
May 27, 1969

,System entry exit

Control passes from the user to the entry point (USERCAL) of the system

entry/exit routines when the user executes a CEJ instruction. Control

returns to the slave (at S.RETU) at the end of the system entry/exit routines,

again by a CEJ instruction. Thus the system runs in monitor mode, while

the user runs in user mode. The function of these routines is to determine

the reason for the users call upon the system, to collect and check the

parameters needed for the action, to transfer control to the proper system

action routine, and to handle the return to the user after the system action •

is completed.

On entry to the system entry/exit routines tat USERCAL) the origin of the process

data area has been picked up in B1 by the exchange jump. The origin of the process

data area will remain in Bl through all system actions. First, the system and user

clocks are updated. The difference between -S.OLDTM, which contains the value of

S . CHARG from the last time it was updated, and ._ S . CHARG , which runs whenever the

interrupt system is not running, is added to the system total user time (S.URSTM)

in system core and to the user's total user time (P.USRTM) in the process data area.

The CEJ instruction which caused the transfer of control is then examined

to find the address of an input parameter list (see Figure 1). It is expected that the

CEJ which the user executed was in the upper two parcels of the instruction

word. The low order 18 bits of the 30 bit CEJ instruction are extracted and

interpreted to locate an input parameter list. If the 18 bit field is negative,
f.

the complement of the low order 4 bits specify which register in the user's

exchange package contains the input parameter list (IP list) pointer (e.g4,,

-3 -} B3; -10 } X2) . Otherwise, the 18 bit field is taken to be the IP . lis t

pointer. This pointer is checked for legality (i.e., must be positive and less

than user FL) and an error.•is generated if necessary. Finally, the IP list

pointer is saved in the process data area at P.IPLIST in case it is needed to

form a stack entry for a subprocess call. Also the stack manupulation flag

(P . OLDP) , which controls the updating of the old stack entry in case of a sub-

process call, is reset.

Next, the first word of the IP list (user RA + IP list pointer) is interpreted

as a C--list index and the corresponding capability is fetched by calling

GETCAP (note that a negative or overly large C—list index will cause an error

System entry/exit -2

to be generated). This capability is checked to see that it is a capability

for an operation; if it is not, an error is generated. The parameter speci-

fications of the operation are interpreted by OPINTER and an actual parameter

list is formed in the process data area starting at P . PARAM.

Parameters which are fixed in the operation are copied directly to the actual

parameter list. User supplied parameters are drawn from the a IP list which is

expected to contain, in successive words, data parameters or C-list indices.

User supplied capabilities are checked for the correct type and required options

unless the parameter specification is "any capability". All capability indices

are checked to be sure they fall in the range of the full C--list. If an "any."

parameter specification is encountered, an error is generated and parameter

processing is terminated.

For operations which are flagged as being parameterless, the interpretation

of parameter specifications is omitted. After the completion of the actual

parameter list (Al' list), the operation i8 checked to see 1f it requires a

subprocess name and parameter type bit masks. If so, the subprocess name is

copied from the operation to P.PARAMC in the process data area and the bit

mask(s) are copied into the cells preceding P.PARAMC.

Finally, the ECS action number is extracted from the operation; it is used as

an index to jump into the ECS action jump table starting at ACTIONL where

there will be a jump to the proper entry point for the desired ECS action.

Upon completion of an ECS action, the ECS action routine normally returns to

the system entry/exit routins to return control to the user. The only excep-

tion to this is the case in which the user process has blocked on an event

channel, in which case the event channel routine exits to the swapper.
J

There are three points to which ECS action routines may return. The normal

return is to SYSRET. This return updates the. user's P--counter in accordance

with the user supplied P-counter offset which is stored in the low order 18

bits of the CEJ instruction word originally used to call the system. The

legitimacy of the new P-counter(old P-counter + P--counter offset) is checked

and an error may be generated. The system time clocks at S.SYSTM in system

core and P.SYSTIM in the process data area are updated, and a check is made

to see if the user's quantum has run out. If S .QUANT is positive (quantum

has run out) swapper er is entered at SWAPOUT . Otherwise, an exchange jump pp

is executed to return control to the user. ~,,

System entry/exit -3

The second return is to TOUSER and is the same as the return to

SYSRET except that the user's P~-counter is not modified. This return is

used by the subprocess calling and the subprocess return routines. The

third return is at S.RETU and simply does the CEJ to the user. It is

used by the swapper to transfer control to the user.

Figure 1

SYSTEM CALL

51. 17 0

:;EJ ,I!g;
P-counter

~ offset

. r

May 27, 1969

Capabilities and Capability-Lists

User access to all objects within the ECS system is controlled by capabilities.

A capability identifies the object it refers to, specifies the type of the

object, and the set of allowed actions on that object (options) . Capabilities

are grouped together in capability-lists (C-lists) which are themselves objects

within the ECS system. Individual capabilities are referred to by their index

within a C-list. Since the capability, residing in a C-list, authorizes access

to an object, the user is never allowed to fabricate a capability. The system

creates a capability with all options allowed when an object is created. Sys-

tem actions 'are provided to permit the user to examine a capability, to copy

capabilities between C-lists and within a C-list, and to downgrade the option

mask. Thus, the user can transfer the right to access an oabject and can curtail

that access, but he may never manufacture that right or increase the set of

allowable actions on the object.

CAPABILITY

A capability consists of two 60-bit words (see Figure 1) . The first word con-

tains the type of the object to which the capability refers and a bit mask

indicating the allowed actions on the object. The type field occupies the

lower order 18 bits of the first word and must have exactly 9 of the 18 bits

set. The remaining 42 bits comprise the option mask. The meaning of the

bits in the option mask, of course, depends on the type of the object.

The second word contains the information necessary for the ECS system to ̀ -

access the object (or, in the case of a class code, the object
itself).

It uses the lour order 18 bits of the. second word, which contain the

master object table (MOT) index, and the high 3order 39 bits, which contain-

the unique name of the ob j e c t . The remaining 3 bits o the second word are unused

Capabilities are created by the allocation routines at the point when storage

is allocated for a new object. The new capability with all options allowed

is placed at CAPAB and CAPAB+1 by the allocation routines. The routine

creating the new object then moves the capability to its user-designated

position in the user's full C-list by calling PUTCAP .

Capabilities and Capability-Lists -2

CAPABILITY LIST

A capability list (C-list) is a sequence of capabilities and "empty" posi-

tions (see Figure 2) . It is prefixed by the total number of spaces for

capabilities. "Empty" positions are simply two zero words. Each C-list is

filled with "empties" upon creation.

A C-list is assigned to every subprocess within a process. , For every pro-

cess there is defined a sequence of subprocesses called the full path. Cor-

responding to the full path, the full C-list is defined as the concatenation

of the C-lists belonging to the subprocesses in the full path. When referring

to capabilities within the full C-list, the capability index is interpreted

as if the C-lists in the full C-list have been joined to form one long C-list .

The full C-list is implemented by maintaining a full C-list table within the

process data area (see Figure 3) . The full C-list table is a sequence o€ two

word entries each of which_ identifies, a C-~li..st and the length of the C-list.

P.CLIST in the process data area holds a pointer (relative to the origin of

the process data area) to the first entry in the full C-list table. The full

C-list table is terminated by a zero word. The first C-list (called

the local C-list) in the full C-list is copied into core with the process while

the remaining C-lists remain in ECS. P.CTABLE, in the process data area,

holds a pointer to the end of the full C--list table (the zero word) , the number

of entries allowed in the table (maximum length of the full path), and the

size of the core buffer for the local C--list (maximum local C-list size) .

Three routines are used to access C-lists . GETCAP is used to fetch a

capability from the full C-list. PUTCAP copies a capability to the full

C-list . If the capability falls within the local C-list, it is copied to both

the ECS copy and the in-core copy of the local C--list. Finally, ARBCAP I .

is used to copy a capability to or from an arbitrary C-list (not the full

C-list) .

Capabilities and Capability-Lists -3

Figure 1

CAPABILITY

OPTION MASK TYPE

UNIQUE NAME
M¢T
INDEX

1St WORD

2nd WORD

Figure 2

CAPABILITY LIST

LENGTH

OPTIONS TYPE

UNIQUE NAME ~ MST

OPTIONS TYPE

UNIQUE NAME. ~ MST

OPTIONS TYPE

UNIQUE NAME MOT

w

Number of Capabilities is C-list

Capability (Index 0)

Capability (Index 1)

Capability (Index == LENGTH)

Capabilities and Capability-Lists _4

Figure 3

FULL C--LIST TABLE

P.CLIST

POINTER

LENGTH

P . CTABLE

LEN/ 2 LEN/ 2 POINTER
OF LOC OF FULL
C-LIST C-TABLE

BUF

LENGTH

UNIQUE NAME 2'
INDEX

LENGTH

UNIQUE NAME
~ NOT

INDEX
~

Y

.UNIQUE

LENGTH

NAME %
NOT

j INDEX

ZERO WORD

} LOCAL C-LIST

}2nd C-LIST

} LAST C-LIST

END OF TABLE

July 8, 1969

Files

A file is an ECS system object, containing a sequence of addressable

(60 bit) words, used to provide storage for code and data. In order to

permit a large file address space and, at the same time, make efficient

use of ECS space, ECS files are organized in a tree structure. The "leaves"

of the file tree (see Fig. 1) are called data blocks (see Fig. 2) and con-

tain the addressable words of the file. The non--terminal nodes of the file

tree are called pointer blocks (see Fig. 3) and contain links to either

data blocks or other pointer blocks. With this tree structure, only the

necessary pointer blocks and data blocks are allocated in ECS. Empty or

non—existent portions of the file are not allocated until they are needed.

For any file, there is a sequence of positive integers, (SO , S1' " ' ' Sn)
n > 1, which describe the shape of the file. Each Si, for 0 < i < n, is

the number of branches in the file tree at nodes of level i (the root of

the tree is at level O; all nodes connected to the root are at level 1;

etc.). Each Si for i > 0, must be an integral power of 2 (note: this

does not apply to the first shape number SO) . The last shape number,

Sn, is the size of the data blocks. Thus, the number of addressable words

n
in a file is given by L = iIIO Si . The words of a file are addressed by

integers which may range from 0 to L-1 .

The shape of a file is represented by the dope vector for the file

and is stored in the file descriptor (see Fig. 4) . The file descriptor

is pointed to from the master object table (MOT) . It contains the dope

vector, the length of the file, a pointer to either a pointer block or a

data block (zero level file), and the MOT. index and unique name of the

Allocation block which.funds any changes in the ECS space occupied by

the file. The dope vector contains instructions which are executed to

obtain the path through the file tree which leads to a particular address

within the file. When a file is created, only the file descriptor is

constructed, and the file may be destroyed only when it is in this state.

Files -2

Pointer blocks link the file descriptor to the data blocks in all

files with more than one shape number (n > 0) . Pointer blocks are con-

structed only when needed to link to data blocks. The allocation infor-

mation which prefixes each block in ECg is used to provide a return path

through the file tree. This backpointer contains the absolute ECS address

of the single word which points to the pointer block din the file descriptor

or in a pointer block at the preceding level). A count of non--empty pointers

within the pointer block. is also maintained in the allocation prefix to

the pointer block (note: the counter is greater than 0; otherwise, the

pointer block is not needed) . The word following the last pointer in the

pointer block contains a negative number which is a relative pointer to

the first word of the allocation prefix.

Data blocks contain the addressable words of the file. Again, the

backpointer in the allocation prefix is made use of, and the count of

maps (see Maps) which reference the data block is maintained in the second

of the allocation words.

File actions

When a file is created, only the file descriptor is formed. Data

blocks may subsequently added, one at a time to hold data or procedures.

When a data block is added to a file, it may also be necessary to create

some or all of the pointer blocks between that data block and the file

descriptor. Data blocks may also be removed and, again, one or more pointer

blocks may be deleted if they are no longer needed to link to the remaining .

blocks in the file. A data block may not be deleted if it is ref erericed by

an entry in some subprocess map.

File may be read̂ .and written. This action transfers words between the

address space of the running subprocess and the data blocks of a file. If

a transfer is requested which involves a file address corresponding to a

non-existent data block, the transfer proceeds until the non--existent file

address is encountered and then an FRETURN is initiated.

Files 3

FILE
DESCRIPTOR

LEVEL Q

ROOT of
FILE TREE

LEVEL 1

FILE TREE

LEVEL 2

S1 pointers

SC pointers ~4

o'y
4

Figure 1

4''' LEVEL 3

/
cti,

Files 4

Shape = (S0,51,. ..,S)

~J

DATA BLOCK

Back
Pointer

ii MAP
References

1st Data Word

Snth Data Word
a

Figure 2

Allocation Prefix

Sn Data Words

Files 5

POINTER BLOCK

Pointer block at level k

,3 18 ~7

1+Sk+l Back
Pointer

w aP 1

Pointers
in Use

< 1st Pointer >

5
< kth. Pointer >

< end f lag >

Shape = (SQ,Sl,...,Sk,...,Sfl)

< 3th pointer > ::_

(j <k)

or

or

< END FLAG >

ALLOCATION PREFIX

Sk Pointers

}

1

+0

12 6 18 3 21

0000 0 j 0 ABS ECS
POINTER

12 6 18 21

1777 j 0

Corresponding pointer or
data block doesn't exist

Corresponding pointer
block (k < n-1)

ABS ECS Corresponding data
POINTER block (k = n-1)

.L

Relative pointer to
first allocation word

Files 6

FILE DESCRIPTOR

< POINTER >

<ALLOCATION BLOCK >

< LENGTH >

< 0th DOPE WORD >

< nth.. DOPE WORD >

SHAPE = ~S0,S1,...,Sn)

< PO INTER >

or

or

=

Pointer to Root of File Tree

Allocation Block. Identification

File Length.

Dope Vector

0000 0 1 0 ABS ECS
. - ADDR

1777 0 1 0 ABS ECS
8

ADDR

< ALLOCATION BLOCK> :: _
39 3 18

Unique Name f~! MOT Index

n S
< LENGTH > ::= (maximum file address) + 1 =. IT i

i=0

< 0th Dope Word > ::=

< Jth Dope Word > ::

< nth Dope Word >

or

=

AX6 2, MXO~ - - 0 JP B7

AX6 Q MXO in JP B7

If root doesn't exist

If root is pointer
block (m > 0)

If root is Data Block

(m=0)

SX6 S JP B7+4

SB5 5 JP B7+5

Figure 4

n
R ~

i1
log2 (Si)

=

n
£ = log2 tS)

_ i
i-j +1 * .

in = 60 - log2 (Si)

S = Sn

June 5, 1969

Event Channels

Event Channels are ECS system objects_ used to synchronize running pro-

cesses as well as to implement "block" and "wake up" mechanisms. Basically,

a user process may request an event from a particular event ichannel. If the

event channel does not have an event, the user`s process is blocked (stops

running) until some other process sends an event to the event channel. The

exact mechanisms of sending and receiving events will be described in full

detail.

The event channel (see Figure 1) consists of a three word header followed

by the event queue. The event queue is a circular buffer controlled by pointers

and values located in the first and third header words.

First header word; The "in" and "out" pointers in the first word are

manipulated to point relative to the beginning of the event channel. The

"in" pointer always points to the location in which an event is to be put

should one arrive. The "out" pointer points to the location of the next

event to be removed from the event queue. The "in" pointer will equal the

"out" pointer when the event queue is either empty or full. Therefore, the

number of empty places in the circular buffer is maintained in the third

header word. Finally, the length of the entire event channel is recorded in

the first header word.

Second header word: The second header word is used to maintain a queue

of w ting processes. When a process requests an event and the event queue

is empty, the process is added to the process queue. The process queue is a

bi-directional list through the processes on the queue and the event channel

(see Figure 2). The high order 30 bits of the second word of the header, called

the process queuing word_, hold the forward pointer while the low order 30 bits

hold the backward pointer. Each pointer consists of a Master Object Table (MOT)

index and a queuing word ' index. The queuing word index, in the high order 12

bits of the pointer, is an index relative to the beginning (in ECS) of the process

which is designated by the MOT index of the low order 18 bits of the pointer.

Event Channels 2

Within the process, at the location indicated by the queuing word index,

there should be another process queuing word with forward and backward

pointers. The queuing word index is stored in such a way that the. unpack

(UXi Bj ,Xk) instruction will result in the. true queuing word index in the

B register. Furthermore, if the pointer refers to the event channel, the

queuing word index will unpack to a 2 in the B register. For example,

the pointer: 20618 1 0001238 refers to the 618 --st word (in ECS) of the process

with MOT index 1238. Similarly the pointer; 17758 1 003218 refers to the pro-

cess queuing word of the event channel with MOT index 3218. If the process

queue is empty, the process queuing word in the event channel will point to

the event channel itself (e.g., (177581000321811775810003218)) .

Event Channel Routines

It is important to note before discussing the event channel routines that

they are one of the few places in which there is interaction between the ECS

action routines and the interrupt system. Since the interrupt system may

call upon the event channel routines at any time, it is necessary to lock

out the interrupt system while manipulating event channels and to relax the

lockout upon completion of any event channel manipulations. To lock out the

interrupt system, it is only necessary to set I.LOCK tin system core) non—

zero. To release the lock, simply clear I.LOCK.

Sending Events

Events are sent by user processes and by the interrupt system. An event

consists of two words. The first word is the MOT index of the process which

is sending the event. The second word is a 60 bit datum provided by the ;sender

of the event. A response is always given to the sender of the event to indi-

cate the disposition of the event (see. Figure 3) . Fora user process, the

response is returned in X6.

If the event queue of the appropriate event channel is not empty, then

it may or may not be searched for an event duplicating the new event. This

is to allow for the elimination of redundant events. If the event queue

search was desired and if a duplicate event is found, a response is given to

the sender indicating that a duplicate event was discovered, and the event

sending routine returns.

Event Channels 3

If no duplicate event checking was requested or no duplicate event was

found, the event queue is , checked to see if it has more than one empty slot.

If the event queue. is full, the. sender of the event is notified that the queue

is full, and control returns to the sender of the event. If there is only

one slot left in the event queue., the datum word is replaced by a special

"you lose" datum (0) and the sender is notified by the "you lose" response.

This "you lose" datum allows the process which ultimately receive that "you

lose" event to discover that the event queue had been full and that informa-

tion was lost.

If the event survives the duplicate event checking and the full event

queue conditions, it is copied into the event queues and the pointers moved

to reflect its presence. Again, the sender of the event is notified of the

deposition of the event.

If the event queue is empty, the process queue must be checked. (Note

that if the event queue is not empty, then the process queue must be empty .)

The process queue is scanned for the first process which does not have its

"wake-up waiting" flag set, i.e., has not already been handed an event, received

a process interrupt, or been marked for destruction. If such a process is

found, and it is not a. pseudo process (used by interrupt system to interface

with the event channel logic and other purposes) , the "rake-up waiting" flag

is set on that process and the event is copied to the process data area in

ECS . Note that the testing and setting of the "wake-up waiting" flag must

not be interrupted by any other access to this flag. If the process is not

running ("running" flag) the scheduler is called to schedule the process to

run. If the first process without "wake-up waiting" is a pseudo process, it

is removed from the process queue; otherwise, it is not removed until the

process is swapped in to run.

Finally, the "running", "event", and "pending action" flags are set in

the process. The "pending action" flag, the "event" flag, and the "wake-up

waiting" flag are used to control the swapper and the routines for hanging a

process on several event channels, process interrupt, and process destruction.

If the process queue is empty or has no processes without "wake-up

waiting", and the event queue is empty, the event is copied to the event

queue and the appropriate response is passed to the sender.

Event Channels 4

4.

Getting Events

A user process may attempt to get an event from an event channel. If the

event queue is empty, the process may wait ("hang" or "block") until an event

arrives before resuming execution. Also, a process may attempt to get an event

from any one of a set of event channels and, in the absence of any events, the

process may discontinue execution ("hang" or "block") until an event arrives

for oen of the event channels. If more than one process is awaiting an event on

a single event channel, the first event to be set to that channel is passed to the

first process while the other process(es) continue to wait.

The mechanism of getting an event or hanging (waiting for an event to

arrive) begins with a check on the event queue of the event channel. If the

event queue is non-empty, the head of the event queue is removed and the

event is passed to the process (in X6 and X7 for a user process).

If the event queue is empty the process must be added to the queue of

waiting processes (process queue) using a process queueing word in the ECS

image of the process. The "running" flag in the process is cleared and the

process is removed from the scheduling queue (de-scheduled). Next, the P-

counter of the process is decremented by one. This is to allow for the possi-

bility of a process interrupt causing the process to resume execution. In this

case, when the interrupt subprocess returns, the process will re-execute the

exchange j ump , which calls the system to try to get an event from the event

channel When the process has been chained on the process queue, the system P P q ~ Y

and user clocks are updated and the event channel routines exit to SWAPOUT in

the swapper to swap out the process.

When an event arrives for a process which is hung on an event channel,

the event sending mechanism will set the appropriate flags and schedule the

process to run as described above. The swapper will detect the "event" flag

and return through the evehtt channel routines instead of directly to the system

entry/exit routines. The swapper will have already removed the process from

any process queues on which it had been hung. After restoring the P--counter

of the process and copying the event to registers X6 and X7 of the process, the

event channel routines return through SYSRET in the system entry/exit routines.

5

r

F 1'
i

Event Channels 5

To get an event from one of a set of event channels, the event channel

routines must interrogate the event channels one at a time. If an event

channel has an empty event queue, the process is queued in the process ,

queue of that event channel using the next queuing _ word of the process. The

sequence of "in use" queuing words in the process must be terminated by a

zero word. Between the interrogation of event channels, the "wake-up waiting"

flag is checked. If this flag is set, an event has arrived on one of the

event channels which has already been interrogated. If an event has arrived

or an event is discovered on an event queue of an event channel, the process

must be removed from all the process queues on which it is already chained.

In addition, the event is copied to X6 and X7 of the process, and the event

channel routines exit to the system entry/entry mechanism. When interrogating

the set of event channels periodic pauses must be made to allow the interrupt

system to run. Otherwise, the interrupt system might be locked out for an

intolerably long time. hf, interrogatng the last event channel, the

"wake-up waiting" flag is not set (note that the interrupt system is still

locked out), the process is descheduled, the P-counter is decremented, and

the event channel routines exit to SWAPOUT in the swapper.

FORE-POINTER

Figure 1

EVENT CHANNEL

g 5 3 4 8 3 3 Q
1~ENGT

NTER PS INTER
o

IP~
CH 'WD
INDEX

PROCESS
NOT

CE WD
IN)?E

PROCESS
NOT

IIMPTIE;
QtrFTrF .tN

PROC
MOT

EVENT DATUM

7 i

PR©

EVENT DATUM
MOT

BACK POINTER

S.'
PROCESS CHAINING' •WORD

3

EVENT

EVENT QUEUE

Event Channels Figure 2 --b

PROCESS QUEUE EXAMPLE

Figure 3

RESPONSES TO EVENT SENDER

CONDITION RESPONSE

EVENT PUT IN EVENT QUEUE 1

EVENT PASSED TO A- PROCESS 2

"YOU LOSE" EVENT PUT IN QUEUE 3

EVENT QUEUE FULL 4

DUPLICATE EVENT FOUND 5

May 1969

Time Shari n9 System Text Standard

The System Standard Text (Systext) is the standard method of storing infor-

mation for the Time Sharing System. Information in Systext format exists

as a file (a semi-infinite array of 60~bit words) terminated by an end-of--

information word. A Systext file is composed of lines, w14ch contain

character coded information, and segments which contain no information and

are ignored, called sloppy segments.

Systext Lines

A line is a sequence of 7 bit ASCII characters terminated by the control

character CR (= 1558) . Each line is packed right-justified into succes-

sive 60~bit words, 8 characters (56 bits) per word . The first 4 bits of

each word serve to signal the beginning of a line: for the first word of a

line these leading bits are 1001; for all other words in a line they are

0000. Consider the line ABCDEFGHIJ CR which would be stored in Systext

as:

1001ABCDEFGK 0000 I J CR * * * * *

Characters which follow the appearance of CR in a word are ignored.

Multiple blanks in a line are compressed by inserting a count of the number

of blanks rather than the blanks themselves. The ASCII character ESC (=1730)

is reserved for this purpose. Whenever ESC occurs in the Systext file, the

character following it is interpreted as a blank count, 'n' (0 < n < 128) .
io

On output these two characters are replaced by n blank characters.

Character Representation

The internal ASCII code used in System Standard Text is the external ASCII +

1408 (mod 200$). The conversion is performed by the system I/O routines (see

Time Sharing System Text Standard --2

Section) . This scheme maps blank onto 0, 0 onto 208 and A onto 418 .

See Table 1. Non—graphic characters., however, are not allowed to occur in

System Standard Text. (CR and ESC in the contexts described above are

the only exceptions.) Therefore, the character % has been reserved as a

special prefix for representing non-graphic characters; if the graphic fol-

lowing a f maps onto a control character under the mapping;: internal

ASCII + 1008 (mod 2008), the pair is interpreted as that control character

(see Table 2). Otherwise the % leaves its successor unchanged. So

%% represents % and %M represents CR .

Sloppy Segments

A sloppy segment in the Systext file is a group of n words (0< n < 2' 8)

that are to be ignored. The first word of such a segment is of the form:

-INDEF

QQQ

59 47 18 0

where n is the count of words in the segment. The system ignored the

middle 30 bits of this header word and the succeeding n-1 words.

End-of-information

The end of Systext is signaled by an end-of-information (EOI) word of the

form:

_0O

4000

59 47

The low order 48 bits of the word are ignored.

w

0

Table 1

•Graphic TTY Character Representation

Internal ASCII
TTY Character Representation

ld 0
1
2
3
4
5
6
7
10
11
12
13
14
15

• 16
f 17
0 20
1 21
2 22
3 23
4 24
5 25
6 26
7 27
8 30
9 31
• 32

33
< 34
= 35
> 36

37
@ 40
A 41
B 42
C 43
D 44
E 45
F 46
G 47
a 50
I 51
J 52
K 53
L 54
M 55
N 56
0 57
P 60
Q 61

•L

Internal ASCII
TTY Character Representation

R 62
S 63
T 64
U 65
V 66
W 67
X 70
Y 71
Z 72
[73

74
] 75
+ 76
f 77
' 100
a 101
b 102
c 103
d 104
e 105
f 106
g 107
h 110
i 111
J • 112
k 113
1 114
m 115
n 116
o 117
p 120
q 121
r 122
s 123
t 124
u 125
v 126
w 127
x 130
y 131
z 132
{ 133

134

} 135
136

rubout 137

Table 2

Non Graphic TTY Character, Representation

Internal ASCII Key Combination
Character Representation SYstext, Representation Function

NUL 140 % @

SOH 141 %A

STX 142 %B

ETX 143 %C

EQC 144 %D

EN 145 %E

ACK 146 %F

BEL 147 % G Bell

BS N 150 % H Backspace

HT 151 % I Horizontal Tab

LF 152 % J Line Feed

VT 153 % K Vertical Tab

FF 154 % L Page Eject

CR 155 %M

SO 156 %N

SI 157 %0

DLE 160 %P

DC 1 161 %Q

DC2 162 %R

DC3 163 %S

DC4 164 % T

NAK 165 %U

SYN 166 %V

ETB 167 %W

CAN 170 % X Delete Line

EM 171 L % Y

SUB 172 %Z

ESC 173 %[

FS 174 %

GS 175

RS 176 % 'h

US 177 % ~-

May 1969

The Line Collector

The line collector collects a line from the TTY using the previously typed

line as a template. It maintains two lines simultaneously, an old one and

a new one. The old line is the last line received by the Teletype for

from INITIAL) and is local to the virtual TTY buffer; it may possibly be

empty. A new line is constructed from the old one using the characters

typed in from the Teletype. To visualize the process of constructing each

new line, imagine two cursors or pointers, one called OLD which runs over

the old line and one called NEW which is positioned on the new line as it

is created. Normally when a character is entered from the TTY, it is

appended to~the new line and both cursors advance on place. If certain non

graphic characters, called Control Characters (see Table 3) are entered,

the cursors can be manipulated so that, for example, characters are COPIED

from the old line to the new one, or parts of the old line are SKIPped, or

the cursors BACKUP over undesired characters.

The most obvious application for the line collector would be in conjunction .

with an on-line compiler which performs a simple syntax check of each line

as it is entered. If the line is bad it output a diagnostic, rejects the

line, and calls on the line collector. The user edits the old line which

still resides in the yirtual buffer and resubmits it to the compiler.

The Line Collector

The line collector permits the following actions to be performed via the
*

appropriate control characters ;

Operation

Accept

Type State

Concatenate and
Accept

Concatenate, Print
and Accept

Tab Set/Release

Tab

*

Control Characters Action

The current new line is accepted
as is.

Advances the printed paper to a
fresh line. Spaces to the current
position of the New cursor, prints
a copy of the remainder of the old .
line, and on the following line prints
a copy of the new line to the cur-
rent position of the cursor.

e.g.: remainder of old line

current new line
+

(New cursor)

Concatenates the remainder of old
line onto the current new line and
accept.

Concatenates the rest of the old
line• onto the new line, prints
it out, and accepts.

Sets (releases) a tab stop at the
current position of the cursor in
the new line if entered an odd
(even) number of times.

Inserts blanks up (both cursors ad-
vance) to the next tab stop.

J

For each of the three actions Backup, Copy, and Skip, the distance can be

specified in 6 ways (see Table 3) . In the descriptions which follow, a word

is defined as a sequence Oft one or more non-alphanumeric characters delimited

by non-alphanumerics; when looking for the beginning of a word, the cursor

passes over all non--alphanumerics until it encounters one or more consecutive

alphanumerics . Next character entered refers to the first occurrence-in the

*

If the first key specified is CTRL , the second key must be pressed

while the first key is still depressed..

The Line Collector -3

line of the next character typed in after the control characters. If at any

time an edit request is made which cannot be fulfilled, the line collector

echoes a bell instead of the graphic specified.

Operation

Backup one
character

Backup one
word

Backup to next
character entered

Backup to and
including next
character entered

Backup to tab

Backup to edge

Copy . one
character

Copy one
word

Copy up to next
character entered

*

Control Characters Action

w

Cursor in the new line backs up
(erases) one character* 4- is
echoed on the printer.

Cursor in the new line backs up
(erases) one wordy E- is echoed
once on the printer.

Cursor in the new line backs up
(erases) up to but not including
the new character entered* <-
is echoed on the printer.

Cursor in the new line backs up
(erases) up to and including the
next character entered* -- is
echoed on the printer.

Cursor in the new line backs up
(erases) up to the preceding tab
setting* -4- is echoed on the -line
printer.

Cursor in the new line backs up
(erases) up to the left edge, thereby
starting the line anew* + is
echoed on the line printer.

The next character in the old line
is appended to the new line, and
the character is printed.

The next word in the old line is
appended to the new line and is
printed.

Characters in the old line up to
but not including the next character
entered are appended to the new line
and printed.

The old cursor moves simultaneously with the new cursor.

The Line Collector _4

Copy up to and
including next
character entered

Copy to tab

Copy rest of
old line

Skip one
character

Slip ona word

Skip to next
character entered

Skip up to and
including next
character entered

Skip to tab

Skip to end
of line

Characters in the old line up to
and including the next character
entered are appended to the new
line and printed.

Characters in the old line up to
the next tab setting are appended
to the new line: and printed.

The remainder of the old line is
appended to the new line .and printed.

No t e that

valent to

• is equi--

above .

Cursor in the old line moves ahead
(skips) one characters $ is echoed
on the printer.

Cursor in the old ling moves ahead
(skips) one word'k $ is printed
for each character skipped.

Cursor in the old line moves ahead
(skips) to but not including the
next character entered $ is printed
for each character skipped.

Cursor in the old line moves ahead
(skips) to the position immediately
after the next character entered.*
$ is printed for each character
skipped.

Cursor in the old line moves ahead
(skips) to the next tab setting.*
$ is printed for each character
skipped.

Cursor in the old line moves ahead
(skips) to the end of the lined $
is printed for each character skipped.

The cursor on the new line moves simultaneously with the cursor on the
old line.

The Line Collector -5

Insert Change; If entered an odd number of times
since the beginning of the first line,
the cursor in the old line is not
moved on Backup or normal entry
operations, thereby allowing the
insertion of characters into a line.
Odd numbered entries of the control
•characters are, echoed by < .
•Even numbered entries return the
cursor to its normal action and
are echoed by > .

lt

V

M

Co

3

tit p to ed q e. (/eji' or rcyt f'

Ltp Jo Ta.6

l.c~ -lo and ~~~~rjcl new{

Ghanacta.4- en&red

un fig ~~ no! cnclucunq ~.P.~r1
eh a.ra tta-r rca

Teletype I(O, Functions,

The TS System I/O functions are a set of routines which should be loaded into

continuous sections of core. If absolute images are used, they must reside

in the right part of core. To initialize these functions, one jumps to

.TTY. ON with

B1 set to the base of a 133$ GM word data area (TTYBUFF) for
this teletype.

B2 set to the index in the C-list for the TTY file.
B2+1 is the index of the CP to PP event channel
B2+2 is the index of the PP to CE event channel.

X7 is set to the return address in calling program.

I/O operations are performed upon strings or lines where a string is a sequence

of characters and a line is a string terminated by a CR character. Every

string
or

line i quantified by a two word entity called a string cri tor.

The first word of a string descriptor points to the base address of a given

string; the second word indicates the length of the string, or for a line,

the upper bound on the length, since the terminating CR character signals

the end of a line.

Output

To output a string described by the string descriptor DESC, DESC+1 the following

macro call is invoked:

PUTOUT

+

MACRO TTYBUFF, DEC S
SB1 TTYBUFF
SA4 DESC+1
SX7 *+1
JP PUTL
ENDM PUTOUT

The data area for the TTY

.PUTOUT outputs characters up to and including a CR or until the length spe-

cif i.ed in the second word of the descriptor is exceeded, whichever occurs first.

Lines with blanks compressed as well as uncompressed lines are output by

. PUTOUT .

NOTE: If the flag at TTYBUFF + FORCE (FORCE = 238) in the TTY data area is on,

the TTY buffer will be flushed (PP is notified that there is something in the

buffer) each time < , . PUTOUT f ini`shes a line. This kind of line--by-4ine flushing

Teletype I/O Functions -2

is expensive and should be suppressed when possible, Therefore, if a large

file is to be listed, the FORCE flag should be turned off until the last line.

With the flag off, lines will be forced out only when the TTY buffer becomes

full and/or when the last line is entered, whichever occurs first.

A single character is output when a macro call to .OUTPUTC is invoked

OUTPUTC

+

MACRO TTYBUFF, CHAR
SB1 TTYBUFF
SXl CHAR
SB7 *+l
JP PUTCTTYT
ENDM OUTPUTC

The output buffer is flushed when a macro call to FLUSH is invoked

FLUSH

+

Input

MACRO TTYBUFF
SB1 TTYBUFF
SB7 *+1
JF FLUSH
ENDM FLUSh

Teletype input is significantly more complex than output. The routine

INGET is called to get a line from the TTY;

INGET

+

MACRO TTYBUFF
SB1 TTYBUFF
SX7 *+1
JP. GETL
ENDM TTYBUFF

INGET causes a new line to appear as the string described by the string

descriptor stored at TTYBUFF + NEW (NEW = 1018). This new line does not

yet have blanks compressed and the first four. bits of each word are zeros.

The new line is obtained f ro~i the Teletype using the line described by the

descriptor TTYBUFF + OLD (OLD = 768) as a template. To modify ,an old line

merely involves updating the descriptor and its image with desired new line.

The new line must not exceed 86 characters in length since that is the maximum

length of a line which. INGET can return.

Teletype I/O Functions -3

The following macro call to INGET, enables the. user to implement the reserved

control character % U

INGET.

+

MACRO TTYBUF, COMMAND
SB1 TTYBUF
SX7 COMMAND
LX7 18
SX6 *+2
BX7 X6+X7
JP GETL
ENDM INGET.

If the line gotten from the TTY buffer is terminated by % U instead of CR ',

then control returns to COMMAND rather than *+1 . This allows the TTY to

earmark certain lines as special. For instance, consider a file editor which

allows lines to be appended to a file. There must be a way for the user to

signal which line is the last line to be appended to the file. However, every

key has a pre-assigned meaning or can appear in a line; the only exception is

U . Thus the editor could use % U to terminate the last line of the file

and control will return to COMMAND.

The input buffer can be cleared (the contents are removed and discarded) by a

macro call to CLEAR:

CLEAR

+

MACRO
S B1 TTYBUF
SB7 *+1
JP .CLEAR
ENDM CLEAR

Since these routines should suffice for most circumstances, the following

esoteric features can be ignored by the majority of users.

The routine GETS concatenates characters up to and including the next break

character (see p. 4) onto the string described by the strinc descriptor DESC.

All but the break character are echoed; the break character is returned in Xl.

GETS is called as follows:

GETS

+

MACRO TTY,DESC
SB1 TTY
SA4 DESC+1
SB6 1
SX7 *+1
JP GETS
ENDM GETS

Teletype I/O Functions _4

There is one anomoly connected with GETS; if no check were provided, it would

be possible for GETS to accept a string that was long enough to clobber storage

when it was concatenated onto he string described by DESC. To avoid this,

GETS expects DESC+2 to contain an upper bound on the length of the resulting

string. If GETS receives a string which. when concatenated would exceed this .

upper bound, it returns in X.CHAR the negative of the first character in

the string which causes the bound to be exceeded.

The routine GETCTTY gets the next character from the .TTY buffer; it is called

as follows:

GETCTTY MACRO TTYBUF
S Bl 1

+ SB7 *+1
JP GETCTTY
ENDM GETCTTY

GETCTTY does not echo the retrieved character even if the SOFTECHO (= 218)
flag in TTYBITFF ie on. (The SOFTECHO flag signale that the PP hay not been

able to echo a character and therefore that GETS should.) The retrieved

character is returned in X1 .

The macro call to NEWBREAK is used to switch from nne table of break characters

to another.

NEWBREAK MACRO TTYBUFF,I
S B1 TTYBUFF
SB2 I

+ SB7 *+1
JP NEWBREAK
ENDM NEWBREAK

If the break table is switched, it should be restored to break table #2 before

using GETL. Other routines will work with any break table.

Table Number

0
1
2
3
4

Characters. which signal a break

none
any character
non-graphics
non" alphanumerics
non numerics

	System entry/exit
	Capabilities and Capability-Lists
	Files
	Event Channels
	Time Sharing System Text Standard
	The Line Collector
	Teletype I/O Functions

