
This is a preliminary, unofficial description of the ECS "layer" of the

CAL time-sharing system on a 6400 with central exchange jump and Extended core

storage. This document precedes any attempt to implement the ECS "layer"

of the system but it should describe the "user machine" defined by the ECS sys­

tem. The following describes the major elements of the ECS system. Most of

these elements are also ECS objects while the rest (subprocess and subprocess

map) are components of ECS objects whose complexity warrents a separate

description.

Special comment should be made about the nature of "operations" with res­

pect to the overall system design. The system is to be constructed in layers.

The first layer is the ECS system. The next layer will implement the disc as

a backing store for ECS. Other layers are contemplated to simulate Scope and

provide comprehensive debugging facilities. An operation is an ECS object

whose function is to manage the transfer of control and passing of parameters

between system layers operating in different environments of protection. Fur­

thermore, operations are used to "pass the buck" when a layer finds it is unable

to complete its assigned task. For instance, assume an operation has been invo E~

to ask the ECS system to access part of a file. If the ECS system should discover

that the portion of the file requested is not in ECS, then F return (see Process)

will cause the operation to be invoked again, transfer control to another layer

of the system (in this case, the disc system which would schedule the needed

transfer). Thus the intervening layer of the disc sy,.c adds overhead in the

file access only where ·che acc-2ss fails at the ECS le\., _

This exam•i:>:._e ai~..:: iliu.straces another characteristic of operation, their

ability to hide lower levels oi the system. They make all levels below the level

initiating _ne operation appear to be one grand system which will perform all

actions for which there are operations at the higher level. This is done through

the "buck passing" and by using operation to call a subprocess at a different

levc l which in turn may com;mte or invoke additional operatF•n5

One hsitates tor., the "layer" model too far. The .:-ocess construct

will be used to implement all layers except the system The hierarchy of sub-

processes provides varying protection within the process and should be studied

to understand the major protection mechanism of the system.

-2-

The following, besides describing the major elements of the ECS system,

also describes the actions which the ECS system will undertake on these objects.

This description is not intended to be an exhaustive compilation of the ECS

actions but rather, a list of most of the interesting ECS actions.

These documents were produced for internal use and thus may not provide

an easily readable description of the ECS system. Questions should be

directed to Howard Sturgis or Bruce Lindsay, Berkeley Computer Center

(phone 642-1491).

- --.. •-.

Event Channel

1.2

1. 2.1

1.2.2

1.3

1.3.1

1.3.1.1

1.3.1.1.1

1.3.1.1.2

1.3.1.2

1.3.1.2.1

1.3.1.2.1.1

1.3.1.2.1.2

1.3.1.2.2

1.3.1.2.2.1

1.3.1.2.2.1.1

1.3.1.2.2.i.2

SPEC 1
10/28/68

-1

The event channel is used to cause "wake ups" and to "block"

Structure of event channel

An event channel consists of 2 queues, only one of which may be

nonempty at a given time. fYlh

(/J • . I £,, I)- A I -'-) A queue of events ~ _ ~ ~

An event consists of 1) D: a process name

2) D: a data word f ~
A queue of waihing processes (~ U)
This queue is a chain through the chaining word of the processes.

Actions on an event channel

Place an event on an event channel

Parameters of this action are

C: an event channel

D: a data word

The action may be divided into 3 steps

Form an event consisting of

The name of the process calling for the action

AP2

Dispose of the event

If the event queue is empty;

If the process queue contains _!lQ. process

which does not have a "wake-up-waiting";

then, place the event on the event queue.

If there is a process on the process queue

without a "wake-up-waiting";

then, set "wake-up-waiting" for the first

such process; pass the event to the process

(using a local hidden variable ''waiting event");

1 and if the process is not. "run~ing" then

1.3.1.2.2.2

1.3.1.2.2.3

1.3.1.2.2.4

1.3.1.2.2.5

1.3.1.2.3

1.3.2

1.3.2.1

1.3.2.1.1

SPECl
10/28/68

-2

If the process queue of the event channel

is empty, there is no entry in the event queue

duplicating the new event, and there is more

than 1 free place in the event queue;

then the new event is placed on the event

queue.

If the process queue of the event channel is

empty, there is no entry in the event queue

duplicating the new event, and there is exactly

1 free space in the event queue;

then a special "you lose" event is placed

I
on the event queue. fi/r-M#

If the process queue of the event channel is

empty, there is no entry in the event queue

duplicating the new event, and the event

queue is full;

then nothing is done on the event channel.

If the process queue is empty, and there is a.n

event in the event queue which duplicates the

new event;

then nothing is done on theevent channel.

A number is returned to the calling subprocess in

X6 to indicate which form of step 2 was taken.

Get an event from an event channel or "block"

The parameter of this action is:

C: an event channel

1.3 . 2.2

1.3.2.2.1

1.3.2.2.2

1.3.3

1.3.3.1

1.3.3.1.1

1.3.3.2

1.3.3.2.1

1.3.3.2.2

SPEC 1
:1..0/ 28/68

-3

The action depends on the state of the event channel

If the event queue is nonempty;

then the event on top of the queue is removed

and placed in X6 and X7 of the calling subprocess.

If the event queue is empty;

then the P-counter (of the calling subprocess) is

decremented by 1, the process is placed at the

tail of the process queue of the event channel

(using the first of its chaining words) and the

process is "blocked" (not running) until an

event causes a "wake-up" ("wake-up-waiting"). The

contents of the event (see 1.3.1.2.1) are copied to

X6 and X7 of the calling subprocess, the P-counter

(of the calling subprocess) is incremented by 1, the

process is removed from the process queue of the

event channel, and scneduled to run.

Get an event from the event channel or make "F return"

The parameter of this action is:

C: an event channel

The action depends on the state of the event channel

If the event queue is nonempty;

then the action is the same as in l.~.2.2.1

If the event queue is empty;

then an F return is made,

1.3.4

1.3.4.1

1.3.4.1.1

1.3.4.1.2

1.3.4.2

1.3.4.2.1

1.3.4.2.2

1.3.4.3

1.3.4.3.1

1.3.4.3.2

1.3.4.3.2.1

1.3.4.3.2.2

1.3.4.3,2.3

SPEC 1
10/28/68
-4

Get an event from any one of a number of event channels

or "block".

Parameters

Error

D: number of event channels

D: relative location of a sequence of capability

indices for event channels

APl is negative or greater than the number of

chaining words in the process.

Any one of the capability indices starting at AP2

does not specify an event channel with the necessary

options.

Action

All capabilities specified by APl and AP2 are

checked to insure that they do not satisfy 1,3,4.2.2.

Also decrement the P-counter by 1.

For each of the event channels the following action

is taken (as an atomic act)

If "wake-up-waiting" for the process, then go to

1.3.4.3.4.

If the event queue is non-empty, then transfer

the head of the event queue to "waiting-event",

set "wake-up-wating", and then go to 1.3.4.3.4.

Otherwise, place the,:J)rocess on the process queue

using the next available chaining word.

1.3.4.3.3

1.3.4.3.4

1.3.5

1.3.5.1

1.3.5.1.1

1.3.5.1.2

1.3.5.1.3

1.3.5.2

1.3.5.2.1

1.3.5.2.2

1.3.4.2.3

1.3.5.3

SPEC 1
10/28/68
-'i

If step 1.3.4.3.2. was completed for all the specified

event channels, and there is no "wake-up-waiting" then

block until there is "wake-up-waiting" (may be zero

time). Then go to 1.3.4.3.4.

Remove the process from all event channels on which it

is queued (i.e., unchain all chaining words in use).

Copy the event in "waiting-event" to X6 and X7 of the

process, increment the P-counter by 1, and schedule the

process to run. NOTE: The process is given no explicit

information as to which event channel (if hung on more

than one) produced the event .

Create an event channel

Parameters

C: accounting block

C: location in full C-list to return capability for

the event channel.

D: length of the event queue for the event channel

Errors

Errors may be caused due to insufficient resources

in APl (see alloc block, 11.2.1).

If the location specified by AP2 does not exist or

does not contain a "null" capability, an error will

be generated.

AP3 is negative.

Action: a new event channel with an event queue of length

AP3 is created by the authority of APl and attached to

APL The event queue is initialized to "empty" and a

complete (all options allowed) capability for the new

event channel is placed in the full C-list of the calling

subprocess at the location specified by AP2. ,

I
i

Capability List

2.1

2.2

2.2.1

2.2.2

2.3

2.3.1

'I

2.3.1.1

2.3.1.2

2.3.1.3

2.3.2

2.3.2.1

2.3.2.2

2.3.2.3

2.3.2.4

SPEC 2
10/28/68
-1

The function of a capability list (C-list is to store

capabilities to be used by subprocesses as needed.

AC-list is a fixed length sequence of capabilities.

Capabilities are used to name objects within the ECS system.

A capability is a pair

1. An object

2. A set of option bits
C\ r-, C ~-

The "full C-~~ ~
1
~-?8,i~~soces s defined"'by the sub-

process tree The full C-list is a concatenation of C-lists of

several subprocesses.

The full C-list is formed by concatenating the C-lists of all

the subprocesses on the path between the current "top of path"

and the current subprocess (see "process"). The C-list of

the current subprocess is the first while the C-list of the

"top" of s the last in the concatenation.

Let N + "top of path". Initialize sequence S + empty.

S + N,S ~ -\- ~ C...,
If N - of subprocess call stack, Sis complete;

otherwise N + father of N and go to step 2.3.1.2

Accessing the full C-list

Let the lengths of the C-lists which form the full C-list

be l 0 ,l1 ,l2 , ••• ,ln. Let the index of the desired capa­

bility be I. Initialize working index: j + 0.

If I~ lj then the desired capability is the I-th capa­

bility in the j-th C-list of the full C-list.

I + I-l j ; j + j + 1; if

Go to step 2.3.2.2. >
then generate an error.

..,,.

2.3.2.5

2.4

2.4.1

2.4.1.1

2.4.1.1.1

2.4.1.2

2.4.2

2.4.2.1

2.4.2.1.1

2.4.2.1.2

2.4.2.1.3

2.4.2.2

2.4.3

2.4.3.1

2.4.3.1.1

2.4 . 3.1.2

2.4.3.1.3

2.4.3.2

SPEC 2
10/28/68
-2

NOTE: The fir s t C-list of the full C-list (i.e., the C- list

of the current subprocess) may not reflect changes made to it

by another process as soon as they are made.

Actions on a C-list

Display capability from full C-list

The parameter of the action is

D: an index to the full C-list

A representation of the capability specified by APl (see

2.3.2) is copied to X6 and X7 of the calling subprocess.

Move capability and mask options within full C-list

The parameters of the action are

C: any capability to be moved

D: an index to the full C-list

D: a mask specifying options to be preserved

First the options of APl are "ANDED" with the mask pro­

vided by AP3. Then the resulting capability is entered

in the full C-list at the location specified by AP2.

Copy a capability from a C-list to the full C-list of the

calling subprocess

Parameters

C: a C-list

D: .the index in APl of the capability to be copied

D: a location in the full C-list for the capability to

be placed (see 2.3.2)

If AP2 is negative or greater than the length of APl, an

error is generated. The capability in the C-list specified

by APl and AP2 is copied to the full C-list at the relative

location specified by AP3.

2.4.4

2.4.4.1

2.4.4.1.1

2.4.4.1.2

2.4.4.1.3

2.4.4.2

2.4.5

2.4.5.1

2.4.5.1.1

2.4.5.1.2

2.4.5.1.3

2.4.5.2

2.4.5.2.1

2.4.5.2.2

2.4.5.2.3

2.4.5.3

SPF.C 2
10/28/68
-3

Copy a capability from the full C-list to a C-list

Parameters

C: a C-list

D: the index of the target in the C-list of APl

C: the capability to be moved (see 2.3.2)

If AP2 is negative or greater than the length of APl,

an error is generated. The capability in the full C-list

of the calling subprocess which is specified by AP3 is

copied to the location specified by APl and AP2.

Create a C-list

Parameters

C: allocation block

D: length of new C-list

D: index in full C-listto return the capability

Error conditions

Insufficient resources in APl (see alloc block 11.2.1)

The location specified by AP3 does not exist or does

not contain a "null" capability.

AP2 is negative.

A new C-list of length AP2 is created by the authority of

APL The new C-list is initialized to "null" capabilities

and a complete (all options allowed) capability for the new

C-list is placed in the full C-list of the calling sub­

process at the location specified by AP3.

Operations

3.1

3.2

3.2.1

3.2.1.1

3.2.1.1.1

3.2.1.1.2

3.2.1.1.3

3.2.1.2

3.2.1.2.1

3.2.1.2.1.1

3. 2 .1.2.1.2

3. ~.1.2.2

3.2.1.2.2.1

3. - 1.2.2.2

3.2.1.2.2.3

SPEC 3
10/28/68
-1

An operation is the vehicle by which a procedure may be executed

with modified limits of protection. When invoked, an operation

directs the passing of parameters and specifies the action which

is to be taken (the procedure to be executed).

An operation is either

A simple operation (operation of order 1)

An action, which consists of one of the following:

(lJ Call a named subprocess (i.e., subprocess specified

by a class code and class code index)

(i.) Jump to a named subprocess.

(3Jlnvoke a specified system procedure.

A list of parameter specifications (PS). Each of these

consists of 2 things;

Case specification, one of

(1) User supplied

l2) Fixed

includes an actual parameter satisfying the

kind-specification for this parameter.

Kind-specification, one of

U "any" (2

\ 1..) Capability (C:)

This kind-specification includes

1) A type, which may be "any"

2) A set of required option bits, which may

be empty

(3) oata word (D:)

This is simply a 60-bit word.

~r

\

~

\

3.2.2

3.3

3.3.1

3.3.2

3.3.3

r ~

~

~\~
~

i r

\
\

~

t

SPEC 3
10/28/68
-2

An operation of order n+l consists of an operation of order n,

plus

1) an action, and

2) zero or more additional parameter specifications.

An operation directs the formation of an actual parameter (AP)

list from a list of parameter specifications (PS) and an input

parameter (IP) list (IP0 ,IP1 ,IP2 , .. ,In)

Seti+ 1, j + 1

If i is greater than n, the number of parameter

specifications under consideration, then, all done.

Examine PSi

1. If the case of the PSi is user-supplied and the

kind of the PSi is capability

2.

then fetch the capability indexed by IP.
J

in the full C-list (see SPEC 2). If the

type of the capability does not agree with

the type in the PSi' an error is generated.

If the capability does not have all the

option bits on required by the PSi, an error

is generated. If no error, then the fetched

capability is taken as the actual parameter.

If the case of the PSi is user-supplied and the

kind of PSi is data word

then IPj is taken as the actual parameter.

3.3.4

3.4

3.4.1

3.4.1.1

3.4.1.1.1

3.4.1.1.2

3.4.1.1.3

3.4.1.2

3.4.1.2.1

3.4.1.2.2

SPEC 3
10/28/68
-3

3. If the case of the PSi is fixed,

4.

then the actual parameter in the PSi is taken as

the actual parameter.

If the kind of the PS is "any"
i '

then an error is generated.

If the case of PSi is not fixed, set j + j+l.

Set i + i+l.

Go to 3.3.2.

An operation may be invoked to handle parameter passing and transfer

of control in two ways

Due to invocation by a subprocess. This proceeds as follows:

The subprocess executes "CEJ K" (note: CEJ must be in

the high order part of the word; see subprocess return

in SPEC 10)

If K~ 0 then K is taken as the address of an input

parameter (IP) list which is a sequence of data words

(IP O, IP l' IP 2 , ..• , IP m)

If -7 < K < 0 then -k specifies a B register which

contains the address of an IP list.

IF -15 < K < -8 then -(k+8) specifies an X register

whose lower 18 bits contain the address of an IP list.

The ECS system then does the following :

Fetch the capability indexed by IP0 (see SPEC 2)

if the capability is not for an operation, an error

is generated.

The unique name for the operation is placed in the

stack entry of the subprocess invoking the operation

(top of call stack) and the "operation counter" is

initialized to 1.

3.4.1.2.3

3.4.1.2.4

3.4.2

3.4.2.1

3.4.2.2

3.4.2.3

3.4.2.4

3.5

3.5.1

3.5.1.1

3.5.1.1.1

3.5.1.1.2

3.5.1.1.3

SPEC 3
10/28/68
-4

An actual parameter list is formed using the input

parameter list specified in 3.4.1.1 (starting at IP1)

and the list of parameter specifications of the simple

operation contained in the operation.

The action specified by the simple operation is now

performed with the list of actual parameters just

constructed.

An operation may also be invoked when a subprocess makes a

"failure return" (see Process).

If the "operation counter" ("op count") is less than the

order of the operation name in the call stack entry, then

the operation is invoked.

The "op count" is incremented; N + "op count"

A parameter specification list is formed by concatenating

the parameter specifications of the first N orders of the

operation named in the call stack. An actual parameter

list is formed (see 3.3) with the IP list of the original

call (starting with IP1).

The action specificed by the N-th order of the operation

is now performed with the list of actual parameters just

constructed.

Actions on operations

Change PS case from user-supplied to fixed

of old PS is capability

Parameters

C: an operation

D: an index, j

C: a c~pability

when the kind

3.5.1.2

3.5.2 .

3.5.2.1

3.5.2.1.1

3.5.2.1.3

3.5.2.1.3

3.5.2.2

3.5.3

3.5.3.1

3.5.3.1.1

3.5.3.1.2

3.5.3.1.3

3.5.3.2

SPEC 3
10/28/68
-5

If the case of PSj is not user-supplied or the kind

of PSj is not capability, then an error is generated.

If the type and option bits of AP3 do not satisfy the

specifications of PSj an error is generated. Otherwise

the case of PSj is changed to fixed

to be the AP specified by PSj.

and AP3 is taken

Change PS case from user-supplied to fixed ' when the kind

of the old PS is a data-word.

Parameters

C: an operation

D: an index j

D: a data· word

If the case of PSj is not user-supplied or the kind of

PSj is not data word, then an error is generated. Other­

wise the case of PSJ is changed to fixed and AP3 is

taken to be the AP specified by PSj.

Increase option mask requirements

Parameters

C: an operation

D: an index, j

D: an option mask

If the kind of PSJ is not capability an error is

generated. If the case of PSj is not user-supplied,

an error is generated. Otherwise the option mask specified

for PSj is replaced by its original value "ored" with AP3.

3.5.4

3.5.4.l

3.5.4.1.1

3.5.4.1.2

3.5.4.1.3

3.5.4.2

3.5.5

3.5.5.1

3.5.5.1.1

3.5.5.1.2 '

3.5.5.2

3.5.6

3.5.6.1

3.5.6.1.1

3.5.6.1.2

3.5.6.1.3

3.5.6.1.4

3.5.6.2

Add a type

Parameters

C: an operation

D: an index j

D: a type number

SPEC 3
10/28/68
-6

If the kind of PSj is not capability, an error is

generated. If the case of PSj is not user-supplied,

an error is generated. If the type specified by PSj

is not "any", an error is generated. Otherwise the

type of PSj is set to that indicated by AP3.

Set kind to data word

Parameters

C: an operation

D: an index j

If the kind of APj is not "any", an error is generated.

Otherwise the kind of APj is set to data word.

Set kind to capability

Parameters

C: an operation

D: an index j

D: a type number

D: an option mask

If the kind of APj is not "any", an error is generated.

Otherwise the kind is set to capability and

the type and option bits required are taken from

APJ and AP4.

3.5.7

3.5.7.1

3.5.7.1.1

3.5.7.1.2

3.5.7.1.3

3.5.7.2

3.5.7.2.1

3.5.7.3

3.5.8

3.5.8.1

3.5.8.1.1

3.5.8.1.2

3.5.8.l.3

3.5.8.1.4

3.5.8.1.5

3.5.8.1.6

Display an operation

Parameters

C: an operation

SPEC 3
10/28/68
-7

D: location within the address space of the calling

subprocess

D: maximum number of words to be displayed

Error conditions

AP2 or (AP2 + AP3) does not lie within the address

space of the calling subprocess.

The number of orders in the operation is placed in the

location specified by AP2 followed by the contents (action

and parameter specifications) of each order beginning with

the first order. As many complete orders as possible will

be copied to subproces memory. If all orders are not

included, the remainder of the buffer is zeroed. Each

order will contain its length, -expressed as the number of

parameter specifications to help the user make sense of

the displayed operation.

Create a new operation

Parameters

C: an allocation block

D: an index in the full C-list to return the capability

for the new operation.

C: an operation

D: type of action to be added

C: class code

D: class code index

3.5.8.1.7

3.5.8.2

3.5.8.2.1

3.5.8.2.2

3.5.8.2.3

3.5.8.2.4

3.5.8.3

3.5.9

3.5.9.1

3.5.9.1.1

3.5.9.1.2

3.5.9.1.3

3.5.9.2

3.5.9.2.1

3.5.9.2.2

3.5.9.3

D: number of new parameter specifications

Error conditions

Insufficient resources in APl.

SPEC 3
10/28/68
-8

The full C-list entry specified by AP2 does not exist

or does not contain a "null" capability.

AP4 does not specify a jump or a call (O = call;

1 = jump).

AP7 is negative.

A new operation is created by the authority of APl and

the new complete (all options allowed) capability is

copied to the C-list entry specified by AP2. The new

operation is created from the operation AP3, the action

specified by AP4 (either a subprocess call, or a subprocess

jump) and the subprocess of AP5 and AP6, and the number of

parameter specifications of AP7. The rtew parameter speci­

fications will be initialized as user-supplied of kind "any".

Make a copy of an operation

Parameters

C: an allocation block

D: an index in the full C-list to return the capability

for the new operation

C: am operation to be duplicated

Error conditions

Insufficient resources in APl.

The full C-list entry specified by AP2 does not exist

or does not already contain a "null" capability

The .operation of AP3 is duplicated and a complete (all

options allowed) capability for the new operation is placed

at the location specified by AP2 in the full C-list.

Subprocess

6.1

6.2

6.2.1

6.2.1.1

6.2.1.2

6.2.1.3

6.2.2

6.2.2.1

6.2.2.2

6.2.3

6.2,4

6.2.5

6.3

6.3.1

6.3.1.1

6.3.1.1.1

6.3.1.1.2

6.3.1.1.3

6.3.1.1.4

SPEC 6
10/28/68
-1

A subprocess is the active element of a process. Only a subprocess

may perform actions or execute machine instructions.

Structure

Subprocess operating environment

~pabili~ a C-list

A map

backpointer to "father" in the subprocess tree

Subprocess identification

class code

class code index

Entry point address of first instruction to be executed when

the subprocess is called.

Error selection mask (~SM)

Interrupt datum and "interrupt waiting" flag

Actions on a subprocess

Display a subprocess

Parameters

C: a process

D: a class code (may be obtained by displaying a

capability for a class code or as a backpointer in

an already displayed subprocess) .

D: a class code index

D: a location to return the data on the subprocess

r .. • "'

6.3.1.2

6.3.1.2.1

6.3.1.2.2

6.3.1.2.3

6.3.2

6.3.2.1

6.3.2.1.1

6.3.2.1.2

6.3.2.1.3

6.3.2.2

6.3.2.2.1

6.3.2.2.2

6.3.2.2.3

Error conditions

SPEC 6
10/28/68
-2

The subprocess specified by AP2 and AP3 doesn't

exist in APL

AP4 doesn't allow room within the address space of.

the calling subprocess to put all the subprocess data

A copy of the C-list capability (not a capability),

the class code and index of the father of AP2, AP3

in APl (i.e., the backpointer), entry point, the

current ESM, -and the interrupt flag and datum are

copied in a suitable format, beginning at the

locations specified by AP4.

Downgrade ESM

Parameters

C: class code

D: class code index

D: location of suggested new ESM

Error conditions

The subprocess specified by APl and AP2 does not

exist in the local process.

The location specified by AP3 does not lie within

the address space of the calling subprocess or allow

room to specify the entire ESM.

The suggested ESM is "ANDED" with the current ESM.

The format of the suggested ESM is 32 error classes

per word beginning at the high order part of the

word (i.e., error class O is in bit 59 of the first

word of the suggested ESM).

i

Subprocess Map

8.1

8.2

8.2.1

8.2.1.1

8.2.1.2

8.2.1.2.1

8.2.1.2.2

8.2.1.2.3

8.2.1.2.4

8.2.1.2.5

8.2.2

8.3

8.3.1

8.3.1.1

8.3.1.2

SPEC 8
10/28/68
-1

The subprocess map (map) is used to direct the swapping of a sub­

process between CM and ECS. The full map, constructed from a num­

ber of maps, provides relocation of CM addresses and directs the

swapping of a process. The order of swapping of maps in the full

map is significant. in that the contents of file which appear in

more than one map may depend on
, .. e . ~~~

swapped out.- However, no promises are made as to the order of swapping.

Structure

Each map is a fixed length list of entries each of which is

one of the following:

An "empty" entry

A swapping directive

specification of a file

an address in the file

a word count

a CM address relative to the address space of the map

a "read-only" flag

Address space size of the map (FL)
ot.G- ~

The full map~is defined by the subprocess tree and the current

state of the call stack.

The full map is a sequence of maps consisting of all the maps

on the path, in the subprocess tree, between the current

"top of path" (defined by the call stack) and the current

subprocess (see_ "process") •

Let N + "top of path". Initialize sequence S + empty.

S + N,S

8.3.1.3

8.3.1.4

8.3.2

8.3.2.1

8.3.2.2

8.3.2.3

8.3.2.4

SPEC 8
10/28/68
-2

If N = ~ op of subprocess call stac (i.e., current /
~hlvv+- ':L(-~,-l ~ ,,,

subprocess) Sis complete. (<' \ _ r-1. ~"'..., 0 -i 1-'
.:rr-o t< t c:: ~ \ ' (,. • 1) ' '-• ')

N + father of N; go to step 8.3.1.2.

Computing the relocation constant of the CM addresses for each

map in the full map.

Set F + O; set N + index of the subprocess for whose

map the relocation constant is being computed.

F + F + (FL of the map belonging to the father of N).

If the father of N is the root of the full path, (~. ~~\
+trf-~ -:t~dLJ

Fis the relocation constant for the desired map.

Set N +- father of N.

8.3.2.5 1_. r Go to step 8.3.2.2.
Cl~ c,'l'\. t-vllrra-p :

8. 4 (D Display any map entry (')

8.4.1

8.4.1.1

8.4.1.2

8.4.1.3

8.4.1.4

8.4.2

8.4.2.1

8.4.2.2

8.4.2.3

Parameters

C: a class code

D: a class code index

D: index of entry in map

D: location to return data

Error conditions

AP2 is negative or APl and AP2 specify a non-existant

subprocess in the process.

AP3 is negative of greater than the number of entries

in the map of APl, AP2.

AP4 does not lie within the address space of the calling

subprocea;or does not allow space for the data.

8.4.3

8.5

8.5.1

8.5.1.1

8.5.1.2

8.5.1.3

8.5.2

8.5.2.1

8.5.2.2

8.5.3

8.6

8.6.1

8.6.1.1

8.6.1.2

8.6.1.3

8.6.1.4

8.6.1.5

8.6.1.6

8.6.1.7

8.6.1.8

spec 8
10/28/68
-3

The map entry specified by APl, AP2, and .AP3 is copied ·

to the location specified by AP4.

@ Replace map entry by "empty"

Parameters

C: class code

D: class code index

D: index in the map of APl, AP2

Error conditions

AP2 is negative or APl and AP2 specify a non-existant

subprocess in the current process.

AP3 is negative or greater than the length of the map

of APl, Ap2.

If the map specified by APl and AP2 is in the current full map,

and the entry (AP3) is not "read only", the entry is swapped

out. Then, the specified entry is changed to "empty". Otherw~se,

the specified entry is simply changed to "empty".

@ Replace map entry with a swapping directive

Parameters

C: class code

D: class code index

D: index in the map of APl, AP2

C: a file

D: address in the file

D: word count

D: CM address relative to the address space of the map

D: "read only" flag

8.6.2

8.6.2.1

8.6.2.2

8.6.2.3

8.6.2.4

8.6.2.5

8.6.2.6

8.6.2.7

8.6.3

8.7

8.7.1

8.7.1.1

8. 7. 1. 2

8.7.2

Error conditions

SPEC 8
10/28/68
-4

AP2 is negative or APl and AP2 specify a non-existant

subprocess.

AP3 is negative or greater than the length of the map

of APl, AP2.

AP4 is a "read only" file and APB is not "set"

AP6 is negative

· All addresses specified by APS and AP6 are not in the

file of AP4.

The entry specified by APl, AP2, and AP3 is not already

"empty".

The count+ CM address (AP6 + AP7) is greater than

FL (address space size) of the specified map (APl, AP2,

and AP3).

The map swapping directive specified by AP4, APS, AP6, AP7,

and APB is entered at the location specified by AP3 in the map

belonging to APl, AP2. If the map (APl, AP2) is in the full

map of the calling subprocess, the modified map is swapped in.

If swapping directives, they will be executed in the order in

which they appear in the map.

(Display full map entry

Parameters

D: Index of entry in the full map

D: Location to return data

Action and error conditions are equivalent to 8.4 except that

the map entry is specified relative to the current full map.

8.8

8.8.1

8.8.1.1

8.8.2

8.9

8.9.1

8.9.2

{.;') Replace any entry, in full map, by empty

Parameter

Index of entry in the full map

SPEC 8
10/2$/68
-5

Action and err~r conditions are equivalent to 8.5 except that

the map entry is specified relative to the current full map.

b Replace map entry, in the full map, with a swapping directive

Parameters are the same as 8.6 except that APl, AP2, and AP3

are replaced by an index relative to the full map.

The action and error conditions are equivalent to 8.6 except

that the map entry is specified relative to the current full map.

,,,,,.,,-

Process

9.1

9.2

9.2.1

9.2.2

9.2.3

9.2.4

9.2.5

9.2.6

9.2.7

9.2.8

9.2.8.1

SPEC 9
11/1/68
-1

A process is the object which is scheduled, by the system, to

e~eeute maeh:i:ne il'l'Stractltm

A process consists of

a set of subprocesses (w/class codes)

an exchange jump package

a fixed number of waiting queue chaining

waiting interrupt counter

a call stack; each entry consisting of

1) a subprocess name

2) a P-counter

3) subprocess tree "top of path"

4) operation name

5) operation count (op count)

6) F return flag

RA+l interrupt subprocess class code

RA+l interrupt subprocess class code index

~
Process hierarchies

Subprocess tree: The backpointers ofµch subprocesses /v'A.

define a tree structure. The "family" of a subprocess

A is the set of subprocesses belonging to the subtree

of which A is the root (NOTE: The root is part of the

tree.) I ,e. A f-~ (A-)
The "path" of a subprocess is the sequence of sub­

processes from the subprocess to the root of the sub­

process tree. The "path" is defined by the subprocess

backpointers and includes the subprocess which begins

the path. ·l, e., (~ E: po__~(A)

9.2.8.2

9.2.8.2.1

9.2.8.2.2

9.2.9

SPEC 9
11/1/68
-2

Call stack: The call stack records changes in control

among subprocesses.

Swapping

No entry may be made in the call stack if the

number of places in the stack before the addition

of the proposed subprocess is less than the number

of subprocesses in the path of the proposed entry.

This is to prevent the call stack from filling up

to a point such that high level routines may not

be called to sort out the trouble.

The "top of path", used in computing the full map

and full C-list, is computed recursively in the

call stack. To compute the new top of path: If

the subprocess of the stack entry is in the path of

the old top of path, then the new top of path+ old

top of path, otherwise the new top of path+ subprocess

of the stack entry. The top of path is carried in

the call stack to allow insertion of entries in the

middle of the call stack.

"'\ ".

From time to time a ready process goes through the following

sequence of actions:

1. a CPU and CM are selected.

2. The entries in the process full map are scanned in sequence

and the indicated words are copied from the indicated files

to the indicated region in CM,

3. The exchange jump package of the process is loaded into

the central registers of the CPU.

9.3

9.3.1

9.3.1.1

9.3.1.1.1

9.3.1.1.2

9.3.1.1.3

9.3.1.1.3.1

9.3.1.1.3.2

9.3.1.2

9.3.1.2.1

9.3.1.2.2

9.3.1.2.3

SPEC 9
10/8/68
-3

4. The CPU is allowed to compute for a while or until the

process goes out of "ready".

5. The central registers of the CPU are copied to the exchange

jump package of the process.

6, The entries in the process full map are scanned in sequence

and, for each entry without the "read only" flag set, the

indicated words are copied from CM to the indicated words

in the indicated files.

NOTE: If during step 4 the full map is changed, the entries of

any map removed from the full map are scanned immediately

~r later, as in 6; and the entries of ,any map added to the

full map are scanned as in 2,

Actions on a process

Error subprocess

\)pJt:_ 0 rr a,.. ~
/,

call (i.e . , errors caused or generated by

the current subprocess)

Relevant process elements (see subprocess) and data
l

call stack

error selection mask (ESM)

error type data (parameters)

D: error class

D: error number

Error algorithm

Let N + subprocess generating the error

If the ESM of N contains the error class (APl),

then go to step 9.3.1.2.4.

If N = root of the subprocess tree, then generate

an error. Otherwise N + father of N, and go to

9.3.1.2.2.

9.3.1.2.4

9.3.1.2.5

9.3.2

9.3.2.1

9.3.2.1.1

9.3.2.1.2

9.3.2.1.3

9.3.2.1.4

9.3.2.2

9.3.2.2.1

9.3.2.3

9.3.2.3.2

9.3.2.3.3

SPEC 9
11/1/68
-4

Activate subprocess Nasif it had been called by another

subprocess (see 9.3.3) which caused or generated the

error except that the only parameters passed are the error

class and error number.

Lower core (starting at RA+2) in the address space of the

subprocess is set to reflect an error entry and the origins

in the full map, full C-list, and address space of the

previous subprocess (see 9.3.3.3.5).

--~~~
Process interrupt (an "interrupt" is initiated by one process to

"trap" another).

Parameters to initiate an interrupt

C: process to which the interrupt is directed

C: class code

D: class code index

D: a datum (18 bits)

Error conditions

The subprocess specified by AP2 and AP3 does not exist

in APL

Action of an interrupt

If the specified subprocess in APl is already awaiting

an interrupt call, the interrupt fails .

If the process (APl) is currently executing on another
or

processor Ais in the midst of hanging itself on a series

of event channels, the interrupt fails.

If the specified subprocess is in the "path" of the

currently active subprocess (in APl) and is not the

same as the currently active subpro·cess, then ,a call

is made to the specified subprocess with AP4 as the

9.3.2.3.4

9.3 . 2.3.5

9. 3.3

9.3.3.1

9.3.3.1.1

9.3.3.1.2

SPEC 9
11/1/68
-5

only actual parameter. An information heading

(see 9.3.3.3.5) is constructed as usual with

the type of entry set to "interrupt". If APl is

"blocked" at this time, "wake-up waiting" is set

for the process (APl) and the subprocess is unchained

from all event channels before making the subprocess

call. (NOTE: the P-counter of the "blocked" sub­

process is not incremented so that when the return

is made from the interrupt subprocess, it will re-hang

on the event channel(s).)

If the specified subprocess (AP2, AP3) is not in

the path of the active subprocess of APl, then it

is marked as "awaiting interrupt" and AP4 is stored

with the specified subprocess. The "interrupt waiting"

counter of APl is also incremented .

A datum will be returned, in X7 , to the subprocess

calling for the interrupt to indicate that 1) the

interrupt failed, 2) the interrupt subprocess has

been called, 3) the interrupt subprocess has been

marked as such and will be called when one of its

descendents (in the subprocess tree) becomes the

current active subprocess (may be never).

Subprocess call - 111-'#,;,...,._ O r ;J>II­

Parameters

C: class code

D: class code index

9.3.3.2

9.3.3.2.1

9.3.3.2.2

9.3.3.2.3

9.3.3.3

9.3.3,3.1

9,3.3.3.2

9.3.3.3.3

9.3.3.3.4

9.3.3.3.4.1

SPEC 9
11/1/68
-6

Error conditions

OJ The call stack does not have enough room to allow

the subprocess (AP1,AP2) to be called (see 9.2.5.2,1).

(cJ The subprocess specified by APl and AP2 does not exist.

/7) The number of actual parameters to be passed (see
\ _.,,

9.3.3.3.4) exceeds the length of the C-list of

the subprocess.

Action of a subprocess call

The P-counter of the entry on the top of the call

stack (i.e., the entry for the subprocess making the

subprocess call) is set to the next instruction to be

executed by the calling subprocess.

A new entry is made on the call stack for the subprocess

being called (AP2). This includes the subprocess name,

the "top of path" as computed for the new subprocess,

and the entry point (P-counter) of the new subprocess.

The operation name and op count of the new stack entry

are initialized to "null".

Changes in the full map and full C-list are made as

needed and, as necessary, old maps are swapped out

and new ones swapped in .

The actual parameter list from the operation (a sub­

process may only be called as the action of an operation:

is passed to the subprocess.

Actual parameters which are capabilities are

copied, in the order they appear as actual para­

meters, to the beginning of the full C-list of

the called subprocess.

9.3.3.3.4.2

9.3.3.3.5

9.3.3.3.6

SPEC 9
11/1/68
-7

Actual parameters are copied, preserving their

order, to the address space of the called sub­

process following the 4 word information heading.

Actual parameters which are data are copied

unchanged. Actual parameters which are capa­

bilities are replaced with their indices in

the full C-list (see 9.3.3.3.4.1).

The information heading consists of 1) an indication of

the type of subprocess entry ("normal call" in this

case); 2) the origin of the previous subprocess in the

full map, the full C-list, and the address space. If

the previous subprocess is not in new "full path",

these origins .are set to zero.

If the "interrupt waiting" counter of the process is

non-zero, the "path" of the called subprocess is scanned

for subprocesses which are marked as "awaiting interrupt".

If the "interrupt waiting" counter is zero or, there

are no such subprocesses in the path of the called sub­

process, the called subprocess is allowed to run. If

a subprocess(es) are found, the interrupt subprocess

closest to the root of the tree is called (i.e., stack

entry, map changes, information heading with entry type•

'~nterrupt", etc.) with the datum which was saved (when

the subprocess became an interrupt subprocess (see

9.3.2.3.4). The "interrupt waiting" counter is decre­

mented and the -interrupt subprocess is allowed to run.

9.3.4

9.3.4.1

9.3.4.1.1

9.3.4.1.2

9.3.4.2

9.3.4.2.1

9.3.4.2.2

9.3.4.3

9.3.4.3.1

9.3.4.3.2

9.3.4,3,3

9.3.4.3.4

9.3.4.3.5

9.3.4.3.6

Subprocess jump

Parameters

C: class code

D: class code index

Error conditions

SPEC 9
11/1/68
-8

The call stack, after the removal of the top of the

stack, does not have room to allow the specified

subprocess (AP1,AP2) to be called.

The subprocess specified by APl and AP2 does not exist.

Action of a subprocess jump

The top of the call stack is removed (i.e., the entry

for the subprocess calling for the subprocess jump)

and the active counter of its (the top of the stack's)

"! subprocess is decremented. ~

A new entry is made on the call stack as in 9.3.3.3.2.

Full map and full C~list changes are made as needed

(see 9.3.3.3.3).

The actual parameter list is passed to the subprocess

(see 9.3.3.3.4).

An information heading reflecting a jump call and

giving origins for the subprocess next in the call

stack (if that subprocess is in the full path) is

constructed. - --.,.._ ______ ---------------~
If the "interrupt waiting" counter of the process is

non-zero, action is taken as in 9.3.3.3.6. Otherwise,

the called subprocess is allowed to run.

9.3.5

9.3.5.1

9.3.5.2

9.3.5.3

9.3.5.4

Subprocess return (normal)

SPEC 9
11/1/68
-9

The current subprocess (subprocess calling for the return)

is removed from the top of the call stack.

If the "interrupt waiting" counter of the process is

non-zero, the "path" from the new top of stack is scanned

for subprocesses which are marked as "awaiting interrupt".

If none are found, proceed to 9.3.5.3. Otherwise, the

subprocess with "awaiting interrupt" which is closest to

the root of the tree and on the path of th top of stack

is called (i.e., call stack entry, full map and C-list

changes, information heading with type of entry= interrupt,

etc.) with the parameter which was saved when the sub­

process became an interrupt subprocess (see 9.3.2.3.4)

Also, the "interrupt waiting" counter is decremented.

A check is made for forced F return (see 9.3.6.2) and

if such is indicated, such is done. Changes in the

full map and full C-list are made as needed and, as

necessary, old maps are swapped out and new ones are

swapped in to conform to the new top of stack.

The subprocess which is the new top of call stack now runs.

Execution commences at the location specified by its P­

counter in the call stack plus the value (may be negative)

of the lower 18 bits of the last word executed (the CEJ)

by the subprocess. If the operation in the stack entry

for this subprocess is "null", the P-counter is not modified.

An error will be generated if the modified P-counter is

outside the address space of the subprocess.

9.3.6

9.3.6.1

9.3.6.2

9.3.6.3

9.3.6.4

9.3.7

9.3.7.1

9.3.7.1.1

9.3.7.1.2

9.3.7.1.3

9.3 . 7.2

9. 3.7.2.1

9.3.7.2.2

9.3.7.3

Subprocess failure return (F return)

SPEC 9
11/1/68
-10

The current subprocess (subprocess calling for the F return)

is removed from the top of the call stack.

If the "interrupt waiting" counter is non-zero, then

action is taken as in 9.3.5.2. In addition, the top of

the stack is marked to cause a forced F return next time

a return is made to it.

If the op count in the new top of stack is less than the

order of the named operation, the operation is invoked

to make another subprocess call and to pass parameters.

If the op count is equal to the order of the named operation,

the operation name is set to "null". Then, execution of

the subprocess on the top of the stack commences at the

location specified by its P-counter in the call stack.

Jump return - s-L-,,.. ~ C. (_,l.(\...~

Parameters

C: class code

D: class code index

D: count

An error is generated if

The subprocess specified by APl and AP2 does not

have AP3 incarnations in the call stack.

AP3 is not greater than zero.

The call stack is scanned from the top for the AP3-th

occurrence of the subprocess specified by APl and AP2 .

If, during this scan, any subprocess is encountered which

is in the "path" (see 9.2.7.1) of the calling subprocess

(top of stack).; an F return is made, Otherwise, the call

•

9.3.8

9.3.8.1

9.3.8.1.1

9.3.8.1.2

9.3.8,1.3

9.3.8.2

9.3.8.2.1

9.3.8.3

SPEC 9
11/1/68
-11

stack is"poped" until the AP3-rd occurrence of the

subprocess specified by APl and AP2 and a RETURN is

made to this subprocess. The RETURN includes checking

for possible interrupts and for_ced F return.

Display a process

Parameters

C: a class code for

D: an address in subprocess memory

D: word count

Error conditions

AP! + AP3 lies outside the address space of the

calling subprocess.

As much of the following is the subprocess

address space as is allowed

~ _,, in the order indicatedf -
1) exchange package

2) Waiting interrupt counter

r/
• er-

3) Non-empty waiting queue chaining words (along with a

count of how many of these there are)

4) RA+l interrupt subprocess class code and class code

5) Number of entries in the call stack followed by the

contents of the stack startingfrom the top.

6) The subprocess tree in the form: [subprocess name

(class code+ index): father's name] .

index

10.1

10.2

10.3

10.3.1

10.3.2

10.3.3

10.4
•

10.5

10.5.1

10.5.1.1

A file is a collection of addressable data words

SPEC 10
10/29/68
-1

The basic element of a file is block. Each block has an address.

A block of size N with address A is a seq of data words addressed:

A, A+l, •.• , A+(N-1).

A file is also composed of one or more nodes. Each node has an

address and shape

A node of address A and shape (N) is either empty or a block

of address A and size N.

A node of address A and shape (M,N) is either empty or a

seq of M nodes, each of shape (N), and addresses A, A+N,

A+2*N, ••. , A+ (M-l)*N.

A node of · address A and shape (L,M,N) is either empty or a

seq of L nodes , each of shape (M,N) and address A, A+(M*N),

A+ (L-l)*(M*N) .

... '

A file is a node of address O and of shape •(N), (M,N), or v(L,M,N) .

Files of these different shape nodes are called respectively ,., ,_. -

"l..! level", -"2-level", and "3-level" files.

Actions on files

read a seq of words

Parameters

1. C: a file

2. D: an address in the file

3. D: an address in subprocess memory

4. D; a count

10.5.1.2

10.5.2

·10.5.3

10.5.3.1

10.5.3.2

10 •· 5. J. 2 .1

10.5.3.2.2

10.5.4

10.5.4.1

SPEC 10
10/29/68
-2

AP4 words are copied sequentially from the file APl

at address AP2 to relative CM address AP3· If
\

an empty block is reached, an F return is made.

An error is generated if ·the subprocess field length

is e~~~~ded, .or -the s~~~ of the file i~ exceeded.

Write a seq of words

Same as 10.5.1 except words are copied from CM to the file.

Copy a block

Parameters

1. C: a file

2. D: an address within a block in the file

3. C: a file

4. D: an address within a block in the file

Action

An error is generated if the 2 files have different

block sizes, or if the addressed block in file APl

doesn't exist (would be in an empty node) or if the

addressed block in file AP2 does exist. An error may

also be generated if the allocation block _ to··which, file

AP3 is attached contains insufficient resources .

The addressed block (block containing the address AP2)

in file APl is removed and moved to the addressed block

in file AP3. Expected changes in empty-nonempty status

of nodes in both files are made.

Create a new block

Parameters

1. C: a file

2. D: an address within,-a .blo~k in. the file

10.5.4.2

10.5.5

10.5.5.1

10.5.5.2

10.5.6

10.5.6.1

10.5.6.2

10.5.7

10.5.7.1

10.5.7.2

Action

SPEC 10
10/29/68
-3

An error is generated if the addressed block already

exists, or is beyond the limit of the file; otherwise

block of zeros is placed in the file with address AP2.

An error will be generated if the allocation block to which

the file belongs contains insufficient resources.

Read shape

Parameters

1. C: a file

2. D: an address in subprocess memory

Action ,,,--------
The 3 interegers which describe the shape of APl are

_____~
placed in the subprocess memory starting at AP2.

Check block

Parameters

1. C: a file

2. D: an address within a block

Action

X6 is set to 0 if the block does not exist; 1 if it

exists and is empty; and 2 if it exists arid is nonempty.

Delete block

Parameters

1. C: a file

2. D: an address within a block

Action

An error is generated if the addressed block does not exist,

or is beyond the limit of the file; otherwise the node at

10.5.8

10.5.8.1

10.5.8.1.1

10.5.8.1.2

10. 5. 8.1. 3

10. 5. 8. 1. 4

10.5.8.2

10.5.8.2.1

10.5.8.2.2

10.5.8.2.3

SPEC 10
10/29/68
-4

the block is set to empty, and if this causes all of

the subnodes of some node to be empty, it also becomes

empty, etc.

Create a file

Parameters

C: an allocation block

D: an index in the full C-list to return the capability

for the new file

D: number of levels in the file (1,2, or 3)

D: sizes of the level(s)

for a 1 level file: the size N of the single block

18
for a 2 level file: ((the number of blocks) * 2) +

(the size of the blocks 'L' such that block size

will be 2L)

18 for a 3 level file: (((the number of M,N nodes) * 2) ~

(the number of blocks 'K' in each node such that

there will be 2K•M blocks per M,N node))* 218 +

(the size of the file blocks 'J' such that block size

will be 2J=N)

Error conditions

Allocation block APl contains insufficient resources

to fund the proposed file

AP2 specified a non-existent location in the full C-list,

or a location not containing a "null" capability.

AP3 is not equal to either 1, 2, Or 3.

10.5.8.2.4

10.5.8.3

SPEC 10
10/29/68
-5

AP4 is not in the proper format to correspond with AP3

or contains overly large numbers (maximums will be

published).

A file with the structure specified by AP3 is created with

nodes of the sizes specified by AP4. All blocks are non­

existent. A complete capability (all options allowed) is

placed at the location specified by AP2.

Allocation Block

11.1

11.2

11.2.1

An allocation block consists of the following items:

IL number of words of "allocated" ECS space

12. number of words of "in use" ECS space

13. a list of objects tied to this allocation block.

(The total ECS space occupied by these objects• 12.)

14. "Allocated" money

15. Money used for ECS space/time

16. Money committed for CPU time

17. Last time at which l5 was updated

Actions on an allocation block

Construct an object using ECS space S

IS := I5 + (current time - 17) * Il * space time conv

If (14 .LT. rs+ 16) then ran out of money

17 := current time

If (Il .LT. 12 + S) then error

12 := 12 + S

Place new object on list 13

Point the new object at this allocation block

SPEC 11
10/29/68
-1

11.2.2

11.2.3

11. 2.3.1

11. 2.3. 2

SPF.r. 11
10/29/68 ,
-2

Destroy an object using ECS space S that points at this

allocation block

Remove the object from list 13

IS :::s IS + (current time - 17) * I1 + space time conv

If (I4 .LT. IS+ 16) then ran out of money

17 := current time

12 := 12 - S

NOTE: If the object destroyed is an allocation block, the

following is also done (its parameters represented by E1):

Destroy all objects on list E3

11 := 11 + El

14 :• 14 + E4

IS :=IS+ ES+ (current time - E7) *El+ space time conv

16 := 16 + E6

If (14 .LT. 15 + 16) then ran out of money

Move allocated items

Parameters

1. C: 1st allocation block

2. D: allocated ECS space to move

3. D: allocated money to move

4 . D: money used for ECS space time to move

5. C: 2nd allocation block

Action

(Use D1 to represent items in 1st allocation block (APl)

Ei to represent items in 2nd allocation block (APS))

If (Dl - AP2 .LT. D2) then error

If (D4-(D5+D6+((current time-D7)*Dl*space time conv)).LT.AP3)

If (D5 .LT. AP4) then error

/

11.2.4

11.2.4.1

11.2.4.1.1

11.2.4.1. 2

11. 2. 4. 2

11. 2. 4. 2.1

11. 2. 4. 2.2

11.2.4.3

Dl := Dl - AP2

El := El + AP2

D4 := D4 - AP3

E4 := E4 + AP3

D5 := D5 - AP4

ES := ES+ AP4

IF (D4 .LT. D5 + D6)

IF (E4 .LT. ES + E6)

Create an allocation block

Parameters

C: an allocation block

then ran out

then ran out

of money

of money

SPEC 11
10/29/68
-3

D: a location in the full C-list to return a capability

for the new allocation block

Error conditions

APl has insufficient resources to fund an allocation block

AP2 does not contain a "null" capability

A new allocation block is created by the authority of APl.

A capability (with all options allowed) is placed at the

location specified by AP2. The parameters of the new

allocation block are initialized as follows:

11 := 0

12 := 0

13 empty

14 := 0

15 := 0

16 := 0

17 := current time

	681028-intro-SPEC-hes
	681028-event-channel-SPEC-1-hes
	681028-capability-list-SPEC-2-hes
	681028-operations-SPEC-3-hes
	681028-subprocess-SPEC-6-hes
	681028-subprocess-map-SPEC-8-hes
	681101-process-SPEC-9-hes
	681029-file-SPEC-10-hes
	681029-allocation-block-SPEC-11-hes

