (see Figure 1) consists of a three word header followed

by the event queue. The event queue is a circular buffer controlled by pointers

and values located in the first and third header words.

First header word: The "in" and "out" pointers in the first word are

manipulated to point relative to the beginning of the event channel. The

"in" pointer always points to the location in which an event is to be put

should one arrive. The "out" pointer points to the location of . the next

event to be removed from the event queue. The "in" pointer will equal the

"out" pointer when the event queue is either empty or full. Therefore, the
s,jo•w.M SJoits

number of empty in the circular buffer is maintained in the third

header word. Finally, the length of the entire event channel is recorded in

the first header word.

Second header word: The second header word is used to maintain a queue

of waiting processes. When a process requests an event and the event queue

is empty, the process is added to the process queue. The process queue is a

bi-directional list through the processes on the queue and the event channel

(see Figure 2). The high order 30 bits of the second word of the header, called

the process queuing word, hold the forward pointer while the. low order 30 bits

hold the backward pointer. Each pointer consists of a Master Object Table (MOT)

index and a queuing word index. The queuing word index, in the high order 12

bits of the pointer, is an index relative to the beginning (in ECS) of the process

which is designated by the MOT index of the low order 18 bits of the pointer.

X

X

Event Channels 2

n

P'1

Within the process, at the location indicated by the queuing word index,

there should be another process queuing word with forward and backward

pointers. The queuing word index is stored in such a way that the unpack.

(JXi Bj ,Xk) instruction will result in the true queuing word index in the

B register. Furthermore, if the pointer refers to the event channel, the

queuing word index will unpack to a -2 in the B register. For example,

the pointer: 20618 10001238 refers to the 618 -st word (in ECS) of the process

with MOT index 1238. Similarly the pointer; 17758 1003218 refers to the pro-

cess queuing word of the event channel with MOT index 3218. If the process

queue is empty, the process queuing word in the event channel will point to

the event channel itself (e.g., (1775$1000321811775810003218)

Event Channel Routines

)•

It is important to note before discussing the event channel routines that

they are one of the few places in which there is interaction between the ECS

action routines and the interrupt system. Since the interrupt system may

call upon the event channel routines at any time, it is necessary to lock

out the interrupt system while manipulating event channels and to release the

lockout upon completion of any event channel manipulations. To lock out the

interrupt system, it is only necessary to set I.LOCK (in system core) non-

zero. To release the lock, simply clear I.LOCK.

Sending Events

Events are sent by user processes and by the interrupt system. An event

consists of two words. The first word is the MOT index of the process which

is sending the event. The second word is a 60 bit datum provided by the sender

of the event. A response is always given to the sender of the event to indi-

cate the disposition of the event (see Figure 3) . For a user process, the

response is, returned in X6.

If the event queue of the appropriate event channel is not empty, then

it may or may not be searched for an event duplicating the new event. This

is to allow for the elimination of redundant events. If the event queue

search was desired and if a duplicate event is found, a response is given to

the sender indicating that a duplicate event was discovered, and the event

sending routine returns.

Event Channels 3

If no duplicate event checking was requested or no duplicate event was

found, the event queue is checked to see if i.t has more than one empty slot.

If the event queue is full, the. sender of the event is notified that the queue

is full, and control returns to the sender of the event. If there is only

one slot left in the event queue, the datum word is replaced by a special

"you lose" datum (--0) and the sender is notified by the "you lose" response.

This "you lose" datum allows the process which ultimately receives that "you

lose" event to discover that the event queue had been full and that informa-

tion was lost.

If the event survives the duplicate event checking and the full event

queue conditions, it is copied into th.e event queue and the pointers are moved

to reflect its presence. Again, the sender of the event is notified of the

deposition of the event.

If the event queue is empty, the process queue must be checked. (Note

that if the event queue is not empty, then the process queue must be empty.)

The process queue is scanned for the first process which does not have its

"wake-up waiting" flag set, i.e., has not already been handed an event, received

a process interrupt, or been marked for destruction. If such a process is

found, and it is not a pseudo process (used by interrupt system to interface

with the event channel logic and other purposes) , th_e "wake-up waiting" flag

is set on that process. The P counter in the process exchange package is incre-

mented and the event is copied to X6 and Xl of the process exchange package in

ECS . Note that the testing and setting of the "wake-up waiting" flag must not

be interrupted by any other access to this f lag . If the process is not running V

("running" flag) the scheduler is called to schedule the process to run. If the

first process without "wake-up waiting" is a pseudo process, it is removed from

the process queue; otherwise, it is not removed until the process is swapped in

to run. Also, in the case of a pseudo process, the event channel routines return

to UNHUNGI in the interrupt system.

Finally, the "running", "event", and "pending action" flags are set in

the process. The "pending action" flag, the "event" flag, and the "wake-up

waiting" flag are used to control the swapper and the routines for hanging a

process on several event channels, process interrupt, and process destruction.

If the process queue is empty or has no processes without "wake-up

waiting", and the event queue is empty, the event is copied to the event

queue and the appropriate response is passed to the sender.

Event Channels 4

Getting Events

A user process may attempt to get an event from an event channel. If the

event queue is empty, the process may wait ("hang" or "block") until an event

arrives before resuming execution. Also, a process may attempt to get an event

from any one of a set of event channels and, in the absence of any events, the

process may discontinue execution ("hang" or "block") until an event arrives

for one of the event channels. If more than one process is awaiting an event on

a single event channel, the first event to be set to that channel is passed to the

first process while the other process(es) continue to wait.

The mechanism of getting an event or hanging (waiting for an event to

arrive) begins with a check on the event queue of the event channel. If the

event queue is non---empty, the head of the event queue is removed and the

event is passed to the process (in X6 and X7 for a user process).

If the event queue is empty th.e process must be added to the queue of

waiting processes (process queue) using a process queueing word in the ECS

image of the process. The "running" flag in the process is cleared and the

process is removed from the scheduling queue (de-scheduled). Next, the P-

counter of the process is decremented by one. This is to allow for the possi-

bility of a process interrupt causing the process to resume execution. In this

case, when the interrupt subprocess returns, the process will re-execute the

exchange jump, which calls the system to try to get an event from the event

channel. When the process has been chained on the process queue, the system

and user clocks are updated and the event channel routines exit to SWAPOUT in

the swapper to swap out the process.

When an event arrives for a process which is hung on an event channel,

the event sending mechanism will set the appropriate flags and schedule the

process to run as described above. The swapper will detect the "event" flag

and return through SYSRET instead of TCUSER of the system entry/exit' routines.

The swapper will have already removed the process from any process queues on

which it had been hung.

Event Channels S

To get an event from one of a set of event channels, the event channel

routines must interrogate the event channels one at a time. If an event

channel has an empty event queue, the. process is queued in the process

queue of that event channel using the next queuing word of the process. The

sequence of "in use" queuing words in the process must be terminated by a

zero word. Between the interrogation of event channels, the "wake-up waiting"

flag is checked. I.f this flag is set, an event has arrived on one of the

event channels which. has already been interrogated. If an event has arrived

or an event is discovered on an event queue of an event channel, the process

is removed from all the process queues on which it is already chained, and the

event channel routines exit to the system entry/entry mechanism. When interrogating

the set of event channels periodic pauses must be made to allow the interrupt

system to run. Otherwise, the interrupt system might be locked out for an

intolerably long time. If, after interrogating the last event channel, the

"wake-up waiting" flag is not set (note that the interrupt system is still

locked out), the process is descheduled, the P-counter is decremented, and

the event channel routines exit to SWAPOUT in the swapper.

Figure 1

EVENT CHANNEL

FORE--POINTER
BACK POINTER
1

PROCESS CHAINING WORD

J
EVENT QUEUE

Event Channels Figure 2 -6

PROCESS QUEUE ENA LE

EVEN
CHANNEL

ORE-POINTER

ORE-POINTER
_ __ -t- I

PROCESS

Figure 3

RESPONSES TO EVENT SENDER

CONDITION RESPONSE VS ,~

EVENT PUT IN EVENT QUEUE 1

EVENT PASSED TO A PROCESS 2

"YOU LOSE" EVENT PUT IN QUEUE 3

EVENT QUEUE FULL 4

DUPLICATE EVENT FOUND 5

July 17, 1969

Time Sharinj System Text Standard

The System Standard Text (Systext) is the standard method of storing coded

information for the Time Sharing System. Information in Systext format exists

in a file. (semi-infinite array of 6Q bit words) and is terminated by an end-

of-information word. A Systext file is composed of lines, which contain

character coded information, and segments which contain no information and

are called sloppy segments.

Systext Lines

A line is a sequence of 7 bit ASCII characters terminated by the control

character CR (= 1558) . Each line is packed left-justified into succes-

sive 60'bit words, 8 characters (56 bits) per word ! The first 4 bits of

each word serve to signal the beginning of a line: for the first word of a

line these leading bits are 1001; for all other words in a line they are

0000. Consider the line ABCDEFGHIJ CR which would be stored in Systext

as:

1001ABCDEFGH 0000 I J CR * * * * *

Characters which follow the appearance of CR in a word are ignored.

Multiple blanks in a line are compressed by inserting a count of the number

of blanks rather than the blanks themselves. The ASCII character ESC (=1738)

is reserved for this purpose. Whenever ESC occurs in the Systext file, the

character following it is interpreted as a blank count, 'n' (0 ≤ n < 128) .
io

On output these two characters are replaced by n blank characters.

Character Representation

The internal ASCII code used in System Standard Text is the external ASCII +

1408 (mod 200$). The conversion is performed by the system I/O routines (see

Time Sharing System Text Standard -2

Section) . This scheme maps blank onto 0, 0 onto 208 and A onto 418 .

See Table 1.
oN

n.

-graphic characters, however, are. not allowed to occur in

System Standard Text. (CR and ESC in the contexts described above are

the only exceptions.) Therefore, the character % has been reserved as a

special prefix for representing non-graphic characters; if the graphic fol-

lowing a % maps onto a control character under the mapping: internal

ASCII + 1008 (mod 2008), the pair is interpreted as that control character

(see Table 2). Otherwise the % leaves its successor unchanged. So

%% represents % and %M represents CR

Sloppy Segments

A sloppy segment in the Systext file is a group of n words (0< n < 218)

that are to be ignored. The first word of such a segment is of the form:

-INDEF

6000

59 47 18 0

where n is the count of words in the segment. The system ignores the

middle 30 bits of this header word and the succeeding n-1 words.

End-of-information

The end of Systext is signaled by an end-of-information (EOI) word of the

' form:

_ Co

4000

59 47

The low order 48 bits of the word are ignored.

0

Table 1

•Graphic TTY Character Representation

Internal ASCII.
TTY Character Representation

0
1

" 2

14
15

• 16
/ 17
0 20
1 21
2 22
3 23
4 24
5 25
6 26
7 27
8 30
9 31
• 32

33
< 34
= 35
> 36

37
@ 40
A 41
B 42
C 43
D 44
E 45
F 46
G 47'
H 50
I 51
J 52
K 53
L 54
M 55
N 56
0 57
P 60
Q 61

Internal ASCII
TTY Character Representation

R 62
S 63
T 64
U 65
V 66
W 67
X 70
Y 71
Z 72
j 73

74
] 75
+ 76
+ 77

' 100
a 101
b 102
c 103
d 104
e 105
f 106
g 107
h 110
i 111

J 112
k 113
1 114
m 115
n 116
o 117
p 120
q 121
r 122
s 123
t 124
u 125
v 126
w 127
x 130
y 131
z 132
{ 133
t 134

}

rubout

• 135
136
137

Table 2

No Graphic TTY Character Representation

Character

NUL

SOH

STX

ETX

EOC

EN

ACK

BEL

BS

HT

LF

VT

FF

CR

SO

SI

DLE

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

US

Internal ASCII
Representation

140

141

142

143

144

145

146

147

150

151

152

153

154

155

156

157

160

161

162

163

164

165

166

167

170

171

172

173

174

175

176

177

K.e~r Combination
Syatext Repreaentation

0

%A

%B

C

% D

%E

%F

%G

%H

%I

%J

%L

%M

%N

%0

%P

%Q

%R

%S

%T

U

% V

%W

%X

Y

% Z

[%0
\%0

j%0

f

a

Function

Bell

Backspace

Horizontal Tab

Line Feed

Vertical Tab

Page Eject

Delete Line

May 27, 1969

The Line Collector

The line collector collects a line from the TTY using the previously typed

line as a template. It maintains two lines simultaneously, an old one and

a new one. The old line is the last line received by the Teletype (or

from INITIAL) and is local to the virtual TTY buffer; it may possibly be

empty. A new line is constructed from the old one using the characters

typed in from the Teletype. To visualize the process of constructing each

new line, imagine two cursors or pointers, one called OLD which runs over

the old line and one called NEW which is positioned on the new line as it

is created. Normally when a character is entered from the TTY, it is

appended to the new line and both cursors advance on place. If certain non--

graphic characters, called Control Characters (see Table 3) are entered,

the cursors can be manipulated so that, for example, characters are COPIED

from the old line to the new one, or parts of the old line are SKIPped, or

the cursors BACKUP over undesired characters.

The most obvious application for the line collector would be in conjunction

with an on-line compiler which performs a simple syntax check of each line

as it is entered. If the line ,is bad it output a diagnostic, rejects the

line, and calls on the line collector. The user edits the old line which

still resides in the yirtual buffer and resubmits it to the compiler.

The Line Collector -2

The line collector permits the following actions to be performed via the

appropriate control characters, ;

Operation

Accept

Type State

Concatenate and
Accept

Concatenate, Print
and Accept

Tab Set/Release

Tab

Control Characters. Action

The current new line is accepted
as is.

Advances the printed paper to a
fresh line. Spaces to the current
position of the New cursor, prints
a copy of the remainder of the old
line, and on the following line prints
a copy of the new line to the cur-
rent position of the cursor.

e.g.: remainder of old line

current new line

(New cursor)

Concatenates the remainder of old
line onto the current new line and
accept.

Concatenates the rest of the old
line onto the new line, prints
it out, and accepts.

Sets (releases) a tab stop at the
current position of the cursor in
the new line if entered an odd
(even) number of times.

Inserts blanks up (both cursors ad-

vance) to the next tab stop.

For each of the three actions Backup, Copy, and Skip, the distance can be

specified in 6 ways (see Table 3) . In the descriptions which follow, a word

is defined as a sequence of one or more non-alphanumeric characters delimited

by non-alphanumerics; when looking for the beginning of a word, the cursor

passes over all non--alphanumerics until it encounters one or more consecutive

alphanumerics. Next character entered refers to the first occurrence in the

If the first key specified is

while the first key is still depressed.

the second key must be pressed

The Line Collector

line of the next character typed in after the control characters. If at any

time an edit request is made which cannot be fulfilled, the line collector

echoes a bell instead of the graphic specified.

Operation

Backup one
character

Backup one
word '

Backup to next
character entered

Backup to and
including next
character entered

Backup to tab

Backup to edge

Copy one
character

Copy one
word

Copy up to next
character entered

Control Characters Action

Cursor in the new line backs up

(erases) one character* ~ is
echoed on the printer.

Cursor in the new line backs up

(erases) one word* <- is echoed

once on the printer.

Cursor in the new line backs up
(erases) up to but not including
the new character entered* +
is echoed on the printer.

Cursor in the new line backs up
(erases) up to and including the

next character entered -- is
echoed on the printer.

Cursor in the new line backs up
(erases) up to the preceding tab

setting* { is echoed on the line
printer.

Cursor in the new line backs up
(erases) up to the left edge, thereby
starting the line anew* - is
echoed on the line printer.

The next character in the old line

is appended to the new line, and
the character is printed.

The next word in the old line is
appended to the new line and is
printed.

Characters in the old line up to

but not including the next character
entered are appended to the new line
and printed.

The old cursor moves simultaneously with the new cursor.

The Line Collector

Copy up to and
including next
character entered

Copy to tab

Copy rest of
old line

Skip one
character

Skip one word

Skip to next
character entered

Skip up to and
including next
character entered

Skip to tab

Skip to end
of line

*

Characters in the old line up to
and including the next character
entered are appended to the new
line and printed.

Characters in the old line up to
the next tab setting are appended
to the new line and printed.

The remainder of the old line is
appended to the new line ,and printed.

Note that

valent to

- is equi

above.

Cursor in the old line moves ahead
(skips) one character* $ is echoed
on the printer.

Cursor in the old line moves ahead
(skips) one word* $ is printed
for each character skipped.

Cursor in the old line moves ahead
(skips) ,to but not including the
next character entered* $ is printed
for each character skipped.

Cursor in the old line moves ahead
(skips) to the position immediately
after the next character entered.*
$ is printed for each character
skipped.

Cursor in the old line moves ahead
(skips) to the next tab setting.*
$ is printed for each character
skipped.

Cursor in the old line moves ahead
(skips) to the end of the line # $
is printed for each character skipped.

The cursor on the new line moves simultaneously with the cursor on the
old line.

The Line Collector

Insert Change: If entered an odd number of times
since the beginning of the first line,
the cursor in the old line is not
moved on Backup or normal entry
operations, thereby allowing the
insertion of characters into a line.
Odd numbered entries of the control
characters are echoed by < .
Even numbered entries return the
cursor to its normal action and
are echoed by > .

•

N

f ~j \.

j41_
\

_v p ;
` -!...--

. U);
x~ -,~ \ ,,

f
t

Q ~~ ~ r

x

tkp to ed9 e (/d' or rtjlt/)

u p _.lo Ta. b

cincl cncludjiic7 neccf
C-haj,aC&r e»tted

up !o Li nod cncludcn /tear/
ChQYQth-►' .Q. r9 r1Yed

~"'r p

July 22, 1969

Teletype I/O Functions

The TS System 110 functions are a set of reentrant routines which should be

loaded into a continuous section of core. If absolute images are used, they

must reside in the right part of core. To initialize these functions, one

jumps to .TTY. ON with

B1 set to the base of a 1338 CM word data area (TTYBUFF) for
this teletype.

B2 set to the index in the C-list for the TTY file.
($2)+1 is the index of the CF to PP event channel
(B2)+2 is• the index of the PP to CF event channel.

X7 is set to the return address in calling program.

I/O operations are performed upon strings or lines where a string is a sequence

of characters and a line is a string terminated by a CR character. Every

string or line is quantified by a two word entity called a string descriptor.

The first word of a string descriptor points to the word base address of a given

string= the second word indicates the length of the string, or for a line,

the upper bound on the length, since the terminating CR character signals

the end of a line.

Output

To output a string described by the string descriptor DESC, DESC+1 the following

macro call is invoked;

PUTOUT

+

MACRO TTYBUFF, DESC

SB1 TTYBUFF
SA4 DESC+1
SX7 +1
JP PUTL
ENDM .PUTOUT

The data area for the TTY

.PUTOUT outputs characters up to and including a CR or until the length spe-

cified in the second word of the descriptor is exceeded, whichever occurs first.

Lines with blanks compressed as well as uncompressed lines may be output by

.PUTOUT. If a CR is encountered, a LF is also echoed.

NOTE: If the flag at TTYBUFF + FORCE (FORCE = 23g) in the TTY data area is up

the TTY buffer will be flushed (PP is notified that there is something in the

buffer) each. time... . PUTOUT finishes. This kind of call-by--call flushing

r
s►

Teletype I/O Functions -2

is expensive and should be suppressed when possible,

file is to be listed, the FORCE fl ag should be turned

With the flag off, lines will be forced out only when

full. Initialization leaves FORCE up.

Therefore, if a large

off until the last line.

the TTY buffer becomes

A single character is output when a macro call to .OUTPUTC is invoked:

.OUTPUTC

+

MACRO
SBl
S.Xl
SB7
JP
ENDM

TTYBUFF, CHAR
TTYBIJFF
CHAR
*+1
PUTCTTYT
OUTPUTC

The output buffer is flushed when a macro call to FLUSH is invoked:

FLUSH

+

Input

MACRO
SB1
SB7
JP
ENDM

TTYBUFF
TTYBUFF
*+1
FLUSH
FLUSH

Teletype input is significantly more complex than output. The routine

INGET is called to get a line from the TTY:

INGET

+

MACRO
SB1
SX7
JP
ENDM

TTYBUFF
TTYBUFF
~+1
GETL
TTYBUFF

INGET causes a new line to appear as the string described by the string

descriptor stored at TTYBUFF + NEW (NEW = 1018). Th.is new line does not

yet have blanks compressed and the first four bits of each word are zeros.

INGET obtains the new line from the teletype using the line described by the

descriptor TTYBUFF + OLD (OLD = 76 8) as a template. To modify the template

merely involves updating the OLD descriptor and its image with desired new line.

The line must not exceed 86 characters in length since that is the maximum

length of a line which INGET can return.

4

Teletype I/O Functions -3

A call to the following macro enables the user to detect the reserved

control character 1 U .

INGET .

+

MACRO TTYBUF, COMMAND
SB1 TTYBUF
SX7 COMMAND
LX7 18
SX6 *+2
BX7 X6+X7
JP GETL
ENDM INGET .

If the line gotten from the TTY buffer is terminated by % U instead of CR ,

then control returns to COMMAND rather than *+1 This allows the TTY to

earmark certain lines as special. For instance, consider a file editor which

allows lines to be appended to a file. There must be a way for the user to

signal which line is the last line to be appended to the file. However, every

key has a pre-assigned meaning or can appear in a line; the only exception is

U . Thus the editor could designate % U to terminate the last line of the
—-

and control will return to COMMAND.

The input buffer can be cleared (the contents are removed and discarded) by a

macro call to CLEAR:

CLEAR

+

MACRO
SBl TTYBUF
SB7 +1
JP .CLEAR
ENDM CLEAR

Since these routines should suffice for most circumstances, the following

esoteric features can be ignored by the majority of users.

The routine GETS concatenates characters up to and including the next break

character (see p. 4) onto the string described by the string descriptor DESC.

All but the break character are echoed; the break character is returned in Xl.

GETS is called as follows

GETS

+

MACRO TTY, DESC
SB1 TTY
SA4 DESC+1
SB6 1
SX7 +1
JP GETS
ENDM GETS

file

Teletype I/O Functions

There is one anomoly connected with GETS; if no check were provided, it would

be possible for GETS to accept a string that was long enough to clobber storage

when it was concatenated onto the string described by DESC. To avoid this,

GETS expects DESC+2 to contain an upper bound on the length of the resulting

string. If GETS receives a string which. when concatenated would exceed this

upper bound, it returns in x.CHAR the negative of the first character in

the string which causes the bound to be exceeded.

The routine GETCTTY gets the next character from the TTY buffer

Xl ; it is called as follows:

GETCTTY MACRO TTYBUF
SBl • 1

+ SB7 *+1
JP GETCTTY
ENDM GETCTTY

placing it in

GETCTTY does not echo the retrieved character even if the SOFTECHO (= 21$)

flag in TTYBUFF is on. (The SOFTECHO flag signals that the PP has not been

able to echo a character and therefore that GETS should.)

The macro call to NEWBREAK is used to switch from nne table of break characters

to ano the r .

NEWBREAK MACRO TTYBUFF,I
SB1 TTYBUFF
SB2 I

+ SB7 +1
JP NEWBREAK
ENDM NEWBREAK

If the break table is switched, it should be restored to break table #2 before

using GETL . Other routines will work with any break table.

Table Number, Characters which signal a_break

o

none
1 any character
2 non--graphics
3 non'-a1phanumerics
4 non"numerics

	System entry/exit
	Allocation of ECS
	Capabilities and Capability-Lists
	Files
	Processes
	Subprocess
	Class Codes
	Maps
	Event Channels
	Time Sharing System Text Standard
	The Line Collector
	Teletype I/O Function

