
- CONTROL DATA® }

6400/6500/6600 COMPUTER SYSTEMS f
Referen~e Manual

INDEX TO CENTRAL PROCESSOR INSTRUCTIONS

NUMERICAL

OCTAL MNE- AD-
CODE MONIC DRESS

Program stop 00

010

011

012

02*

030

031

032

033

034

K Return jump to K

035

036

037

*''

:: } *
06

Bj + K Read Extended Core Storage

Bj + K

Bi+ K

XJ K

Xj K

XJ K

Xj K

Xj K

Xj K

XJ K

XJ K

Bi BJ K

Bi Bj K

Bi Bj K

Bi R.J K

Xj

Xj * Xk

Xj + Xk

X.i - Xk

·Xk

-Xk * XJ

-Xk+ Xj

-Xk • Xj

jk

jk

BJ Xk

Write Extended Core Storage

Jump to Bit K

Jump to K if XJ = 0

Jump to Kif Xj -IO
Jump to Kif XJ = plus (positive)

Jump to K if Xj = negative

Jump to K if Xj is in range

Jump to K if X.1 is out of range

Jump to K if XJ is definite

Jump to K if XJ is indefinite

,Jump to K if Ri = R.i

Jump to K if Di I 13,1

Jump to Kif Bi ~Bj

Jump to K if Hi < HJ

Transmit Xj to Xi

Logical Prorluct of Xi & Xk to Xi

Logical sum of Xj & Xk to Xi

Logical difference of X.i & Xk to Xi

TranRmit the comp, of Xk to Xi

Logical product of Xj & Xk comp. to Xi

Logical sum of Xj & Xk comp. of Xi

Logical difference of Xj & Xk comp. to Xi

Left shift Xi, jk places

Arithmetic right shift Xi, jk places

Left shift Xk nominally Bj places to Xi

PAGE

3-23

3-43

3-46

3-47

3-44

3-44

3-44

3-44

3-44

3-44

3-44

3-44

3-44

3-45

3-45

3-45

3-45

3-29

3-29

3-30

3-30

3-30

3-31

3-31

3-32

3-32

3-32

3-33

07

10

11

12

13

14

15

16

17

20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

37

40

41

42

43

44

45

46

47

50

51

52

53

54

55

PS

RJ

REC

WEC

JP

ZR

NZ

PL

NG

IR

OR

DF

ID

EQ

NE

CF.

LT

BXi

BXi

BXi

BXi

BX!

BXi

BXi

BXi

LXi

A Xi

LXi

A Xi

NXi

ZXi

UXi

PXi

FXi

FXi

DXi

DXi

RXi

RXi

!Xi

!Xi

FXi

RXi

DXi

MXi

FXi

RXi

NO

CXi

SAi

SA!

SAi

SAi

SAi

SAi

SAi

SAi

SHi

Sil!

SHi

SBi

SBi

SBi

SBi

SBi

SXi

SXi

SXi

SXi

SXi

SXi

SXi

SXi

Bj Xk Arithmetic right shift Xk nominally Bj places to Xi 3- 33

5fi

57

60

61

62

63

64

65

66

67

70

71

72

73

74

75

76

77

Bj Xk Normalize Xk in Xi and Bi

Bj Xk Round and normalize Xk in Xi and Bj

Bj Xk Unpack Xk to Xi and BJ

Bj Xk Pack Xi from Xk and Bj

Xj + Xk

Xj - Xk

Xj + Xk

Xj - Xk

Xj + Xk

Xj - Xk

Xj + Xk

Xj - Xk

Xj * Xk

Xj * Xk

Xj * Xk

jk

Xj / Xk

Xj I Xk

Xk

Aj+ K

Bj + K

Xj+ K

Xj + Bk

Aj + Dk

Aj - Bk

HJ+ Hk

DJ - Dk

AJ + K

Bj + K

X.J + K

Xj + Bk

AJ + 13k

Aj - Bk

Bj + Bk

Bj - Bk

AJ + K

Bj + K

Xj+ K
Xj + Bk

AJ + Bk

Aj - Bk

Bj + Bk

Bj - Bk

Floating sum of Xj and Xk to Xi

Floating difference Xj and Xk to Xi

Floating DP sum of Xj and Xk to Xi

Floating DP difference of Xj and Xk to Xi

Round floating sum of Xj and Xk to Xi

Round floating difference of Xj and Xk to Xi

Integer sum of Xj and Xk to Xi

Integer difference of Xj and Xk to Xi

Floating product of Xj and Xk to Xi

Round floating product of Xj and Xk to Xi

Floating DP product of Xj and Xk to Xi

Form mask in Xi, jk bits

Floating divide Xj by Xk to Xi

Round floating divide Xj by Xk to Xi

No operation (Pass)

Count the number of 1 's in Xk to Xi

Set Ai to Aj + K

Set Ai to Bj + K

Set Ai to Xj + K

Set Ai to XJ + Bk

Set Ai to Aj + Bk

Set Ai to Aj - Bk

SC't Ai to Hj + Hk

Set Ai to Dj - Dk

Set Hi to AJ + K

Set Bi to Rj + K

Set Ri to XJ + K

Set Bi to Xj + Bk

Set Ui to AJ + Rk

Set Bi to Aj - Bk

Set Bi to BJ + Bk

Set Bi to Rj - Bk

Set Xi to Aj + K

Set Xi to Bj + K

Set Xi to X,1 + K

Set Xi to Xj + Bk

Set Xi to AJ + Bk

Set Xi to Aj - Bk

Set Xi to BJ + Bk

Set Xi to Bj - Bk

*Jump to K + Bi and Jump to Kif Bi---tests made in Increment unit.
**Jump to Kif Xj---tests made in Long Add unit.

Rev, A

3-34

3-34

3-35

3-36

3-37

3-37

3-38

3-38

3-38

3-39

3-28

3-28

3-40

3-40

3-41

3-36

3-41

3-42

3-23

3-28

3-24

3-24

3-24

3-24

3-24

3-24

3-24

:i-24

3-26

J-26

3-26

3-26

3-26

3-26

3-26

3-26

3-26

3-26

3-26

3-27

3-27

3-27

3-27

3-27

ALPHABETICAL

MNE- OCTAL AD-
MONIC CODE DRESS

A Xi

A Xi

BXi

BXi

BXi

BXi

BXi

BXi

BXi

BXi

CXi

OF**

DXi

OXi

DXi

EQ*

FXi

FXi

FXi

FXi

GE*

ID**

IR**

!Xi

!Xi

JP*

LT*

LXi

LXi

MXi

NE*

NG**

NO

NXi

NZ**

OR**

PL**

PS

PXi

REC

RJ

RXi

RX!

RXi

RXi

SAi

SAi

SAi

SAi

SAi

SAi

SA!

SAi

SBi

SRi

SBi

SBi

SRi

SBi

SH!

SBi

SXi

SXi

SXi

SXi

SXi

SXi

SXi

SXi

UXi

WEC

ZR**

ZXi

21

23

10

11

12

13

14

15

16

17

47

036

32

33

42

04

30

31

40

44

06

037

034

36

37

02

07

20

22

43

05

033

46

24

031

035

032

00

27

011

010

34

35

41

45

50

51

52

53

54

:=i5

56

57

GO

61

62

63

64

65

66

67

70

71

72

73

74

75

76

77

26

012

030

25

jk Arithmetic right shift Xi, jk places 3- 32

Bj Xk Arithmetic right shift Xk nomina11y Bj places to Xi 3-33

Xj Transmit Xj to Xi 3-29

Xj *Xk

Xj + Xk

Xj - Xk

-Xk

-Xk * Xj

-Xk + Xj

-Xk - Xj

Xk

Xj K

Xj + Xk

Xj - Xk

Xj * Xk

Bi Bj K

Xj + Xk

X.i - Xk

Xj * Xk

Xj / Xk

Bi Bj K

Xj K

Xj K

Xj + K

Xj - Xk

Bi+ K

Bi Bj K

jk

Logical product of Xj and Xk to Xi

Logical sum of Xj and Xk to Xi

Logical difference of Xj and Xk to Xi

Transmit the comp, of Xk to Xi

Logical product of Xj and Xk comp. to Xi

Logical sum of Xj and Xk comp. to Xi

Logical difference of Xj and Xk comp. to Xi

Count the number of 1 's in Xk to Xi

Jump to K if Xj is definite

Floating DP sum of Xj and Xk to Xi

Floating OP difference of Xj and Xk to Xi

F1oating OP pror:luct of Xj and Xk to Xi

Jump to K if Bi = Bj

Floating sum of Xj and Xk to Xi

Floating differenC'e of Xj and Xk to Xi

F1oating product of Xj and Xk to Xi

F1oating divide Xj by Xk to Xi

Jump to Kif Bi ~Bj

Jump to K if Xj is indefinite

Jump to K if Xj is in range

Integer sum of Xj and Xk to Xi

Integer difference of Xj and Xk to Xi

Jump to Bi+ K

Jump to K if Bi < Bj

Left shift Xi, jk places

Bj Xk Left shift Xk nominally Bj places to Xi

jk

Bi Bj K

Xj K

Form mask in Xi, jk bits

Jump to K if Bi ~ Bj

Jump to K if Xj "' negative

No operation (Pass)

Ilj Xk Normalize Xk in Xi and Bj

XJ K Jump to K if XJ 'f O

Xj K

Xj K

Bj Xk

Bj + K

K

Xj + Xk

Xj - Xk

Xj * Xk

Xj I Xk

Aj + K

Bj + K

Xj + K

Xj I Bk

Aj + Bk

Aj - Bk

Bj + Bk

Bi - Rk

Aj + K

Bj+ K

Xj + K

X.i + Rk

Aj + Bk

AJ - Bk

Bj + Bk

B,1 • Bk

Aj + K

Bj + K

Jump to K if Xj is out of rangE:

Jump to Kif Xj = plus (positive)

Program stop

Pack Xi from Xk and Bj

Read extended core

Return jump to K

Round floating sum of Xj and Xk to Xi

Round floating difference to Xj and Xk to Xi

Round floating product to Xj and Xk to Xi

Round floating divide Xj by Xk to Xi

Set Ai to Aj + K

Set Ai to Bj + K

Set Ai to Xj + K

Set Ai to Xj + Bk

Set Ai to Aj + Bk

Set Ai to Aj - Rk

Set Ai to Bj + Bk

Set Ai to Rj - Bk

Set Bi to Aj + K

Set Hi to Rj + K

Set Di to Xj + K

Set Ri to Xj + Bk

Set Bi to Aj + Bk

Set Bi to Aj - Bk

Set Bi to Rj + Rk

Set Bi to R.i - Rk

Set Xi to Aj t K

Set Xi to B.J + K

Xj + K Set Xi to XJ + K

Xj + Bk Set Xi to Xj + Bk

Aj + Bk Set Xi to Aj + Bk

Aj - Bk Set Xi to Aj - Rk

Bj + Bk Set Xi to Bj + Bk

Bj - Rk Set Xi to Bj - Bk

Bj Xk Unpack Xk to Xi and Bj

Bj + K Write extended core

Xj K Jump to K if Xj = 0

Bj Xk Round and normalize Xk in Xi and Bj

3-29

3-30

3-30

3-30

3-31

3-31

3-32

3-28

3-44

3-38

3-38

3-41

3-45

3-37

3- 37

3-40

3-41

3-45

3-44

3-44

3-28

3-28

3-44

3-45

3-32

3-33

3-36

3-45

3-44

3-23

3-34

3-44

3-44

3-44

3-23

3-36

3-46

3-43

3-38

3-39

3-40

3-42

3-24

3-24

3-24

3-24

3-24

3-24

3-24

3-24

3-26

3-26

3-26

3-26

3-26

3-26

3-26

3-26

3-26

3-26

3-26

3-27

3-27

3-27

3-27

3-27

3-35

3-47

3-44

3-34

r

.. i
I

CONTROL DATA®
6400/6500/6600-COMPUTER SYSTEMS

Reference Manual

REVISION

A

(4-5-66)

B

(9-1-66)

c
(10-27-66)

D

(2-21 67)

RECORD of REVISIONS
NOTES

This manual obsoletes the 6600 Comouter Svstem Reference Manual Pub. No 60045000

Publication Chane:e Order CAl 3186. Addition and deletion of information for techni ... ,,1 ncPnrn°u

Title chane:ed to 6400/ 6600 Comnuter Svstems Reference Manual. This edition obs:~1°t-- c,ll

orevious editions.

Publication Change Order 14568 no Product Desiimation chancre P"cre,a 3-13 B-4 R-o .,_,~
B-13 B-14 B-15. B-16 D- 5 and Index-2 revised.

Publication Chane:e Order 15036 no Product Desianation ch,1naP p,a,:rp n-fi rPviqpcJ

Publication Change Order 15866 · no Product Desiimation chanae Addition of 6Sllll in~~--~+;~n·

title changed to 6400 I 6500 I 6600 Comnuter Svstems Reference Manual- The followinrr -~--- ·----'--~.

cover and title page iv v frontisniece 1-1. 1-2 1-3 1-4

3-12. 3-16. 3-20 3-51 4-1 4-13 4-24 4-25 4-29 4-30

page, A-1, A-2, A-3, A-4, A-5 A-6 B-2 B-3 B-5 B-6

D-6, and Comment Sheet.

1-5 1-7 1-8 3-1 3-2 ~- ~ ::!-7

4-36 5-1 6-1 6-4 A--enrlix A titlo

B-7 B-8 C-1 D-1 D-2 D-3 D-4

Address comments concerning this
manual to:

Pub No. 60100000
© 1965, 1966, 1967

Control Data Corporation
Technical Publications Department
4201 North Lexington Avenue
St. Paul, Minnesota 55112

b Control Data Corporation

...
<O
I

>
"' 0:

CONTENTS

1. System Description

Introduction 1-1

Logical

Shift

3-29

3-32

3-37

3-43
Systems Characteristics Summary

Systems Characteristics

Central Processor
Characteristics

Peripheral and Control
Processor Characteristics

Central Memory Characteristics

Display Console Characteristics

Systems Options

2. Central Memory

Organization

Address Format

Central Memory Access

Memory Protection

3. Central Processor

Organization

Central Processor Programming

Functional Units

Instruction Formats

Operating Registers

Exchange Jump

Exit Mode

Floating Point Arithmetic

Fixed Point Arithmetic

Description of Central
Processor Instructions

Program Stop and
No Operation

Increment

Fixed Point Arithmetic

1-3

1-4

1-4

Floating Point Arithmetic

Branch

Extended Core Storage
Communication 3-46

1-5

1- 6

1-7

1-8

4. Peripheral and Control Processors

2-1

2-1

2-1

2-2

3-1

3-4

3-4

3-4

3- 6

3-9

3-11

3-15

3-21

3-22

Organization

Peripheral Processor
Programming

Instruction Formats

Address Modes

Registers

Description of Peripheral
Processor Instructions

No Operation

Data Transmission

Arithmetic

Shift

Logical

Replace

Branch

Central Processor and
Central Memory

Input/ Output

Access to Central Memory

Input and Output

Real-Time Clock

5. System Interrupt

3
_23 Introduction

3
_

24
Hardware Provisions for Interrupt

3-28 Exchange Jump

CP IY\fl>tJ 1Ta)fl llvf (lJ

4-1

4-6

4-6

4-6

4-8

4-9

4-10

4-11

4-13

4-16

4-16

4-19

4-22

4-24

4-27

4-32

4-35

4-39

5-1

5-1

5-1

iii Rev. A

Channel and Equipment Status 5-1 Load Mode

Exit Mode 5-2 Sweep Mode

Dump Mode

6. Manual Control Console

Introduction

Dead Start

Rev. D

Appendix A

Appendix B

Appendix C

Appendix D

6-1 Keyboard Input

6-1 Display

Augmented I/0 Buffer and Control (6416)

Instruction Execution Times

Non-Standard Floating Point Arithmetic

Extended Core Storage

iv

6-1

6-2

6-2

6-4

6- 5

6- 5

FIGURES

1- 1 CONTROL DA TA G400/G500 :3- 5 Memory Map (Read ECS
litiOO Computer Systems 1-1 Example) 3-49

1-2 Concurrent Operations in the 4-1 Flow Cr.art: 6400/6500/6600
6400/6500/GGOO 1-2 Systems 4-1

1-:1 Block Diagram of 6600 System 1-6 4-2 Peripheral and Control

1-4 Block Diagram of 6400 and
Processor Instruction

6500 Systems 1- 7
Designators 4-5

2-1 Memory Map
5-1 Real-Time Interrupt (ASPER

2- 3 Program Controlled) 5- 5
3-1 Central Processor Instruction 6-1 Dead Start Pane 1 6- 3

Formats 3- 5

3-2 Central Processor Operating
6-2 Display Console 6- 3

Registers 3- 7 6-3 Sample Display 6- 6

3- 3 Exchange Jump Package 3-9

3-4 Detecting and Handling Central
Processor Stops 3-14

TABLES

3-1 Central Processor Differences 3-1 3- 7 Central Processor

3-2 Functional Units 3-5 Instruction Designators 3-22

3- 3 Exit Mode: Address Out of
4-1 Addressing Modes for

Bounds 3-13 Peripheral and Control
Processor Instructions 4-8

3-4 Range of Permissible 4-2
Exponents 3-16 Peripheral and Control

Processor Instruction
3-5 Indefinite Forms 3-17 Designators 4-10

3- 6 Overflow and Underflow
Conditions 3-20

v Rev. D

A CONTROL DATA 6000 SERIES COMPUTER SYSTEM

Display console (foreground) - includes a keyboard for manual input and operator
control and two 10-inch display tubes for display of problem status and operator
directives.

Mainframe (center) - contains 10 Peripheral and Control Processors, Central Pro­
cessor, Central Memory, some I/0 synchronizers. The main frame in this photo
is that of the 6600 Computer System; the mainframes for the 6400 and 6500 systems
differ in physical appearance, depending on options included in the systems.

CONTROL DATA 607 Magnetic Tape Transport (left front) - 1/2-inch magnetic tape
units for supplementary storage; binary or BCD data handled at 200, 556, or 800 bpi.

CONTROL DATA 626 Magnetic Tape Transport (left rear) - 1-inch magnetic tape
units for supplementary storage; binary data handled at 800 bpi.

CONTROL DATA 405 Card Reader (right front) - reads binary or BCD cards at 1200
card per minute rate.

Disk file (right rear) - supplementary mass storage device; holds 500 million bits
of information.

1. SYSTEM DESCRIPTION

INTRODUCTION

The CONTROL DATA* 6400, 6500, and 6600 Computer Systems are three large-scale,

solid-state, general-purpose digital computing systems. The advanced design techniques

incorporated in these systems provide for extremely fast solutions to data processing,

scientific, and control center problems, as well as multiprocessing, time-sharing, and

management information applications.

Each of the computing systems has at least eleven independent computers (Figure 1-1).

Ten of these, constructed with the peripheral and operating system in mind, are Peri­

pheral and Control Processors. Each of these ten has separate memory and can execute

programs independently of each other or the Central Processor.

CENTRAL
PROCESSOR

(2 IN A
6500

SYSTEM)

CENTRAL MEMORY

PERIPHERAL PROCESSORS (10)

DATA CHANNELS
(12)

Figure 1-1. CONTROL DATA 6400/6500/6600 Computer Systems

;:,Registered trademark of Control Data Corporation

1 -1 Rev. D

The eleventh computer, the Central Processor, is a very high speed arithmetic device.

The common element of the Peripheral and Control Processors and the Central Pro­

cessor is a large Central Memory.

In solving a problem, one or more Peripheral and Control Processors are used for high

speed information transfer in and out of the system and to provide operator control. A

number of problems may operate concurrently by time-sharing the Central Processor.

(To facilitate this, the Central Processor may operate in Central Memory only within

address bounds prescribed by a Peripheral and Control Processor.) Further concur­

rency is obtained within the Central Processor by parallel action of various functional seg­

ments. Similarly, Central Memory is organized in 32 logically independent banks of 4096

words (60-bit). Several banks may be in operation simultaneously, thereby minimizing

execution time. The multiple operating modes of all segments of the computer, in com­

bination with high- speed transistor circuits, produce a very high over-all computing

speed.

LEVEL # 2 LEVEL # 3

CONCURRENCY
IN

MEMORY BANKS *

CENTRAL PROGRAM

CARD READERS 6 PRINTERS PROGRAM

REAL-TIME SEQUENCE PROGRAM

MEMORY BANK E

CONCURRENCY IN MULTIPLE
FUNCTIONS IN 6600 ONLY;
6400 CONCURRENCY AT
THIS LEVEL IS POSSIBLE
FOR ONE COMPUTATION
ACTIVITY AND MEMORY
OPERATION ONLY. IN A
6500 SYSTEM, THE
SECOND CENTRAL
PROCESSOR PROVIDES
ADDITIONAL CONCURRENCY,

Figure 1-2. Concurrent Operations in the 6400/6500/6600

Rev. D 1-2

The Peripheral and Control Processor input/ output facility provides a flexible arrange­

ment for very high speed communication with a variety of I/0 devices. Some of the I/0

devices available with the 6400, 6500, and 6600 systems are listed below. (Refer to the 6000

Series Peripheral Equipment Reference Manual for additional external equipment infor­

mation.)

• CONTROL DATA 6602/6612 Console Display: a display console

with manual keyboard. This program- controlled unit displays

problem status on two cathode ray tubes and handles operator

directives from an alphanumeric keyboard similar to a standard

typewriter keyboard.

• CONTROL DATA 6603 Disk System: a mass storage disk file

providing nominal storage of 500 million bits.

• CONTROL DATA 626 Magnetic Tape Transports: one-inch

magnetic tape units which handle binary data recording at 800

bpi on tapes up to 2400 feet long.

• CONTROL DATA 6682 /6683 Satellite Coupler: a systems expansion

device which permits direct connection between any two 6400 or 6600

systems via two standard 12-bit bi-directional data channels; two

6682/6683's are required for this.

• CONTROL DATA 6681 Data Channel Converter: a device which per­

mits 6400, 6500, and 6600 systems to use CONTROL DATA 3000 Series

peripheral equipment. Examples of available 3000 Series peripheral

equipment are: card equipment (readers/punches), magnetic tape

equipment, and line printers.

SYSTEMS CHARACTERISTICS SUMMARY

The following summary lists characteristics of the 6400, 6500, and 6600 Computer Systems.

Where characteristics differ between the systems, differences are noted;otherwise, char­

acteristics listed are common to all systems.

1-3 Rev. D

System Characteristics

• Large-scale, general-purpose computer system

• 11 independent computers; 12 in the Dual Processor 6500 system

1 Central Processor (60-bit); 2 Central Processors in the 6500 system

10 Peripheral and Control Processors (12-bit)

Central Memory (60-bit)

Display console and keyboard

• System communicates with a variety of external equipment

Disk files

Magnetic tapes

Card equipment

Printers

• Central Memory common to the system computers

• Maximum Central Memory storage capability 131, 072 words (60-bit)

Major Cycle = 1000 ns*

Minor Cycle = 100 ns

Memory organized in 32 banks of 4096 words

Multiphase

• Central Processor instructions

Arithmetic, logical, indexing, branch

• Peripheral and Control Processor instructions

Add/Subtract, logical, input/ output, access to Central Processor
and Central Memory

• Each Peripheral and Control Processor has 12-bit 4096-word memory

• Solid- state system

Transistor logic

Central Processor Characteristics

6600

10 arithmetic and logical units

*ns = nanoseconds

Rev. D

Add
Multiply
Multiply
Divide
Long add

Shift
Branch
Boolean
Increment
Increment

1-4

• 24 operating registers for functional units

8 operand (60- bit)

8 address (18-bit)

8 increment (18-bit)

• 8 transistor registers (60-bit) hold 32 instructions (15-bit) or 16 instruc­
tions (30-bit) or a combination of the two for servicing functional units.

6400 and 6500

• Unified arithmetic section, operating in sequential manner (one per
processor in 6500)

• 24 operating registers (one set per processor in 6500)

8 operand (60- bit)

8 address (18-bit)

8 increment (18-bit)

• Instruction Buffer register (60-bit)

Common Central Processor Characteristics

• Floating point arithmetic

Single and double precision

Optional rounding and normalizing

• Format

Integer coefficient - 48 bits 10 Biased exponent - 11 bits (2)
Coefficient sign - 1 bit

• Fixed point arithmetic (subset of floating point arithmetic)

Full 60-bit add/ subtract

• Controlled and started by Peripheral and Control Processors

• Addresses in Central Memory relative

Peripheral and Control Processor Characteristics

• 10 identical processors (characteristics as listed are per processor
except as noted)

• 4096-word magnetic core memory (12-bit)

• Random access, coincident - current

Major Cycle = 1000 ns

Minor Cycle = 100 ns

1-5 Rev. D

• 12 input I output channels

All channels common to all processors

Maximum transfer rate per channel - one word/ major cycle

All 12 channels may be active simultaneously

All channels 12-bit bi - directional

• Real-time clock (period = 4096 major cycles)

• Instructions

Add/Subtract

Logical

Branch

Input I Output

Central Processor access

Central Memory access

• Average instruction execution time = two major cycles

• Indirect addressing

• Indexed addressing

Central Memory Characteristics

Rev. A

• 131, 072 words (maximum size)

• 60-bit words

• Memory organized in 32 logically independent banks of 4096 words
with corresponding multiphasing of banks; {32 banks is maximum
memory size)

12
INPUT
OUTPUT
CHANNELS

CENTRAL
MEMORY

\LOWER
BOUNDARY

PERIPHERAL 8 CONTROL PROCESSORS

BOOLEAN

CENTRAL PROCESSOR

Figure 1- 3. Block Diagram of 6600 System

1-6

• Random access, coincident-current, magnetic core

• One major cycle for read-write

• Maximum memory reference rate to all banks - one address/minor
cycle

• Maximum rate of data flow to/from memory - one word/minor cycle

Display Console Characteristics

• Two display tubes

• Modes

Character

Dot

• Character size

Large - 16 characters/line

Medium - 32 characters /line

Small - 64 characters /line

• Characters

12
INPUT
OUTPUT
CHANNELS

26 alphabetic

10 numeric

11 special

PERIPHERAL a CONTROL PROCESSORS

24 UNIFIED
OPERATING~---t~ AR I TH MET IC
REGISTERS SECTION

24 UNIFIED
OPERATING~----i~ ARITHMETIC
REGISTERS SECTION

CENTRAL PROCESSOR
(I IN 6400, 2 IN 6500)

Figure 1-4. Block Diagram of 6400 and 6500 Systems

1-7 Rev. D

SYSTEMS OPTIONS

The foregoing summary of characteristics assumed a 6400, 6500, or 6600 system with

10 Peripheral and Control Processors, a Central Processor {except for the 6500 system

with its two identical Central Processors), and Central Memory with 131, 072 words

(60-bit) of magnetic core storage,

Options listed below are available within each system unless otherwise noted.

• Central Memory with 131, 072 words (60-bit) of magnetic core storage.

• Central Memory with 65, 536 words (60-bit) of magnetic core storage.

{This is the minimum Central Memory size available for the 6500

Computer System.)

• Central Memory with 32, 768 words (60-bit) of magnetic core storage.

• Extended Core Storage: Magnetic core storage available in the

following sizes:

125, 952 words (60-bit)

251, 904 words (60-bit)

503, 808 words (60-bit)

1, 007, 616 words (60-bit)

2, 015, 232 words (60-bit)

• Extended Core Storage Controller: couples up to 2, 015, 232 words of

Extended Core Storage to from one to four 6400, 6500, or 6600 central

computer{s) or Augmented I/0 Buffer and Control unit(s) in any

combination.

• Augmented I/0 Buffer and Control: includes 16, 384 words (60-bit)

of magnetic core storage and 10 Peripheral and Control Processors

with storage.

• Central Processor Monitor Facility {Central and Monitor Exchange

Jump instructions). Refer to the publications for Standard Options

10103 and 10104,

Rev. D 1-8

2. CENTRAL MEMORY

ORGANIZATION

Central Memory is organized into 32K, 65K, or 131K words (60-bit) in 8, 16, or 32

banks of 4096 words each. The banks are logically independent, and consecutive

addresses go to different banks. Banks may be phased into operation at minor cycle*

intervals, resulting in very high Central Memory operating speed. The Central Memory

address and data control mechanisms permit a word to move to or from Central Memory

every minor cycle.

ADDRESS FORMAT

The location of each word in Central Memory is identified by an assigned number

(address), which consists of 18 bits. Address formats are shown below for 8-bank (32K),

16-bank (65K), and 32-bank (131K) systems. Within the address format, the bank portion

specifies one of 8, 16, or 32 banks; the 12-bit address defines one of 4096 separate

~ ADDRESS IBANKI 8-Bank (32K) Format
17 1514 32 0

WJ ADDRESS I BANK I 16-Bank (65K) Format
17 1615 43 0

~ ADDRESS I BANK I 32-Bank (131K) Format
1716 54 0

locations within the specified bank. Addresses written or compiled in the conven­

tional manner reference consecutive banks and hence make most efficient use of the

bank phasing feature.

CENTRAL MEMORY ACCESS

References to Central Memory from all areas of the system (Central Processor and

Peripheral and Control Processors) go to a common address clearing house called a

stunt box and are sent from there to all banks in Central Memory. The stunt box

accepts addresses from the various sources under a priority system and at a maxi­

mum rate of one address every minor cycle.

*Minor cycle=lOO ns

2-1 Rev. A

An address is sent to all banks, and the correct bank, if free, accepts the address

and indicates this to the stunt box. The associated data word is then sent to or stored

from a central data distributor. The bank ignores the address if it is busy processing

a previous address. The stunt box issues addresses at a maximum rate of one every

minor cycle.

The stunt box saves, in a hopper mechanism, each address that it sends to Central

Memory and then reissues it (and again saves it) under priority control in the event it

is not accepted because of bank conflict. The address issue-save process repeats

until the address is accepted, at which time the address is dropped from the hopper

and the read or store data word is distributed. A fixed time lapse from address­

issue to the memory-accept synchronizes the action taken.

The hopper (i.e., a previously unaccepted address) has highest priority in issuing ad­

dresses to Central Memory. The Central Processor and Peripheral and Control

Processors (all 10 share a common path to the stunt box) follow in that order.

A data distributor which is common to all processors handles all data words to and

from Central Memory (the Peripheral and Control Processors share one read path

and one write path to the distributor). A series of buffer registers in the distri­

butor provides temporary storage for words to be written into storage when the ad­

dresses are not immediately accepted because of bank conflict.

Each group of four banks communicates with the distributor on separate 60-bit read and

write paths, but only one word moves on the data paths at one time. However, words

can move at minor cycle intervals between the distributor and Central Memory or dis­

tributor and address-sender.

Data words and addresses are correlated by control information (tags) entered in the

stunt box with the address. The tags define the address sender, origin/destination

of data, and whether the address is a Read, Write, or Exchange Jump address.

MEMORY PROTECTION

All Central Processor references to Central Memory for new instructions, or to read

an<l store data, are made relative to the Reference Address. The Reference Ad-

Rev. A 2-2

dress defines the lower limit of a Central Memory program. Changes to the Reference

Address permit easy relocation of programs in Central Memory.

During an Exchange Jump, an 18-bitReference Addressandan 18-bitFieldLength(parts

of the Exchange Jump package) are loaded into their respective registers to define the

Central Memory limits of the program initiated by the Exchange Jump.

The relationship between absolute memory address, relative memory address, Refer­

ence Address (RA), and Field Length (FL) is indicated in Figure 2-1.

ABSOLUTE

MEMORY

ADDRESS

RA

RA+ P

RA +FL

MEMORY MAP

000 000

RELATIVE

MEMORY A
ADDRESS

P=O - '"" """""
P<FL '''''"'"'"
P= FL "''''"''-'

777777~

Figure 2-1. Memory Map

FIRST LOCATION
IN PROGRAM AREA

PROGRAM AREA

SOME ARBITRARY
LOCATION IN

PROGRAM AREA

LAST LOCATION + I
IN PROGRAM AREA

The following relationships must be true if the program is to operate within its bounds:

RA < (RA + P) < (RA + FL) (Absolute Memory Addresses), or

0 < P < FL (Relative Memory Addresses)

NOTE

1) FL is the number of 60-bit words comprising the program, not an ad­

dress.

2) To avoid possible "artificial'' range faults, instructions should not be

stored near the upper limit address of the Field Length. For example,

using absolute address [(RA + FL) - 1] for an instruction produces a

2-3 Rev. A

range fault when the (look-ahead) Read Next Instruction occurs

to (RA + FL). Data should always be stored in addresses near

or approaching absolute location (RA + FL), rather than instruc­

tions.

An optional exit condition (EM in the Exchange Jump package) allows the Central Pro­

cessor to stop on a memory reference outside the limits expressed above.

Rev. A 2-4

3. CENTRAL PROCESSOR

ORGANIZATION

The Central Processor is an extremely high-speed arithmetic processor which commun­

icates only with Central Memory. It consists (functionally) of an arithmetic unit and a

control unit. The arithmetic unit contains all logic necessary to execute the arithmetic,

manipulative and logical operations. The control unit directs the arithmetic operations

and provides the interface between the arithmetic unit and Central Memory. It also per­

forms instruction fetching, address preparation, memory protection, and data fetching

and storing.

The Central Processor is isolated from the Peripheral and Control Processors and is thus

free to carry on high-speed computation unencumbered by input/output requirements.

The organization of the Central Processor in the 6400 system differs from the 6600 Cen­

tral Processor in two important respects. The 6500 system has two Central Processors;

each similar to the 6400 Central Processor. Central Processor differences are tabula­

ted in Table 3-1.

TABLE 3-1. CENTRAL PROCESSOR DIFFERENCES

SYSTEM INSTRUCTION REGISTERS ARITHMETIC SECTION

6400 and 6500 Instruction Buffer Register; Unified Arithmetic Section;
Central holds one 60-bit instruction executes instructions in
Processors word. serial order. Requires no

reservation control.

6600 Instruction Stack; holds eight Ten functional (arithmetic &
Central 60-bit instruction words. logical) units; operate con-
Processor currently on unrelated instruc-

tions. Require reservation
control.

3-1 Rev. D

The following discussion details the operation of the Central Processor in the 6600 sys­

tem. With the exception of differences noted in the above table (and the inherent effects

on Central Processor operation), the 6400 system Central Processor operation is identi­

cal. Each of the two 6500 Central Processors operates identically with the 6400 Central

Processor.

Programs for the Central Processor are held in Central Memory. A program is begun

by an Exchange Jump instruction from a Peripheral and Control Processor. This in­

struction also specifies a segment of Central Memory for the central program,specifies

the mode of exit (normal or error) of the program, and sets initial quantities in the X,

B, and A registers.

High speed in the Central Processor depends first on minimizing memory references.

Twenty-four registers are provided to lower the Central Memory requirements for arith­

metic operands and results. These 24 are divided into:

• 8 address registers of 18 bits in length

• 8 increment registers of 18 bits in length

• 8 operand registers of 60 bits in length

Eight 60-bit registers are provided to hold instructions (6600), thereby limiting the num­

ber of memory reads for repetitive instructions, especially in inner loops. Multiple

banks of Central Memory are also provided to minimize memory reference time. Ref­

erences to different banks of memory may be handled without wait.

Speed of operation in a conventional computer is also limited by the serial manner in

which instructions are executed; instructions are executed sequentially in time with little

or no concurrency.

In the 6600 Computer System, this delay is minimized by providing 10 arithmetic (func­

tional) units and a reservation control. Unrelated instructions are executed simultane­

ously, provided no conflicts exist in the arithmetic units.

The 6400 or 6500, with its unified arithmetic section, executes instructions serially, with

little concurrency.

Rev. D 3-2

Programs are written for the Central Processor in a conventional manner, specifying a

sequence of arithmetic and control operations to be executed. Each instruction in a pro­

gram is brought up in its turn from one of the instruction registers. These registers

are filled from Central Memory in a manner sufficient to keep a reasonable flow of in­

structions available. A branch to another area of the program voids the old instructions

in the registers and brings in new instructions. When a new instruction is brought up, a

test is made on it to determine which of the 10 arithmetic units is needed, if it is busy,

and if reservation conflict is possible. If the unit is free and no conflict is present, the

entire instruction is given to the specified arithmetic unit for further action. Another

instruction may then be brought up for issuance.

The original sequence of the program is established at the time each instruction is is­

sued. Only those operations which depend on previous steps prevent the issuing of in­

structions, and then only if the steps are incomplete. The reservation control keeps a

running account of the address, increment, and operand registers and of the arithmetic

units in order to preserve the original sequence.

Nearly all Central Memory references for information or instructions are made on an

implicit or secondary basis. Instructions are fetched from memory only if the instruc-

tion registers are nearly empty (or when ordered by a branch). Information is brought

to or from the operand registers only when appropriate address registers are referenced

during the course of a program. Such references are also accounted for in the reserva­

tion control.

All Central Processor references to Central Memory are made relative to the lower

boundary address assigned by a Peripheral and Control Processor. A Central Processor

program may therefore be relocated in Central Memory by modifying the boundaries

only. Any attempt by the Central Processor to reference memory outside of its bound­

aries causes an immediate exit which can be readily examined by a Peripheral and Con­

trol Processor and displayed for the operator.

The Exchange Jump instruction described on page 3-9 starts a central program. This

instruction starts a sequence of Central Memory references which exchanges 16 words

in memory with the contents of the address, increment, and operand registers of the

Central Processor. Also exchanged are the program address, the Central Memory and

3-3 Rev. A

Extended Core Storage boundaries, and choice of program exit. This instruction may be

executed by any Peripheral and Control Processor and acts as an interrupt to an active

central program as well as a start from an inactive state. The Exchange Jump is used

by the operating system to switch between two central programs, leaving the first pro­

gram in a usable state for later re-entry.

CENTRAL PROCESSOR PROGRAMMING

Central Processor program instructions are stored in Central Memory. A 60-bit mem­

ory location may hold 60 data bits, four 15-bit instructions, two 30-bit instructions or a

combination of 15 or 30-bit instructions. Figure 3-1 shows all instruction combinations

in a 60- bit word and the two instruction word formats.

The Central Processor reads 60-bit words from Central Memory and stores them in an

instruction stack which is capable of holding up to eight 6 0- bit words.

Each instruction in turn is sent to a series of instruction registers for interpretation and

testing and is then issued to one of 10 functional units for execution. The functional units

obtain the instruction operands from and store results in the 24 operating registers. The

reservation control records active operating registers and functional units to avoid con­

flicts and insure that the original instructions do not get out of order.

Functional Units

The 10 functional units in the 6600 system handles the requirements of the various instruc­

tions. The Multiply and Increment units are duplexed, and an instruction is sent to the

second unit if the first is busy. The general function of each unit is listed in Table 3-2.

Instruction Formats

Groups of bits in an instruction are identified by the letters f, m, i, j, k, and K (Figure

3-1). All letters represent octal digits except K, which is an 18-bit constant.

Rev. A 3-4

TABLE 3-2. FUNCTIONAL UNITS

UNIT GENERAL FUNCTION

Branch

Boolean

Shift

Add

Long add

Multiply

Divide

Increment

Handles all jumps or branches from the program.

Handles the basic logical operations of transfer, logical
product, logical sum, and logical difference.

Handles operations basic to shifting. This includes left
(circular) and right (end-off sign extension) shifting, and
Normalize, Pack, and Unpack floating point operations.
The unit also provides a mask generator.

Performs floating point addition and subtraction on floating
point numbers or their rounded representation.

Performs one's complement addition and subtraction of
60-bit fixed point numbers.

Performs floating point multiplication on floating point
numbers or their rounded representation.

Performs floating point division of floating point quantities
or their rounded representation. Also sums the number of
11 1 's II in a 60-bit word.

Performs one's complement addition and subtraction of
18-bit numbers.

INSTRUCTION FORMATS

INSTRUCTION COMBINATIONS m

59

I
I

IN CENTRAL MEMORY

15 15 15

30 15 I 15

15 30 I 15

15 15 I 30

30 30

0

I

3 3 3 15 BITS

14'---y--'
OPERATION

CODE

RESULT
REG.

(I OF Bl

I st OPERAND
REG. (I OF Bl

0

2nd OPERAND
REG (I OF Bl

f m i K

RESULT 2 nd OPERAND
REG.

(I OF Bl

I st OPERAND
REG (I OF Bl

Figure 3-1. Central Processor Instruction Formats

3-5 Rev. A

The f and m digits are the operation code and identify the type of instruction. In a few

instructions the i designator becomes a part of the operation code.

In most 15-bit instructions the i, j, and k digits each specify one of eight operating reg­

isters where operands are found and where the result of the operation is to be stored. In

other 15-bit instructions, the j and k digits provide a 6-bit shift count.

In 30-bit instructions the i andj digits each specify one of eight operating registers where

one operand is found and where the result is to be stored, and K is taken directly as an

18- bit second operand.

NOTE
In the 6600, it is permissible to pack the upper-order
15 bits (fmij portion) of a 30-bit instruction in the lower­
order 15-bit portion of an instruction word. When this
30-bit instruction is executed, the lower- order 15-bits
of K are taken from the upper-order 15 bits of the in­
struction word.

In the 6400 and 6500, any 30-bit instruction with its fmij
portion packed in the lower-order 15 bits of an instruction
word will be executed as a STOP instruction.

Operating Registers

In order to provide a compact symbolic language, the 24 operating registers are identi­

fied by letters and numbers:

A = address register (AO, Al ... A 7)

B = increment register (BO, Bl ... B7)

X = operand register (XO, Xl ... X7)

The operand registers hold operands and results for servicing the functional units. Five

registers (Xl - X5) hold read operands from Central Memory, and two registers (X6 -

X7) hold results to be sent to Central Memory (Figure 3-2). Operands and results trans­

fer between memory and these registers as a result of placing a quantity into a corre­

sponding address register (Al - A 7).

Placing a quantity into an address register Al - A5 produces an immediate memory ref­

erence to that address and reads the operand into the corresponding operand register

Xl - X5. Similarly, placing a quantity into address register A6 or A 7 stores the word

in the corresponding X6 or X7 operand register in the new address.

Rev. D 3-6

OPERANDS

RESULTS

OPERAND
CENTRAL AD:'IRESSES
MEMORY

RESULT

ADDRESSES

INSTRUCTIONS

X OPERAND
(60 BIT)

XO

XI

X2

X3

X4

X5

X6

A ADDRESS
(18 BIT)

AO

Al

A2

A3

A4

A5

A6

A7

Bl

82

83

84

85

86

87

ARITHMETIC
SECTION

(UNIFIED IN
6400 a 6500,
10 FUNCTIONAL
UNITS IN 6600)

INSTRUCTION
WORD REGISTER,

(I IN 6400 8 6500,
8-WORD ST4CK
IN 6600)

Figure 3-2. Central Processor Operating Registers

3-7 Rev. D

The increment instructions place a result in address register Ai (where "i"

three ways:

• By adding an 18-bit signed constant K to the contents of any A, B, or X
register.

• By adding the content of any B register to any A, B, or X register.

• By subtracting the content of any B register from any A register or any
other B register.

1- 5) in

The AO and XO registers are independent and have no connection with Central Memory.

They may be used for scratch pad or intermediate results. Note the special use of AO

and XO when executing Extended Core Storage communication instructions.

The B registers have no connection with Central Memory. The BO register is fixed to

provide a constant zero (18-bit) which is useful for various tests against zero, providing

an unconditional jump modifier, etc. In general, the B registers provide means for pro­

gram indexing. For example, B4 may store the number of times a program loop has been

traversed, thereby providing a terminal condition for a program exit.

An Exchange Jump instruction from a Peripheral and Control Processor enters initial

values in the operating registers to start Central Processor operation. Subsequent ad­

dress modification instructions executed in the increment functional units provide the

addresses required to fetch and store data.

Program Address

An 18-bit P register serves as a program address counter and holds the address for each

program step. P is advanced to the next program step in the following ways:

1) P is advanced by one when all instructions in a 60-bit word have been
extracted and sent to the instruction registers.

2) P is set to the address specified by a Go To . . . (branch) instruction.
If the instruction is a Return Jump, (P) + 1 is stored before the branch to
allow a return to the sequence after the branch.

3) P is set to the address specified in the Exchange Jump package.

All branch instructions to a new program start the program with the instruction located

in the highest order position of the 60-bit word.

Rev. A 3-8

Exchange Jump

A Peripheral and Control Processor Exchange Jump instruction starts or interrupts the

Central Processor and provides Central Memory with the first address (which is the ad­

dress in the Peripheral and Control Processor A register) of a 16-word package in Cen­

tral Memory. The Exchange Jump package (Figure 3-3) provides the following informa­

tion on a program to be executed:

1)
2)
3)
4)
5)
6)
7)
8)
9)

Program address (P)
Reference Address for Central Memory (RAcM)
Field length of program for Central Memory (FLCM)
Reference Address for Extended Core Storage (RAECS)
Field length of program for Extended Core Storage (FLECS)
Program exit mode (EM)
Initial contents of the eight A registers
Initial contents of the eight X registers
Initial contents of B registers Bl - B7 (BO is fixed at 0)

PERIPHERAL AND
CONTROL PROCESSOR

17

A REGISTER

CENTRAL MEMORY
LDC. n

0

CENTRAL MEMORY

Loe. n + I
Loe. n +2

Loe. n +3

Loe. n + 15

18 18

AO

Al

A2

A3

A4

A5

A6

A7

XO

XI

X2

X3

X4

X5

X6

X7

18

Bl

82

83

18 17 84 0

85

86

87

L-~~~~~~~~~~~~__J

59

p, PROGRAM ADDRESS
RA, REFERENCE ADDRESS
FL' FIELD LENGTH
EM, EXIT MODE, 000000

010000
020000

OCTAL 030000

CONTENTS OF 040000
L!dl~l~~.~

3
.;_3 .. 050000

60000

070000

Ae ADDRESS REGISTERS
B, INCREMENT REGISTERS
X• OPERAND REGISTERS

DISABLE EXIT MODE
ADDRESS OUT OF RANGE
OPERAND OUT OF RANGE
ADDRESS OR OPERAND
OUT OF RANGE
INDEFINITE OPERAND

0

INDEFINITE OPERAND OR ADDRESS
OUT OF RANGE
INDEFINITE OPERAND OR OPERAND
OUT OF RANGE
INDEFINITE OPERAND OR ADDRESS
OUT OF RANGE OR OPERAND OUT
OF RANGE

Figure 3-3. Exchange Jump Package

3-9

The Central Processor enters the information about a new program into the appropriate

registers and stores the corresponding and current information from the interrupted pro­

gram at the same 16 locations in Central Memory. Hence, the controlling information

for two programs is exchanged. A later Exchange Jump may return an interrupted pro­

gram to the Central Processor for completion. The normal relation of the A and X reg­

isters (described earlier) is not active during the Exchange Jump so that the new entries

in A are not reflected into changes in X.

PROO RAMMING NOTE

When an Exchange Jump interrupts the Central Processor, several
steps occur to insure leaving the interrupted program in a usable
state for re-entry:

1) Issue of instructions halts after issuing all instructions
from the current instruction word in the instruction stack.

2) The Program Address register, P, is set to the address
of the next instruction word to be executed.

3) The issued instructions are executed, and then

4) The parameters for the two programs are exchanged.

A subsequent Exchange Jump can then re-enter the interrupted pro­
gram at the point it was interrupted, with no loss of program continuity.

To preserve the integrity of an "in-stack" loop (in the event of an
Exchange Jump), it is illegal to modify the contents of any memory
address which holds an executable instruction (or instruction word)
contained within the loop.

EXAMPLE:

y

Y+I

Y+2

Y+3

Y+4

Y+5

Y+6

Y+ 7

Rev. A

Assume Exchange Jump
comes in at this point

These instruction
words in stack
(from memory
locations [Y + 1]
through [Y + 5])
constitute a loop.

3-10

After executing the
lower instruction at
[Y + 3], the contents
of memory location
[Y + l]differfrom the
contents of [Y + 1] in
the stack. If the Ex­
change Jump comes
in as indicated, sub­
sequent reentry will
call up the modified
loop from memory,
rather than the stack
loop in its original
un-modified form.

All Central Processor references to Central Memory for new instructions, or to fetch

and store data, are made relative to the Reference Address. This allows easy reloca­

tion of a program in Central Memory. The Reference Address or beginning address

and the Field Length define the Central Memory limits of the program. An Exit Selec­

tion allows the Central Processor to stop on a memory reference outside these limits.

The Program Address register P defines the location of a program step within the limits

prescribed. Each reference to memory to fetch instructions is made to the address

specified by P + RA. Hence program relocation is conveniently handled through a single

change to RA.

A P = 0 condition specifies address zero and hence RA. This address is reserved for

recording program exit (error) conditions and should not, therefore, be used to store

data or instructions of a program.

Exit Mode

The Exit mode feature allows the programmer to select Exit or Stop conditions for the

Central Processor. Exit selections are loaded into bits 36-53 of memory location "n+3"

of the Exchange Jump package (Figure 3-3). When the Exchange Jump occurs to that

package, the exit selections are stored in the Central Processor and the exit occurs as

soon as the selected condition is sensed. The Exit conditions, as stored in bits 36-53

of address "n+3" in the Exchange Jump package, are shown below in octal format:

EM 000000

010000

020000

Disable Exit mode - no Exit selections made.

Address out of range -
a) an attempt to reference either Central Memory

or Extended Core Storage outside established
limits, or

b) the word count, [(Bj) + K J , in an Extended Core
Storage Communication instruction is negative, or

c) an attempt to reference last 60- bit word (word 7)
in relative address FLECS.

(For details on action when an address is out of range,
refer to the Increment and Extended Core Storage instruc­
tion descriptions.)

Operand out of range - floating point arithmetic unit
received an infinite operand (see Range Definitions,
page 3-1 7).

3-11 Rev. A

=

=

=

=

030000

040000

050000

060000

070000

Address or operand out of range

Indefinite operand - floating point arithmetic unit (Add,
Multiply, or Divide) attempted to use an indefinite operand
(see Range Definitions, page 3-17).

Indefinite operand or address out of range

Indefinite operand or operand out of range

Indefinite operand or operand or address out of range

Typically, the Reference Address (RA) for any program is left cleared to all zeros.

When an error exit is taken, the Central Processor records at RA the exit condi­

tion (upper 2 octal digits only) and the Program Address at exit time (refer to the format

below).

NOTE

The Exit condition(s) recorded at RA comprises all the
Exit conditions detected since the last Exchange Jump,
regardless of whether they were selected. Thus, com­
binations of error Exit conditions (03, 05, 06 or 07) can
appear at RA:

a) When at least one Exit condition was selected and
the selected condition plus another condition occur­
red since the last Exchange Jump, or

b) When more than one Exit condition was selected
and each occurred in the same minor cycle.

The contents of RA are then read up, interpreted as a Stop instruction, and the Central

Processor stops.

59 54 53 48 47 30 29 0

0-0 o-x x------x I o==-3Eo I
STOP EXIT p ZEROS

P: (Pl+ I; AT TIME OF ERROR EXIT.

For error stops, (P) + 1 gives only an approximate location of the error since the Cen­

tral Processor may have issued other instructions to the functional units (one of which

may have been a branch) before the exit was sensed.

On an Address Out of Range, hardware action differs from that outlined above. In some

cases, a stop occurs when an address is out of bounds even though an Exit mode stop is

not selected for this condition. Table 3-3 summarizes hardware action for operations

which may reference addresses that are out of bounds.

Rev. D 3-12

TABLE 3-3. EXIT MODE: ADDRESS OUT OF BOUNDS

HARDWARE ACTION

OPERATION EXIT MODE SELECTED EXIT MODE NOT SELECTED

RNI to an ad- 1. Detect error condition 1. Detect error condition
dress that is 2. Clear P 2. Stop by reading (AAZ) out- of bounds
(occurs when 3. Stop by reading (AAZ)* 3. Nothing stored in RA
an instr. is 4. Write EM and (P) + 1 into RA 4. (P) = out of range P or located in
absolute ad- (P) + 1

dress (RA+
FL) - 1).

Branch to an 1. Detect error condition 1. Detect error condition
address that 2. Clear P 2. Stop by reading (AAZ) is out-of-
bounds. 3. Stop by reading (AAZ) 3. Nothing stored in RA

4. Write EM and jump address + 1 in RA 4. (P) = out of range P or
(P) + 1

Read 1. Detect error condition 1. Detect error condition
Operand 2. Clear P 2. Read (AAZ) into Xi

3. Stop by reading (AAZ) 3. Continue program

4. Write EM and (P) + 1 into RA

5. (Xi) = (AAZ)

W,rite 1. Detect error condition 1. Detect error condition
Operand 2. Clear P 2. Read (AAZ), but (Xi)

3. Stop by reading (AAZ) not stored; (Xi) and
(Ai) unchanged.

4. Write EM and (P) + 1 into RA 3. Continue program

Action After Exit Mode or Normal Stop

Typically, a Peripheral and Control Processor periodically searches for an unchanging

Central Processor Program Address register (any value) to determine if the Central

Processor has stopped. Once it has been determined that the Central Processor has

stopped, the examining Peripheral and Control Processor can transfer control to an error

routine to determine the nature of the condition causing the Stop. Figure 3-4 illustrates

sample steps for processing Central Processor stops (either Exit mode or normal).

* Absolute Address Zero

3-13 Rev. B

Via P & CP, read
CP Program
Address Register

Are (P)
unchanged from
last test?

Are (P) = 0?

Stop is due to an error
and the error stop
was selected.

Examine (RA) to
determine approxi­
mate location of error­
produc ing instruction.

Branch to Error
Routine to Recover
From Error.

'
I

L

No

No

' May be other
I steps in this

routine

Yes

I

_J

Stop is due to either:
1) Normal (instr.)
stop, or
2) Stop because of
RNI or Branch to an
out-of-bounds address
(with Exit mode un­
selected).

Branch to routine to
determine nature of
stop.

Is stop due to an
out-of-bounds error?

No

Take appropriate
action for a stop
condition.

Figure 3-4. Detecting and Handling Central Processor Stops

Rev. A 3-14

Floating Point Arithmetic

Format

Floating point arithmetic takes advantage of the ability to express a number with the gen­

eral expression kBn, where:

k = coefficient

B = base number

n = exponent, or power to which the base number is raised

The base number is constant (2) for binary-coded quantities and is not included in the gen­

eral format. The 60- bit floating-point format is shown below. The binary point is con­

sidered to be to the right of the coefficient, thereby providing a 48-bit integer coefficient,

the equivalent of about 14 decimal digits. The sign of the coefficient is carried in the

highest order bit of the packed word. Negative numbers are represented in one's com­

plement notation.

COEFFICIENT BIASED
SIGN EXPONENT

INTEGER
COEFFICIENT

0

BINARY
POINT

The 11-bit exponent carries a bias of 210 (2000
8

) when packed in the floating point word

(biased exponent sometimes referred to as characteristic). The bias is removed when

the word is unpacked for computation and restored when a word is packed into floating

format. Table 3-4 lists (in decimal and octal notation) the complete range of permissible

exponents and the octal form of the corresponding positive and negative floating point words.

Thus, a number with a true exponent of 342 would appear as 2342; a number with a true

exponent of -160 would appear as 1617. Exponent arithmetic is done in one's comple­

ment notation. Floating point numbers can be compared for equality and threshold.

3-15 Rev. A

TABLE 3-4. RANGE OF PERMISSIBLE EXPONENTS

EXPONENT (n) REPRESENTATION OF kXBn (OCTAL)

POSITIVE NEGATIVE
DECIMAL OCTAL COEFFICIENT COEFFICIENT

+1023 +1777 (infinite operand) 3777 X .••• x 4000 X •••• x
+1022 +1776 3776 X •••• x 4001 X .••. x

. . . .

. . . .

. . . .

. . . .
+1 +1 2001 X .••• X 5776 X •••• x
+0 +0 2000 X ...• x 5777 X •••• x
-0 -0 (indefinite operand) 1 777 X •••• x 6000 X •••• x
-1 -1 1 776 X .•.• x 6001 X •••• x

. . . .

. . . .

. . .

. . . .
-1023 -1 777 0000 X •••• X 7777 X •••• x

Normalizing and Rounding

Normalizing a floating point quantity shifts the coefficient left until the most significant

bit is in bit 4 7. Sign bits are entered in the low-order bits of the coefficient as it is

normalized. Each shift decreases the exponent by one.

A round bit is added (optionally) to the coefficient during an arithmetic process and has

the effect of increasing the absolute value of the operand or result by one- half the value

of the least significant bit. Normalizing and rounding are not automatic during pack or

unpack operations so that operands and results may not be normalized.

Single and Double Precision

The floating point arithmetic instructions generate double-precision results. Use of un­

rounded operations allows separate recovery of upper and lower half results with proper

exponents; only upper half results can be obtained with rounded operations.

Rev. D 3-16

Double length registers appear as follows:

MOST SIGNIFICANT BITS

95

Range Definitions

UPPER HALF
RESULT

48•47

i
BINARY
POINT

LEAST SIGNIFICANT BITS

LOWER HALF
RESULT

0

A result with an exponent so large that it exceeds the upper limit of octal 3777 (overflow

case) is treated as an infinite quantity. A coefficient of all zeros and an exponent of octal

3777 or 4000 is packed for this case. An optional exit is provided when an attempt is

made to use an infinite operand in the floating arithmetic units since its use may propagate

an indefinite result as shown in Table 3-5. No error exit occurs when an infinite or inde­

finite result is generated in a functional unit.

TABLE 3•5. INDEFINITE FORMS

CD - CD

CD + CD

CD • 0

= INDEFINITE

INDEFINITE

INDEFINITE

0 + 0 = INDEFINITE

INDEFINITE+,-,+,• (X) = INDEFINITE

CD + CD

C:0 • CD

CD+ 0

: CD

: CD

: CD

WHERE: CD =INFINITY, N = INTEGER,

X : CD, N OR 0.

CD+N=CD

CD+N=CD

CD-N:CD

N+O=CD

O+CD=O

0 • 0 = 0

0 + N = 0

N+CD=O

A result the exponent of which is less than the lower limit of octal 0000 (underflow case)

is treated as a zero quantity. This quantity is packed with a zero exponent and zero co­

efficient. No exit is provided for underflow. A result with an exponent of octal 0000 and

a coefficient which is not zero is a non-zero quantity and is packed with a zero exponent

and the non-zero coefficient.

3-1 7 Rev. A

1

Use of either infinity or zero as operands may produce an indefinite result. An exponent

of octal 1777 and a zero coefficient are packed in this case, and an optional exit provided.

Note that zero, infinite, and indefinite results are generated or regenerated in floating

arithmetic operations only. The branch instructions test for infinite or indefinite quan­

tities.

In all floating arithmetic operations, an attempt to normalize an indefinite quantity re­

turns the original quantity, e.g., if the number 17770237 ... were to be normalized, the

result would be the same as the original number. Note that Exit mode does not occur on

detecting an indefinite quantity in the Shift Unit.

Exit mode tests for infinite and indefinite operands are made only in the Floating Add,

Multiply, and Divide Units. The 12 most significant bits of each operand are tested for

these special forms.

In the Multiply and Divide Units (but not in the Floating Add Unit) there is a special test

for zero operands as determined by the 12 most significant bits.

Thus the special operand forms (in octal) are:

3777X ... X (+ <X>) } 4000X •.• X (-<X>)
infinite operands

1777X ... X (+IND)}
6000X ... X (-IND) indefinite operands

oooox ... x (+O) } zero operands for

7777X ••• X (-0) Multiply and Divide
units only

Whenever infinite, indefinite, or zero results are generated in accordance with the rules

given in Table 3-5 and Appendix C, only the following octal words can occur as results:

37770 .•. 0 = + <X> (result)

40000 ..• o <X> (result)

17770 ... 0 = +IND (result)

00000 ... 0 = +o (result)

Rev. A 3-18

Note that in these cases the 48 least significant bits of the result are zeros. Indefinite

and zero results generated in accordance with Table 3-5 and Appendix C are always pos­

itive, but the sign of infinite results is determined by the usual algebraic sign conven­

tion. For example:

(+0)/ (-0) = +IND 17770 ... 0

(+ N)*(-0) = +o 00000 ... 0

(-oo >I<- o > =+CD 37770 ... o
(+oo)/(-0) = - CD 40000 ... 0

There is no special treatment of zero operands in the Floating Add unit. Zero coeffi­

cients and the forms OOOOX ... X and 7777X ... X are not specially detected, and unstand­

ardized zero results can be produced. (See description of 3 0 instruction, page 3-3 7.)

Overflow and Underflow

Exponents lying outside the range -1777
8

to +1777
8

cannot be generated during execution

of a floating point arithmetic instruction or during execution of a Normalize instruction.

An attempt to generate an exponent greater than +1777
8

yields an infinite result (overflow

case). An attempt to, generate an exponent less than -1777
8

yields a zero result (under­

flow case). All cases of overflow and underflow are listed in Table 3- 6,

Converting Integers to Floating Format

Conversion of integers to floating point format makes use of the Shift Unit and the zero

constant in increment register BO. The BO quantity provides for generation of exponent

bias in this case. For example, the instructions:

• Sum of Bj and Bk to Xi (where i = 2, j = 3, k = 4)

• Pack Xi from Xk and Bj (where i = 2, j = 0, k = 2)

form an 18- bit signed integer in operand register X2 as a result of the addition of the

contents of increment registers B3 and B4. The integer coefficient with its sign, plus

the octal 2000 exponent is then packed into the floating format shown earlier. The coef­

ficient is not normalized; normalizing may be accomplished with a Normalize instruction.

3-19 Rev. A

TABLE 3-6. OVERFLOW AND UNDERFLOW CONDITIONS

OVERFLOW

INSTRUCTIONS OVERFLOW CONDITION RESULT

Normalize (24, 25) None -- -
i Upper Sum (30, 31, 34, 35) None (see Note 1) -- -
Lower Sum (32, 33) None -- -...
Upper Product (40, 41) '~n1 + n2 + 60s 2'.: 2000s xi = 3777 o Os or

> 4000 0 ...• Os

Lower Product (42) n1 + n2 2'.: 20008
(True Sign)

Quotient (44, 45) n1 - n2 - 578 _? 20008
~

UNDERFLOW

INSTRUCTIONS UNDERFLOW CONDITION RESULT

Normalize (24 only) Initial coefficient = ±0 xi = 0000 o 08, (Bj) =

-20008 {

603
Normalize (24, 25) Final Exponent :::_ Xi = 0000 0 03, (B~ are

correct. (See Note 2.

Upper Sum (30, 31, 34, 35) None ---

Lower Sum (32, 33) Final Exponent :::_ -20008 xi = 0000 0 ..•• 08

Upper Product (40, 41) n1 + n2 + 57s :': -20008 }
Lower Product (42) n1 + n2 - 1 :::_ -20008 xi = 0000 o 08
Quotient (44, 45) n1 - n2 - 608 :::_ - 20008

'~n1 and n2 are the initial exponents.

Note 1. Overflow of Upper Sum: Overflow cannot occur unless one operand is infinite.
In this case the result is as indicated. If a one-place Right Shift occurs when
the larger operand exponent is equal to +1 7763, a correct result with exponent
+1 7778 is generated.

Note 2. Underflow of Exponent Durin Normalization: The final (Bj) are the same as if
un er ow had not occurre • In particu ar, 1f the initial coefficient is zero, (Bj)
are equal to 60s.

Rev. D 3-20

Fixed Point Arithmetic

Fixed point addition and subtraction of 60-bit numbers are handled in the Long Add Unit

{6600), Negative numbers are represented in one's complement notation, and overflows

are ignored. The sign bit is in the high-order bit position (bit 59) and the binary point is

at the right of the low-order bit position {bit O).

The Increment Units provide an 18-bit fixed point add and subtract facility. Negative

numbers are represented in one's complement notation and overflows are ignored. The

sign bit is in the high-order bit position {bit 17), and the binary point is at the right of

the low-order bit position {bit 0). The Increment Units allow program indexing through

the full range of Central Memory addresses.

Fixed point integer addition and subtraction are possible in the Floating Add Unit provid­

ing the exponents of both operands are zero and no overflow occurs. The unit performs

the one's complement addition (or subtraction) in the upper half of a 98-bit accumulator.

If overflow occurs, the unit shifts the result one place right and adds one to the exponent,

thereby producing a floating point quantity. Thus, care must be used in performing fixed

point arithmetic in the Floating Add Unit.

Fixed point integer multiplication is handled in the multiply functional units as a subset

operation of the unrounded Floating Multiply (40, 42) instructions. The multiply is dou­

ble precision (96 bits) and allows separate recovery of upper and lower products. The

multiply requires that both of the integer operands be converted (by program) to floating

format to provide biased exponents, This insures that results are not sensed as under­

flow conditions. The bias is removed when the result is unpacked.

An integer divide takes several steps and makes use of the Divide and Shift Units. For

example, an integer quotient Xl = X2/X3 is produced by the following steps:

1)
2)
3)

'4)
5)
6)

Instructions

Pack X2 from X2 and BO
Pack X3 from X3 and BO
Normalize X3 in XO and BO
Floating quotient of X2 and XO to Xl
Unpack Xl to Xl and B 7
Shift Xl nominally left B7 places

3-21

Remarks

Pack X2
Pack X3
Normalize X3 (divisor)
Divide
Unpack quotient
Shift to integer position

Rev. A

The divide requires that:

1) both integer (247 maximum} operands be in floating format

and 2) the divisor be shifted 48 places left

or 3) the quotient be shifted 48 places right

or 4) any combination of n left-shifts of the divisor and 48-n right shifts
of the quotient be accomplished.

The Normalize X3 instruction shifts the divisor n places left (n ~ 0), providing a divisor

exponent of -n. The quotient exponent then is: 0 - (-n) - 48 = n - 48 ~ 0.

After unpacking and shifting nominally left, the negative (or zero} value in B7 shifts the

quotient 48 - n places right; producing an integer quotient in Xl. A remainder may be

obtained by an integer multiply of Xl and X3 and subtracting the result from X2.

Description of Central Processor Instructions

This section describes the Central Processor instructions. Instruction grouping follows

a somewhat pedagogical approach (i.e., simple to complex) and does not necessarily re­

late instructions to the functional units (6600 system) which execute them. Central Pro­

cessor instructions as related to functional units are tabulated in Appendix B, Instruction

Execution Times.

TABLE 3-7. CENTRAL PROCESSOR INSTRUCTION DESIGNATORS

DESIGNATOR

Rev. A

A

B

fm

i

jk

k

K

x

USE

Specifies one of eight 18- bit address registers.

Specifies one of eight 18-bit index registers; BO is fixed and
equal to zero.

A 6-bit instruction code.

A 3-bit code specifying one of eight designated registers
(e.g., Ai).

A 3-bit code specifying one of eight designated registers
(e.g., Bj).

A 6- bit constant, indicating the number of shifts to be taken.

A 3-bit code specifying one of eight designated registers
(e.g., Bk).

An 18- bit constant, used as an operand or as a branch
destination (address).

Specifies one of eight 60- bit operand registers.

3-22

Preceding the description of each instruction is the octal code, mnemonic code and ad­

dress field, the instruction name and length. Mnemonic codes and address field mne­

monics are from ASCENT, the Central Processor Assembly language.

EXAMPLE:

9
Octal
Code

~
Mnemonic

Code

~
Address

Field

,Logical Sum oJ Xj and Xk to Xi, 1 (15 vBits),

Instruction Name Instruction
Length

Instruction formats are also given; parallel lines within a format indicate these bits are

not used in the operation.

Program Stop and No Operation

00 PS Program Stop (30 Bits)

29 24 23 0

This instruction stops the Central Processor at the current step in the program. An ex­

change Jump is necessary to restart the Central Processor.

46 NO No operation (Pass) (15 Bits)

fm

14 9 8 0

This instruction is a "do-nothing" instruction that is typically used to pad the program

between certain program steps.

3-23 Rev. A

EXAMPLE:

59 0

p 30- BIT I:NST. 15- BIT INST. I PASS

P+I 30-BIT INST. 30-BIT INST.

In this example, a Pass instruction is used to pad the remainder of the word

at P. Since the next instruction is 30 bits, it cannot fit in P and must be

placed in P + 1.

Increment

50
51
52

53
54
55
56
57

Rev. A

SAi
SAi
SAi

SAi
SAi
SAi
SAi
SAi

Aj + K
Bj + K
Xj + K

29

Xj+Bk
Aj+Bk
Aj-Bk
Bj+Bk
Bj-Bk

14

fm

Set Ai to Aj + K
Set Ai to Bj + K
Set Ai to Xj + K

24 23 21 20 18 17

Set Ai to Xj + Bk
Set Ai to Aj + Bk
Set Ai to Aj - Bk
Set Ai to Bj + Bk
Set Ai to Bj - Bk

fm

9 8 6 5

3-24

K

k

3 2

0

0

(30 Bits)
(30 Bits)
(30 Bits)

(15 Bits)
(15 Bits)
(15 Bits)
(15 Bits)
(15 Bits)

These instructions perform one's complement addition and subtraction of 18-bit operands

and store an 18-bit result in address register i. Overflow, in itself, is ignored, but an

address range fault may result from overflow in this set of instructions.

Operands are obtained from address (A), increment (B), and operand (X) registers as

well as the instruction itself (K = 18-bit signed constant). Operands obtained from an Xj

operand register are the truncated lower 18 bits of the 60-bit word.

Note that an immediate memory reference is performed to the address specified by the

final content of address registers Al - A 7. The operand read from memory address

specified by Al - A5 is sent to the corresponding operand register Xl - X5. When A6 or

A 7 is referenced, the operand from the corresponding X6 or X7 operand register is

stored at the address specified by A6 or A 7.

EXAMPLE:

50

NOTE

If, in this category of instructions, the result placed in ad­
dress register Ai is an address out of range, the following
occurs: (Note that this action is independent of an Exit selec­
tion on Address Out of Range.)

If i = 1-5: Operand register Xi is loaded with the contents of
absolute address zero and the contents of memory location
(Ai) are unchanged.

If i = 6 or 7: Operand register Xi retains its original contents
and the contents of memory location (Ai) are unchanged.

SAi Aj + K

A 6 + K

i = 4

j = 6

Initial Quantities:

K = 234567 8

A4 = 321110
8

SA
4

= 432100
8

+ 234567
8

A 6 = 4321008

SA
4

= 666667 8
x4 = 00 ••••• 008

Storage location 666667 = 7 ... 75342104600 8

Final Quantities:

A
4

= 666667 8

x
4

= 7 ... 75342104600
8

3-25 Rev. A

60
61
62

63
64
65
66
67

SBi
SBi
SBi

SBi
SBi
SBi
SBi
SBi

Aj + K
Bj + K
Xj + K

29

Xj+Bk
Aj+Bk
Aj-Bk
Bj+Bk
Bj-Bk

14

fm

Set Bi to Aj + K
Set Bi to Bj + K
Set Bi to Xj + K

24 23 21 20 18 17

Set Bi to Xj + Bk
Set Bi to Aj + Bk
Set Bi to Aj - Bk
Set Bi to Bj + Bk
Set Bi to Bj - Bk

fm

9 8

K

6 5

0

k

3 2 0

(30 Bits)
(30 Bits)
(30 Bits)

(15 Bits)
(15 Bits)
(15 Bits)
(15 Bits)
(15 Bits)

These instructions perform one's complement addition and subtraction of 18-bit operands

and store an 18- bit result in increment register Bi. An overflow condition is ignored.

Operands are obtained from address (A), increment (B), and operand (X) registers as

well as the instruction itself (K = 18-bit signed constant). Operands obtained from an Xj

operand register are the truncated lower 18 bits of the 60-bit word.

70
71
72

Rev. A

SXi
SXi
SXi

Aj + K
Bj + K
Xj + K

29

fm

Set Xi to Aj + K
Set Xi to Bj + K
Set Xi to Xj + K

24 23 21 20 18 17

3-26

k

0

(30 Bits)
(30 Bits)
(30 Bits)

73 SXi Xj+Bk Set Xi to Xj + Bk (15 Bits)
74 SXi Aj+Bk Set Xi to Aj + Bk (15 Bits)
75 SXi Aj-Bk Set Xi to Aj - Bk (15 Bits)
76 SXi Bj+Bk Set Xi to Bj + Bk (15 Bits)
77 SXi Bj-Bk Set Xi to Bj - Bk (15 Bits)

fm k

14 9 8 6 5 3 2 0

These instructions perform one's complement addition and subtraction of 18-bit oper­

ands and store an 18-bit result into the lower 18 bits of operand register Xi. The sign of

the result is extended to the upper 42 bits of operand register Xi. An overflow condition

is ignored.

Operands are obtained from address (A), increment (B), and operand (X) registers as

well as the instruction itself {K = 18- bit signed constant). Operands obtained from an Xj

operand register are the truncated lower 18 bits of the 60-bit word.

EXAMPLE:

73 SXi i = 2

j = 3, K = 1

sx
2

= o ... 0552224310 8 + 5112458

sx
2

= 7 ... 7 77 77 3 5 5 5 5 8

3-27

Initial Quantities:

x2 = o ... 0745321402 8

x
3

= 0 ... 0652224310 8

B = 1 5112458

Final Quantities:

x2 = 7 ... 7777735555 8

x3 = 0 ... 0652224310 8

B =
1 5112458

Rev. A

Fixed Point Arithmetic

36 I Xi ~j+Xk Integer sum of Xj and Xk to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction forms a 60-bit one's complement sum of the quantities from operand

registers Xj and Xk and stores the result in operand register Xi. An overflow condition

is ignored.

37 IXi Xj-Xk Integer difference of Xj and Xk to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction forms the 60-bit one's complement difference of the quantities from op­

erand registers Xj (minuend) and Xk (subtrahend) and stores the result in operand regis­

ter Xi. An overflow condition is ignored.

47 CXi Xk Count the number of "l's" in Xk to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction counts the number of "1 's" in operand register Xk and stores the count

in the lower order 6 bits of operand register Xi. Bits 6 through 59 are cleared to zero.

Rev. A 3-28

EXAMPLE:

47 CXi Xk i = 4

Logical

10 BXi Xj Transmit Xj to Xi

fm

14 9 8

Initial Quantities:

X =O 1 05433218

x 4 = 23420 ... 0005547 8

Final Quantities:

x =o 1

X = 0 4

6 5 3 2

05433218

00000118

0

(15 Bits)

This instruction transfers a 60-bit word from operand register Xj to operand register

Xi.

11 BXi Xj •Xk Logic(!,l Product of Xj and Xk to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction forms the logical product (AND function) of 60- bit words from operand

registers Xj and Xk and places the product in operand register Xi. Bits of register Xi

are set to "1" when the corresponding bits of the Xj and Xk registers are II l II as in thE

following example:

Xj = 0101

Xk = 1100

Xi= 0100

3-29 Rev. A

12 BXi Xj+Xk Logical sum of Xj and Xk to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction forms the logical sum (inclusive OR) of 60-bit words from operand reg­

isters Xj and Xk and places the sum in operand register Xi. Bits of register Xi are set

to "1" if the correspondingbit ofthe XjorXk register is a 11 1 11 as in the following example:

13 BXi Xj-Xk

14

Xj = 0101

Xk = 1100

Xi = 1101

Logical difference of Xj and Xk to Xi

fm k

9 8 6 5 3 2

(15 Bits)

0

This instruction forms the logical difference (exclusive OR) of 60-bit words from operand

registers Xj and Xk and places the difference in operand register Xi. Bits of register Xi

are set to 11 1 11 if the corresponding bits in the Xj and Xk registers are unlike as in the

following example:

14 BXi -Xk

14

Rev. A

Xj = 0101

Xk= 1100

Xi = 1001

Transmit the compkment of Xk to Xi

fm k

9 8 6 5 3 2

3-30

(15 Bits)

0

This instruction extracts the 60-bit word from operand register Xk, complements it, and

transmits this complemented quantity to operand register Xi.

15 BXi -Xk • Xj Logical product of Xj and comp"lement of Xk to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction forms the logical product (AND function) of the 60- bit quantity from op­

erand register Xj and the complement of the 60-bit quantity from operand register Xk,

and places the result in operand register Xi. Thus, bits of Xi are set to II l II when the

corresponding bits of the Xj register and the complement of the Xk register are 11 111 as in

the following example:

16 BXi -Xk+Xj

14

Xj = 0101

Complemented Xk = 0011

Xj = 0001

Logical sum of Xj and comp"lement of Xk to Xi

fm k

9 8 6 5 3 2 0

(15 Bits)

This instruction forms the logical sum (inclusive OR) of the 60-bit quantity from operand

register Xj and the complement of the 60-bit word from operand register Xk, and places

the result in operand register Xi. Thus, bits of Xi are set to "l II if the corresponding

bit of the Xj register or complement of the Xk register is a II l II as in the following exam­

ple:

Xj = 0101

Complemented Xk = OOll

Xi = Olll

3-31 Rev. A

17 BXi -Xk-Xj Logical difference ofXj and complement ofXk to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction forms the logical difference (exclusive OR) of the quantity from operand

register Xj and the complement of the 60-bit word from operand register Xk, and places

the result in operand register Xi. Thus, bits of Xi are set to 11 111 if the corresponding

bits of register Xj and the complement of register Xk are unlike as in the following exam­

ple:

Shift

20 LXi jk

Xj = 0101

Complemented Xk = 0011

Xi = 0110

Left shift Xi,jk places

fm

14 9 8 6 5

(15 Bits)

jk

0

This instruction shifts the 60-bit word in operand register Xi left circular jk places. Bits

shifted off the left end of operand register Xi replace those from the right end.

The 6-bit shift count jk allows a complete circular shift of register Xi.

21 AXi jk Arithmetic right shift Xi, jk places (15 Bits)

fm jk

14 9 8 6 5 0

Rev. A 3-32

This instruction shifts the 60- bit word in operand register Xi right jk places. The right­

most bits of Xi are discarded and the sign bit is extended.

22 LXi Bj Xk Left shift Xk nominally B j places to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction shifts the 60-bit quantity from operand register Xk the number of places

specified by tp.e quantity in increment register Bj and places the result in operand regis­

ter Xi.

23

1) If Bj is positive {i.e., bit 1 7 of Bj = O), the quantity from Xk is shifted left­

circular. {The low order six bits of Bj specify the shift count.)

2) If Bj is negative {i.e., bit 1 7 of Bj = 1), the quantity from Xk is shifted right

{end off with sign extention). {The one's complement of the low order eleven

bits of Bj specify the shift count.) If any of bits 2 6-210, after complementing,

are 11 1 's", the shift is not performed and the result register Xi is cleared to

all zeros.

AXi Bj Xk Arithmetic right shift Xk nominally Bj places to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction shifts the 60- bit quantity from operand register Xk the number of places

specified by the quantity in increment register Bj and places the result in operand regis­

ter Xi.

1) If Bj is positive {i.e., bit 1 7 of Bj = O), the quantity from register Xk is

3-33 Rev. A

24

shifted right (end-off with sign extension). (The low order eleven bits of Bj

specify the shift count.) If any of bits 2
6

-2
10

are "1 's", the shift is not

performed and the result register Xi is cleared to all zeros.

2) If Bj is negative (i.e., bit 1 7 of Bj = 1), the quantity from register Xk is shifted

left circular. (The complement of the lower order six bits of Bj specify the

shift count.)

NXi Bj Xk Normalize Xk in Xi and Bj (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction normalizes the floating point quantity from operand register Xk and

places it in operand register Xi. The number of left shifts necessary to normalize the

quantity is entered in increment register Bj. A Normalize operation may cause under­

flow which will clear Xi to all zeros regardless of the original sign of Xk. Normalizing

either a plus or minus zero coefficient sets the shift count (Bj) to 4810 and clears Xi to

all zeros.

If Xk contains an infinite quantity (3777X ... X or 4000X ... X) or an indefinite quantity

(l 777X ... X or 6000X ... X), no shift takes place. The contents of Xk are copied into Xi

and Bj is set equal to zero. Optional error exits do not occur.

25 ZXi Bj Xk Round and normalize Xk in Xi and Bj (15 Bits)

fm k
14 9 8 6 5 3 2 0

This instruction performs the same operation as instruction 24 except that the quantity

Rev. A 3-34

from operand register Xk is rounded before it is normalized. Rounding is accomplished

by placing a "1" round bit immediately to the right of the least significant coefficient bit.

Normalizing a zero coefficient places the round bit in bit 47 and reduces the exponent

by 48. Note that the same rules apply for underflow.

If Xk contains an infinite quantity (3777X ... X or 4000X ... X) or an indefinite quantity

(l 777X ... X or 6000X ... X), no shift takes place. The contents of Xk are copied into Xi

and Bj is set equal to zero. Optional error exits do not occur.

26 UXi Bj Xk Unpack Xk to Xi and Bj (15 Bits)

fm k

14 9 8 6 5 3 2. 0

This instruction unpacks the floating point quantity from operand register Xk and sends

the 48-bit coefficient to operand register Xi and the 11-bit exponent to increment register

Bj. The exponent bias is removed during Unpack so that the quantity in Bj is the true

one's complement repr.esentation of the exponent.

The exponent and coefficient are sent to the low-order bits of the respective registers as

shown below:

SIGN BIASED EXPONENT COEFFICIENT

PACKED QUANTITY ~'-'~'~~~-'-'~~~ ~~~~~~-4-8~~~~~~-'
59 58

l
UNBIASED
EXPONENT

48 47

EXPONENT SIGN l COEFFICIENT
EXTENDED SIGN EXTENDED

0

UNPACKED Bj ~ ---------''~ "'=7TT,..,...,...,='77>'771'7T"'--------------,, X j

17 10 9 0 59 48 47 0

3-35 Rev. A

'

27 PXi Bj Xk Pack Xi from Xk and Bj (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction packs a floating point number in operand register Xi. The coefficient of

the number is obtained from operand register Xk and the exponent from increment regis­

ter Bj. Bias is added to the exponent during the Pack operation. The instruction does

not normalize the coefficient.

Exponent and coefficient are obtained from the proper low-order bits of the respective

registers and packed as shown in the illustration for the Unpack (26) instruction. Thus,

bits 48 to 58 of Xk and bits 11 to 17 of Bj are ignored. There is no test for overflow or

underflow.

Note that if Xk is positive, the packed exponent occupying positions 48 to 58 of Xi is ob­

tained from bits O to 10 of Bj by complementing bit 10; if Xk is negative, bit 10 is not com­

plemented but bits O to 9 are.

43 MXi jk Form mask in Xi, jk bits (15 Bits)

fm jk

14 9 8 6 5 0

This instruction forms a mask in operand register Xi. The 6-bit quantity jk defines the

number of "1 's" in the mask as counted from the highest order bit in Xi.

The contents of operand register i = 0 when jk = 0.

Rev. A 3-36

Floating Point Arithmetic

30 FXi Xj+Xk Floating sum of Xj and Xk to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction forms the sum of the floating point quantities from operand registers

Xj and Xk and packs the result in operand register Xi. The packed result is the upper

half of a double precision sum.

At the start both arguments are unpacked, and the coefficient of the argument with the

smaller exponent is entered into the upper half of a 98-bit accumulator. The coefficient

is shifted right by the difference of the exponents. The other coefficient is then added

into the upper half of the accumulator. If overflow occurs, the sum is right-shifted one

place and the exponent of the result increased by one. The upper half of the accumulator

holds the coefficient of the sum, which is not necessarily in normalized form. The ex­

ponent and upper coefficient are then repacked in operand register Xi.

If both exponents are zero>!' and no overflow occurs, the instruction effects an ordinary

integer addition. For treatment of special operands and/ or indefinite forms, refer to

Table 3-5 and Appendix C.

31 FXi Xj-Xk Floating difference Xj and Xk to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction forms the difference of the floating point quantities from operand reg­

isters Xj and Xk and packs the result in operand register Xi. Alignment and overflow

operations are similar to the Floating Sum (30} instruction, and the difference is not

necessarily normalized. The packed result is the upper half of a double precision differ-

ence.

An ordinary integer subtraction is performed when the exponents are zero. For treat­

ment of special operands and/ or indefinite forms, refer to Table 3-5 and Appendix C.

*A zero exponent is 2000 8 .

3-37 Rev. A

32 DXi Xj+Xk Floating DP sum of Xj and Xk to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction forms the sum of two floating point numbers as in the Floating Sum (30}

instruction, but packs the lower half of the double precision sum with an exponent 48 less

than the upper sum. For treatment of special operands and/ or indefinite forms, refer

to Table 3-5 and Appendix C,

33 DXi Xj~Xk Floating DP difference ofXj and Xk to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction forms the difference of two floating point numbers as in the Floating

Difference (31} instruction, but packs the lower half of the double precision difference

with an exponent of 48 less than the upper sum. For treatment of special operands and/

or indefinite forms, refer to Table 3-5 and Appendix C.

34 RXi Xj+Xk Round floating sum of Xj and Xk to Xi (15 Bits)

fm k
14 9 8 6 5 3 2 0

This instruction forms the round sum of the floating point quantities from operand regis­

ters Xj and Xk and packs the upper sum of the double precision result in operand regis -

ter Xi. The sum is formed in the same manner as the Floating Sum instruction but the

Rev. A 3-38

operands are rounded before the addition, as shown below, to produce a round sum.

1) A round bit is attached at the right end of both operands if:

a) both operands are normalized, or

b) the operands have unlike signs.

2) A round bit is attached at the right end of the operand with the larger exponent

for all other cases.

For treatment of special operands and/ or indefinite forms, refer to Table 3-5 and

Appendix C.

35 RXi Xj-Xk Round floating difference of Xj and Xk to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction forms the round difference of the floating point quantities from operand

registers Xj and Xk and packs the upper difference of the double precision result in op­

erand register Xi. The difference is formed in the same manner as the Floating Dif­

ference (31) instruction but the operands are rounded before the subtraction, as shown

below, to produce a round difference.

1) A round bit is attached at the right end of both operands if:

a) both operands are normalized, or

b) the operands have like signs.

2) A round bit is attached at the right end of the operand with the larger exponent

for all other cases.

For treatment of special operands and/or indefinite forms, refer to Table 3-5 and

Appendix C.

3-39 Rev. A

40 FXi Xj • Xk Floating product of Xj and Xk to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction multiplies two floating point quantities obtained from operand registers

Xj (multiplier) and Xk (multiplicand) and packs the upper product result in operand

register Xi.

The two 48-bit coefficients are multiplied together to form a 96-bit product. Theupper

48 bits of the product (bits 48-95) are then packed together with the resulting exponent.

Note that when using unnormalized quantities, the entire result could lie in the lower­

order 48 bits of the product; hence, this result would be lost when packing occurs.

The result is a normalized quantity only when both operands are normalized;the exponent

in this case is the sum of the exponents plus 4 7 (or 48).

The result is unnormalized when either or both operands are unnormalized; the exponent

in this case is the sum of the exponents plus 48. For treatment of special operands and/

or indefinite forms, refer to Table 3-5 and Appendix C.

41 RXi Xj • Xk Round floating product of Xj and Xk to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction multiplies the floating point number from operand register Xk (multi­

plicand), by the floating point number from operand registerXj. The upper product re­

sult is packed in operand register Xi. (No lower product available.) The multiply oper­

ation is identical to that of instruction 40 with the following exception:

Rev. A 3-40

Before the left shift of the final product and during the merge operation to form the final

product, a "1" bj_t is added to bit 2
46

. The following rounded result is the net effect of

this action:

•
•

for products > 2
95

, round is by one-fourth

for all other products, round is by one-half

The result is a normalized quantity only when both operands are normalized; the expo­

nent in this case is the sum-of the exponents plus 47 (or 48).

The result is unnormalized when either or both operands are unnormalized; the exponent

in this case is the sum of the exponents plus 48. For treatment of special operands and/

or indefinite forms, refer to Table 3-5 and Appendix C.

42 DXi Xj • Xk Floating DP product of Xj and Xk to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction multiplies two floating point quantities obtained from operand registers

Xj and Xk and packs the lower product in operand register Xi. The two 48- bit coefficients

are multiplied together to form a 96-bit product. The lower-order 48 bits of this pro­

duct (bits 4 7-00) are then packed together with the resulting exponent. The result is not

necessarily a normalized quantity. The exponent of this result is 48 less than the ex­

ponent resulting from a 40 instruction using the same operands. For treatment of spe­

cial operands and/or indefinite forms, refer to Table 3-5 and Appendix C.

44 FXi Xj I Xk Floating divide Xj by Xk to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

3-41 Rev. A

This instruction divides two normalized floating point quantities obtained from operand

registers Xj (dividend) and Xk (divisor) and packs the quotient in operand register Xi.

The exponent of the result in a no-overflow case is the difference of the dividend and

divisor exponents minus 48.

A one-bit overflow is compensated for by adjusting the exponent and right shifting the

quotient one place. In this case the exponent is the difference of the dividend and divisor

exponents minus 4 7.

The result is a normalized quantity when both the dividend and the divisor are normal­

ized. Note that the machine makes no note of divide faults, i.e., when the absolute value

of the coefficient of the dividend > two times the absolute value of the coefficient of the

divisor. To avoid possible incorrect results from using unnormalized operands, the

operands in this instruction should be normalized. For treatment of special operands

and/ or indefinite forms, refer to Table 3-5 and Appendix C.

45 RXi Xj I Xk Round floating divide Xj by Xk to Xi (15 Bits)

fm k

14 9 8 6 5 3 2 0

This instruction divides the floating quantity from operand register j (dividend) by the

floating point quantity from operand register Xk (divisor) and packs the round quotient

in operand register Xi. Rounding is accomplished by adding one-third during the divi­

sion process. In effect, the quantity "2525 25258
11 resides immediately to the right

of the dividend binary point prior to starting the divide operation. On the first iteration,

a "1" is added to the least significant bit of the dividend. After each iteration (subtrac­

tion of divisor from partial dividend) a two-place left shift occurs and a II l II is again ad­

ded to the least significant bit of the partial dividend. Thus, successive iterations grad­

ually bring in the one-third round "quantity" (25 •.•• 25
8

).

Rev. A 3-42

The result exponent in a no-overflow case is the difference of the dividend and divisor

exponents minus 48.

A one- bit overflow is compensated for by adjusting the exponent and right shifting the

quotient one place; in this case the exponent is the difference of the dividend and divisor

exponents minus 4 7.

The result is a normalized quantity when both the dividend and the divisor are normal­

ized. Note that the machirte makes no note of divide faults, i.e., when the coefficient

of the dividend~ two times the coefficient of the divisor. To avoid possible incorrect

results from using unnormalized operands, the operands in this instruction should be

normalized. For treatment of special operands and/or indefinite forms, refer to Table

3-5 and Appendix C.

Branch

010 RJ K Return jump to K (30 Bits)

fm K

29 2120 18 17 0

The instruction stores an 04 unconditional jump and the current address plus one ~P) +

1] in the upper half of address K, then branches to K + 1 for the next instruction. Note

that this instruction is always out of the instruction stack, thus voiding the stack.

The octal word at K after the instruction appears as follows:

UNCONDITIONAL
JUMP

~

59 "--v-----1
Bi= Bj

P+I

xxxxxx I ooo ;"-J_o__.l
30 29 0

A jump to address Kat the end of the branch routine returns the program to the original

sequence.

3-43 Rev. A

02 JP Bi+ K Jump to Bi +K (30 Bits)

fm ~ K

29 24 23 21 20 18 17 0

This instruction adds the contents of increment register Bi to K and branches to the

address specified by the sum. The branch address is K when i = 0. Addition is per­

formed modulo 2
18 -1.

Note that this instruction is always out of the instruction stack, thus voiding the stack.

For an unindexed, unconditional jump, the 04 instruction with i = j = 0 is a better choice.

Thus, if this instruction is contained in a tight loop, the instruction at K can be obtained

from the stack, if possible.

030 ZR Xj K Jump to Kif Xj = 0 (30 Bits)
031 NZ Xj K Jump to Kif Xj ¥- 0 (30 Bits)
032 PL Xj K Jump to K ifXj = plus (positive) (30 Bits)
033 NG Xj K Jump to K ifXj = negative (30 Bits)
034 IR Xj K Jump to K if Xj is in range (30 Bits)
035 OR Xj K Jump to K if Xj is out of range (30 Bits)
036 DF Xj K Jump to Kif Xj is definite (.'JO Bits)
037 ID Xj K Jump to K if Xj is indefinite (30 Bits)

fmi K

29 21201817 0

These instructions branch to K when the 60-bit word in operand register Xj meets the

condition specifiedbythei digit. The instruction allows zero, sign, and indefinite forms

tests for fixed or floating point words.

Rev. A 3-44

The following applies to tests made in this instruction group:

04
05
06
07

a) The 030 (ZR) and 031 (NZ) operations test the full 60-bit word in Xj. The

words 000 ... 000 and 777 ... 777 are treated as zero. All other words are

non-zero.

b) The 032 (PL) and 033 (NG) operations examine only the sign bit (2 59) of Xj. If

the sign bit is zero, the word is positive; if the sign bit is one, the word is

negative. Thus, the sign test is valid for fixed point words or for coefficients

in floating point words.

c) The 034 (IR) and 035 (OR) operations examine the upper-order 12 bits of Xj.

Both plus and minus infinity are detected:

3777XX ... XX and 4000XX ... XX are out of range; all other words

are in range.

d) The 036 (DF) and 037 (ID) operations examine the upper-order 12 bits of Xj.

Both plus and minus indefinite forms are detected:

EQ
NE
GE
LT

1777XX ... XX and 6000XX ... XX are indefinite; all other words are

definite.

Bi Bj K Jump to Kif Bi = Bj (30 Bits)
BiBj K Jump to Kif Bi¥- Bj (30 Bits)
BiBj K Jump to Kif Bi :::!: Bj (30 Bits)
BiBj K Jump to Kif Bi< Bj (30 Bits)

fm K

29 24 23 21 20 18 17 0

These instructions test an 18-bit word from register Bi against an 18-bitword from reg­

ister Bj (both words signed quantities) for the condition specified and branch to address

K on a successful test. All tests against zero (all zeros) can be made by setting Bj = BO.

3-45 Rev. A

The following rules apply in the tests made by these instructions:

a) Positive zero is recognized as unequal to negative zero, and

b) Positive zero is recognized as greater than negative zero, and

c) A positive number is recognized as greater than a negative number.

Note that the 06 and 07 instructions first perform a sign test onBi andBj and the Branch/

No Branch determination is based on the above rules. If Bi and Bj are of the same sign,

a subtract test is performed (in the Increment Unit) and the sign of the result (Bi-Bj) de­

termines whether a Branch is made.

Extended Core Storage Communication

This category of instructions provides the ability to communicate with Extended Core Stor­

age (ECS). Extended Core Storage communication instructions as related to the 6411 I 6416

are described in Appendix A.

This section describes Extended Core Storage communication instructions (and ramifica­

tions) only; information on Extended Core Storage itself is presented in Appendix D.

REC Bj + K Read Extended Core Storage (30 Bits)

fmi K

59 51 50 48 47 30

This instruction initiates a Read operation to transfer [(Bj) + K J 60-bit words from Ex­

tended Core Storage to Central Memory. The initial Extended Core Storage address is

[(XO) + RAEcs] ; the initial Central Memory address is [(AO) + RAcM] .

*This instruction must be located in the upper order position of the instruction word.

Rev. A 3-46

012• WEC Bj + K Write Extended Core Storage (30 Bits)

fmi I<

59 5150 48 47 30

This instruction initiates a Write operation to transfer [(Bj) + KJ 60-bit words from Cen­

tral Memory to Extended Core Storage. The initial Central Memory address is [(AO)+

RACM] ; the initial Extended Core Storage address is [<XO) + RAEcs].

Address Formation: The starting address in Extended Core Storage is formed by taking

the truncated lower-order 24 bits of operand register XO and adding this quantity to RAE CS.

In the addition, both quantities are taken as positive with the upper-order 36 sign bits

(zeros) extended.

RAECS is the Reference Address within Extended Core Storage, and FLECS is the allot­

ted Field Length within Extended Core Storage. Both are 24-bit quantities contained in

the Exchange Jump package; when the program specified by this package is being execu­

ted, these quantities are held in registers in the Central Processor. The lower-order

six bits (20 - 25) of the RAECS and FLECS registers do not exist. The lower-order six

bits in either of these 24-bit quantities always appear, therefore, as zeros.

The starting address in Central Memory is formed by a similar process; the contents

of address register AO are added to RACM' RACM is the Reference Address within

Central Memory, and FLCM is the allotted Field Length within Central Memory. Both

are 18-bit quantities contained in the Exchange Jump package.

Note that adding the Reference Addresses to (AO) and (XO) is accomplished automatically

when the Read or Write instructions are executed. The relative addresses in AO and

XO, however, must be placed there by the program prior to executing the Extended Core

Storage Communication instructions.

*This instruction must be located in the upper order position of the instruction word.

3-47 Rev. A

An example of a typical Read Extended Core Storage operation follows:

EXAMPLE: Read Extended Core Storage

Assume a program with relative addresses in the range 0-400, The

program, at relative address 200, contains a Read Extended Core

Storage (011) instruction. The instruction specifies the number of

words to be transferred as (Bj) + K. Prior to execution of this in­

struction, it is assumed that the program loaded registers Bj, AO

and XO with block control parameters. Because the program was

initiated by executing an Exchange Jump, the Central Processor holds

the Reference Addresses RACM and RAECS and the Field Lengths

FLCM and FLECS as part of the Exchange Jump package.

It is desired, in this example, to block-transfer 300 sixty-bit words

from Extended Core Storage to Central Memory. The various control

parameters are assumed to be as follows:

(Bj) = 100 RAE CS = 26500

K = 200 FLECS = 1600

RACM = 1400 (AO) = 4600

FLCM = 5300 (XO) = 603

A map of Central Memory and Extended Core Storage would then appear as indicated in

Figure 3-5.

A similar operation occurs for the Write Extended Core Storage (012) instruction.

For both Read and Write operations, the parameters held with the Central Processor

which control the block transfer (namely Bj, XO, AO, RACM' RAECS' FLCM, and

FLECS)' do not vary during the transfer. Therefore, an Exchange Jump occurring dur­

ing a transfer may be effected. When the transfer program is again resumed however,

the transfer is reinitiated from the initial (original) parameters, and not from the addres­

ses used just before the interruption in the program.

Rev. A 3-48

ABSOLUTE
ADDRESS

100

1400

1600

FLCM = 5300

6700

CENTRAL
MEMORY

ABSOLUTE
ADDRESS

100

26500

30300

EXTENDED
CORE

STORAGE

Figure 3-5. Memory Map (Read ECS Example)

Address Range Faults: Four address range fault conditions can arise when executing

the Extended Core Storage Communication instructions:

• Word count fault

• Central Memory address out of range

• Extended Core Storage address out of range

• Last 60-bit word (word 7) in FLECS is referenced

3-49 Rev. A

a) Word Count

If, in forming the word count [(Bj) + K], the result is negative, an

address range fault occurs. If the Address Out of Range bit is set in the

Exit Mode register, an error stop occurs; if this bit is clear, the Central

Processor passes to the next instruction word at (P)+l with no data transfer.

b) Central Memory Address

Central Memory address out of range is checked by comparing FLCM

with the sum [(AO) + (Bj) + K]. FLCM must be greater than this sum

or an address range fault occurs. If the Address Out of Range bit is set

in the Exit Mode register, an error stop occurs; if this bit is clear, the

Central Processor passes to the next instruction word at (P)+l with no data

transfer.

c) Extended Core Storage Address

Extended Core Storage address out of range is ch~cked by comparing FLECS

with the sum [(XO) + (Bj) + K]. In the comparison, FLECS is a

24-bit quantity with 36 upper-order bits of sign extended; XO holds

the 24-bit address quantity with 36 zeros occupying the upper-order bit

positions. The result of this subtraction should always be negative;

if positive, an address range fault occurs. If the Address Out of Range

bit is set in the Exit Mode register, an error stop occurs; if this

bit is clear, the Central Processor passes to the next instruction word at

(P)+l with no data transfer.

d) Word 7 reference in FLECS

If, after formation of the ECS address, the address format specifies a

reference to word 7 in relative address FLECS' an address range fault

occurs. If the Address Out of Range bit is set in the Exit Mode register,

an error stop occurs; if this bit is clear, the Central Processor passes

to the next instruction word at (P) + 1 with no data transfer.

Nate that address range checks are made on the entire block of both Extended Core Stor­

age and Central Memory addresses before the transfer (Read or Write) is begun. If any

address in the block to be transferred is out of range, either in Central Memory or Ex­

tended Core Storage, no data is transferred, regardless of whether or not the Address

Out of Range bit is set in the Exit Mode register.

Rev. A 3-50

Error Action: An error exit is an exit to the lower-order 30 bits of the instruction word

containing the ECS Read or Write instruction, These 30 bits should always hold a jump

to an error routine,

Three error conditions cause an error exit:

1) Parity error(s) when reading ECS. If a parity error is detected, the

entire block of data is transferred before the exit is taken,

2) The ECS bank from/to which data is to be transferred is not available

because the bank is in Maintenance mode, or the bank has lost power.

If either of these conditions exists on an attempted Read or Write, an

immediate error exit is taken.

3) An attempt to reference a nonexistent address. On an attempted

Write operation, no data transfer occurs and an immediate error

exit is taken. If the attempted operation is a Read, and addresses

are in range, zeros are transferred to Central Memory. This is a

convenient high-speed method of clearing blocks of Central Memory.

Exchange Jump During ECS Communication: If an Exchange Jump occurs while an Ex­

tended Core Storage transfer is in progress, the exchange waits until completion of a

record. Action is then as follows:

a) If the record just completed is the last record of the block transfer, and

the transfer was error-free, the Central Processor exits to (P)+l. The

Exchange Jump then takes place.

b) If the record just completed is the last record of the block transfer, and

an error condition exists, the Central Processor exits to the lower in­

struction, executes it, and the Exchange Jump is performed.

c) If the record just completed does not complete the block transfer, the

Exchange Jump occurs, and (P) are stored in the Exchange Jump package,

A return Exchange Jump to this program begins execution with the ECS

Read or Write instruction and restarts the transfer. Note the transfer

does not resume at the point it was truncated; rather, the entire transfer

must be repeated,

3-51 Rev, D

4. PERIPHERAL AND CONTROL PROCESSORS

ORGANIZATION

The ten Peripheral and Control Processors are identical and operate independently and

simultaneously as stored-program computers. Thus ten programs may be running at

one time. A combination of processors can be involved in one problem, the solution of

which may require a variety of 1/0 tasks plus use of Central Memory and Central Pro­

cessor(s). Figure 4-1 shows data flow between 1/0 devices, the processors, and Central

Memory.

The Peripheral and Control Processors act as system control computers and 1/0

processors. This permits the Central Processor to continue high-speed computations

while the Peripheral and Control Processors do the slower 1/0 and supervisory

operations.
~2111l CP (6500)

CENTRAL PRQfE~SOR

INPUT - 6"i° OUTPUT -6600 6500 I START- ~ 10 FUNCTIONS,
INCLUDING:

• 2 ADDERS
0

• 2 MULTIPLIERS ...
REAL • I DIVIDER ...
TIME - • 2 INCREMENTORS ~

CLOCK 10 • I SHIFT 10
CHANNEL PERIPHERAL

• I BOOLEAN PERIPHERAL

8 CONTROL
• I BRANCH

8 CONTROL
CENTRAL ~

CENTRAL
PROCESSORS PROCESSORS

MEMORY OPERATING FROM MEMORY
12 24 REGISTERS

I/0
CHANNELS EACH 131,072 • 8 ADDRESS 131,072 EACH

PERIPHERAL 60-BIT REGISTERS 60-BIT PERIPHERAL

t a CONTROL WORDS • 8 INCREMENT WORDS a CONTROL
PROCESSOR REGISTERS PROCESSOR
HAS A 4096 • 8 OPERAND HAS A 4096

PERIPHERAL WORD CORE WORD CORE
EQUIPMENT REGISTERS MEMORY MEMORY

FROM A:

DISK FILES
• 32 INSTRUCTION

STACK (6600)
MAGNETIC

OR TAPES
• I INSTRUCTION

CARO REGISTER lG400 a
READERS 6500) -

CONSOLES

ETC.

Figure 4-1. Flow Chart: 6400 I 6500 I 6600 Systems

4-1

I 12
I/0

CHANNELS

' PERIPHERAL

EQUIPMENT

OISI< FILES

MAGNETIC
TAPES

CARO
PUNCHES

CONSOLES

LINE
PRINTERS

ETC·

Rev. D

Each processor has a 12-bit, 4096 word random-access memory (not a part of Central

Memory) with a cycle time of 1000 ns (major cycle). Execution time of processor

instructions is based on memory cycle time. A minor cycle is 1I10 of a major cycle

and is another basic time interval.

All processors communicate with external equipment and each other on 12 independent,

bi-directional I/0 channels. All channels are 12-bit (plus control) and each may be

connected to one or more external devices. Only one external equipment can com­

municate on one channel at one time, but all 12 channels can be active at one time.

Data is transferred into or out of the system in 12-bit words; each channel has a single

register which holds the data word being transferred in or out. Each channel operates

at a maximum rate of one word per major cycle.

Data flows between a processor memory and the external device in blocks of words

(a block may be as small as one word). A single word may be transferred between

an external device and the A register of a processor.

The I/0 instructions direct all activity with external equipment. These instructions

determine the status of and select an equipment on any channel and transfer data to or

from the selected device. Two channel conditions are made available to all processors

as an aid to orderly use of channels.

• Each channel has an active/inactive flag to signal that it has been

selected for use and is busy with an external device.

• Each channel has a full/ empty flag to signal that a word (function or data)

is available in the register associated with the channel.

Either state of both flags can be sensed. In general, I/0 operation involves the

following steps:

1) Determine channel inactive

2) Determine equipment ready

3) Select equipment

4) Activate channel

5) Input/Output data

6) Disconnect channel

Rev. A 4-2

One processor may communicate with another over a channel which is selected as

output by one and input by the other. A common channel can be reserved for inter­

processor communication and order preserved by determining equipment and channel

status.

A real-time clock reading is available on a channel which is separate from the twelve

I/ 0 channels. The clock period is 409 6 major cycles. The clock starts with power

on and run1, continuously and cannot be preset or altered. The clock may be used

to determine program running time or other functions such as time-of-day, as required.

Each processor exchanges data with Central Memory in blocks of n words. Five

successive 12-bit processor words are assembled into a 60-bit word and sent to

Central Memory. Conversely, a 60-bit Central Memory word is disassembled into

five 12-bit words and sent to successive locations in a processor memory. Separate

assembly (write) and disassembly (read) paths to Central Memory are shared by all

ten processors. Up to four processors may be writing in Central Memory while

another four are simultaneously reading from Central Memory.

The processors generally do not solve complex arithmetic and logical problems;usually

they perform I/0 operations for running Central Processor programs and organize pro­

blem data (operands, addresses, constants, length of program, relative starting ad­

dress, exit mode), and store it in Central Memory. Then, an Exchange Jump instruc­

tion starts (or interrupts) the Central Processor and provides it with the starting ad­

dress of a problem on file in Central Memory. At the next convenient breakpoint, the

Central Processor exchanges the contents of its A, B, and X registers, program ad­

dress, relative starting address, length of program, Exit mode and Extended Core Stor­

age parameters with the same information for the new program. A later Exchange Jump

may return to complete the interrupted program.

Programs for the ten processors are written in the conventional manner and are exe­

cuted in a multiplexing arrangement which uses the principle of time-sharing. Thus,

the ten programs operate from separate memories, but all share a common facility for

add/ subtract, I/ 0, data transfer to/from Central Memory, and other necessary instruc­

tion control facilities. The multiplex consists of a 10-position barrel, which stores in­

formation (in parallel) about the current instruction in each of 10 programs, and a com­

mon instruction control device, or slot (Figure 4-2). The 10 program steps move

4-3 Rev. A

around the barrel in series, and each step is presented in turn to the slot. A portion

of or all of the instruction steps are performed in one pass through the slot, and the al­

tered instruction (or next instruction in a program) is reentered in the barrel for the

next excursion. One or more trips around the barrel complete execution of an instruc­

tion. Thus, up to 10 programs are in operation at one time, and each program is acted

upon once every 100 0 ns.

One cycle of the multiplex is 1000 ns, with 900 ns consumed in the barrel and 100 ns

(minor cycle) in the slot. Instructions in the barrel are interpreted at critical time

intervals so that information is available in the slot at the time the instruction is ready

to enter the slot. Hence, a reference to memory for data is determined ahead of time

so that the data word is available in the slot when the instruction arrives. Similarly,

instructions are interpreted before they reach the slot so that control paths in the slot

are established when the instruction arrives.

The slot contains two adders as part of the instruction control. One adder is 12 bits,

and the other is 18 bits. Both adders treat all quantities as one's complement.

For I/0 instructions or communication with Central Memory, one pass through the

slot transfers one 12-bit word to or from a peripheral memory. Thus, block transfer

of data requires a number of trips around the barrel.

The barrel network holds four quantities which pertain to the current instruction in

each of the programs. The quantities are held in registers which require a total of

51 bits. (The barrel can be considered as a 51 x 10 shifting matrix which is closed

by the slot.) The barrel registers are referred to implicitly in the instruction steps

and are discussed under Registers, page 4-8.

Rev. A 4-4

CENTRAL--+ 0
MEMORY ~

(60)
m
~ "io

!!!

10 MEMORIES, 4096 WORDS EACH, 12-BIT

READ
PYRAMID

; (12)

SLOT

(TIME· SHARED
INSTRUCTION

CONTROL l

(12)

12

WRITE
PYRAMID

~
(12) N

0
-CENTRAL a) co

co ~ MEMORY

.!:'.! (60)

.--....... ~ ~....-----.~......-~..----.~-..~..-----.~.....-~....-----.....-.REAL-TIME

O I I 2 I 3 I 4 I 5 I 6 I 7 j 10 j 11 j 12 j 13 114 rI/0 CHANNELS

!021
EXTERNAL EQUIPMENT

Figure 4-2. Peripheral and Control Processors

4-5 Rev. A

PERIPHERAL PROCESSOR PROGRAMMING

Instruction Formats

An instruction may have a 12-bit or a 24-bit format. The 12-bit format has a 6-bit

operation code f and a 6-bit operand or operand address d.

11

OPERATION
CODE

f
6

OPERAND OR
OPERAND ADDRESS

d
6

6 5 0

The 24 -bit format uses the 12 -bit quantity m, which is the contents of the next program

address (P + 1), with d to form an 18-bit operand or operand address.

OPERATION OPERAND OR OPERAND ADDRESS
CODE

f d m

6 6 12

II 0 II 0

(pl (P+ll

Address Modes

Program indexing is accomplished and operands manipulated in several modes. The

two instruction formats provide for 6-bit or 18-bit operands and 6-bit, 12-bit or 18-

bit addresses.

No Address

In this mode d or dm is taken directly as an operand. This mode eliminates the need

for storing many constants in storage. The d quantity is considered as a 12-bit num­

ber the upper six bits of which are zero. The dm quantity has d as the upper six bits

and m as the lower 12 bits.

Rev. A 4-6

Direct Address

In this mode d or (m + (d)) is used as the address of the operand. The d quantity specifies

one of the first 64 addresses in memory (0000-0077
8

). The (m + (d)} quantity generates

a 12-bit address for referencing all possible peripheral memory locations (0000 -7777
8

).

If d -f- 0, the content of address dis added to m to produce an operand address (indexed

addressing). If d = 0, m is taken as the operand address.

EXAMPLE: Address Modes

Given : d = 25

Then:

m = 100
contents of location 25
contents of location 150
contents of location 250

0150
7776
1234

MODE INSTRUCTION

No Address LDN d
LDC dm

Direct Address LDD (d)
LDM (m + (d))

Indirect Address LDI ((d))

Indirect Address

A REGISTER

000025
250100

000150
001234

007776

In this mode, d specifies an address the content of which is the address of the desired

operand. Thus, d specifies the operand address indirectly. Indirect addressing and in­

dexed addressing require an additional memory reference over direct addressing.

The Description of Instructions section, page 4-9, uses the expression (d) to define the

contents of memory location d. An expression with double parentheses ((d)) refers to

indirect addressing. The expression (m + (d)) refers to direct addressing when d = 0

and to indexed direct addressing when d -f- 0. Table 4-1 summarizes the addressing

modes used for the various Peripheral and Control Processor instructions.

4-7 Rev. A

TABLE 4-1. ADDRESSING MODES FOR PERIPHERAL

AND CONTROL PROCESSOR INSTRUCTIONS

INSTRUCTION
TYPE

Load

Add

Subtract

Logical Difference

Store

Replace Add

Replace Add One

Replace Subtract One

Long Jump

Return Jump

Unconditional Jump

Zero Jump

Non-Zero Jump

Positive Jump

Minus Jump

Shift

Logical Product

Selective Clear

Load Complement

Registers

ADDRESSING MODE

DIRECT INDIRECT NO ADDRESS

30, 50 40 14, 20

31, 51 41 16, 21

32, 52 42 17

33, 53 43 11, 23

34, 54 44

35, 55 45

36, 56

37, 57

05

06

07

10

12, 22

13

15

The four registers in the barrel are A, P, Q, and K. Each plays an important part in

the execution of processor instructions.

A Register (18 bits)

The Arithmetic or A register is an adder. Quantities are treated as positive and over­

flows are ignored. No sign extension is provided for 6-bit or 12-bit quantities which

are entered in the low order bits. However, the unused high-order bits are cleared to

Rev. A 4-8

zero. Zero is represented by all zeros. The A register holds an 18-bit Central Mem­

ory address during several instructions. A also participates in shift, logical, and some

I/ 0 instructions.

P Register (12 bits)

The Program Address register or P register holds the address of the current instruc­

tion. At the beginning of each instruction, the contents of P are advanced by one to pro­

vide the address of the next instruction in the program. If a jump is called for, the

jump address is entered in P.

Q Register (12 bits)

The Q register holds the lower six bits of a 12-bit instruction word, or, when the six bits

specify an address, Q holds the 12-bit word which is read from that address. Q is an

adder which may add +1 or -1 to its content.

K Register (9 bits)

The K register holds the upper six bits (operation code) of an instruction and a 3-bit trip

count designator. The trip count is a sequencing scheme to lend control to the sequential

execution of an instruction.

There are other registers which provide indirect or transient control during execution

of instructions. These include registers associated with the 1/0 channels, the registers

in the read and write pyramids which assemble successive 12-bitwords into 60-bitwords

or vice versa, and registers which hold the storage address and the word at that address

for each peripheral memory.

Description of Peripheral Processor Instructions

This section describes the Peripheral and Control Processor instructions. Table 4-2

lists designators used throughout the section.

4-9 Rev. A

TABLE 4-2. PERIPHERAL AND CONTROL PROCESSOR
INSTRUCTION DESIGNATORS

Designator Use

A The A register.

d A 6-bit operand or operand address.

f A 6-bit instruction code,

m A 12-bit quantity used with d to form an 18-bit operand
or operand address.

p The Program Address register.

Q The Q register.

{) Contents of a register or location

{ ()) Refers to indirect addressing.

Preceding the description of each instruction is the octal code, mnemonic code and ad­

dress field, the instruction name and instruction length. Mnemonic codes and address

field mnemonics are from ASPER, the Peripheral and Control Processor Assembly

language.

EXAMPLE:

9 ~
Octal Mnemonic
Code Code

~
Address

Field

Subtract {m + { d))

Instruction
Name

, { 24 .;3its),

Instruction
Length

Instruction formats are also given; hashed lines within a format indicate these bits are

not used in the operation.

No Operation

00
24
25

PSN
PSN
PSN

II

Pass
Pass
Pass

6 5 0

(12 Bits)
(12 Bits)
(12 Bits)

These instructions specify that no operation be performed. They provide a means of

padding out a program.

Rev. A 4-10

Data Transmission

14 LDN d Loadd (12 Bits)

f d

II 6 5 0

This instruction clears the A register and loads d. The upper 12 bits of A are zero.

15 LCN d Load Complement d (12 Bits)

f d

II 6 5 0

This instruction clears the A register and loads the complement of d. The upper 12 bits

of A are set to one.

30 LDD d Load(d) (12 Bits)

d

II 6 5 0

This instruction clears the A register and loads the contents of location d. The upper

six bits of A are zero.

34 STD d Store (d) (12 Bits)

f d

II 6 5 0

This instruction stores the lower 12 bits of A in location d.

4-11 Rev. A

40 LDI d Load((d)) (12 Bits)

f d

II 6 5 0

This instruction clears the A register and loads a 12-bit quantity that is obtained by in­

direct addressing. The upper six bits of A are zero. Location d is read out of mem­

ory, and the word obtained is used as the operand address.

44 STI d Store ((d)) (12 Bits)

d

11 6 5 0

This instruction stores the lower 12 bits of A in the location specified by the contents of

location d.

20 LDC dm Loaddm (24 Bits)

d m

23 18 17 12 II 0

(Pl (P+l l

This instruction clears the A register and loads an 18-bit quantity consisting of d as

the higher six bits and rn as the lower 12 bits. The contents of the location following

the present program address are read out to provide rn.

Rev. A 4-12

50 LDM md Load (m + (d)) (24 Bits)

f d m

23 18 17 12 II 0

(Pl (P+ll

This instruction clears the A register and loads a 12-bit quantity. The upper six bits

of A are zero. The 12-bit operand is obtained by indexed direct addressing. The

quantity "m ", read out of memory location P + 1 serves as the base operand address

to which (d) is added. If d = 0, the operand address is simply m, but if d "f 0. then

m + (d) is the operand address. Thus location d may be used for an index quantity to

modify operand addresses.

54 STM md Store (m + (d)) (24 Bits)

f d m

23 18 17 12 II 0

(Pl (P+ll

This instruction stores the lower 12 bits of A in the location determined by indexed ad­

dressing (see instruction 50).

Arithmetic

16 ADN d Addd (12 Bits)

f d

II 6 5 0

This instruction adds d (treated as a 6-bit positive quantity) to the content of the A reg­

ister.

4-13 Rev. D

17 SBN d Subtractd (12 Bits)

f d

II 6 5 0

This instruction subtracts d (treated as a 6-bit positive quantity) from the content of the

A register.

31 ADD d Add(d) (12 Bits)

f d

II 6 5 0

This instruction adds to the A register the contents of location d (treated as a 12-bit

positive quantity).

32 SBD d Subtract (d) (12 Bits)

f d

II 6 5 0

This instruction subtracts from the A register the contents of location d (treated as a

12-bit positive quantity).

41 ADI d Add((d)) (12 Bits)

f d

II 6 5 0

l'his instruction adds to the content of A a 12-bit operand (treated as a positive quantity)

obtained by indirect addressing. Location dis rea.d out of memory, and the word ob­

tained is used as the operand address.

Rev. A 4-14

42 SBI d Subtract ((d)) (12 Bits)

f d

II 6 5 0

This instruction subtracts from the A register a 12 -bit operand (treated as a positive

quantity) obtained by indirect addressing. Location d is read out of memory, and the

word obtained is used as the operand address.

21 ADC dm Adddm (24 Bits)

f d m

23 18 17 12 II 0

(Pl (P+ll

This instruction adds to the A register the 18-bit quantity consisting of d as the higher

six bits and m as the lower 12 bits. The contents of the location following the present

program address are read out to provide m.

51 ADM md Add (m + (d)) (24 Bits)

f d m

23 18 17 12 II 0

(Pl (P+ ll

This instruction adds to the content of A a 12-bit operand (treated as a positive quantity)

obtained by indexed direct addressing (see instruction 50).

4-15 Rev. A

52 SBM md Subtract (m + (d)) (24 Bits)

f d m

23 18 17 12 II 0

(Pl (P +ll

This instruction subtracts from the A register a 12-bit operand (treated as a positive

quantity) obtained by indexed direct addressing (see instruction 50).

Shift

10 SHN d Shift d (12 Bits)

d

II 6 5 0

This instruction shifts the contents of A right or left d places. If d is positive (00-37)

the shift is left circular; if dis negative (40-77) A is shifted right (end off with no sign

extension). Thus, d = 06 requires a left shift of six places. A right shift of six places

results when d = 71.

Logical

11 LMN d Logical difference d (12 Bits)

f d

II 6 5 0

This instruction forms in A the bit-by-bit logical difference of d and the lower six bits

of A. This is equivalent to complementing individual bits of A that correspond to bits

of d that are one. The upper 12 bits of A are not altered.

Rev. A 4-16

12 LPN d Logical product d (12 Bits)

f d

II 6 5 0

This instruction forms the bit-by-bit logical product of d and the lower six bits of the A

register, and leaves this quantity in the lower 6 bits of A. The upper 12 bits of A are

zero.

13 SCN d Selective clear d (12 Bits)

f d

II 6 5 0

This instruction clears any of the lower six bits of the A register where there are corres­

ponding bits of d that are one. The upper 12 bits of A are not altered.

33 LMD d Logical difference (d) (12 Bits)

f d

II 6 5 0

This instruction forms in A the bit-by-bit logical 'difference of the lower 12 bits of A

and the contents of location d. This is equivalent to complementing individual bits of

A which correspond to bits of {d) that are one. The upper six bits of A are not altered.

4-17 Rev. A

43 LMI d Logical difference ((d)) (12 Bits)

f d

11 6 5 0

This instruction forms in A the bit-by-bit logical difference of the lower 12 bits of A

and the 12-bit operand obtained by indirect addressing. Location dis read out of mem­

ory, and the word obtained is used as the operand address. The upper six bits of A

are not altered.

22 LPC dm Logical product dm (24 Bits)

f d m

23 18 17 12 II 0

(p J (P+I l

This instruction forms in the A register the bit-by-bit logical product of the contents

of A and the 18-bit quantity dm. The upper six bits of this quantity consist of d and

the lower 12 bits are the content of the location following the present program address.

23 LMC dm Logical difference dm (24 Bits)

f d 1 , m

23 18 17 12 II 0

(Pl (p +I J

This instruction forms in A the bit-by-bit logical difference of the contents of A and

the 18-bit quantity dm. This is equivalent to complementing individual bits of A which

correspond to bits of dm that are one. The upper six bits of the quantity consist of d,

and the lower 12 bits are the content of the location following the present program ad­

dress.

Rev. A 4-18

53 LMM md Logical difference (m + (d)) (24 Bits)

f d m

23 18 17 12 II 0

(Pl (P+t)

This instruction forms in A the bit-by-bit logical difference of the lower 12-bits of A

and a 12-bit operand obtained by indexed direct addressing. The upper six bits of A

are not altered.

Replace

35 RAD d Replace add (d) (12 Bits)

f d

II 6 5 0

This instruction adds the quantity in location d to the contents of A and stores the lower

12 bits of the result at location d. The resultant sum is left in A at the end of the oper­

ation and the original contents of A are destroyed.

36 AOD d Replace add one (d) (12 Bits)

f d

11 6 5 0

The quantity in location d is replaced by its original value plus one. The resultant sum

is left in A at the end of the operation, and the original contents of A are destroyed.

4-19 Rev. A

37 SOD d Replace subtract one (d) (12 Bits)

f d

11 6 5 0

The quantity in location d is replaced by its original value minus one. The resultant

difference is left in A at the end of the operation. and the original contents of A are

destroyed.

45 RAJ d Replace add ((d)) (12 Bits)

d

II 6 5 0

The operand which is obtained from the location specified by the contents of location d,

is added to the contents of A, and the lower 12 bits of the sum replace the original oper­

and. The resultant sum is also left in A at the end of the operation.

46 AOI d Replace add one ((d)) (12 Bits)

f d

II 6 5 0

The operand, which is obtained from the location specified by the contents of location

d, is replaced by its original value plus one. The resultant sum is also left in A at

the end of the operation. and the original contents of A are destroyed.

Rev, A 4-20

47 SOI d Replace subtract one ((d)) (12 Bits)

f d

11 6 5 0

The operand, which is obtained from the location specified by the contents of location

d, is replaced by its original value minus one. The resultant difference is also left

in A at the end of the operation, and the original contents of A are destroyed.

55 RAM md Replace add (m + (d)) (24 Bits)

f d m

23 18 17 12 11 0

(Pl (P +I)

The operand, which is obtained from the location determined by indexed direct ad­

dressing, is added to the contents of A, and the lower 12 bits of the sum replace the

original operand in memory. The resultant sum is also left in A at the end of the oper­

ation, and the original contents of A are destroyed.

56 AOM md Replace add one (m + (d)) (24 Bits)

f d m

23 18 17 12 II 0

(p) (P+ll

The operand, which is obtained from the location determined by indexed direct address­

ing, is replaced by its original value plus one (see instruction 50, page 4-13 for explana­

tion of addressing). The resultant sum is also left in A at the end of the operation, and

the original contents of A are destroyed.

4-21 Rev. A

57 SOM md Replace subtract one (m + (d)) (24 Bits)

d m

23 18 17 12 II 0

(Pl (P+ll

The operand, which is obtained from the location determined by indexed direct address­

ing, is replaced by its original value minus one (see instruction 50, page 4-13 for ex­

planation of addressing). The resultant difference is also left in A at the end of the op­

eration, and the original contents of A are destroyed.

Branch

03 UJN d

II

Unconditional jump d (12 Bits)

d

6 5 0

This instruction provides an unconditional jump to any instruction up to 31 steps forward

or backward from the current program address. The value of d is added to the current

program address. If dis positive (01 - 37), then 0001 (+1) - 0037 (+31) is added and the

jump is forward. If dis negative (40 - 76) then 7740 (-31) - 7776 (-1) is added and the

jump is backward. The program stops (a Dead Start is necessary to restart the

machine) when d = 00 or 77.

04 ZJN d Zerojumpd (12 Bits)

f d

II 6 5 0

This instruction provides a conditional jump to any instruction up to 31 steps forward or

backward from the current program address. If the content of the A register is zero,

the jump is taken. If the content of A is non-zero, the next instruction is executed. Neg­

ative zero (777777) is treated as non-zero. For interpretation of d see instruction 03.

Rev. A 4-22

05 NJN d Nonzero jump d (12 Bits)

f d

II 6 5 0

This instruction provides a conditional jump to any instruction up to 31 steps forward

or backward from the current program address. If the content of the A register is

nonzero, the jump is taken. If A is zero, the next instruction is executed. Negative

zero (777777) is treated as nonzero. For interpretation of d see instruction 03.

06 PJN d Plusjumpd (12 Bits)

f d

II 6 5 0

This instruction provides a conditional jump to any instruction up to 31 steps forward

or backward from the current program address. If the content of the A register is

positive, the jump is taken. If A is negative, the next instruction is executed. Pos­

itive zero is treated as a positive quantity; negative zero is treated as a negative quan­

tity. For interpretation of d see instruction 03.

07 MJN d Minusjumpd (12 Bits)

f d

11 6 5 0

This instruction provides a conditional jump to any instruction up to 31 steps forward

or backward from the current program address. If the content of the A register is

negative, the jump is taken. If A is positive, the next instruction is executed. Pos­

itive zero is treated as a positive quantity; negative zero is treated as a negative quan­

tity. For interpretation of d see instruction 03.

4-23 Rev. A

01 L]M md Long jump to m + (d) (24 Bits)

f d m

23 18 17 12 II 0

This instruction jumps to the sequence beginning at the address given by m + (d). If

d = 0, then m is not modified.

02 R]M md Return jump to m + (d) (24 Bits)

f d m

23 18 17 12 II 0

(p) (P+I)

This instruction jumps to the sequence beginning at the address given by m + (d). If

d = 0 then m is not modified. The current program address (P) plus two is stored at the

jump address. The new program commences at the jump address plus one. This pro­

gram should end with a long jump to, or normal sequencing into, the jump address minus

one, which should in turn contain a long jump, 0100. The latter returns the original pro­

gram address plus two to the P register.

Central Processor and Central Memory

260 EXN Exchange jump (12 Bits)

L------f ___ ___JL....----"'-~.LL.L.LL"-"--'I +--- (DUAL CP BIT)

II 6 5 3 2 IO

This instruction transmits an 18-bit (absolute) address (only 1 7 bits are used) from the

A register to the Central Processor with a signal which tells the Central Processor to

perform an Exchange Jump, with the address in A as the starting location of a file of 16

words containing information about the Central Processor program to be executed. The

18-bit initial address must be entered in A before this instruction is executed. The Cen­

tral Processor replaces the file with similar information from the interrupted Central

Processor program. The Peripheral Processor is not interrupted.

In 6500 systems with dual Central Processors, the lowest order bit of the instruction

format specifies which Central Processor the Exchange Jump will interrupt. In 6400 and

6600 systems, this bit is not interpreted.

Rev. D 4-24

27 RPN Read program address (12 Bits)

II
WP#~ '(DUAL CP BIT)

6 5 I O

This instruction transfers the content of the Central Processor Program Address regis­

ter, P, to the Peripheral Processor A register; this allows the Peripheral Processor

to determine whether the Central Processor is running. In a 6500 system with dual

Central Processors, the lowest order bit of the instruction format specifies which Cen­

tral Processor P register is to be examined. In 6400 and 6600 systems, this bit is not

interpreted.

60 CRD d Central read from (A) to d (12 Bits)

f d

II 6 5 0

This instruction transfers a 60-bit word from Central Memory to five consecutive loca­

tions in the processor memory. The 18-bit address of the Central Memory location

must be loaded into A prior to executing this instruction. (Note that this is an absolute

address.) The 60-bit word is disassembled into five 12-bit words beginning at the left.

Location d receives the first 12-bit word. The remaining 12-bit words go to succeeding

locations.

61 CRM md Central read (d) words from (A) to m (24 Bits)

d m
23 18 17 12 ti 0

(Pl (P+ll

This instruction reads a block of 60-bit words from Central Memory. The content of

location d gives the block length. The 18-bit address of the first central word must be

loaded into A prior to executing this instruction. (Note that this is an absolute address.)

During the execution of the instruction, (P) goes to processor address O and P holds m.

Also, (d) goes to the Q register where it is reduced by one as each central word is pro­

cessed. The original content of P is restored at the end of the instruction.

Each central word is disassembled into five 12-bit words beginning with the high-order

12 bits. The first word is stored at processor memory location m. The content of P

4-25 Rev. D

(which is holding m) is advanced by one to provide the next address in the processor

memory as each 12-bit word is stored. If P overflows, operation continues as Pis ad­

vanced from 77778 to 00008 . These locations will be written into asif they were conse­

cutive.

The content of A is advanced by one to provide the next Central Memory address after

each 60-bit word is disassembled and stored. Also, the contents of the Q register are

reduced by one. The block transfer is complete whenQ = 0. The block of Central Mem­

ory locations goes from address (A) to address (A)+ (d) -1. The block of processor

memory locations goes from address m to m + 5(d) -1.

62 CWD d Central write to (A) from d (12 Bits)

d

II 6 5 0

This instruction assembles five successive 12-bit words into a 60-bit word and stores

the word in Central Memory. The 18-bitaddress word designating the Central Memory

location must be in A prior to execution of the instruction. (Note that this is an absolute

address.)

Location d holds the first word to be read out of the processor memory. This word

appears as the higher order 12 bits of the 60-bit word to be stored in Central Memory.

The remaining words are taken from successive addresses.

Rev. A 4-26

63 CWM md Central write (d) words to (A) from m (24 Bits)

f d m

23 18 17 12 II 0

This instruction assembles a block of 60-bit words and writes them in Central Memory.

The content of location d gives the number of 60-bit words. The content of the A reg­

ister gives the beginning Central Memory address. (Note that this is an absolute ad­

dress.) During the execution of this instruction (P) goes to processor address O and P

holds m. Also, (d) goes to the Q register, where it is reduced by one as each central

word is assembled. The original content of P is restored at the end of the instruction.

The content of P (the m portion of the instruction) gives the address of the first word

to be read out of the processor memory. This word appears as the higher order 12 bits

of the first 60-bit word to be stored in Central Memory.

The content of P is advanced by one to provide the next address in the processor memory

as each 12-bit word is read. If P overflows, operation continues as Pis advanced from

7777
8

to 0000
8

• These locations will be read from as if they were consecutive.

The content of A is advanced by one to provide the next Central Memory address after

each 60- bit word is assembled. Also, Q is reduced by one. The block transfer is com­

plete when Q = 0.

Input/Output

64 AJM md Jump to m if channel d active (24 Bits)

f d m

23 18 17 12 II 0

(Pl (P+ll

This instruction provides a conditional jump to a new program sequence beginning at an

address given by the contents of m. The jump is taken if the channel specified by d is

active. The current program sequence continues if the channel is inactive.

4-27 Rev. A

65 IJM md Jump tom if channel d inactive (24 Bits)

f d m

23 18 17 12 II 0

(Pl (P+ll

This instruction provides a conditional jump to a new program sequence beginning at

an address given by m. The jump is taken if the channel specified by dis inactive. The

current program sequence continues if the channe 1 is active.

66 FJM md Jump tom if channel dfull (24 Bits)

d m

23 18 17 12 II 0

(Pl (P+ll

This instruction provides a conditional jump to a new program sequence beginning at an

address given by m. The jump is taken if the channel designated by dis full. The pres­

ent program sequence continues if the channel is empty.

An input channel is full when the input equipment has placed a word on the channel and

that word has not yet been sampled by a processor. The channel is empty when a word

has been accepted. An output channel is full when a processor places a word on the

channel. The channel is empty when the output equipment has sampled the word.

67 EJM md Jump to m if channel d empty (24 Bits)

d m

23 18 17 12 II 0

(Pl (P+ll

This instruction provides a conditional jump to a new program sequence beginning at an

address specified by m. The jump is taken if the channe 1 specified by d is empty. The

current program sequence continues if the channel is full. (See instruction 66 for ex­

planation of full and empty.)

Rev. A 4-28

70 IAN d Input to A from channel d (12 Bits)

d

II 6 5 Q

This instruction transfers a word from input channel d to the lower 12 bits of the A reg­

ister. The upper 6 bits of the A register are cleared to zeros.

71 JAM

NOTE
This instruction will hang up the Peripheral
Processor if executed when the channel is
inactive.

md Input (A) words to m from channel d

f d m

23 18 17 12 II 0

(Pl (p +I)

(24 Bits)

This instruction transfers a block of 12 -bit words from input channel d to the processor

memory. The content of A gives the block length. The contents of location m specifies

the processor address which is to receive the first word. The content of A is reduced

by one as each word is read. The input operation is complete when A = 0.

During this instruction address 0000 temporarily holds P, while mis held in the P reg­

ister. The content of P advances by one to give the address for the next word as each

word is stored.

NOTE
If this instruction is executed when the data
channel is inactive, no input operation is
accomplished and the program continues at
p + 2.

4-29 Rev. D

72 OAN d Output from A on channel d (12 Bits)

d

II 6 5 0

This instruction transfers a word from A (lower 12 bits) to output channel d.

73 OAM

NOTE
This instruction will hang up the Peripheral
Processor if executed when the channel is
inactive.

md Output (A) words from m on channel d

d m

23 18 17 12 II 0

(Pl (P+l l

(24 Bits)

This instruction transfers a block of words from the processor memory to channel d. The

first word comes from the address specified by m. The content of A specifies the num­

ber of words to be sent out. The content of A is reduced by one as each word is read out.

The output operation is complete when A = 0.

During this instruction address 0000 temporarily holds P, while mis held in the P reg­

ister. The content of P advances by one to give the address of the next word as each

word is taken from memory.

Rev. D

NOTE

If this instruction is executed when the data
channel is inactive, no output operation is
accomplished and the program continues at
p + 2.

4-30

74 ACN d Activate channel d (12 Bits)

f d

II 6 5 0

This instruction activates the channel specified by d. Activating a channel (must pre­

cede a 70 - 73 instruction) alerts and prepares the I/0 equipment for the exchange of

data.

75 DCN

NOTE

Activating an already active channel causes
the Peripheral Processor to hang up.

d Disconnectchanneld

f d

II 6 5 0

(12 Bits)

This instruction deactivates the channel specified by d. As a result, the I/0 equipment

stops and the buffer terminates.

NOTE /. /.t,Ju:>01-u-"1.l)
1) Do not deactivate an already inactive .,_/e /

channel or the Peripheral Processor will
hang up.

2) Do not disconnect the channel before first
sensing for Channel Empty.

3) Do not deactivate a channel before stopping
the associated processor.

4) Do not deactivate a channel before putting
a useful program in the associated pro­
cessor. Processors after Dead Start are
hung up on an Input. Deactivating a channel
after Dead Start causes an exit to address
0001 and execution of program.

4-31 Rev, A

76 FAN d Function (A) on channel d (12 Bits)

d

II 6 5 0

The external function code in the lower 12 bits of A is sent out on channel d.

77 FNC

NOTE

Do not execute this instruction when the
channel is Active or the Peripheral Proce.ssor
will hang up.

md Function m on channel d

f d m

23 18 17 12 II 0

The external function code specified by m is sent out on channel d.

Access to Central Memory

(24 Bits)

The Peripheral and Control Processors have access to all Central Memory storage lo­

cations. Four of the instructions (60, 61, 62, 63 - described previously) transfer one

word or a block of words from a peripheral memory to Central Memory or vice versa.

Data from an external equipment is read into a peripheral memory and, with separate

instructions, transferred from there to Central Memory where it may be used by the

Central Processor. Conversely, data is transferred from Central Memory to a peri­

pheral memory and then transferred by separate instructions to external equipment.

Note that all addresses sent to Central Memory from Peripheral and Control Proces­

sors are absolute addresses, rather than relative addresses.

Read Central Memory

The 60 and 61 instructions read one word or a block of 60-bit Central Memory words.

The Central Memory words are delivered to a five stage read pyramid where they are

disassembled into five 12-bit words, beginning with the high-order word. Successive

Rev. A 4-32

stages of the pyramid contain 60, 48, 36, 24 and 12 bits. The upper 12 bits of the word

are removed and sent to a peripheral memory as the word is transferred through each

stage. Thus, a 60-bit word is disassembled into five 12-bit words.

Words move through the pyramid when the stage ahead is clear. One pass through the

slot determines that the next stage is clear, sends 12 bits of the word to a peripheral

memory, and moves the word ahead to the cleared stage. The pyramid is a part of the

slot and may be time shared by up to four processors. Thus four Central Memory words

may be in the pyramid at one time in varying stages of disassembly. With a full pyramid,

Read instructions from other processors are partially executed (housekeeping) and cir­

culated unchanged in the barrel until the number of pyramid users dropbelowfour. Wait­

ing processors are serviced in the order in which they appear at the slot. Other instruc­

tion control provides address incrementing and keeps the word count.

The Central Memory starting address must be entered in A before a Read instruction is

executed. A Load dm (2 0) instruction may be used for this. For a one word transfer,

the d portion of the Read (60) instruction specifies the following:

d = peripheral address (0000 -0077
8

) of first 12-bit word; remaining words

go to d + 1, d + 2, etc.

For a block transfer, d and m of the read (61) instruction specify the following:

(d) = number of Central Memory words to be transferred; reduced by one

for each word transferred.

m = peripheral starting address; increased by one to provide locations for

successive words. (A) is increased by one to locate consecutive Central

Memory words.

Write Central Memory

The 62 and 63 instructions assemble 12-bit peripheral words into 60-bit words and write

them in Central Memory. Peripheral words are assembled in a write pyramid and de­

livered from there to Central Memory. As in Read Central Memory, the pyramid is a

part of the slot and is time-shared by up to four processors. Write pyramid action is

similar to Read pyramid action except for the assembly.

4-33 Rev. A

The starting address in Central Memory is entered in A before the Write instruction is

executed. For a one word transfer, the d portion of the Write (62) instruction specifies

the following:

d = peripheral address (0000-0077
8

) of first 12-bit word; remaining words

are taken from d + 1, d + 2, etc.

For block transfer, d and m of the Write (63) instruction specify the following:

{d) = number of Central Memory words to be transferred; reduced by one

for each word transferred.

m = peripheral starting address; increased by one to locate each successive

peripheral word. (A) is increased by one to provide consecutive Central

Memory locations.

Access to the Central Processor

The Peripheral and Control Processors use two instructions to communicate with the

Central Processor. One instruction starts a program running in the Central Processor

and the other instruction monitors the progress of the program.

Exchange Jump

The260instruction(described previously) starts a program running in the Central Pro­

cessor or interrupts a current program and starts a new program running. In either

case, the Central Processor is directed to a Central Memory file of 16 words which

stores information about the new program to be executed {see Exchange Jump section,

page 3-9). The 18-bit starting address of this file must be entered in A before the Ex­

change Jump instruction is executed. The Central Processor replaces the file with

similar but current information from the interrupted program. A later Exchange Jump

instruction referencing this file returns the interrupted program to the Central Pro­

cessor for completion. This exchange feature permits the Peripheral Processor to

time-share the Central Processor.

Rev. A 4-34

Read Program Address

The 2 7 instruction (described previously) transfers the content of the Central Processor

P register into a peripheral A register. The peripheral program tests the A register

content to determine the condition of the Central Processor. If A ,f: 0, the Central Pro­

cessor is running a program, may have come to a normal (instruction) stop, or may

have stopped due to an out-of-bounds error (unselected). (Refer to Exit Mode section,

page 3-11.) If A = 0, the Central Processor has stopped due to a selected Exit mode

error; the reference address for the Central Processor program is then examined to

determine which error condition exists. A Stop instruction (00
8

) in the upper six bits of

the reference address signals a stop; the next lower six bits define the nature of the exit

(see Exchange Jump section, page 3-9).

Input and Output

There are 12 instructions to direct activity on the I/0 channels. These instructions se­

lect a unit of external equipment and transfer data to or from the equipment. The instruc­

tions also determine whether a channel or external equipment is available and ready to

transfer data. The preparatory steps insure that the data transfer is carried out in an

orderly fashion.

Each external equipment ha.s a set of external function codes which are used by the pro­

cessors to establish modes of operation and to start or stop data transfer. Also, the

devices are capable of detecting certain errors (e.g., parity error) and provide an in­

dication of these errors to the controlling processor. The external error conditions can

be read into a processor for interpretation and further action. Details of mode selec­

tion and error flags in external devices such as card readers and magnetic tape systems

are presented in the 6000 Series Peripheral Equipment Reference manual.

Data Channels

Each channel has a 12-bit bi-directional data register and two control flags which indi­

cate:

• The channel is active or inactive

• The channel register is full or empty

The 64 and 65 instructions determine the state of the channel, and the 66 and 67 instruc­

tions determine the state of the register. The flags provide housekeeping information

for the processors so that channels can be monitored and processed in an orderly way.

The flags also provide control for the I/0 operation.

4-35 Rev. A

Word Rate: Each processor is serviced by the slot once every major cycle. This sets

the maximum word rate on a channel at one word each 1000 ns, a 1 megacycle word

rate. Up to 10 processors can be communicating with I/0 equipment over separate

channels at this rate since each processor is regularly serviced at major cycle intervals.

Channel Active/Inactive Flag: A channel is made active by a Function (76, 77) instruc­

tion or an Activate Channel (74) instruction.

The Function instruction selects a mode of operation in the external equipment. The

instruction places a 12-bit function word in the channel register and activates the channel.

The external equipment accepts the function word, and its response to the processor

clears the register and drops the channel active flag. The latter action produces the

channel inactive flag.

The activate channel instruction prepares a channel for data transfer. Subsequent input

or output instructions transfer the data. A disconnect channel instruction after data

transfer is complete returns the channel to the inactive state.

Register Full/Empty Flag: A register is full when it contains a function or data word

for an external equipment or contains a word received from an external equipment. The

register is empty when it is cleared. The flags are turned on or off as the register

changes state.

On data output, the processor places a word in the Channel register and sets the full flag.

The external device accepts the word, clears the register, and sets the empty flag. The

empty flag and channel active flag signal the processor to send another word to the reg­

ister to repeat the sequence.

On input, the external device places a word in the register and sets the full flag. The

processor stores the word, clears the register, and sets the empty flag. The empty

flag and channel active flag signal the external device to deliver another word.

Rev. D 4-36

Data Input

Several instructions are necessary to transfer data from external equipment into a pro­

cessor. The instructions prepare the channel and equipment for the transfer and then

start the transfer. Some external equipment, when once started, send a series of words

(record) spaced at equal time intervals and then stops automatically between records.

Magnetic tape equipment is an example of this type of transfer. The processor can read

all or a part of the record and then disconnect the channel to end the operation. The

latter step makes the channel inactive. Other equipment, such as the display console,

can send one word (or character) and then stop. The input instructions allow the input

transfer to vary from one word to the capacity of the processor.

An input transfer may be accomplished in the following way:

1) Determine if the channel is inactive. A Jump to m on channel d

Inactive (65) instruction does this. Here, m can be a function

instruction to select Read mode or determine the status of the equipment.

2) Determine if the equipment is ready. A Function m on Channel d (77)

instruction followed by an Activate channel d (74) followed by an Input to A

from Channel d (70) instruction loads A with the status response of the

desired equipment. Here, m is a status request code, and the status response

in A can be tested to determine the course of action.

3) Select Read mode in the equipment. A Function m on Channel d (77)

instruction or Function (A) on Channel d (76) instruction will send a code

word to the desired device to prepare it for data transfer.

4) Enter the number of words to be transferred in A. A Load d (14) or Load

(d) (30) instruction will accomplish this.

5) Activate the channel. An Activate Channel d (74) instruction sets the

channel active flag and prepares for the impending data transfer.

6) Start input data transfer. An Input (A) Words tom on Channel d (71)

instruction or an Input to A from Channel d (70) instruction starts data

transfer. The 71 instruction transfers one word or up to the c:a.pacity

of the processor memory. The 70 instruction transfers one word only.

7) Disconnect the channel. A Disconnect Channel d (75) instruction makes

the channel inactive and stops the flow of input information.

4-37 Rev. A

The design of some external equipment requires timing considerations in issuing function,

activate, and input instructions. The timing consideration may be based on motion in the

equipment, i.e., the equipment must attain a given speed before sending data (e.g., mag­

netic tape). In general, timing considerations can be resolved by issuing the necessary

instructions without an intervening time gap. The external equipment literature lists

timing considerations to be taken into account.

Data Output

The data output operation is similar to data input in that the channel and equipment

must be ready before the data transfer is started by an output instruction.

An output transfer may be accomplished in the following way:

1) Determine if the channel is inactive. A Jump to m on Channel d

Inactive (65) instruction does this. Here, m can be a function instruction

to select Write mode or determine the status of the equipment.

2) Determine if the equipment is ready. A Function m on Channel d (77)

followed by an Activate channel d (74) followed by an Input to A from Channel

d (70) instruction loads A with the status response of the desired equipment.

Here, m is a status request code, and the status response in A can be

tested to determine the course of action.

3) Select Write mode in the equipment. A Function m on Channel d (77)

instruction or Function (A) on Channel d (76) instruction will send a code

word to the desired device to prepare it for data transfer.

4) Enter the number of words to be transferred in A. A Load d (14) or Load d

(30) instruction will accomplish this.

5) Activate the channel. An Activate Channel d (74) instruction signals an

active channel and prepares for the impending data transfer.

6) Start data transfer. An Output (A) Words from m on Channel d (73) instruction

or an Output from A on Channel d (72) instruction starts data transfer. The

7 3 instruction can transfer one or more words while the 72 instruction

transfers only one word.

7) Test for channel empty. A Jump to m if Channel d Full (66) instruction

where m = current address, provides this test. The instruction exits to

Rev. A 4-38

itself until the channel is empty. When the channel is empty, the processor

goes on to the next instruction which generally disconnects the channel. The

instruction acts to idle the program briefly to insure successful transfer of

the last output word to the recording device.

8) Disconnect the channel. A Disconnect Channel d (7 5) instruction makes

the channel inactive. Data flow in this case terminates automatically when

the correct number of words is sent out.

Instruction timing considerations, as in a data input operation, are a function of the ex­

ternal device.

Real-Time Clock

The real-time clock runs continuously; its period is 4096 cycles (4. 096 ms). The clock

may be sampled by any Peripheral and Control Processor with an Input to A (70) instruc­

tion from channel 148 . The clock is advanced by the storage sequence control and can­

not be cleared or preset.

4-39 Rev. A

5.SYSTEMINTERRUPT

INTRODUCTION

Essentially, detecting and handling interruptible conditions in the 6400, 6500, and 6600 Com­

puter Systems involves both hardware and software. This section describes hardware

provisions for detecting and handling interrupt. The salient features of an operating

system for implementing interrupt handling are described in the operating system ref­

erence manual.

HARDWARE PROVISIONS FOR INTERRUPT

Exchange Jump

Within a Peripheral Processor, execution of an Exchange Jump instruction initiates hard­

ware action in the Central Processor to interrupt the current Central Processor program

and substitute a program, the parameters of which are defined in the Exchange Jump

package. Note that the Exchange Jump is also used to start the Central Processor from

a Stop condition. (Refer to the Exchange Jump section, page 3 -9.)

Channel and Equipment Status

Within the Peripheral Processors, hardware flags indicate the state of various conditions

in the data channels, e.g., Full/Empty, and Active/Inactive. External equipments are

capable of detecting certain errors (e.g. , parity error) and hold status information reflect­

ing their operating conditions (e.g., Ready, End of File, etc.). Channel and equipment

status information may be examined by instructions in the Peripheral Processors. The

Input /Outputs ection des crib es these instructions. For detailed status information on ex­

ternal devices such as magnetic tape units and card readers, refer to literature associated

with these devices.

5-1 Rev. D

Exit Mode

Central Processor hardware provides for three types of error halt conditions (Exit mode):

• Address out of range (i.e., out of bounds)

• Operand out of range (i.e., exponent overflow)

• Indefinite result

Detecting the occurrence of one or more of these conditions is accomplished by the

hardware and causes an error halt. Note that halting on any of these conditions is

selectable;selection is performed by setting appropriate flags in the Exit mode portion

of the Exchange Jump package. (Refer to Exit Mode, page 3-11.)

Rev. A 5-2

6. MANUAL CONTROL

INTRODUCTION

Manual control of 6400 I 6500 I 6600 Computer Systems operation is provided through 1) the

dead start panel and 2) the console keyboard. The Dead Start circuit is a means of

manually entering a 12-word program (normally a load routine) to start operation. The

console keyboard provides for the manual entry of data or instructions under program

control.

DEAD START

The dead start panel (Figure 6-1) contains a 12 x 12 matrix of toggle switches, a MODE

switch to select SWEEP, LOAD, or DUMP, and a DEAD START switch. The panel also

contains memory margin switches which are used for maintenance checks. The three

modes of operation (Load, Sweep, Dump) selectable via the dead start panel are describ­

ed below.

Load Mode

To initially load programs and data into the computer system, the MODE switch is placed

in the LOAD position. The matrix of toggle switches is set to a 12-word (or less) pro­

gram (switch up = "1 ", switch down = "O"). The program set in the switch matrix is

normally a load routine used to load a larger program from an input device such as a

disk file or magnetic tape unit.

The DEAD START switch is turned on momentarily, then off. Turning on the DEAD

START switch initiates the following operations:

1) Assigns processors 0-11 8 to corresponding data channels.

2) Sends a Master Clear to all I/0 channels. A Master Clear removes all

equipment selections except the dead start panel, and sets all channels to

the Active and Empty condition (ready for input).

6-1 Rev. D

3) Sets all processors to the Input (71) instruction.

4) Clears the A and P registers in all processors to zero.

5) Loads the 12 words from the toggle switches into memory locations

0001-00148 of processor 0,

After the switch matrix program is read from the dead start panel, the panel is auto­

matically disconnected. Processor O reads location 0000, adds one to its content, and

begins executing the program at address 0001. The other processors are still set to the

Input (71) instruction and may receive data from processor O via their assigned channels.

Sweep Mode

Placing the MODE switch in the SWEEP position and momentarily turning on the DEAD

START switch results in the following:

1) Sets all processors to instruction 50X.

2) Clears all processor P registers to zero.

The translation of the 50X instruction in each processor causes each processor to sweep

through its memory, reading and restoring the contents of each location, without execut­

ing instructions. Sweep mode is a maintenance tool useful in checking the operation of

memory logic.

Dump Mode

Placing the MODE switch in the DUMP position and momentarily turning on the DEAD

START switch initiates the following operations:

1) Assigns processors 0-11 8 to corresponding data channels.

2) Sends a Master Clear to all I/0 channels except channel 0.

3) Holds channel O to Active and Empty.

4) Sets all processors to the Output (73) instruction.

5) Clears the A and P registers in all processors to zero.

Each of the processors senses the Active and Empty condition of its assigned channel

and outputs the content of its memory address zero. Each of the I/0 channels is then

set to Full (except channel O), and the processors wait for an Empty signal. Each pro­

cessor advances its P register by one and reduces the content of its A register by one

Rev. A 6-2

Figure 6 -1. Dead Start Panel

6-3 Rev. A

(to 7776 8). At this point, the processors waiting for an Empty signal are hung up and

cannot proceed.

Channel O (assigned to processor 0) is held to Empty by the DUMP position. Processor

0, therefore, proceeds through the 73 instruction until the contents of A are reduced to

one. Processor O has now dumped its entire memory content on channel O (although no

I/0 device was selected to receive it). Processor O then exits to memory location 0001

for its next instruction; it is now free to execute a dump program which must have been

previously stored in its memory (beginning at location 0001).

CONSOLE

The display console (Figure 6-2) consists of two cathode ray tube displays and a key­

board for manual entry of data. A typical 6400 / 6500 / 6600 Computer System may have sev­

eral display consoles for controlling independent programs simultaneously.

Figure 6-2. Display Console

Rev. D 6-4

Keyboard Input

The console may be selected for input to allow manual entry of data or instructions to

the computer. The first part of an operating system program may select keyboard in­

put to allow the programmer to manually select a routine from the operating system.

Data entered via the keyboard may be disph.yed on one of the display tubes if desired.

Assembly and display of keyboard entries is done by a routine in the operating system.

Display

The console may be selected to display(Figure 6-3)ineitherthe Character or Dot mode.

In the Character mode, two alphanumeric characters may be displayed for each 12-bit

word sent from a processor. Character sizes are:

Small

Medium

Large

64 characters/line

32 characters/line

16 characters/line

In Dot mode, a pattern of dots (graph, figures, etc.) may be displayed. Each dot is lo­

cated by two 12-bit words: a vertical coordinate and a horizontal coordinate.

A display program must repeat a display periodically in order to maintain persistence

on the display tube.

6-5 Rev. A

Figure 6-3. Sample Display

Rev. A 6-6

-"' a,
a,

Appendix A

AUGMENTED 1/0 BUFFER AND CONTROL
(6416)

CONTROL DATA 6416

AUGMENTED I/0 BUFFER AND CONTROL

The CONTROL DATA 6416 Augmented I/0 Buffer and Control unit is a large-scale,

solid state device for communication with the Central Processor of 6400, 6500, and

6600 Computer Systems.

DESCRIPTION

The 6416 is comprised often Peripheral and Control Processors and a Central Memory.

A summary of characteristics for the 6416 is tabulated below.

PERIPHERAL AND CONTROL PROCESSORS

• 10 identical processors

Each processor has a 4096 word magnetic core memory (12-bit)

Random access, coincident current

Major cycle = 1000 ns; Minor cycle = 100 ns

• 12 input/output channels

All channels common to all processors

Maximum transfer rate per channel - one word/major cycle

All channels may be active simultaneously

All channels 12-bit bi-directional

• Real-time clock (period = 4096 major cycles)

• Instructions

Logical

Branch

Add/Subtract

Input I Output

Central Memory Access

Extended Core Storage Access

• Average instruction execution time = two major cycles

• Indirect addressing

• Indexed addressing

A-1 Rev. D

CENTRAL MEMORY

• 16, 384 words (60-bit)

• Memory organized into four logically independent banks of 4096 words with
corresponding multiphasing of banks

• Random-access, coincident-current, magnetic core

• One major cycle for read-write

• Maximum memory reference rate to all banks; four addresses/major cycle

• Maximum rate of data flow to/from memory; four words /major cycle

The 6416 has no Central Processor; otherwise, it is identical to the 6400, 6500, and

6600 Computer Systems. The following discussion assumes use of the 6416 in a typical

6400 or 6600 system; the 6416 can also be used in a 6500 system. Furthermore, it is a

computer capable of operating alone.

SYSTEMS CONFIGURATIONS

The 6416, in typical systems configurations, provides an extremely useful and powerful

system expansion. For installations with multiple on- line users, the 6416 provides ad­

ditional data channels facilitating additional external equipments. The ten Peripheral

and Control Processors, each capable of independently executing programs, and the

16, 384 word 60-bit Central Memory significantly increase the multiprogramming and

batch job processing capabilities of the 6400, 6500, and 6600 Computer Systems.

A typical configuration diagrammed in Figure A-1 illustrates the orientation of a 6416

with a 6400 or 6600 Computer System. The 6416 is attached to the 6400 or 6600 system

via one of the Peripheral Processor Data Channels.

The 6682 I 6683 Satellite Coupler accepts and relays control signals and data to provide

smooth information flow throughout the system.

In this configuration, the 6416 may be thought of as a batching terminal, where batch

jobs may enter the system, be assembled, and placed in the 16K distributive memory.

Access to the 6400 or 6600 Central Processor for job execution is then under operating

system control.

Rev. D A-2

,----------1 r-----------,

CENTRAL
PROCESSOR

i
60 BITS

CENTRAL MEMORY

60 BI TS

PERIPHERAL PROCESSORS (10)

6682/
6683

6682/
6683

MEMORY (16 K)

i
60 BITS

PERIPHERAL PROCESSORS (10)

I
L __ J

6400 OR 6600 SYSTEM 6416

Figure A-1. Typical Configuration: 6416 with 6400 or 6600 System

Another possible systems configuration (Figure A-2) incorporates Extended Core Stor­

age between the 6400 or 6600 Central Memory and the 6416 16K memory. This con­

figuration implies a hierarchy of memories as follows:

1) Extended Core Storage as a system Central Memory

2) 6400 or 6600 Central Memory as a system Central Processor memory

3) 6416 16K memory as a distributive memory

Communication with Extended Core Storage (Figure A-2) is accomplished as follows:

1) Read and Write instructions in the 6400, 6500, and 6600 Central

Processors initiate transfers between Extended Core Storage and

Central Memory.

2) An Exchange Jump instruction in the 6416 Peripheral Processor

initiates Read and Write operations between Extended Core Storage

and the 6416 16K memory. (Refer to the instruction descriptions

which follow.)

A-3 Rev. D

,----------,
I

CENTRAL I
PROCESSOR

f
I PROCESSOR 60 BITS
I MEMORY~

..---~~~~~~-,

CENTRAL MEMORY

60 BITS

PERIPHERAL PROCESSORS (10)

I
I

L
6400 OR 6600 SYSTEM

SYSTEM
CENTRAL
MEMORY \

EXTENDED
CORE

STORAGE

,- - - - - - - - - - i

DISTRIBUTIVE
MEMORY~

~~~~~~~~ 

MEMORY (16K) 

60 BITS 

PERIPHERAL PROCESSORS (10) 

- - .J 
6416 

Figure A- 2. Typical Configuration with Extended Core Storage 

6416 INSTRUCTIONS 

Within the 6416, Peripheral Processor instructions are identical to those of the 6400, 

6500, and 6600 systems with two exceptions. Note that these two instructions {the ex­

ceptions) are meaningful only when Extended Core Storage is attached to the system. 

27 RCS d Read Extended Core Coupler Status (12 bits) 

27 W/////~ 
II 6 5 0 

OPERATION d 
CODE 

This instruction reads the 6416 Extended Core Coupler status and places these status 

bits in the upper-order three bits of the Peripheral and Control Processor A register. 

The significance of these status bits {when set to 11 111
) is as follows: 

Rev, D 

Bit 17 

Bit 16 

Bit 15 

Extended Core Storage transfer is in progress. 

Parity error{s) occurred during the last Read Extended Core 
Storage operation. 

At least one address of the last Extended Core Storage trans­
fer was not available (power off, in maintenance mode, ad­
dress not in system). 

A-4 



Within the Extended Core Coupler, status bit 17 is dynamic; bits 16 and 15 are cleared 

each time an Extended Core Storage transfer is initiated. 

26 ECT d Extended Core Transfer 

II 

26 

OPERATION 
CODE 

(12 bits) 

0 

6 5 0 

d 

Execution of the Extended Core Transfer instruction initiates memory operations by 

transmitting an 18-bit address, "n", from the Peripheral Processor A register to the 

6416 16K memory, Address "n" holds a word, the format of which is as follows: 

Xo 
59 36 35 

STARTING ADDRESS IN 

EXTENDED CORE STORAGE 

STARTING ADDRESS IN 

16 K MEMORY 

K 

18 17 0 

WORD COUNT 

The 11 d 11 portion of this instruction specifies the storage operation to be performed: 

If "j" 0, Read "K" words from Extended Core Storage into 16K memory. 

If "j" = 1, Write "K" words from 16K memory into Extended Core Storage. 

NOTE 

If this instruction is executed without Extended Core 
Storage in the system configuration, it acts as a Pass 
(Do- Nothing) instruction. 

Note that addresses contained in the word at address "n" are absolute addresses. Oper­

ating systems may require relocation (adding RA to an address) and Field Length test­

ing, e.g., is "address+ RA":;:: FL? (The Exchange Jump package contains RA and FL 

values for Central Memory and for Extended Core Storage.) The 6416 has no hardware 

for automatic relocation and Field Length testing; it is therefore incumbent upon the 

program to perform these functions whenever required by an operating system. 

A-5 Rev. D 





Appendix B 

INSTRUCTION EXECUTION TIMES 





INSTRUCTION EXECUTION TIMES 

The execution times for Central and Peripheral and Control Processor instructions are 

given in the following paragraphs. Factors which influence instruction execution time 

and hence program running time are also given. 

CENTRAL PROCESSOR (6600 SYSTEM) 

The execution time of Central Processor instructions is given in minor cycles, and in­

structions are grouped under the functional unit (6600) which executes the instruction. 

Time is counted from the time the unit has both input operands to when the instruction 

result is available in the specified result register. Central Memory access time is not 

considered in those increment instructions which result in memory references to read 

operands or store results. 

The following paragraphs give some general statements about Central Processor instruc­

tion execution and summarize the statements into a list which may be used as a guide to 

efficient use of the Central Processor functional units. 

Central Processor programs are written in the conventional manner and are stored in 

Central Memory under direction of a Peripheral and Control Processor. After an Ex­

change Jump start by a Peripheral and Control Processor program, Central Processor 

instructions are sent automatic ally, and in the original sequence, to the instruction stack; 

which holds up to 32 instructions. 

Instructions are read from the stack one at a time and issued to the functional units for 

execution. A scoreboard reservation system in Central Processor control keeps a cur­

rent log of which units are busy (reserved) and which operating registers are reserved 

for results of computation in functional units. 

Each unit executes several instructions, but only one at a time. Some branch instruc­

tions require two units, but the second unit receives its direction from the branch unit. 

B-1 Rev. A 



The instruction issue rate may vary from a theoretical maximum rate of one instruction 

every minor cycle (sustained issuing at this rate may not be possible because of unit and 

Central Memory conflict) and resulting paraliel operation of many units to a slow issue 

rate and serial operation of units. 

pend on results of previous steps. 

The latter results when successive operations de­

Thus, program running time can be decreased by 

efficient use of the many units. Instructions which are not dependent on previous steps 

may be arranged or nested in areas of the program where they may be executed during 

operation time of other units. Effectively, this eliminates dead spots in the program 

and steps up the instruction issue rate. 

The following steps summarize instruction issuing and execution: 

1) An instruction is issued to a functional unit when 

• the specified functional unit is not reserved 

• the specified result register is not reserved for a previous result. 

2) Instructions are issued to functional units at minor cycle intervals when no 

reservation conflicts (see above) are present. 

3) Instruction execution starts in a functional unit when both operands are 

available (execution is delayed when an operand(s) is a result of a previous 

step which is not complete. 

4) No delay occurs between the end of a first unit and the start of a second unit 

which is waiting for the results of the first. 

5) No instructions are issued after a Branch instruction until the Branch 

instruction has been executed. The Branch Unit uses 

• an Increment Unit to form the go to k + Bi and go to k if Bi 
instructions, or 

• the Long Add unit to perform the go to k if Xj . . . instructions 

in the execution of a Branch instruction. The time spent in the Long 

Add or Increment Units is part of the total branch time. 

6) Read Central Memory access time is computed from the end of Increment 

Unit time to the time operand is available in X operand register. Minimum 

time is 500 ns, assuming no Central Memory bank conflict. 

CENTRAL PROCESSOR (6400 AND 6500 SYSTEMS) 

Central Processors in the 6400 and 6500 systems have unified Arithmetic units, rather 

Rev. D B-2 



than separate functional units as in the 6600 system. Instructions in these Central Pro­

cessors, therefore, are executed in sequential fashion with little concurrency. 

All execution times for instructions listed in Table B-1 include readying the next instruc­

tion for execution. For the Return Jump instruction and the Jump instructions (in which 

the jump condition is met), Table B-1 lists times which include obtaining the new instruc­

tion word from storage and readying it for execution. Times listed, then, are complete 

times except for possible additional time due to hardware limitations or memory bank 

conflicts. Factors which may add to the stated times in Table B-1 are summarized be­

low: 

p 

1) Reading the next instruction word of a program from Central Memory (termed 

an RN! - Read Next Instruction) is in part concurrent with instruction execution. 

The RN! is initiated between execution of the first and second instructions of the 

instruction word being processed. Initiating the RN! operation requires 2 minor 

cycles; the remainder of the RN! time is in time parallel with the execution of 

the remaining instructions in the instruction word. (Refer to Figure B-1.) 

~---'---~2 __._1_3 I 
~ ~TIONOF INITIATE 

RNI 

! 
200 NSEC 

r 
J INSTRUCTIONS 

2 AND 3 

RNI 
MINIMUM OF 

800 NSEC 

TOTAL RNI TIME 

Figure B-1. RNI Timing Example 

In the example diagrammed in Figure B-1, execution of instruction 2 is de­

layed 2 minor cycles until RN! initiation is complete. 

In calculating execution times for a program, add 2 minor cycles to each in­

struction word in a program to cover the RNI initiation time. Exceptions to 

B-3 Rev. D 



this rule are the Return Jump and the Jump instructions (in which the jump condition is 

met) when these occupy the upper position of the instruction word. Since the stated times 

for these instructions in Table B-1 include the time required to read up the new instruc­

tion word at the jump address, no additional time is required. 

Example: 

p JUMP TO K ( MET } PASS PASS 

K ADD I ADD 2 LOAD STORE 

Instruction Time Required 

Jump 13 Minor Cycles 

Add 1 5 Minor Cycles 

RN! Initiation 2 Minor Cycles 

Add 2 5 Minor Cycles 

Load 12 Minor Cycles 

Store 10 Minor Cycles 

Total Time Required = 4 7 Minor Cycles 

2) After RN! has been initiated (between the first and second instructions of the 

instruction word), a minimum of 8 minor cycles elapse before the next instruc­

tion word is available for execution. If the total time required by instructions 

in the lower order positions of the word is less than 8 minor cycles, allow a 

minimum of 8 minor cycles, regardless of the execution times stated in Table 

B-1. 

Example: 

p I JUMP TO K ( NOT MET) PASS PASS 

(P}+ I 

Rev. B B-4 



Instruction 

Jump (not met) 

RNI Initiation 

Pass = 3} 6, but RNI 

P 3 Minimum ass = 

Minimum time before 
instruction word at 
P + 1 is available for 
execution 

= 

Time Required 

5 Minor Cycles 

2 Minor Cycles 

8 Minor Cycles 

15 Minor Cycles 

3) The Return Jump instruction, all Jump instructions in which the jump condition 

is met, and Load/Store Memory instructions always require additional time 

when located in the second instruction position of an instruction word. This 

additional time is caused by hardware limitations and is not due to memory 

bank conflicts. 

Instruction 

a) Jumps (02 - 07) in which 
the jump condition is met 

b) Return Jump (010) 

c) Load/Store (5X instructions 
with i -f. 0) 

Additional Time Required 
If Used As Second Instruction 
in Word 

1 Minor Cycle 

2 Minor Cycles 

2 Minor Cycles 

4) An additional 3 minor cycles due to bank conflict are required if the second in -

struction of a word references the memory bank in which (P)+l is located. 

5) A Store (not Load) as the first instruction of a word can cause a bank conflict 

with (P) + 1. If this occurs, 3 minor cycles are added to the execution time. 

Summary of guidelines for efficient coding in the 6400 and 6500 Central Processors: 

• Always attempt to place Jump instructions in the upper parcel 

of the instruction word. In most cases, this avoids both the 

additional time for RNI (2 miror cycles) and the possibility of a 

memory bank conflict with (P) + 1. 

• Where possible, place Load/Store instructions in the lower order 

two parcels to avoid lengthening execution times as outlined above. 

B-5 Rev. D 



CENTRAL PROCESSOR INSTRUCTION EXECUTION TIMES 

Central Processor instruction execution times for the 6400, 6500, and 6600 systems 

are tabulated in Table B-1 (6500 times are for each Central Processor). Instructions 

are tabulated according to the functional units in which they are executed; this functional 

unit designation, of course, does not apply to the 6400 and 6500 systems. Their Cen­

tral Processors have unified arithmetic sections, Instruction execution times are listed 

in minor cycles. 

TABLE B-1. INSTRUCTION EXECUTION TIMES: CENTRAL PROCESSOR 

Octal 
Code 

00 
010 
011 
012 
02 
030 
031 
032 
033 
034 
035 
036 
037 
04 
05 
06 
07 

BRANCH UNIT 

STOP 
RETURN JUMP to K 
READ EXTENDED CORE STORAGE 
WRITE EXTENDED CORE STORAGE 
GO TOK+ Bit 
GO TO K if Xj = zero 
GO TO K if Xj t= zero 
GO TO K if Xj = positive 
GO TO K if Xj = negative 
GO TO K if Xj is in range 
GO TO K if Xj is out of range 
GO TO K if Xj is definite 
GO TO K if Xj is indefinite 
GO TO K if Bi = Bj t 
GO TO K if Bi = Bj t 
GO TO K if Bi _? Bj t 
GO TO K if Bi < Bj t 

> tt 

t GO TO K + Bi and GO TO K if Bi 
- - - tests made in Increment Unit 

tt GO TO Kif Xj - - - tests made in 
Long Add Unit 

.. , .......... , .. .. , .... r,.-• 

6400 6600 
6500 

- -
21 13 
.. , ...... 1 .... ... , ...... , .... .. ,. .... , ... ..,, .. r, 

,1,..,1,. ,1,.,1,. .. ,, ..... ... , ..... , ... ,.. 
13 14 
13 9,:, 
13 9,:, 
13 9,:, 
13 9,:, 
13 g,:, 
13 9,:, 
13 9,:, 
13 9,:, 
13 g,;c 

13 3,:, 
13 3,:, 
13 3,:, 

' 

*Add 6 minor cycles to branch time for 
a branch to an instruction which is out 
of the stack (no memory conflict con­
sidered); add 2 minor cycles to branch 
time for a no branch condition in the 
stack. Add 5 minor cycles to branch 
time for a no branch condition out of 
the stack. 

,:,*Execution times for Extended Core 
Storage operations are dependent 
upon several factors; refer to Ex­
tended Core Storage literature for 
timing information. 

Rev. D 

,:c:<>:<Jumps in which the jump condition 
is not met require 5 minor cycles. 

B-6 



TABLE B-1. (Cont'd) 

Octal BOOLEAN UNIT 
Code 

10 TRANSMIT Xj to Xi 
11 LOGICAL PRODUCT of Xj and Xk to Xi 
12 LOGICAL SUM of Xj and Xk to Xi 
13 LOGICAL DIFFERENCE of Xj and Xk to Xi 
14 TRANSMIT Xk COMP. to Xi':' 
15 LOGICAL PRODUCT of Xj and Xk COMP. to Xi 
16 LOGICAL SUM of Xj and Xk COMP. to Xi 
17 LOGICAL DIFFERENCE of Xj and Xk COMP. to Xi 

Octal SHIFT UNIT 
Code 

20 SHIFT Xi LEFT jk places 
21 SHIFT Xi RIGHT jk places 
22 SHIFT Xk NOMINALLY LEFT Bj places to Xi 
23 SHIFT Xk NOMINALLY RIGHT Bj places to Xi 
24 NORMALIZE Xk in Xi and Bj 
25 ROUND AND NORMALIZE Xk in Xi and Bj 
26 UNPACK Xk to Xi and Bj 
27 PACK Xi from Xk and Bj 
43 FORM jk MASK in Xi 

Octal ADD UNIT 
Code 

30 FLOATING SUM of Xj and Xk to Xi 
31 FLOATING DIFFERENCE of Xj and Xk to Xi 
32 FLOATING DP SUM of Xj and Xk to Xi':' 
33 FLOATING DP DIFFERENCE of Xj and Xk to Xi 
34 ROUND FLOATING SUM of Xj and Xk to Xi 
35 ROUND FLOATING DIFFERENCE of Xj and Xk to Xi 

Octal LONG ADD UNIT 
Code 

36 INTEGER SUM of Xj and Xk to Xi 
37 INTEGER DIFFERENCE of Xj and Xk to Xi 

Octal MULTIPLY UNIT*':' 
Code 

40 FLOATING PRODUCT of Xj and Xk to Xi 
41 ROUND FLOATING PRODUCT of Xj and Xk to Xi 
42 FLOATING DP PRODUCT of Xj and Xk to Xi 

,:,comp. = Complement; DP = Double Precision 
,:":'Duplexed units - instruction goes to free unit 

B-7 

6400 
6500 6600 

5 3 
5 3 
5 3 
5 3 
5 3 
5 3 
:J 3 
5 3 

6400 
6500 6600 

6 3 
6 3 
6 3 
6 3 
7 4 
7 4 
7 3 
7 3 
6 3 

6400 
6500 6600 

11 4 
11 4 
11 4 
11 4 
11 4 
11 4 

6400 
6500 6600 

6 3 
6 3 

6400 
6500 6600 

57 10 
57 10 
57 10 

Rev. D 



TABLE B-1. (Cont'd) 

Octal DIVIDE UNIT 6400 
Code 6500 6600 

44 FLOATING DIVIDE Xj by Xk to Xi 57 29 
45 ROUND FLOATING DIVIDE Xj by Xk to Xi 57 29 
47 SUM of 1 's in Xk to Xi 68 8 

46 PASS 3 1 

Octal INC RE ME NT UNIT* 6400 
Code 6500 6600 

50 SUM of Aj and K to Ai )~* 3 
51 SUM of Bj and K to Ai ** 3 
52 SUM of Xj and K to Ai ** 3 
53 SUM of Xj and Bk to Ai *'!< 3 
54 SUM of Aj and Bk to Ai *'~ 3 
55 DIFFERENCE of Aj and Bk to Ai ** 3 
56 SUM of Bj and Bk to Ai ** 3 
57 DIFFERENCE of Bj and Bk to Ai ** 3 

60 SUM of Aj and K to Bi 5 3 
61 SUM of Bj and K to Bi 5 3 
62 SUM of Xj and K to Bi 5 3 
63 SUM of Xj and Bk to Bi 5 3 
64 SUM of Aj and Bk to Bi 5 3 
65 DIFFERENCE of Aj and Bk to Bi 5 3 
66 SUM of Bj and Bk to Bi 5 3 
67 DIFFERENCE of Bj and Bk to Bi 5 3 

70 SUM of Aj and K to Xi 6 3 
71 SUM of Bj and K to Xi 6 3 
72 SUM of Xj and K to Xi 6 3 
73 SUM of Xj and Bk to Xi 6 3 
74 SUM of Aj and Bk to Xi 6 3 
75 DIFFERENCE of Aj and Bk to Xi 6 3 
76 SUM of Bj and Bk to Xi 6 3 
77 DIFFERENCE of Bj and Bk to Xi 6 3 

,,, 

Duplexed units - instruction goes to free unit 

,:c:, When: i = 0 the execution time is 6 minor cycles 
i = 1- 5 the execution time is 12 minor cycles 
i = 6 or 7 the execution time is 10 minor cycles 

Rev. D B-8 



6600 CENTRAL PROCESSOR TIMING NOTES 

1. The times given in Table B-1 are computational times - the time needed after the 

execution start until the result is computed and ready to be stored into the result 

register. 

2. The functional units are not freed until one minor cycle after the result has been 

stored into the result register. 

3. A result register value may be used as an operand to another instruction as soon 

as the result has been stored into the register (same minor cycle). This result 

register will not be freed to be used as a result register of another instruction 

until one cycle after the result has been stored into that register (no trunk priority 

considered). 

4. An instruction is issued to a functional unit if: 

a) The word containing the instruction is in the stack and 

the U registers, 

b) The functional unit(s) needed are free, and 

c) The result register(s) needed are free (note Table B-2 and B-3). 

If these three conditions are not met, all further instruction issues are held until 

they are satisfied. Each issued 15-bit instruction requires one minor cycle before 

the next instruction is available for issue. Each issued 30-bit instruction requires 

two minor cycles before the next instruction is available for issue. 

5. Execution within a functional unit does not start until the operands are available 

(note Table B-3). The two operands required are fetched from the registers at the 

same time (one operand is not loaded while the unit waits for a second operand). 

6. In instructions 02-07, where more than one functional unit is used, the instruction 

is not issued until both functional units involved are free. 

7. Times given for instructions 01-07 and 50-57 do not consider any memory conflict 

conditions. 

B-9 Rev. B 



8. In instructions 50-57, if i = 1, 2 ••. 5 (load from memory instructions), the Xi reg­

ister value is not available until 8 minor cycles after the start of the instruction 

execution (assuming no memory conflicts). When two load instructions begin ex­

ecution one minor cycle apart, one extra minor cycle is required for execution of 

the later instruction. Therefore, the second executed instruction would require 

9 cycles for the load, 5 cycles for the Increment Unit, and 4 cycles for the A reg­

ister. 

9. In instructions 50-57, if i = 6 or 7 (store to memory instructions), the Xi register 

is not available for a result register until 10 minor cycles after the instruction 

begins execution (assuming no memory conflicts). When two store instructions 

begin execution one minor cycle apart, one extra minor cycle is required for exe­

cution of the later instruction. Therefore, the second executed instruction would 

require 11 cycles for the store, 5 cycles for the Increment Unit, and 4 cycles for 

the A register. 

1 O. When executing sequential instructions that are not in the stack, the minimum time 

is one word of instructions every 8 cycles. The time of issue of the last parcel of 

an instruction word to the time of issue of the first parcel of the next instruction 

word {while executing sequential instructions that are not in the stack) requires a 

minimum of 4 cycles. If the last instruction in an instruction word is a 30-bit in­

struction, a minimum of 5 cycles are required from the time of issue to a func­

tional unit of this instruction to the time of issue of the first instruction in the next 

word. An instruction word is parcelled as diagrammed below: 

PARCEL O PARCEL I PARCEL 2 PARCEL 3 

59 45 44 30 29 1514 0 

11. When a branch out of the stack is taken, 15 minor cycles are normally required 

for a 03ijk instruction and 14 minor cycles are normally required for other branch 

instructions (considering no memory conflict). The latter timing is from the start 

of branch instruction execution to the point when the instruction at the branch ad-

dress is ready for issue to a functional unit. 

12. Nine cycles are required for 03ijk instructions when the branch is taken within the 

stack. The next sequential word is recognized as within the stack. 

Rev. A B-10 



13. Eight cycles are required for 04ijk to 07ijk instructions when the branch is taken 

within the stack. The next sequential word is recognized as within the stack. 

14. Eleven cycles are required for 03ijk instructions when the branch is not taken 

(time from branch execution to issue of next instruction) if in the stack or if fall­

ing through to the same word. Out of the stack fall-through to the next word takes 

14 cycles. 

15. Ten cycles are required for 04ijk to O 7ijk instructions when the branch is not taken 

(time from branch execution to issue of next instruction) if in the stack or if fall­

ing through to the same word, Out of the stack fall-through to the next word takes 

13 cycles. 

16, The BO register is handled as any other Bi register for timing purposes (i.e., BO 

will hold up execution of an instruction if it is a result register of a previous non­

completed instruction, etc.). 

17, Neither Increment Unit may be involved in a load operation if a store operation is 

to be issued, and neither Increment Unit may be involved in a store operation if a 

load operation is to be issued, The sequential loading of instruction words does 

not affect the load/store conditions of the Increment Units. Increments of AO are 

considered neither loads nor stores. 

18. The operand registers are available to more than one functional unit in the same 

minor cycles if the units are in different groups. 

Group 1 

Boolean 
Divide 
Multiply 1 
Multiply 2 

Group 2 

Shift 
Floating Add 
Long Add 

Group 3 

Increment 1 
Increment 2 

19, The time needed for a functional unit to operate on indefinite, out-of-range, or 

zero values is the same as for normal, in-range values (i.e., no gain or loss in 

execution time due to a unit recognizing an indefinite operand and setting an indef­

inite result). 

B-11 Rev. A 



20. An Index Jump instruction (02) will always destroy the stack. If an unconditional 

jump back in the stack is desired, a 0400K instruction may be used (to save mem­

ory access time for instructions). 

21. A Return Jump instruction (01) will always destroy the stack. 

22. After a result has been computed by a functional unit, the result register is check­

ed to see if it is still needed as an operand register for a previously issued in­

struction. This is done so that a result will not overlay an operand to a previous­

ly issued instruction. If a unit (#1) is waiting for an operand to be fetched by 

another unit (#2) before storing its result, for timing considerations, 

a) The result register is available to a third unit (#3) as an 

operand, the cycle following the fetch, and 

b) The unit (#1) is freed two cycles following the fetch. 

2 3. In cases of bank conflict, unaccepted addresses get a chance at access every 

three minor cycles. If the address can then be accessed, the memory operation 

proceeds. If the bank is still busy, the address circulates in the hopper, while 

access is permitted for any other source requesting access. 

TABLE B-2. FUNCTIONAL UNIT DATA TRUNK ASSIGNMENTS AND PRIORITY 

FUNCTIONAL UNIT RESULT (i) OPERAND (j) OPERAND (k) 
Trunk Priority Trunk Priority Trunk Priority 

Group 1: Shift 3 (X~• 1 1 2 2 2 

4 (B) 

Add 3 2 1 1 2 1 

Long Add 3 3 1 3 2 3 

Group 2: Boolean 7 1 5 4 6 4 

Divide 7 2 5 1 6 1 

Multiply 1 7 3 5 2 6 2 

Multiply 2 7 4 5 3 6 3 

Group 3: Increment 1 10 1 8 1 9 1 

Increment2 10 2 8 2 9 2 

*The Shift Unit is sometimes required to store two results at one time: one into an 
X register and one into a B register. 

Rev. B B-12 



TABLE B-3. 6600 REGISTER RESERVATION CONTROL 

XBA RESULT Q OPERAND 
INSTRUCTION REGISTER (ISSUE) REGISTER (EXECUTION) 

Branch Unit 
02ijK - Bi & Bj 
03ijK - Xi &Xj 
04ijK - Bi & Bj 

Boolean Unit 
lOijk - 17 ijk Xi Xj &Xk 

Shift Unit 
20ijk - 23ijk Xi Bj &Xk 
24ijk - 26ijk Xi & Bj Bj &Xk 
27ijk & 43ijk Xi Bj &Xk 

Add Unit (Floating) 
30ijk - 35ijk Xi Xj &Xk 

Long Add (Integer) 
36ijk - 37ijk Xi Xj &Xk 

Multiply (2 Units) 
40ijk - 42ijk Xi Xj &Xk 

Divide Unit 
44ijk - 47ijk Xi Xj &Xk 

Increment (2 Units) 
50ijK Ai &Xi * Aj &Bk ** 
5lijK Ai &Xi * Bj & Bk ** 
52ijK Ai &Xi ,~ Xj &Bk ** 
53ijk Ai &Xi * Xj &Bk 
54ijk & 55ijk Ai &Xi * Aj &Bk 
56ijk & 57ijk Ai &Xi * Bj &Bk 
60ijK Bi Aj &Bk '~* 
61ijK Bi Bj &Bk ** 
62ijK Bi Xj &Bk ** 
63ijk Bi Xj &Bk 
64ijk & 65 ijk Bi Aj &Bk 
66ijk & 67ijk Bi Bj &Bk 
70ijK Xi Aj &Bk ** 
71ijK Xi Bj &Bk ** 
72ijK Xi Xj &Bk ** 
73ijk Xi Xj &Bk 
7 4ijk & 75ijk Xi Aj &Bk 
76ijk & 77ijk Xi Bj &Bk 

,:, The Xi register is considered only when i = 1, 2 ... 7. 
'~* k here refers to the high order 3 bits of 18-bit address field. 

B-13 Rev. B 



PERIPHERAL AND CONTROL PROCESSOR 

The execution time of Peripheral and Control Processor instructions is influenced by 

the following factors: 

• Number of memory references - indirect addressing and indexed 

addressing require an extra memory reference. Instructions in 

24-bit format require an extra reference to read m. 

• Number of words to be transferred - in I/0 instructions and in 

references to Central Memory the execution times vary with the 

number of words to be transferred. The maximum theoretical 

rate of flow is one word/major cycle. I/0 word rates depend 

upon the speed of external equipments which are normally much 

slower than the computer. 

• References to Central Memory may be delayed if there is conflict 

with Central Processor memory requests. 

• Following an Exchange Jump instruction, no memory references 

(nor other Exchange Jump instructions) may be made until the 

Central Processor has completed the Exchange Jump. 

Rev. B 

TABLE B-4 .. PERIPHERAL AND CONTROL PROCESSOR 

INSTRUCTION EXECUTION TIMES 

OCTAL TIME':' 
CODE NAME (MAJOR 

CYCLES) 

00 Pass 1 

01 Long jump to m + (d) 2-3 
02 Return jump to m + (d) 3-4 
03 Unconditional jump d 1 
04 Zero jump d 1 
05 Nonzero jump d 1 
06 Plus jump d 1 
07 Minus jump d 1 
10 Shift d 1 
11 Logical difference d 1 
12 Logical product d 1 
13 Selective clear d 1 
14 Load d 1 

,:,Note that the shorter time is taken in certain instructions 
when d = 0. 

B-14 



TABLE B-4. (Cont'd) 

OCTAL TIME':' 
CODE NAME (MAJOR 

CYCLES) 

15 Load complement d 1 
16 Add d 1 
17 Subtract d 1 

20 Load dm 2 
21 Add dm 2 
22 Logical product dm 2 
23 Logical difference dm 2 
24 Pass 1 
25 Pass 1 
260 Exchange jump l** 
27 Read program address 1 

30 Load (d) 2 
31 Add (d) 2 
32 Subtract (d) 2 
33 Logical difference (d) 2 
34 Store (d) 2 
35 Replace add (d) 3 
36 Replace add one (d) 3 
37 Replace subtract one (d) 3 

40 Load ((d)) 3 
41 Add ((d)) 3 
42 Subtract ((d)) 3 
43 Logical difference ((d)) 3 
44 Store ((d)) 3 
45 Replace add ((d)) 4 
46 Replace add one ((d)) 4 
47 Replace subtract one ((d)) 4 

50 Load (m + (( d)) 3-4 
51 Add (m + (d)) 3-4 
52 Subtract (m + (d)) 3-4 
53 Logical difference (m + (d)) 3-4 
54 Store (m + (d)) 3-4 

*Note that the shorter time is taken in certain instructions 
when d = O. 

**Though the execution time for this instruction in the Peripheral 
and Control Processor is only 1 major cycle, a minimum of 2 
major cycles is required to complete the Exchange operation in 
Central Memory. Thus, Central Memory honors no requests 
for access for a minimum of 2 major cycles during an Exchange 
Jump, 

B-15 Rev. B 



Rev. B 

TABLE B-4. (Cont'd) 

OCTAL TIME':' 
CODE NAME (MAJOR 

CYCLES) 

55 Replace add (m + (d)) 4-5 
56 Replace add one (m + (d)) 4-5 
57 Replace subtract one (m + (d)) 4-5 

60 Central read from (A) to d min. 6 
61 Central read (d) words 5 plus 

from (A) tom 5/word 
62 Central write to (A) from d min. 6 
63 Central write (d) words 5 plus 

to (A) from m 5/word 
64 Jump tom if channel d active 2 
65 Jump to m if channel d inactive 2 
66 Jump to m if channel d full 2 
67 Jump tom if channel d empty 2 

70 Input to A from channel d 2 
71 Input (A) words to m 4 plus 

from channel d 1 /word 
72 Output from A on channel d 2 
73 Output (A) words from m 4 plus 

on channel d 1 /word 
74 Activate channel d 2 
75 Disconnect channel d 2 
76 Function (A) on channel d 2 
77 Function m on channe 1 d 2 

*Note that the shorter time is taken in certain instructions 
when d = o. 

B-16 



Appendix C 

NON-STANDARD FLOATING 
POINT ARITHMETIC 





NON-STANDARD FLOATING POINT ARITHMETIC 

The following is a tabulation of operations {Add, Subtract, Multiply, Divide) using various 

combinations of operands to supplement Table 3-3 {page 3-13). The key to operands and 

results used in the table is as follows: 

KEY: 

+0 = 
-0 = 
+ co = 
- co = 

+IND = 

-IND = 

w = 

N = 

OPERANDS RESULTS 

0000 x ... x 0 = 
7777 x ... x IND = 
3777 x ... x + co = 

4000 x ... x - co = 

1777 x ... x 
6000 x ... x 
Any word except ± co 

' 
±IND 

Any word except ± co 
' 

±IND, or ±0 

Xj 

Xj 

w 
+co 

- co 

ADD 

Xi=Xj+Xk 

{Instructions 30, 32, 34) 

Xk 

w + co - co 

- +co - co 

+co IND 

IND - co 

±IND 

w 
+co 

- co 

SUBTRACT 

Xi=Xj-Xk 

{Instructions 31, 33, 35) 

Xk 

w + co - co 

- - co +co 

+ co IND + co 

- co - co IND 

±IND IND IND IND 

C-1 

±IND 

IND 

IND 

IND 

IND 

±IND 

IND 

IND 

IND 

IND 

00000 ••• 0 

1 777 o ... 0 

3777 o ... o 
4000 o ... o 

Rev. D 



+N 

+N -
-N 

+o 

Xj -0 

+ro 

-ro 

±IND 

+N 

+N -
-N -
+0 0 

Xj -0 0 

+ro + ro 

- ro - ro 

±IND IND 

Rev. A 

MULTIPLY 

Xi=Xj*Xk 

(Instructions 40, 41, 42) 

Xk 

-N +0 -0 

- 0 0 

- 0 0 

0 0 

0 

DIVIDE 

Xi=Xj/Xk 

(Instructions 44, 45) 

Xk 

-N +o -0 

- +ro -ro 

- - ro +ro 

0 IND IND 

0 IND IND 

- ro +ro - ro 

+ ro - ro +ro 

IND IND IND 

C-2 

+ro 

+ro 

-ro 

IND 

IND 

+ro 

+ro 

0 

0 

0 

0 

IND 

IND 

IND 

- ro ±IND 

- ro IND 

+ ro IND 

IND IND 

IND IND 

- ro IND 

+ro IND 

IND 

- ro ±IND 

0 IND 

0 IND 

0 IND 

0 IND 

IND IND 

IND IND 

IND IND 



Appendix D 

EXTENDED CORE STORAGE 





EXTENDED CORE STORAGE 

This appendix describes characteristics of Extended Core Storage for the 6400, 6500, 

and 6600 systems and the 6416. 

SUMMARY OF CHARACTERISTICS 

The following summary lists characteristics of an Extended Core Storage (ECS) config­

uration. 

• Bounds protection and relocation capabilities for ECS 

• 125. 952 60-bit words per bank (minimum available size) 

• Optional sizes available: 1, 2, 4, 8, and 16-bank configurations 

(maximum available size is 2, 015, 232 60-bit words) 

• Memory organized in logically independent banks of 

488-bit words (eight 60-bit words plus parity bit for each) with 

corresponding multiphasing of banks 

• Random access, word-oriented, magnetic core 

• Approximately 3. 2 microsecond cycle time (read-write time 

for 488- bit word) 

• Approximately 1. 86 microseconds for access to first 60-bit word 

• Four access channels (60-bit) for communication with up to four 6400, 

6500, 6600, or 6416 systems. 

• Scanning mechanism services all channels equally; scan occurs after 

each record 

• Assembly/Disassembly (60-bit words into 480-bit word plus 8-bit 

parity and vice versa) 

• Parity bit generated for each 60-bit word; parity check on Read 

operations 

DESCRIPTION 

An Extended Core Storage configurationfora 6400, 6500, 6600, or 6416 basically involves 

three logical elements: Extended Core Storage, Extended Core Controller, and Extend­

ed Core Coupler. These logical elements are shown in Figure D-1. 

D-1 Rev. D 



6416 

6600 
6416 

6600 COUPLER 

COUPLER ~ 

' EXTENDED 
EXTENDED CORE 

I~ - CORE 
CONTROLLER STORAGE 

j ( ECS) 

6400 
, 

6500 

6400 COUPLER 

COUPLER 

6500 

Figure D-1. Typical Extended Core Storage Configuration 

EXTENDED CORE STORAGE 

The Extended Core Storage unit provides up to two million directly addressable 60- bit 

words. Eight 60-bit words are organized into a 488-bit data word in ECS. A parity bit 

is attached to each 60-bit word in the controller on a Write ECS. Extended Core Stor­

age (ECS) is organized into banks of 12 5, 952 60-bit words per bank. 

The minimum available ECS is a bank of 125, 952 60-bit words. Expanding ECS to four 

banks provides a bay containing 503, 808 60-bit words. Four bays provide the maximum 

available ECS capability - 2, 015, 232 60-bit words. Within this range of minimum to 

maximum (125K to 2000K), ECS is available in 1, 2, 4, 8, and 16-bank configurations. 

Addressing a particular word in ECS is accomplished by transmitting a 24-bit address 

word to ECS. Read and Write instructions which initiate ECS communication are de­

scribed in the Order of Instructions section for the Central Processor and in Appendix A. 

Successive 488-bit words are in different banks to permit bank phasing. Typical ad­

dress word formats and an ECS data word format are diagrammed below: 

Rev. D D-2 



23 17 16 3 2 0 

0000000 

23 19 18 

0 0 0 0 0 

23 21 20 

ADDRESS OF 488-BIT WORD 

IN BANK 

I OF 8 
60-BIT 
WORDS 

125K 

( I BANK) 

5 4 3 2 0 

ADDRESS OF 488-BIT WORD 

IN BANK 

'---..,' 

I OF 8 500K 
5 0-BIT (4 BANKS) 
WORDS 

I OF 4 BANKS 

875432 0 

ADDRESS OF 488-BIT WORD I OF 
4 

BAYS 

I OF 8 
60-BIT 2000K 0 0 0 

0 

WORD O 

'-----v---1 
60 BIT WORD 

PLUS PARITY BIT 

IN BANK WORDS (16 BANKS) 

'-v-1 
I OF 4 BANKS 

477 

ADDRESS 

WORD 

FORMATS 

STORAGE 
WORD 

FORMAT 

An assembly I disassembly network in ECS assembles eight 60-bit words {plus eight 

parity bits) into a 488- bit word for Write operations. On Read operations, this network 

disassembles eight 60-bit words and their associated parity bits from the 488- bit word 

read from ECS. Each bank has an assembly/disassembly network. 

Each storage bank has a Read/Write cycle time of 3. 2 microseconds per 488-bit word 

selected. This storage cycle time is as diagrammed below: 

REST PERIOD 

READ 200 NSEC ~ 
( 800 NSEC l 

I ~ - - - - - - - - - - - --
I 

WRITE 
-+ 600 NSEC I+-

( 1600 NSEC l REST 
PERIOD 

3.2 fLSEC -

EXTENDED CORE CONTROLLER 

The Extended Core Controller provides four bidirectional access channels to read or 

write 60-bit data words, a scanning mechanism to service the requests of these channels, 

a parity generator and checker, and the associated control necessary to regulate these 

operations. 

D-3 Rev. D 



Access Channels 

Bidirectional access channels on the controller provide the paths for data and control 

signals between ECS and the coupler. To permit access to ECS by other systems, a 

total of four access channels are provided. Data trunks in the access channels are 60-

bits in length. 

Data transfer (for block transfers) is accomplished in groups of eight words or less, 

called records. Single 60-bit word transfers can also be effected. Near the end of a 

record, the controller scans the other access channels for memory requests. If another 

channel is requesting access to ECS, that channel is serviced. If other channels are 

transferring data, each channel is serviced on a record basis. Thus, there may be time 

gaps between records on a given access channel. 

Since ECS can handle 60-bit words at 1 OD-nanosecond intervals for a complete block 

transfer, some restriction is placed on possible transfer rates with system elements 

having either 16K (4 bank) or 32K (8 bank) Central Memories. Since data can neither be 

sent nor received by the coupler or ECS at rates greater than the 16K or 32K Central 

Memories can handle, the couplers provide the control for proper transfer rates in these 

cases. 

For a 6416 with a 16K Central Memory (4 banks), the maximum rate of data flow occurs 

in a 4-reinitiate ECS-4 ..••. pattern (send 4 words, one to each of the 4 banks, reinitiate 

ECS to obtain the second half of the 488-bit word, send those 4 data words, etc.). This 

pattern is referred to as a type A transfer. 

A similar operation occurs (a type B transfer) for a computer system with a 32K (8-bank) 

Central Memory. The maximum rate of data flow occurs in an 8-2-8-2, •.. pattern 

(send 8 data words, wait 200 nanoseconds, send 8 data words, etc.). 

A type C transfer requires a Central Memory size of 65K (16 banks) or 131K (32 banks). 

This transfer type has a maximum data rate capability of one 60-bit word per lOOnano­

seconds until the block transfer is completed. 

The ECS Controller performs much the same function for ECS that Central Memory 

control does for Central Memory. The controller holds in its service registers the Re­

quests, the ECS address, and the Store bit (Read or Write operation) from each of the four 

access channels. 

Rev. D D-4 



If more than one request arrives at one time, the requests are scanned to prevent a re­

quest on a given channel from being locked out by other requests. 

Parity Generator/Checker 

For each 60-bit word to be stored in ECS, a parity bit is generated and stored along with 

that word (odd parity). Parity is checked on each 60-bit word as the storage word is 

disassembled after a Read operation. If a parity error occurs, a signal is sent to the 

coupler. 

EXTENDED CORE COUPLER 

In response to a Read or Write ECS instruction, the Extended Core Coupler performs 

the following operations: 

• Receives the initial ECS address and relays this address and a request 

signal to the controller. 

• Receives the word count, [ (Bj) + K ] . The coupler compares the number 

of words read (or written) with the word count to insure transferring the 

proper number of words. 

• Keeps count of the words transferred. Increments ECS address once 

each eight-word record. 

• Generates an End of Transfer signal when the transfer is completed. 

• Sends a Go signal to Central Memory for every word to be read from 

Central Memory. (Central Memory control increments the Central 

Memory address during the transfer.) 

• 

• 

Regulates data transfer rate for a 16K or a 32K Central Memory which 

cannot give a sustained transfer of one word every 100 nanoseconds. 

Sets a "1" in bit 2 1 7 of the Peripheral Processor A register to indicate 

an Extended Core Storage transfer is in progress. 

DATA TRANSFER TIMING 

Although the block length of Central Memory to ECS (and vice versa) transfers is limited 

only by the respective field lengths (FLcM and FLEcs>, the actual transfer is accom­

plished in records. Near the end of a record, Central Memory control and the control­

ler examine their inputs for memory requests. If any memory requests are present in 

either Central Memory or on some other controller access channel, they are honored 

before the next record is transferred. If no other requests are present, the transfer 

continues on that channel at the maximum rate. 

D-5 Rev.B 



Several variables exist in a typical ECS configuration which makes an attempt to state 

transfer times difficult. Several factors which influence transfer times are: 

• The number of banks in Central Memory 

• The number of banks in ECS 

• Use of the bank phasing feature in addressing 

• Conflicts in Central Memory and ECS 

• First-word access time 

From the foregoing, it is evident that any presentation of timing information is best ac­

complished with a specific configuration in mind as well as some knowledge of the use of 

the configuration, i.e., degree of overlapping operations. The times listed in Table 

D-1 are based on the following assumptions: 

• Times are listed for continuous streaming of data after first-word 

access. (Continuous means uninterrupted except where waits are 

introduced to permit a bank to complete its storage cycle.) 

• ECS is comprised of at least four banks (503K). 

• Bank phasing is used in addressing. 

• No other requests occur for Central Memory access. 

• No conflicts are presented at the ECS access. 

TABLE D-1. TYPICAL TRANSFER TIMES 

NUMBER OF CENTRAL 
MEMORY BANKS TRANSFER TIMES 

Four 8 Words/2. 0 usec 

Eight 8 Words/ 1. 0 usec 

Sixteen 
or 

Thirty-Two 10 Words/ 1. 0 usec 

Rev. D D-6 



A register, 
Central Processor, 3-6, :~-7 
Peripheral Processor, 4-8 

Absolute memory address, 2-3 
Access to the Central Processor, 4·-:M 
Adders, Peripheral and Control Pro<'('SH<!rR. 4- 4 
Address, 

absolute, 2- 3 
Central Memory, 2-1 
modes, 4-6 
program, 3-8 
relative, 2-3 
reference, 2-2 

Arithmetic, 
fixed point, 3-21 
floating point, 3-15 

Arithmetic unit, 3-1 
Augmented Input/Output Buffer and Control, A-1 

systems configuration, A-2, A-3 
instructions, A-4 
Exchange Jump, A-5 

B register, Central Processor, 3- 6 
Barrel, 4-4 

registers, 4-8 
Banks, Central Memory, 2-1 
Block transfer, 4-2, 4-29, 4-30, 4-32, 4-33, 4-34 
Branch instructions, 3-43 

Central Memory, 1-2 
access, 2-1, 4-32 
address format, 2-1 
characteristics, 1- 6 
map, 2-3 
organization, 2-1 
protection, 2-2 
read, 4-32 
write, 4- 33 

Central Processor, 1-1, 1-2 
characteristics, 1-4 
comparisons in 6000 Series, 3-1 
Exchange Jump, 3-9 
Exit mode, 3-11 
fixed point arithmetic, 3-21 
floating point arithmetic, 3-15 
functional units, 3-4 
instruction descriptions, 3-22 
instruction execution times, B-6 
instruction formats, 3-4 
operating registers, 3-2, 3-6 
organization, 3-1 
programming, 3-3, 3-4 
timing notes, B-9 

Clock, see Real-Time Clock 
Coefficient, 3-15, 3-16, 3- 35 
Concurrency, 1-2 
Console, see Display Console 

Data, 
distributor, 2-2 
input, 4- 3 7 
output, 4-38 

Data Channels, 1-6, 4-35 
active/inactive, 4-31, 4-36 
full/empty, 4-28, 4-36 

INDEX 
input, 4-29, 4-37 
output, 4-30, 4- 38 
word rate, 4- 3 6 

Data Channel Converter (6681), 1-3 
Dead start panel, 6-1 

photograph, 6-4 
Disk System (6603), 1-3 
Display Console (6612), 1-3, 6-1, 6-3, 6-4 

characteristics, 1- 7 
photograph, 6- 3 
sample display, photograph, 6-4 

Dot mode, 6-4 
Double precision, 3-1 fl 

Exchange Jump, 2-3, 3-:i, 3-9, 3-51, 5-1 
instruction, 4-34 
package, 3-9 

Exit mode, 3-11, 5-2 
table, 3-13 

Exponent, 3-15, 3-16, 3-35 
Extended Core Controller, D-1, D- 3 

access channels, D-4 
parity generator/ checker, D- 5 

Extended Core Coupler, D-1, D-5 
Extended Core Storage, D-1, D-2 

address format, D-3 
address formation, 3-47 
address range faults, 3-49 
characteristics, D- l 
communication with Augmented I/0 Buffer and 

Control, A-3, A-4 
data transfer timing from Central Memory, D-5 
error action, 3- 51 
Exchange Jump during Extended Core Storage 

operation, 3-51 
instructions, 3-46 
typical configuration, D-1, D-2 
word format, D- 3 

Field Length, 2-3, 3-9, 3-47, 3-48 
Fixed point arithmetic, 3-21, 3-22 

instructions, 3-2 8 
Flags, 4-2, 4-36 
Floating point arithmetic, 3-15 

converting integers to floating format, 3-19 
instructions, 3- 3 7 
non- standard, C-1 
overflow and underflow conditions, 3-19, 3-20 

Functional units, Central Processor, 3- 5 

Hopper, 2-2 

Indefinite forms, 3-17, 3-18, 3-19 
see also Floating Point Arithmetic, non­

standard, C-1 
Input/Output, 4-2, 4-35 

channels, 4-2 
see also Data Channels 

data flow, 4-1 
data input, 4-3 7 
data output, 4- 38 

Interrupt, 5-1 
hardware provisions, 5-1 

Index - 1 Rev. A 



INDEX 

Instructions, Central Processor, 
Branch, 3-43, 3-44, 3-45 
execution, 3-3 
execution times, B-6 
Extended Core Storage, 3-46 
fixed point arithmetic, 3-21 
floating point, 3-37, 3-38, 3-39, 3-40, 3-41, 3-42 
formats, 3-4, 3-5 
Increment, 3-24, 3-25, 3-26 
Logical, 3-29, 3-30, 3-31, 3-32 
Mask, 3-36 
No Operation, 3-23 
Normalize, 3-34 
Notes on timing, B-9 
Pack, 3-36 
Program Stop, 3-23 
Round and Normalize, 3-34 
Shift, 3-32, 3- 33 
Stack, 3-4, 3-10 
Unpack, 3-35 

Instructions, Peripheral and Control Processors, 
access to Central Memory, 4-32, 4-33, 4-34 
Arithmetic, 4-13, 4-14, 4-15, 4-16 
Branch, 4-22, 4-23, 4-24 
Central Processor and Central Memory, 4-24, 4-25, 

4-26, 4-27 
Data Transmission, 4-11, 4-12, 4-13 
execution times, B-14 
formats, 4- 6 
input/output, 4-27, 4-28, 4-29, 4-30, 4-31, 4-32, 

4-35 
Logical, 4-16, 4-17, 4-18, 4-19 
No Operation, 4-10 
Replace, 4-19, 4-20, 4-21, 4-22 
Shift, 4-16 

Instruction execution times, B-1, B-9 
Central Processor table, B-6 
Peripheral and Control Processor table, B-14 

Jump, see Branch 

K register, Peripheral and Control Processor, 4-9 
Keyboard input, 6- 3 

Magnetic tape transport, 1- 3 
Manual control, 6-1 
Mass memory, see Extended Core Storage 
Mode, 

Dot (system console), 6-4 
Exit, 3-11 

Modes, address (Peripheral Processor), 4-6 

Normalizing, 3-16, 3-34 

Operands, 
examples of, 3-25 
indefinite, 3-16 
infinite, 3-16 

Output, 4- 38 

P register, 
Central Processor, 3-8 
Peripheral and Control Processor, 4-9 

Peripheral and Control Processors, 1-1, 1-2, 1-3 
access to Central Memory, 4- 32 
adders, 4-4 
address modes, 4- 6 
barrel, 4-4 
characteristics, 1- 5 
input/ output, 4- 35 
input/output (I/0) channels, 4-2 
instruction descriptions, 4-10 
instruction formats, 4- 6 
organization, 4-1 
programming, 4-4 
real-time clock, 4-3, 4-39 
registers, 4-8 
slot, 4-4 

Program Address register, 
Central Processor, 3-8 
Peripheral and Control Processor, 4-9 

Programs, Central Processor, 3-3 
Pyramid, 

read, 4-5, 4-32 
write, 4-5, 4-3 3 

Q register, Peripheral and Control Processor, 4-9 

Range definitions, 3-1 7 
Range faults, 2-3 
Real-time clock, 4-3, 4-39 
Reference address, 2-2 
Registers, Central Processor 

address (A), 3-2, 3-6, 3- 7, 3-9 
increment (B), 3-2, 3-6, 3-7, 3-9 
operand, 3-2, 3-6, 3-~ 3-9 
Program Address (P), 3-8 

Registers, Peripheral and Control Processors, 
arithmetic (A), 4-8 
K register, 4-9 
Program Address (P), 4-9 
Q register, 4-9 

Relative memory address, 2-3 
Reservation Control, 

Register, B-13 
Rounding, 3-16 

Satellite Coupler (6682/6683), 1-3 
Single precision, 3-16 
Slot, 4-4 
Status channel and equipment, 5-1 
Stops, Central Processor, 

flow chart, 3-14 
illegal packing (6400), 3-6 

Stunt box, 2-1 
System, computer, 

characteristics summary, 1-4, 1-5, 1-6, 1-7 
description, 1-1 
hardware options, 1-8 

Tags, 2-2 

X register, Central Processor, 3-6, 3- 7 

Rev. B Index - 2 



w 
z 
::::. 
C) 
z 
0 .... 
<( 

I­
::, 
u 

"' "' I 

> ... 
a:: 

"' N 

c 
(.) 

::IE 
a:: 
0 ... 

COMMENT SHEET 

CONTROL DATA 6400/6500/6600 COMPUTER SYSTEMS 
Reference Manual 

Pub. No. 60100000 

FROM: NAME: __________________________ _ 

BUSINESS 
ADDRESS=--------------------------

THESE COMMENTS REFER TO REV. __ OF THIS MANUAL. 

COMMENTS: (DESCRIBE ERRORS,SUGGESTED ADDITIONS OR 
DELETIONS, ETC. INCLUDE PAGE NUMBER.) 

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. 
FOLD ON DOTTED LINES AND STAPLE 



FOLD 

FOLD 

STAPLE 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U,S,A, 

POSTAGE WILL BE PAID BY 

CONTROL DATA CORPORATION 

8100 34TH AVENUE SOUTH 

MINNEAPOLIS 20, MINNESOTA 

ATTN: TECHNICAL PUBLICATIONS DEPT. 

STAPLE 

COMPUTER DIVISION 
PLANT TWO 

STAPLE 

FOLD 

FIRST CLASS 
PERMIT NO, 8241 

MINNEAPOLIS, MINN. 

FOLD 

STAPLE 

w 
z 
.J 
(!) 
z 
0 
.J 
<( 

I­
:, 
u 



INDEX TO PERIPHERAL AND CONTROL PROCESSOR INSTRUCTIONS 

NUMERICAL ALPHABETICAL 

OCTAL MNE- AD- MNE- OCTAL AD-
CUDE MONIC DRESS NAME PAGE MONIC COJ>E DHESS NAME PAGE 

00 PSN Pass 4-10 ACN 74 Activate channel d 4-;jl 

01 LJM md Long jump to m + ( d) 4-24 ADC 21 dm Add dm 4-1:J 

02 RJM md Return jump to m + (d) 4 -24 ADD 31 Add (d) 4-14 

03 UJN Unconditional jump d 4-22 ADI 41 Add ((d)) 4-14 

04 ZJN Zero jump d 4-22 ADM 51 md Add (m + (d)) 4-15 

05 NJN Nonzero jump d 4-2:3 ADN 16 Add d 4-13 

06 PJN Plus jump d 4-23 AJM 64 md Jump to m if channel d active 4-:n 
07 MJN Minus Jump d 4-2:i AOU 36 Heplace add one (d) 4 -19 

10 SHN Shift d 4-16 AO! 46 Replace add one ((ct)) 4 -20 

11 LMN Logical difference d 4-16 AOM 56 md neplace add one (m + (d)) 4-:.n 
12 LPN Logical product d 4-17 CHD 60 Central read from (A) to d 4-25 

13 SCN Selective clear d 4-17 CRM 61 md Central rfiad (d) words frnm (A) tn m 4-25 

14 LDN Load d 4-11 CWD 62 Central write to (A) from d 4-26 

15 LCN Load complement d 4-11 CWM 63 md Central write (d) words to (A) from m 4-:n 

16 ADN Add d 4-13 DCN 75 Disconnect channel ct 4 -31 

17 SBN Subtract d 4-14 EJM 67 md .Tump tom if channel d empty 4 -28 

20 LDC dm Load dm 4-12 EXN 26 Exchange .imnp 4-24 

21 ADC dm Add dm 4-15 FAN 76 Function (A) on channel d 4 -:-12 

22 LPC dm Logical product dm 4-18 FJM 66 md Jump to m if channel d full 4-28 

23 LMC dm Logical difference dm 4-18 FNC 77 rnd Function m on channel d 4 -32 

24 PSN Pass 4-10 IAM- 71 md Input (A) words to m from channel d 4 -:rn 

25 PSN Pass 4-10 !AN 70 Input to A from channel d 4-29 

26 EXN Exchange jtunp 4-24 !JM 65 md .Jump to m if channel d inactive 4-28 

27 RPN Read program address 4-25 LCN 15 Load complement d 4-11 

30 LDD Load (d) 4-11 LDC 20 dm Load dm 4 -12 

31 ADD Add (d) 4-14 LDD 30 Load (d) 4-11 

32 SBD Subtract ( d) 4-14 LD! 40 Load ((d)) 4-12 

33 LMD Logical difference (d) 4-17 LDM 50 rnd Load (m + (d)) 4-13 

34 STD Store (d) 4-11 LDN 14 Load d 4-11 

35 RAD Replace add (d) 4-19 LJM 01 md Long jump tom + (d) 4 -24 

36 AOD Replace add one ( d) 4-19 LMC 23 dm Logical difference dm 4-18 

37 SOD Replace subtract one ( d) 4-20 LMD 33 Logical difference (d) 4-17 

40 LD! Load ((ct)) 4-12 LM! 43 Logic-al difference ((d)) 4-18 

41 ADI Add ((d)) 4-14 LMM 53 md Logical difference (m+(d)) 4 -1 ~ 

42 SB! Subtract ((d)) 4-15 LMN 11 Logical difference d 4-16 

43 LM! Logical difference ((ct)) 4-18 LPC 22 drn Logical product dm 4 -18 

44 ST! Store ((d)) 4-12 LPN 12 Logical product d 4 -17 

45 RA! Replace add ((d)) 4-20 MJN 07 Minus Jump d 4 -23 

46 AO! Replace add one (( ct)) 4-20 N.TN 05 Nonzero jump d 4 -23 

47 SOI Replace subtract one ((d)) 4-21 OAM 73 md Ouput (A) words from m on channel d 4 -:rn 

50 LDM md Load (m + (ct)) 4-13 OAN 72 Output from A on channel d 4-:rn 

51 ADM rnd Add (m + (d)) 4-15 P.JN 06 Plus jump d 4-23 

52 SBM rnd Subtract (m + (d)) 4-16 PSN 00 Pass 4 -IO 

53 LMM md Logical difference (m + (ct)) 4 -IU PSN 21 Pass 4 -lU 

54 STM md Store (m+(d)) 4-13 PSN 25 Pass 4 -10 

55 RAM md Replace add (m + ( d)) 4 -21 RAD 35 Replace add (d) 4-l';;l 

56 AOM md Replace add one (m + (d)) 4-21 RA! 45 Replace add ((d)) 4-20 

57 SOM md Replace subtract one (m + (d)) 4-2:.::: RAM 55 md Replace add (m + (d)) 4-21 

60 CRD Central read from ( A) to d 4-25 R.TM 02 rnd Return Jwnp to m + (d) 4 ~24 

61 CRM md Central read (d) words from (A) to m 4 -25 RPN 27 Head program address 4 -25 

62 CWD Central write to (A) from d 4-26 snD 32 Subtract (d) 4 -14 

63 CWM md Central write (ct) words to (A) from m 4-27 SB! 42 Subt-ract ((d)) 4-15 

64 AJM md Jump tom if charmel d active 4-27 SBM 52 md ::,ubtract (m+(d)) 4-16 

65 IJM md JlUTip to m if l'hannel d inactive 4-28 SHN 17 Subtract d 4-14 

66 FJM md Jump to m if channel d full 4-28 SCN 13 Selective dear d 4-17 

67 EJM md Jump to m if channel d empty 4-28 SHN 10 Shift d 4-16 

70 IAN Input to A from channel d 4-29 SOD 37 Replace subtract one (d) 4-20 

71 !AM md Input (A) words to m from channel d 4-29 SOI 47 Replace subtract one ((ct)) 4 -21 

72 OAN Output from A on channel d 4-30 SOM 57 rnd Replace subtract one (m + (d)) 4-22 

73 QA\! md Output (A) words from m on channel d 4-30 STD 34 Store (d) 4-11 

74 ACN Activate channel d 4-31 ST! 44 Store ((d)) 4-12 

75 DCN Disconnect channel d 4-31 STM 54 md Store (m + (d)) 4-13 

76 FAN Function (A) on channel d 4-32 UJN 03 uncond1tional Jump d 4-22 

77 FNC md Function m on channel d 4-32 ZJN 04 Zero Jun1p d 4-22 

Rev. A 



Pub, No, 60100000 

CONTROL DATA 
CORPORATION 

CORPORATE HEADQUARTERS, 8100 34th AVE. SO., MINNEAPOLIS, MINN, 55440 
SALES OFFICES ANO SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD 

Litho in U.S.A. 

··, ·, 

k 
f ·':J 
I : 1.f_·· ... .,.. 

,. 

I, 




