
r

14

r

II Map c t i o ns
~t

Associated with each subprocess is - a map which directs the swapping of

the, subprocess address space between Central Memory and ECS files. A

map consists of a fixed length sequence of map entries each of which is

either zero or contains a swapping 'directive. The user may zero or

change a map entry, and may display an entry from the map associated

with any given subprocess or from the full map. A non-zero map entry

consists of 1) a file, 2) an ECS file address, 3) a central memory address,

4) a word count, and 5) a read--only flag. Thus the map indicates what

portions of which files are copied to/from specified portions of the sub--

process space at the beginning/end of processing.

A. Zero a Map Entry

AP 1
A22

C: Class code (subprocess name.) (oB . CHAMP)
D: Index in logical map of the subprocess r

When zeroing a map entry, the user specifies the name of the sub-

process (class code) whose map entry is to be zeroed, and the

index of the entry in the subprocess; logical map. The result is

that when the subprocess address space is swapped between ECS and

Central Memory,. the f ite b pmerly referenced by the zeroed

entry will not be swapped

Possible errors while zeroing a map entry:

Param
Class, # Description

n 4 5 Subprocess does not exist

2 2 2 Negative map index

2 _ 3 2 Map index exceeds map length

11 o Attempt to change or zero DAE

12Y

B. Change(create) a map entry (read/write or read only)

1

AP1 C: Class code of subprocess whose entry is to be changed
(OB . CHMAP

AP2 D: . Index of entry in logical map of subprocess
AP3 C: Associated file (read only OB.PLtKAP, OB. RDFIL;

OB.PUMAP
read/write: OB.RDFIL ~

OB . WFILE
AP4 D: . Address in file which is to be changed
AP5 D: Address in CM of new entry
AP,6 D: .Word count of new entry

when a map entry is changed, care must be taken if the map .involved

is part of the full map. In this case, a non-zero map entry must be

swapped out before it is replaced. The new entry is then constructed

and swapped in. Note that overlapping map entries will behave oddly

since the whole map is not swapped.

Possible errors while changing a map entry:

P cram
Class # # Description

4 5 Subprocess does not exist

2 2 2 Negative map index

2 3 2 Map index exceeds map length

4 3 Buffer full

2 2 5 Negative CM address

2 0 6 Negative word count

C. Display a Map Entry from the Map of a Named Subprocess

APl C: Class code of subprocess whose entry is to be displayed
AP2 D: Index of entry in Logical map of subprocess
AP3 D: Address of a 3 word buffer

This action will insert into the 3 word buffer area (AP3) the current

contents of the indicated map entry of the subprocess specified. Note

that the length of the map (maximum for AP 2) can be obtained by using

the Display Subprocess action. The three words of the designated map

to the specified buffer.

Map Entry

4 te-

F

r

13

Possible errors while displaying a map entry:

Class # Param Description

4 5 Subprocess does not exist
r

2 2 3 Negative address for buffer

2 2 write area exceeds user fI

2 2 2 Negative map index

2 1 2 Map index too large

D. Display Entry in Pull Map

API D: Index of entry in full map
AP2 D: Address of a 3 word buffer

,r

The maps of the subprocesses in the full path are concatenated to

form the full map in much the same way as the full C-list is formed.

An entry in the full map can be displayed if the index of the entry

in the full map is given along with the address of a buffer where

the entry should be "displayed". The format of the displayed entry

is the same as for named subprocess version of Display Map Entry.

Class # Param Description

2 3 1 Index of entry too large (exceeds length of full map)

2 2 .. 1 Index' of entry negative

2 2 2 Pointer to buffer negative

2 3 2 Pointer to buffer + 3 greater than user's field length

s

`3 ^

14

r

III Event Channel Actions

Event channels are ECS objects which are used to synchronize the

behavior of running processes as well as to implement "block'' and

"wake-up" mechanisms. Each event channel should handle a particular

kind of event. .The user can create an event channel, send an event,

get an event from an event channel, get an event from any one of a

list of event channels, and destroy an event channel. If the user

attempts to get an event from a channel which has no events, the

user's process is either blocked (stops running) until some other

process sends an event to the event channel, or F-return action is

initiated.

A. Create an Event Channel

AP1 C: Capability for allocation block (OB . CREEL)
AP 2 D: C--list index for new event channel capability
AP3 D: Length of event queue

When an event channel is created it consists of a three word

header and an event queue (see Event Channels) which is initially

empty. The header word is used to maintain the queue of events

and a queue of waiting processes, which develops if the queue of

events becomes empty, when creating an event channel, the user

specifies the name of the Allocation block which funds the ECS

space occupied by the event channel, a C-list index where the

system can put the capability (with all options allowed) for the

event channel when it creates it, and the length (number of events)

of the event queue.

Possible errors while creating an event channel
f

Class 11 Description

6 0 Allocation block does not exist

6 1 No ECS available

6 2 No money available

2 4 C-list index is negative

2 5 C--list index exceeds full C--list

9 0 Length of event queue < 0

9 1 Event queue too large

f 15

B. Send an Event (with/without duplicate event checking)

OB.SNDEV without checking
AP1 C: Capability for the event channel P ~ OB . SDEVX with checking ~
AP 2 D: Datum part of event

To send an event to an event channel, the user specifies the

index of the capability for the event channel and specifies a

60 bit datum to be passed with the event. The system responds

by indicating the disposition of the event to the user in x6.

the following responses are possible:

Condition Response

Event put in event queue 1
Event passed to a process 2
"YOU LOSE" event put in event queue 3
Event queue full 4
Duplicate event found 5

The first response indicates that all went well, and there was no

process awaiting an event in the process queue. The second response

indicates that there was a process waiting in the queue and that

it was passed the event. The third response indicates that there

was only one free slot in the event queue •(an event occupies two

words); the intended datum has been replaced by a "you lose" datum

(-0) so that the process which ultimately gets the datum will be

aware that the event queue had been full and that information was

lost.

The fourth response indicates that no action has been taken since

the queue was full. The fifth response is returned only if a search

for duplicate events was desired and a duplicate was found in which

case no further action is taken.

Possible errors resulting from sending an event.

Class # Description

9 2 Event channel does not exist

C. Get an event or hang

APl C: Capability for event channel (OB . GETEV)

A user requests an event from a channel using the C-index of the

channel in question. If the event queue is empty, the process

r lb

RP i

must wait ("hang" or "Block") until an event arrives before

resuming execution. If more than one process is awaiting, an

event sent to that channel is passed to the first process while

the other process(es) continues to wait.

Possible error while getting an event

Class # Description

9 2 Event channel does not exist

Da Get an Event or F-return

APl C: Capability for event channel (OB.GTEVF)

The user requests an event from a channel using the C-list index

of the event channel's capability. If the event queue is empty,

an F-return will be returned in order to permit the process it

take alternative action.

The only possilbe error is the same as for C above.

E. Get an event from one of a list of event channels or hang (F-return)

The procedure for getting an event from one of a list of event

channels is similar to that for getting a single event (See C

above). The channels are interrogated one at a time and if their

respective event queue is empty, the user's process will be queued

on the process queue of the event channel. If an event subsequently

arrives or is discovered on one of the event channels in the list,

the process is removed from all the process queues on which it has

already been chained and it is passed the event. If no event arrives

or is discovered before the last event channel is interrogated, the

process must wait ("hang" or "block") until an event arrives on one

of the event channels.

Possible errors while getting an event from a list of channels:

Class # Description

9 2 Event channel does not exist

2 o Number of channels is.negative

2 1 Number of channels is too large

17
F

F. Destroy an Event Channel

API C: Capability for event channel (OB.DSTRY)

An event channel can be destroyed. The only param.emeter required

is the C--list index of the event channel which is to be destroyed.

If there are any processes waiting on the event channel's process

queue, an F--return is initiated leaving the event channel intact.

Possible errors while destroying an event channel:

Class 1/ Description

9 2 -Event channel does not exist

i

~r

18

• IV C-List Actions

User access to all objects within the ECS system is controlled by capabilities.

A capability identifies the object it refers to, specified the type of the

object, and the set of allowed actions on that object (options) . Capabilities

are grouped together in capability -lists (C-lists) which are themselves objects

within the ECS system. Individual capabilities are referred to by their index

within a C-list. Since the capability, residing in a C-list, authorizes

access to an object, the user is never allowed to fabricate a capability.

The system creates a capability with all options allowed when an object is

created. System actions are provided to permit the user to create a C-list,

examine a capability, to copy capabilities between C-lists and within a C-list,

and to downgrade the option mask. Thus, the user can transfer the right to

access an object and can curtail that access, but he may never manufacture

that right or increase the set of allowable actions on the object.

A C-list , which initially consists of only empty positions, is assigned to

every subprocess within a process. For every process there exists a sequence

of subprocesses called the full path. Corresponding to the full path, the

full C-list is defined as the concatenation of the C-lists belonging to the

subprocesses in the full paths when referring to capabilities in the full

C-list, the capability index is interpreted as if the C-lists, in the full

C-list have been joined to form one long C-list.

A. Create a C-list

APl C: Capability for allocation block (OB. CPECL)
AP 2 D: Index in full C-list to return new capability
AP 3 D: Length of new C-list

A capability list (C-list) is a sequence of capabilities and "empty"

positions. Each C-list is filled with "empties" (zero words) upon

creation. To create a capability list, the user ms tt supply the index

of the Allocation block which funds the space occupied by the C-list.

In addition to the length of the new C-list, the user must supply an

index in the full C-list for the capability for the new C-list .

19

Possible errors while creaing a C—list.

Class # Param Description

6 C Allocation block does not exist

6 1 No ECS available

6 2 No money available

2 4 2 C-list index is negative

2 5 2 C-list index exceeds full C!-list

2 0 3 Length of new C-list < 0

2 .1 3 Length of new C--list too large
k

B. Display a Capability from the Full C-list

API D: Index in full C-list

when referring to capabilities within the full C-list, the capability

index used is interpreted as if the C-lists in the full C-list were

joined to form one long C-list . Thus, the index of the desired

capability is all that is required to display it. The two words of

the capability are returned in X6 and X7.

X6 = option mask

X7 = unique name

type

MOT index

Possible errors while displaying a capability

Class # Description

2 4 Capability index negative

2 5 Capability index exceeds full C--list length

8 0 Capability list does not exist

C. Display a Capability from an arbitrary C-list

API C: Capability for C--list
AP 2 D: Index in the C--list

To display a capability from a C--list which is not in the full C-list,

the user must specify both the index of the C-list and the index within

the C-list of the desired capability.

20

Possible errors are identical to those given for B above.

D. Copy a Capability within full C--list and Decrease the Options

AP1 D: Index of desired capability
AP 2 D: Index of destination C--list entry
AP3 D: Mask of options to preserve

The user can copy a capability from one C-list to another and in doing

so may decrease the number of allowed options. Recall that when an

object is created, a capability is returned which has all the option

bits (the high order 42 bits of the first word) set. The user must

indicate the C-list index of the capability he wishes to copy, the

C-list index for the altered capability, and a bit -mask which will

be logically 1°anded" with the options of the original capability to

produce the option mask for the new copy of the capability.

Possible errors while copying a C-list and decreasing the options.

See B above.

E. Copy capability from Full C--list to Arbitrary C-list (and vice-versa)

API C: Index of destination (source) C-list (OP . CPYIN, OB . CPYOT)
AP2 D: Index within destination (source) C-list of capability
AP3 D: Index in the full C-list of source (destination) Capability

In order to situp transfer a capability between the full C-list and

an arbitrary C-list two parameters are required to indicate the loca-

tion of the capability in the arbbtrary C-list, and a third to locate

the capability in the full C-list .

Possible errors: See B above.

F. Destroy a C-list

APl C: Capability for C-list (OB.DSTRY)

The user may destroy a C--list when he no longer needs it; only the index

of a capability for the C-list is required. If the C-list to be des-

troyed is in the *full path of the user's process, an F-return is initiated

and the C--list is not destroyed.

21

Possible errors while destroying a C--list

Class Description

5 0 C-1 is t does not exist

r

22

•

V Operations

Operations are ECS objects which control the initiating of system action

and subprocess calls. Each operation is composed of an initial order

specifying a desired action, some checking information and, for subprocess

call, a class code. The initial order is followed optionally by a sequence

of orders (containing similar information) indicating alternative actions

should all the preceding orders result in F-returns.

u

The checking information in each order consists of a parameter specification

type for each parameter required, in the actual parameter list for the indi-

cared action, a word containing the option bits and type for each capa-

bility parameter to be supplied by the user, and all fixed parameters,

whether capabilities or data. This checking information is used by the

system entry/exit routines when constructing the actual parameter list.

The parameter specification types are:

Type Description

any when an operation is created, all parameter specifications
are initialized to "any", and must be fixed using the various
action supplied before the operation may be used.

"any capability" a capability is expected from the user, but no type
or option checking is to be performed on it.

"user-supplied capability" the user must supply a capability whose
type and option bits match those stored in the operation.

"user-supplied datum" the user must supply a 60-bit datum but no
checking is performed on it

"fixed capability" both words of a capability are stored in the
operation and no corresponding information is taken from
the user's input parameter list.

"fixed datum" a 60-bit datum word is stored in the operation; it is
passed to the actual parameter list unchanged.

There are two actions for creating new operations; the first creates an

operation with one order to call or jump-call a designated subprocess, and

the second creates an operation of order N by adding one order to an

already existing operation of N-1 orders. All operations constructed by

the user are subprocess calls. Actions are also available for copying an

operation and for changing the parameter specifications for an operation.

a

23

A. Make a subprocess call or subprocess jump operation

AP1 C: Capability for allocation block (OB.ALORD)
AP2 D: C-list index for new operation
AP 3 D : _ Type (0=call ; nonzero=jump)
AP4 C: Class code of subprocess to be called by the new operation

(OB.CALOP)
`AP5 D: Number of parameters to be used by the subprocess call.

To create a new operation to be used for subprocess call or jump call,

the user supplies the index of a capability for the Allocation block

which is to fund space in ECS for the new operation.

In addition the user gives the C-list index where the system will

place the capability for the new operation, the type action (call or

jump call) of the new operation, the name (class code) of the sub-

process to be called by the operation, and the number of parameter

specifications needed for the subprocess call. Upon creation, all

of the parameter specifications of an operation are initialized to

"any", and therefore the operation may not yet be invoked (unless

it is parameterless).

Possible errors while creating a new operation

Class # Description

6 0 Allocation block does not exist

6 1 No ECS available

6 2 No money available

2 0 Number of parameter specifications is negative

7 7 Too many parameters

2 4 Negative C-list index

2 5 C-list index too large

7 6 Order too large for scratch area

4 5 Subprocess does not exist

B. Add an Order to an Operation

APl C: Capability for allocation block (OP .ALORD)
AP2 D: C-list index for new operation (order)
AP 3 C: Capability for existing operation (OB .ADDDR)
AP4 D: Type of order (O=call ; nonzero=j ump)
AP 5 C: Class code of subprocess called by the new order (OB . CALOP)

AP6 D: Number of new parameters being added

24

This action creates an operation of order N . The first parameter

is the C-list index for the Allocation block which is to fund space

in ECS for the new operation; the second parameter is the C-list

index where the system will put the capability for the new operation.

In the third parameter the user specifies an already existing opera-

tion of order N-1 , which is copied with the new order appended.

The last three parameters describe the new order by indicating whether

it is a call or jump call to a subprocess, the name (class code) of

the subprocess to be called, and the number of additional parameters.

The parameters of the new order will be initialized to type "any" and

must be fixed up before the new order of the operation is used.

Possible errors while adding an order

Class # Description

6 0 Allocation block does not exist

6 1 No ECS available

6 2 No money available

2 4 C-list index is negative

2 5 C-list index is too large

7 1 Operation has been deleted (doesn't exist)

4 5 Subprocess does not exist

2 0 Number of parameter specifications is negative
t

2 1 Number of parameter specifications is too large

7 6 Order exceeds scratch area

C. Copy an Operation

APl C: Capability for allocation block (OB . ALORD)

AP 2 D: Full C-list index for new operation
AP3 C: Operation to copy

The user can copy an already existing operation by specifying the

C-list index of the funding allocation block, the full C-list index

for the desired operation, and the current C-list index of the desired

operation. This action is used prior to fixing parameter specifications

of an operation to avoid changing the original version of the operation.

25

Possible errors while copying an operation:

Class # Description

6 0 Allocation block does not exist

6 1 No ECS available

6 2 No money available

2 4 C-list index is negative

2 5 C-list index exceeds full C-list

7 1 Operation does not exist

D. Change a parameter specification type

In order to specify the parameter specification types in an order of

an operation created by either A or B above, a set of actions is pro-

vided. Each takes as parameters a C-list index for an operation and

a parameter specification index {considering, the parameter specifi-

cation for the first parameter of the first order as having an index

of 0). Some require additional information depending on the type of

parameter specification being changed.

1. Change parameter specification from "any" to "user-supplied datum"

AP1 C: Capability for operation (OB.CRTYP)
AP2 D: Index of parameter specification to change

Possible errors:

Class # Description

7 1 Operation does not exist

2 2 Index is negative

2 3 Index is too large

7 4 Parameter specification type should be "any"

2. Change parameter specification for "any" to "any capability"

AP1 C: Capability for operation {OB. CHTYP }
AP2 D: Index of parameter specification to change

Possible errors: see 1 above.

26

3 . Change parameter specification type from "any" to "user-supplied
capability"

API C Capability for operation (OB . CHTYP)
AP2 D: Index of parameter specification type
AP3 D: Capability type
AP4 D: Capability option bit mask

The type of a capability occupies an 18 bit field of which exactly

9 of the 18 bits must be set. Table I below gives the types for

ECS objects currently available.

Table 1. Capability types

Object Type

Process

C-list

File

Operation

Class Code

Event Channel

Allocation
Block.

7778

13778

15778

16778

17378

17578

17678

The option bit mask stored in a capability occupies a 42-bit field

and the meanings of the various option bits is determined by the

type of object the capability identifies. See Appendix B for the

name, description and relative position of all option bits. The

positions of the bits are given reading from right to left; thus

bit position 0 is the low order bit of the field.

Possible errors while changin parameter specif icaion type from

"any" to "user-supplied capability":

Class # Param Description

2 2 2 Index is negative
2 3 2 Index is too large
7 2 3 Capability type exceeds 9 bits
7 1 Operation does not exist
7 2 4 Option bits bad
7 4 Parameter specification should be "any"

~4
S

27

• 4. Change a parameter specification type from "user-supplied datum"

to "fixed datum"

AP1 C: Capability for operation (OB . CHTYP)
AP2 D: Index of parameter specification type

AP3 D: 60--bit datum word

Possible errors while changing parameter specification from "user--

supplied datum" to "fixed datum"

Class # Param Description

7 1 Operation does not exist
2 2 2 Index is negative
2 2 3 Index is too large
7 5 Parameter specification should be user-

supplied

5. Change a parameter specification type from "user-supplied capa-
bility" to "fixed-capability"

APl C: Capability for operation (OB. CHTYP)
AP 2 D: Index of parameter specification type in o ration
AP3 C: A capability

Possible errors while changing a parameter specification type from
"user-supplied capability" to "fixed capability"

Class # Param Description

7 1 Operation does not exist
2 2 2 Index is negative
2 2 3 Index is too large
7 5 Parameter specification should be user-

supplied

Note in the last two cases (4 and 5) that "fixing" a parameter

specification type requires two steps, changing the specification

first to a user-supplied type and then to the corresponding fixed

type.

Actions 3, 4, and 5 involve reallocating the operation in ECS,

since each requires inserting one additional word to the order.

28

VI Process and Subprocess Actions

Processes are the active elements of the ECS portion of the Time Sharing

System. Only within the context of a ;process may3 code be executed and

system actions initiated. A process consists of a set of central registers

call the exchange jump package, a set of subprocesses organized in a tree

structure, a call stack recording the flow of control among the subprocesses,

and a set of state flags describing the state of the process.

There are system actions to create, examine, destroy and manipulate the

elements of a process.. There are also actions which control the processing
J

environment of a process by transferring control from one subprocess to

another and by controlling the error processing and external interrupt

status of the process.

A

U

A. Create a Class code (subprocess name) with new permanent part

APl C: Capability for class code

A class code is a protected 60-bit datum used to identify a subprocess

within a process. The 60 bits are divided into two 30-bit parts; the

upper 30 bits constitute the permanent part and the to\er 30 bits, the

temporary part. This action causes a new class code to be constructed

by the system with a permanent part which is different from that of all

other class codes. The new class code is returned in the full C-list
r

j at the location specified by the parameter of the action. i

Possible errors while creating a class code:

Only those detected during System entry/exit

B. Set temporary part of class code

API C: Capability for class code (OB.TEMP)
APZ D: C—list index for modified class code
AP3 D: New temporary part (30 bits)

The emporary part specified by the user is inserted into the class

code (lower 30 bits) . It may be used to create "classes" of class

codes which have the same permanent part and different temporary parts.

The class code with the new temporary part is returned in the full C—list

at the specified: location.

29

C. Create a Process

AP1 C: Capability for Allocation block (OB.CREPR)
AP2 D: C--list index for returned process capability
AP3 D: Number of event channel chaining words
AP4 D: Number of stack entries
AP5 C: Class code for initial subprocess (OB. SONSP)
AP6 D: Number of map entries in initial subprocess
AP7 D: Compiled map buffer size for initial subprocess
AP8 D: Subprocess field length
AP9 D: Subprocess entry point
AP10 C: Capability of C-list for subprocess (OB . LOCCL)
AP11 C: Capability of file for 1st map entry (Read/Write : OB.WFILE,

OB.RDFIL, OB.PLMAP) for initial subprocess
AP 12 D: Address within file
AP13 D: Address in CM
AP14 D: Count of words to be swapped
AP15 D: Capability f o file for 2nd map entry (Read Only: OB. RDFIL,

OB. PLMAP) for initial subprocess
API6 D: Address within file
AP17 D: Address in M
AP18 D: Count of words to be swapped

There are 18 prameters required for the system action which creates a

process. The first cour are used to consutrct the process descriptor

while the remaining 14 are necessary to specify the initial subprocess

which is created along with the process. As usual when creating any

system object, the first two parameters required are the LC-list index

of the Allocation block which is to fund the area in ECS where the

object is to be placed, and the C-list index where the system will

return the capability for the object. Parameters 3 and 4 determine

the size of the process queuing word buffer (number of event channels

the process can hang on at once) and the length of the call stack which

records the flow of control among the subprocess belonging to the pro-

cess. Each entry in the call stack contains the information necessary

to reinitiate processing where it was terminated due to a subprocess

call.

Among the parameters defining the initial subprocess, the first six

(AP5-AP10) are used to fill in the subprocess descriptor and the last

eight specify the contents of the two map entries (ReadfWrite and

Read Only) which define the local address spaces; {portions of storage

30

0

A

available to it) of the initial subprocess. The data necessary to

describe a subprocess are gathered into the process descriptor. The

user supplies the class code (identifying name) of the subprocess,

the number of entries which will be in the logical map, the length

of a buffer area which will contain the compiled map, the length of

the subprocess local address space, the entry point in the subprocess

where execution begins when it is called and a C-list index for a

capability for a C-list (local C-list) . The logical map contains an

entry for each contiguous portion of information which is to be copied

between ECS files and the local address space in CM of a subprocess at

the beginning and/or end of the processing of that subprocess. To

expedite this procedure, the compiled map is generated from the logical

map, using the absolute ECS addresses of the sections of ECS files

referenced by the logical map entries. Since one map entry may span

several data blocks in a file, the size of the compiled form of the

map will increase accordingly. The length of the local address space

(AP8) of a subprocess is the upper limit on the information copied

in CM under the direction of the subprocesses map. The local C-list

(APlO) of a subprocess controls the objects which it can access.

The eight remaining parameters specify the contents of the two map

entries, which indicate the initial body of the subprocess. The first
A

map entry (specified by parameters AP11-AP14) defines a portion of an

ECS file which is copied into CM before processing under the control

of the subprocess is initiated and when this processing stops is

copied back into the ECS file from which it came, thereby (possibly)

altering the content of the ECS file. The second map entry, however,

defines a section of an ECS file which is read into CM only, and will

never be copied back into ECS, thus protecting the ECS file from being

altered. The parameters include the C-list index of the associated

ECS file, the addresses in the file and in CM between which the inf or-

mation is to be transfered (swapped) and the number:of words to :be

swapped.

31

The new process, after being constructed, is scheduled to run and

will begin execution at the entry point of the initial process.

Possible errors while creating a process:

Param
Class # # Description

6 0 Allocation block does not exist
6 1 No ECS available
6 2 No money available
2 4 C-list index is negative
2 5 C-'lis t index is too large
2 0 3 Number of chaining words 0
2 1 3 Number of chaining words too large
2 0 4 Number of stack entries < 1
2 0 6 Number of map entries < 2
2 0 7 Compiled map buffer size is negative
2 0 8 Length of- local address space is negative
2 1 8 Length of local address space is too large
2 0 9 or 15 Subprocess entry point < 2
2 1 9 or 15 Subprocess entry point exceeds field length
2 2 12 or 16 File address is negative
2 3 12 or 16 File address too large
2 2 13 or 17 CM address is negative
2 3 13 or 17 CM address exceeds field length
2 0 14 or 18 Word count for map entry < 0
2 1 14 or 18 Word count for map entry too large

A

0

D. Creating a Subprocess

AP1 C: New subprocess class code (OB. SONSP)
AP 2 C: Class code of the "father" of the subprocess (OB.FATIIR)
AP3 D: Number of map entries
AP4 D: Compiled map buffer size
APS D: Subprocess FL
AP6 D: Subprocess entry point
API C: Subprocess local C-list index (OB.LOCCL)

The action of creating a subprocess involves constructing the 8 word

process descriptor. The parameters are similar to those required to

create the initial subprocess except for AP2 and the absence of map

entry parameters. The subprocesses in a process are organized in a

true structure in which each subprocess references only is predecessor

("father") . For each subprocess, the term "ancestors" refers to the

sequence of subprocesses which starts with the subprocess and terminates

with the root of the subprocess tree. Note that a subprocess is al--

ways an "ancestor" of itself ̀ The term "song of a subprocess refers

to any of the subprocess for which that subprocess is the "father".

32

Each newly created subprocess is linked with the subprocess tree

at the subprocess referenced by AP2. Note that since no map entries

are made for the subprocess at the time of its creation, they must

be constructed via a system action to provide executable code and

data for the subprocess, before the subprocess can be used.

Possible errors while creating a subprocess

Param
Class # # Description

6 0 Allocation block does not exist
6 1 No EC S available
6 2 No money available
4 0 Duplicate subprocess name
4 1 "Father" does not exist
2 0 3 Number of map entries 0
2 1 3 Number of map entries exceeds field length
2 0 4 Compiled map buffer size is negative
2 0 5 Subprocess field length < 0
2 1 5 Subprocess field length is too large
2 0 6 Entry point < 2
2 1 6 Entry point > FL
4 3 Nospace for compiled map
8 0 C-list does not exist
4 4 Process becomes too big

E. Subprocess Call

A normal subprocess call is initiated by calling on the system in

the usual manner, using an operation whose action is "subprocess call".

A normal subprocess call may also be initiated as the result of

F-return action under the control of a multi-ordered operation (see

p. above) . A new processing environment is established (described

below) as a result of the transfer of control to a different subprocess .

At any given time, there are two distinguished subprocesses within

a subprocess. They are the current subprocess ' and the end-of-path

subprocess. The current subprocess is always an "ancestor" of the

end-of -path subprocess; the sequence of subprocesses from the end-

of-path to the current subprocess (inclusive) is called the full path.

The end-of-path is dif fined dynamically by the flow of control among
4

the subprocesses. The current subprocess may be considered to be

the subprocess currently in control. The end-of-path and current

subprocesses are reassigned whenever a new subprocess is called.

The subprocess being called the callee becomes the new current sub-
,

process. If the callee is an "ancestor" of the old end-of-path, the

-~ 33

e

A

new end-of--path becomes the same as the callee (i. e. , the full path

consists of a single subprocess--the callee) . See Figure

The full path defines the sphere of protection invoked by the current

sub-process. The access into the current subprocess permitted to

other objects within the system is controlled by the full C--list,

the full map, and the full address space, each of which is defined

by the full path. The full map determines the configuration of the

address space available to the current subprocess. The configuration

of the subprocess tree defines the static relationship between the

subprocess (subprocesses closer to the root may be given the privil-

eges of their descendents) while the full path dynamically controls

the boundaries of access applied to the current subprocess. This

system of controlling the bounds of protection allows the construction

of processes which may exercise varying degrees of protection while

maintaining synchronization between the subprocesses involved.

SUBPROCESS TREE

[SUBP 1 I ~ SUBP 4

SUBP 3 j I SUBP 5

SUBP b

Root of subprocess tree

SUBP 9 SUBP to

w

0

34

FULL PATH EXAMPLE

CALLING SEQUENCE CURRENT SUBP END-OF-PATH SUBP FULL PATH

SUBPO SUBPO SUBPO SUBPO
SUBPO calls SUBP9 SUBP9 SUBP9 'SUBP9
SUBP9 calls SUBP6 SUBP6 SUBP6 SUBP6

ti SUBP6 calls SUBP4 SUBP4 SUBP6 SUBP6,5,4
SUBP4 calls SUBPO SUBPO SUBP6 _ SUBP6,5,4,0
SUBPO calls SUBP5 SUBP5 SUBP6 SUBP6,5
SUBP5 calls SUBP3 SUBP3 SUBP3 SUBP3

A subprocess call also causes a new stack entry to be constructed and

placed on the call stack.. In addition, the origins (relative to the local

environment) of the address space, C-list, and map of the calling subprocess

are computed and stored in cells 2, 3, and 4 of the local address space.

If the calling subprocess is not a member of the new full'-path, then these

cells are zeroed. Starting in cell 5 of the local address space are copied

the parameters of the subprocess call,

For a normal call the parameters of the call are first formatted in the

actual paramente area of the process descriptor by the system entry mechanism.

These parameters are drawn from the user t s input parameter list (IP list)

under the direction of the operation being used for the subprocess call (IPO) . ,.

In addition; the system entry routine places the name (class code) of the

called subprocess at the number of parameters and a bit string denoting the

types of the types of the parameters at the end of the actual parameter area.

After establishing the correct processing environment for the called subprocess,

the parameters are transfered to the local address space and local C-list of

the called subprocess. Datum parameters are simply copied to the next para-

meter cell in the local address space. Capability parameters are copied to

successive positions in the local C--list and the index of the parameter in

the local C-list is stored in the next parameter cell in the local address

space. On the completion of the parameter passing, execution is initiated

at the entry point of the called subprocess.

Possible errors during subprocess call:

Param
Class # # Description

4 5
4 6
4 7
4 8
8 0

Named subprocess does not exist
No room on stack for subprocess
No room for parameters
Too many capability parameters
C-list does not exist

Subprocess Return

Like the subprocess call, the subprocess return must cons trust a new processing

environment before returning control to the user. The return routines re-

activate a subprocess using information left in a stack entry. The full path

recorded in the stack entry is sufficient to reconstruct the processing envi-

ronment. The P- counter from the stack entry control where in the subprocess

execution is Finitiated The normal return requires the P-counter to be modi~► z
f ied by the low order 18 bits of the GFJ instruction which originally caused

control to pass to another subprocess (see p„ above)

Possible errors during subprocess return

Class # Description
4 9 Stack empty
2 2 P-!counter <: 0
2 3 P-counter exceeds field length

Subprocess F-return

If the execution of the called subprocess has resulted in an F-return, a flag

is set in the call stack entry. Under this condition the return is similar

to the normal return except that the last used operation (found by looking

up the IP list pointer in the previous stack entry) is checked for the pre-

sence of further orders. If the F-return count is not equal to the number

of orders in the operation which is also found in the stack entry the next

order is processed. Otherwise, control returns to the subprocess which called

the operation one word above the subprocesses normal entry point...

Possible errors during a subprocess F-return:

C 1 as s # Description
4 10 Stack empty
7 0 IPO is not a capability for an operation
7 1 Operation does not exist
2 1 IP list is too big

G. Subprocess Jump Return

AP1
AP2

C: Glass code of subprocess to return to (OB.SPRET)
D: Number of stock occurrences of APl to skip (0=1, -1 = down to last)

The subprocess jump return provides a method for getting calls off of the

process call stack. The user specifies the class code of the subprocess to

which the return is to be made. In addition, he indicates the number of

occurrences of that subprocess in the call stack which should be skipped

in looking for the call which is to become the new top of the stack Zero

indicates the first (most recent) call whereas .1 indicates the last (earliest)

'°f n

36

call.. Upon finding the proper stack entry, the stack is reduced to make that

entry the top of stack and normal subprocess return action is initialized.

H. Modify P-counter of subprocess

AP1 C; Glass code of subprocess (OB.PCNT)
AP2 Dt Number of stack occurrences of AP1 to skip
AP3 D: New P- counte r

The user can modify the P-counter in a subprocess which has already been

called by identifying the subprocess the number of stack occurrences of the

subprocess to skip (see G above) and the new P-counter* The P=counter pis

modified in the stack and the new P- counter will be used the next time that

entry becomes the top of the stack. If the caller attempts to modify his

own P-counter an F-return is made.

Possible errors while modifying the P-counter

class # Description

2 2 P-counter is negative
2 3 P-counter exceeds user's FL.

I. Display Stack

AP1
AP2

D: CM address of a buffer area
D: Size of buffer area Q 4)

The user may examine the call stack of a process. He must supply a address

of a buffer area and its length so that the system can copy the stack into

the specified area. The number of entries in the stack is stored in the

first word of the buffer. As many entries as possible starting with the

current top of stack are then copied into succeeding 3 word sections of
i

the buffer. The stack entries are reformatted

Word o

Word 1

Word 3

G. ss code of current subprocess

Class code of end of path subprocess

F'-return IP LIST P-counter
count Address _

P
Forced

F-return flag
Interrupt

f 1 ag

J. Display Stack Entry

AP 1
AP2

Interrupt
inhibit flag

D~ CM address of buffer
D: Desired stack entry

A particula r entry in the call stack of a process can be examined if the

f

37

0

system is supplied with the CM address of a buffer area (each entry is 3 words

long) and the index (relative to the top of the stack) of the desired stack

entry. Format same as in I above.

Possible errors while displaying a stack entry;

Class # Param Description

2 2 1 CM address is negative
2 3 1 CM address exceeds user ̀ s PL
2 2 2 Stack entry pointer .negative
2 3 2 Stack entry pointer exceeds stack

K. Send Process Interruyt

AP1 C: A process (OLSDINT)
AP2 Ct Class code of a subprocess (OB0INTSP)
AP3 Dt An 18 bit interrupt datum

The process interrupt is one of the two ways in which a running process may

effect the execution of another running process (the other is via an event

channel) . The process interrupt enables one process to force the calling

of a specified subprocess (AP2) (called the interrupt subprocess) within

another process (APi) (called the interrupted process) ; i.e., the first

rpocess forces the interrupted process to call the interrupt s]process.

However, the interrupt is given a `'priority" in that the interrupt sub-

process will not be called unless for until) it is an "ancestor" of the

"current subprocess"; that is, the subprocess which is actually executing

in the interrupted process at the time of the call (or thereafter). There-

fore, how soon the interrupt subprocess gets entered depends upon its posi-

tion in the subprocess tree and the flow of control in the interrupted

process. An 18~bit interrupt dauum (AP3) is passed as the parameter, of

the call of the interrupt subprocess. Once a subprocess becomes an inter --

rupt subprocess, and until that subprocess is called as an interrupt sub'

process, all subsequent interrupts to that subprocess are disabled (have no

effect) . Since each subprocess is technically its own ancestor, it is

necessary when an interrupt subprocess is called to automatically inhibit

interrupts for the current (= interrupt) subprocess. When interrupts are

inhibited for a subprocess, an interrupt to the subprocesswill be remem~.ered

but cannot cause the interrupt subprocess call as long as the interrupt inhibinti

is set and the subprocess in question is t1 current subprocess.

0

3$

0

e

0

At every normal subprocess call and return, a check is made for waiting

interrupt subprocesses (subprocesses for which a process interrupt has

been issued but which have not yet happened to be the ancestor of any cur

rent subprocess) If any interrupt subprocesses are waiting, the ancestors

of the new current subprocess are checked to see if any of them is an inter -S

rapt subprocess. If so, the interrupt subprocess is executed instead;

execution begins two words above its entry point.

Possible errors while sending a process interrupt:

Glass # Description

2 l Interrupt datum exceeds 1$ bits

]L. Set Local ESM (Error Selection Mask

AP1 D: Pointer to new ESM

The error selection mask, which determines which glasses of errors a subs

process can handle, may be set in the current subprocess by specifying a

pointer to the new ESM The ESM is a bit string (32 bits per word) in

which a 1 indicates acceptance of the corresponding error class; i.e.,

Error class 0 Error class 31

Possible errors while setting local ESM;

Glass # Param Description

Z
2 1 Pointer to ESM z 0>
3 1 Pointer to ESM > FL

M. Set ESM in any subprocess

}

APl D; Pointer to new ESM
AP2 C: Capability for class code subprocess name (OB,STSM)

By specifying the name (class code) of a given subprocess in addition to a

pointer to a new ESM, the Error Selection Mask for any given subprocess

may be reset.

Passible errors while setting ESM in any subprocess:
r

Glass # Param Description

4 5 Subprocess does not exist

2 2 1 Pointer to ESM - < 0
2 3 1 Pointer to ESM > FL

39

N. Destroy Process

AP 1 C: Capability for process to be destroyed (OB.DSTRY)

The system action of destroying a process requires only a parameter giving

the C--list index of the process which is to be deleted. The process will

be removed from any event channels on which it is waiting and its address

space in ECS released.

Possible error while destroying a process

Class # Description

5 3 Process does not exist

0. Destroy a Subprocess

API C: Capability for class code of subprocess to be destroyed (OB.DSTRY)

A subprocess can be destroyed if it is currently a leaf of the subprocess

tree; otherwise an P- return will be made. If the subprocess is in the call

stack, an error is generated.

Possible errors while destroying a subprocess

Class # Description

4 5 Subprocess does not exist
4 11 Attempt to delete subprocess in stack

Pt Save (Restore) Registers.

AP1 D: Pointer to 16 word buffer for registers

The exchange jump package for a process can be saved (restored) in (from) the

user's area if a pointer to a 16 word buffer is specified. When the registers

are restored, only the programmable registers (A, B and X) are restored.

Possible errors while saving (restoring) registers:

Class # Description

2 2 Pointer to buffer is negative
2 3 Pointer to buffer is too large (within 16 words of user's PL)

i

s.

1

40

Appendix A

User supplied parameters for system action

File Actions

Create a File

APi C;F Capability for an Allocation block (OBALFIL)
AP2 D: C-list index to return capability
AP3 D: Number of levels in file
AP4 D: Pointer to list of shape numbers

Create a Block

AP1 C: Capability for file (OB,CREBL)
AP2 D: Address of block in file

t

Check for missing blocks

APl C: Capability for file
AP2 D: Address of block in file

Read Shape of a File

APl C: Capability for file
AP2 D: Address of buffer for shape numbers
AP3 D: Buffer size

READ(Write) a File

AP1 C: Capability for file (OBRDFIL, OB.WFIL)
AP2 D: Address in file
AP3 D: Address in CM
AP4 D: Word count

MoveRK a block of a file

AP1 C: Capability of a source file (OB.RDFIL)
AP2 D: Address of source block
AP3 C: Capability for destination file (OB.Wfl1E)
AP4 D: Address of destination block

Delete a Block from a File

API C: Capability for file (OB.DELBK)
AP2 Di Address of block to be deleted

Delete a File

AP1 C: Capability for file (OB.DSTRY)

41

II NAP ACTIONS

Zero a map entry

AP1 C: Class code (subprocess name) (OBC1ThIAP)
AP2 D: Index in logical map of subprocess

Chan:e create a ma• entr read/write or read only}

API C: Class code of subprocess (OB4CBNAP)
AP2 D: Index of map entry in API
AP3 C: Associated file (read only or read/write) (OB.PLMAPOBI,RWtL, OB..WPILE)
AP4 D: Address in file to be changed
AP5 D: Address in CM of new entry
APb D: word count of new entry

Display map entry in named subprocess

AP1 C: Class code for subprocess
AP2 D: Index of entry in logical map of API
AP3 D: Address of 3 word buffer `

Display entry- in full map

API' D: Index of entry in full map
AP2 D: Address of 3 word buffer

III EVENT CHAI EL ACTIONS

Create an event channel

AP1 C: Capability for allocation block (OB.CREEV)
AP2 D: Clist index for new event channel capability
AP3 D z Length of event queue

Send an event (with or without duplicate checkin

API C: Capability for event channel (OB.SNDEV, OB. SDEVX)
APZ D: Datum part of event

Geti an event or hang

AP1 C: Capability for event channel (OB.GETEV)

Get an event or P-return

API C: Capability for event channel (OLGTEVF)

Get an event from one of a list of event channels or han: P~return

APIA D: pointer to list of event channel C-'list indices (OBSETEV..
(OBGTEV...

AP2 D: Number of channels in list
r ~-

42
3

0

e

Des trop~
/

yT an event channel.

} AP1 C: Capability for event channel (OB.DSTRY)

IV C- LIST ACTIONS

Create a C-list

AP1 C; Capability for allocation block (OBCRECL)
AP2 D: Index in full C-list to return new capability
AP3 D: Length of new C-list

Display a capability from full C-lit

API D: Index in full C--list

Co~ya capability within full C-list and decrease options

APl D: Index of desired capability
AP2 D: Index of destination C-list entry
AP3 D: Mask if options to preserve

Copy capability from full C-list to arbitrar C-list vice-versa

APl Cs Index of destination (source) C--list (OB.CPZEN,OBCPYOT)
AP2 D: Index within destinaion (source) C-list of capability
AP3 D: Index in full C-list of source (destination) capability

Destroy a C-list

API C: Capability for C-list (OBV DSTRY)

V OPERATIONS

Make a subprocess call or subprocess ¶ operation

AP1 C: Capability for allocation block (OB.ALORD)
AP2 D: C-list index to return new operation

AP3 D: Type (0= calf non-zero~Jump)
AP4 C: Class code for subprocess called by new operation (OB.CALOP)

AP5 D: Number of parameters used by the subprocess call

Add a.n order to an operation

API C: Capability for allocation block (OB,ALORD)
AP2 D: C--list index to return new operation
AP3 C: Capability for existing operation (OB.ADDOR)
AP4 D: Type of order (0ca11; non--zero=Jump)
AP5 C: Class code of subprocess called by new order (OB.CALOP)

AP6 D: Number of new parameters being added

Copy an operation

AP1 C: Capability for allocation block (OB.AI4ORD)

AP2 D: Pull C-list index for new operation

AP3 C: operation to copy

43
f~

Change a parameter specification type from ,"None" to "user-supplied datum"

APi C: Capability for operation (OBCIITYP)
AP2 D: Index of parameter specification

Change ,a parameter spe cif i cation type from "none" to "any capab ,ity t'

APi C: Capability for operation (OBYcHTYP) Y
AP2 D: Index of parameter specification type to change

Change a parameter specification type f om "none" to ,"user—supplied capability"

APi C: ` Capability for operation (OB.CHTYP)
AP2 D: Index of parameter specification type
AP3 D: Capability type
AP4 D: Capability option bit mask

Chan e a arameter specification t ie from i`usersupplied datum" to "fixed-datum"
t

APi C: Capability for operation (OB.cHTYP)
AP2 D: Index of parameter specification type
AP3 D: 69-bit datum word

Change~a parameter specification type from "user- supplied capability" to
".fixed , capabiiityt`

APi C: Capability for operation (OB.CHTYP)
AP2 D: Index of parameter specification type in operation
AP3 C: A capability "

VI PROCESS AND SUBPROCESSES
r

Create a class code

APi C: Capability for class code

Set Temporary part of class code

API C: Capability for class code (OB.TENP)
AP2 D: C- lis t index for modified class code
AP3 D: New temporary part (3o bits)

Create a Process

L APi G: Capability for Allocation block (OB.CREPR)
AP2 D: C.-list index for returned process capability
AP3 D: Number of event channel chaining words

AP4 D: Number of stack entries
AP5 C: Class code for initial subprocess (OB.SONSP)

AP6 D: Number of map entries in initial subprocess

AP7 D: Compiled map buffer size for initial subprocess

AP8 D: Subprocess field length ^

.t

44

e

AP9 D: Subprocess entry point
AP10 C: Capability of C-list for subprocess (OB.LOCCL)
AP1I C: Capability of file for 1st map entry (Reach/Write: OB.WILE,,

M

OB.RDPIL, OBs PDMAP) for initial subproce s
AP12 D: Address within file
AP13 D: ' Address in. CM
AP14 D: Count of words to be swapped
AP15 D: Capability of file for 2nd map entry (Read Only: OB¢RDPIL,

OC. PLMAP) for initial subprocess
AP16 D: Address within file
AP17 D: Address in CM
AP18 D: Count of words to be swapped

Create a subprocess

S

APl C: Capability for new subprocess class code (OB.SONSP)
AP2 C: Capability for class code of the "father" of subprocess (OBJATBR)
AP3 D: Number 'of map entries

'4 D: Compiled map buffer size
AP5 D: Subprocess field length
AP6 D: Subprocess entry point
AP7 , C: Capability for subprocess local G lis t index (OLLOCGL)"

Subp ro ces s cal l

See Operations

Subprocess return

See Operations

Subprocess P-_return

See Operations

Subprocess Jump Return

APl C: Capability for class code of subprocess to return to (OBSPRET)
Al' 2 D: Number of stack occurrences of APl to skip

Modify P--counter of subprocess

API C: Capability for class code of subprocess (OB.PCNT)
AP2 D: Number of etck occurrences of APl to skip
AP 3 D: New P-counter

Display stack

API D: CM address of a buffer area
AP2 D: Size pf buffer area (> 4)

Disp lay_ s tack entry

APl D: CM address of buffer
AP2 D: Desired Mack entry

45

send process interrupt .r

AP1 C: Capability for a process (OB.$DINT)
AP2 C: Capability for a class code of a subprocess (OBINTSP)
AP3 D: An 18 bit interrupt datum

set local ESM Error Selection Mask

API D: Pointer to new ESM

Set ESM in any subprocess

APl D: Pointer to new ESM
AP2 C: cap ability for class code

Destroy a process

AP1 C: Capability for process to be destroyed (OB.DSTRY)

Destroy a subprocess

AP1 C: Capability for the c~.ass code f subprocess to be destroyed (OB.DSTRY)

Save (restore re:isters

AP1 D: Pointer to 16 word buffer for registers

e

0

46

Appendix B

Options

r

Option L

OB. ALEIL
OB. CREBL
OB. WEILE
OB. RDF IL
OIL DELBK
OB.. DSTRY
OIL CHMiAP
OIL CRE C
OIL SNDEV
OIL SDEVX
OB«GETEV
OIL GTE VP
OB. CRECL
OB. CPYIN
OB.. CPYOT
OB*LOCCL
OB, ALORD
OB. ADDOR
OB. CHTYP.
CP. CHTYP
OB L CREPR
OIL PCNT
OIL CALOP
OB, S DINT
OB.STESM
ON* INTSP
OB.SONSP
OB ,PATHR
OB. SPRET

Description
Allocate a file
Create a block
Write on a file
Read a file
Delete a block from a file
Destroy the object
Change a map entry
Create an event channel
Send an event (without checking)
Send an event (with check

for

duplicate)
Get an event Qr hang)
Get an event (or P.-return)
Create a C- lis t
Copy into a C-list
Copy out of a C-list
Local C-list
Create an order of an operation
Add an order
Change parameter specification

type
Create a process
Modify P--counter
Create call operation
Send process interrupt
Set ESM of subprocess
Interrupt subprocess
Name son subprocess
Name father subprocess
Subprocess to re t urn to

Oblect
Allocation Block
Pile
Pile
'Ile
File
Any object
Class Code
Allocation block
Event Channel
Event Channel
Evenn Channel
Event Channel
Allocation block
C-4 i.s t
C-list

Allocation block
Op ration

Operation
Allocation
Subprocess
Subprocess
Process
Subproces s
Subprocess
Subprocess
Subprocess
Subprocess

b i ck

Bit #

	I File Actions - MISSING
	II Map Actions
	III Event Channel Actions
	IV C-List Actions
	V Operations
	VI Process and Subprocess Actions
	Appendices
	A: Summary of Actions
	B: Options

